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Burton-Cabrera-Frank (BCF) theory has proven to be a versatile framework to relate surface morphology and
dynamics during crystal growth to the underlying mechanisms of adatom diffusion and attachment at steps. For
an important class of crystal surfaces, including the basal planes of hexagonal close-packed and related systems,
the steps in a sequence on a vicinal surface can exhibit properties that alternate from step to step. Here we develop
BCF theory for such surfaces, relating observables such as alternating terrace widths as a function of growth
conditions to the kinetic coefficients for adatom attachment at steps. We include the effects of step transparency
and step-step repulsion. A general solution is obtained for the dynamics of the terrace widths, assuming quasi-
steady-state adatom distributions on the terraces. An explicit simplified analytical solution is obtained under
widely applicable approximations. From this we obtain expressions for the full-steady-state terrace fraction as
a function of growth rate. Fits of the theoretical predictions to recent experimental determinations of the steady
state and dynamics of terrace fractions on GaN (0001) surfaces during organometallic vapor phase epitaxy give
values of the kinetic coefficients for this system. In Appendixes, we also connect a model for diffusion between
kinks on steps to the model for diffusion between steps on terraces, which quantitatively relates step transparency
to the kinetics of atom attachment at kinks, and consider limiting cases of diffusion-limited, attachment-limited,
and mixed kinetics.
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I. INTRODUCTION

The atomic-scale mechanisms of crystal growth are of-
ten described within the framework of Burton-Cabrera-Frank
(BCF) theory [1–5], in which deposited adatoms diffuse on
top of the exposed atomic layers (terraces) of the crystal
surface, until they either attach to existing steps at terrace
edges, join together to nucleate a new terrace, or evaporate. By
matching adatom diffusion on terraces to flux boundary con-
ditions associated with adatom attachment kinetics at the steps
defining the terrace edges, BCF theory provides a detailed
phenomenological description that is often used to analyze
step-flow growth. The steps can interact not only through
the adatom diffusion field, but also through terrace-width-
dependent adatom chemical potentials that characterize elastic
and entropic effects [3,6]. While BCF theory can be formu-
lated to consider two-dimensional diffusion, e.g., to model
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the meandering of curved steps [7–11], the simple case of
one-dimensional diffusion between relatively straight steps on
vicinal surfaces is also very powerful. One-dimensional BCF
models have been used extensively to understand the step-
bunching instability [12–18], step pairing [19,20], step width
fluctuations [6], growth mode transitions [21], and effects of
surface chemistry [17,22–24]. The parameters in BCF models
can be related to those in kinetic Monte Carlo models for
surface dynamics [25,26].

Most implementations of one-dimensional BCF theory
presume that all steps have identical kinetic properties. This is
based on the assumption that steps have full-unit-cell heights,
and thus identical structures owing to the crystal lattice peri-
odicity. However, when steps have fractional-unit-cell heights,
the kinetic properties can differ from step to step. This gener-
ally occurs for crystal symmetries which contain screw axes or
glide planes, and can lead to fundamentally different growth
behavior [27]. For example, on basal plane surfaces of crystals
with hexagonal close-packed (hcp) or related structures (such
as wurtzite GaN), which have a 63 screw axis normal to the
surface, it is common to find steps of half-unit-cell height be-
cause of the αβαβ stacking sequence of the lattice. As shown
in Fig. 1, on a vicinal surface the orientation of the atomic ar-
rangements alternates between each α and β layer, so that the
structure and properties of the steps also alternate. For such
hcp-type systems, the adatom diffusivity is isotropic and equal
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FIG. 1. Terrace and step structure of vicinal (0001) surface of an
hcp-type crystal (see also Figs. 2 and 3 in [47]). Here we show a
surface with an alpha terrace fraction fα greater than 1

2 . Large and
small circles show in-plane positions of top-layer and second-layer
atoms, respectively, with color indicating height. For GaN, only Ga
atoms are shown, in unrelaxed (bulk) positions; not shown are N or
passivating species of the surface reconstruction [47]. Orientation of
triangle of top-layer atoms around 63 screw axis shows difference
between α and β terraces. Atomic coordinates are given using ortho-
hexagonal lattice parameters a, b, and c [47,48]. Steps of height c/2
typically have lowest edge energy when they are normal to [0110],
[1010], or [1100]. Steps in a sequence of a given azimuth have
alternating structures, A and B.

on all terraces, and only the step properties alternate. The
lowest-energy steps are often normal to 〈0110〉-type direc-
tions, and the two resulting step structures are conventionally
labeled A and B [28,29]. (Face-centered-cubic materials also
have A- and B-type steps on close-packed {111} surfaces, but
they do not alternate between successive terraces for a given
step orientation [28].) The kinetics of adatom attachment at A
and B steps have been predicted to differ [26,29–37], which
can explain the alternating terrace widths and step morpholo-
gies often observed in hcp-type systems [30,38–46]. Figure 1
illustrates an example in which the α terraces are wider than
the β terraces.

Motivated by recent experimental results [49] and surface
x-ray scattering analysis [47], here we develop a quantita-
tive BCF model for surfaces with alternating step types. We
consider a simple one-dimensional model with an alternating
sequence in the y direction of two types of steps, A and B,
with properties that can differ, as shown in Figs. 1 and 2.
Related BCF models of alternating step or terrace properties
have been developed previously [11,26,30,31,50,51]. Discrete
deposition-diffusion models with alternating step and terrace
properties have also been presented [52–54]. Here we in-
clude the effects of step transparency (also known as step
permeability, the transmission of adatoms across steps without
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FIG. 2. Schematic of alternating terraces and steps for the BCF
model. Vicinal {0001} surfaces of hcp crystals have alternating α and
β terraces separated by A and B steps. Notations are indicated for the
kinetic coefficients for adatom attachment from below κ

j
+ and above

κ
j
− and for adatom transmission κ

j
0 .

incorporation) [4,10,13,21] and step-step repulsion [3,6]. We
allow the kinetic and thermodynamic coefficients that deter-
mine the boundary conditions for adatom interaction with
steps to differ for A and B steps, but assume that adatom
deposition, diffusivity, and lifetime on α and β terraces are
identical. We develop quasi-steady-state solutions for the
adatom density distributions and the dynamics of the α and
β terrace fractions, and investigate how the full-steady-state
terrace fraction depends upon growth rate and kinetic pa-
rameters. Finally, we compare the BCF model predictions to
recent in situ microbeam x-ray scattering measurements of the
terrace fraction during growth of GaN [49]. In Appendix A,
we connect a model for adatom diffusion between kinks on
steps to the model for diffusion between steps on terraces,
which gives relations between the kinetic coefficients involved
in the step and kink boundary conditions, and provides a pa-
rameter that quantitatively characterizes step transparency. In
Appendix B, we consider cases with kinetics limited by diffu-
sion, attachment, or a mixture on different terraces. Our results
are relevant to epitaxial growth of hexagonal wide-band-gap
semiconductors such as GaN, AlN, and SiC, of current inter-
est for optoelectronics [55], high-power electronics [56], and
quantum information systems [57].

II. BURTON-CABRERA-FRANK THEORY
FOR ALTERNATING STEP TYPES

In this section we develop a quasi-steady-state expression
for the dynamics of the terrace fraction fα , and give an ex-
act solution using matrices. Examples of the full-steady-state
adatom distributions and dynamics of fα between such states
are shown. We then develop a simplified analytical solution,
generally valid when the terrace widths are smaller than the
adatom diffusion length.

A. Exact quasi-steady-state solution

Extending standard BCF theory [3,4,10,13,19] to a system
with alternating types of terraces and steps, the continuity
equation for the rate of change in the adatom density per unit
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area ρi on terrace type i = α or β is written as

∂ρi

∂t
= D∇2

y ρi − ρi

τ
+ F, (1)

where D is the adatom diffusivity, τ is the adatom lifetime
before evaporation, and F is the deposition flux of adatoms
per unit time and area. The four boundary conditions for the
flux at the steps terminating opposite sides of each type of
terrace can be written as

J+
α = −D∇yρ

+
α = +κA

−
(
ρ+

α − ρA
eq

) + κA
0 (ρ+

α − ρ−
β ), (2)

J−
α = −D∇yρ

−
α = −κB

+
(
ρ−

α − ρB
eq

) − κB
0 (ρ−

α − ρ+
β ), (3)

J+
β = −D∇yρ

+
β = +κB

−
(
ρ+

β − ρB
eq

) + κB
0 (ρ+

β − ρ−
α ), (4)

J−
β = −D∇yρ

−
β = −κA

+
(
ρ−

β − ρA
eq

) − κA
0 (ρ−

β − ρ+
α ), (5)

where Ji is the adatom surface flux on terrace i, κ
j
+ and κ

j
−

are the kinetic coefficients for adatom attachment at a step of
type j = A or B from below or above, respectively, κ

j
0 is the

kinetic coefficient for transmission across the step, and ρ
j
eq is

the equilibrium adatom density at a step of type j. A standard
positive Ehrlich-Schwoebel (ES) barrier is given by κ

j
+ > κ

j
−.

The + or − superscripts on Ji, ρi, and ∇yρi indicate evaluation
at the terrace boundaries y = +wi/2 or y = −wi/2, respec-
tively, where wi is the width of the terraces of type i and the
spatial coordinate y is taken to be zero in the center of each
terrace. While there is a well-established convention for the
definition of A and B steps owing to their different structures
[28,29], the definition of the α and β terraces is somewhat
arbitrary. As shown in Figs. 1 and 2, we adopt a convention
in which the α terrace is above the A step and the β terrace is
above the B step.

The last term in Eqs. (2)–(5) accounts for step transparency
[4,10,13,21], a phenomenon in which adatoms cross the step
to exchange between neighboring terraces without attachment
at a kink site on the step. This process involves temporary
adatom attachment to a step and some diffusion along the step,
but with adatom detachment onto the opposite terrace before
a kink is encountered. Since the processes occurring along
the step (in the x direction) cannot be explicitly considered
in this one-dimensional model for diffusion normal to the
steps (in the y direction), the transmission coefficients κ

j
0 are

introduced to account for adatom densities attached to the
steps that are not in equilibrium with the kinks. Appendix A
gives a simple model of line diffusion of adatoms along a
step between kinks that allows the kinetic coefficients κ

j
+, κ

j
−,

and κ
j

0 to be related to the line diffusivity, kink attachment
coefficients, and kink density.

The velocity v j of the j-type step can be obtained from the
adatom fluxes arriving from each side, giving

vA = (J+
α − J−

β )/ρ0, (6)

vB = (J+
β − J−

α )/ρ0, (7)

where ρ0 is the density of lattice sites per unit area.

In both the continuity equation (1) and the boundary condi-
tions (2)–(5), we have neglected the “advective” terms due to
the motion of the coordinate system and the boundaries with
respect to the crystal lattice upon which the diffusion occurs.
Advection introduces a term −vρi into the adatom flux Ji in
addition to the diffusive term −D∇yρi, where v is the velocity
of the frame of reference of the flux relative to the lattice. This
would contribute a term (vA + vB)∇yρi/2 to the right-hand
side of the continuity equation (1) and terms −v jρ

x
i to the

left-hand sides of the boundary conditions (2)–(5), analogous
to those used in one or both places in some previous work
[2,10,12,13,15,26]. While the effects of these advective terms
have been investigated [2,12,15], our neglect of them here
is valid under the assumption that the adatom coverages are
small, ρi/ρ0 � 1. We verify the self-consistency of neglect-
ing advective terms in the Supplemental Material [58].

We assume that the adatom density profiles ρi(y) have
reached a quasi-steady state where ∂ρi/∂t is negligible in
the continuity equation (1). We still allow the terrace widths
wi (and thus the ρi) to evolve relatively slowly with time.
The self-consistency of the quasi-steady-state approximation
is analyzed in Supplemental Material [58]. At quasi-steady
state, the general solution for the ρi satisfying Eq. (1) with
∂ρi/∂t = 0 is

ρi = Fτ + C1i cosh

(
y√
Dτ

)
+ C2i sinh

(
y√
Dτ

)
, (8)

where C1i and C2i are coefficients to be determined from the
boundary conditions for each terrace type i = α or β. The
gradient ∇yρi that enters the boundary conditions is then

∇yρi = C1i√
Dτ

sinh

(
y√
Dτ

)
+ C2i√

Dτ
cosh

(
y√
Dτ

)
. (9)

If we define the coefficients

ci ≡ cosh

(
wi

2
√

Dτ

)
, (10)

si ≡ sinh

(
wi

2
√

Dτ

)
(11)

for terrace types i = α and β, and dimensionless step kinetic
parameters

p j ≡ (τ/D)1/2 κ
j
+, (12)

q j ≡ (τ/D)1/2 κ
j
−, (13)

r j ≡ (τ/D)1/2 κ
j

0 (14)

for step types j = A and B, then we can use the quasi-steady-
state solutions (8) and (9) to write the boundary conditions
(2)–(5) as

QC = B, (15)

054312-3



GUANGXU JU et al. PHYSICAL REVIEW B 105, 054312 (2022)

where Q is a matrix given by

Q =

⎡
⎢⎣

+[sα + (qA + rA)cα] +[cα + (qA + rA)sα] −rAcβ +rAsβ

+[sα + (pB + rB)cα] −[cα + (pB + rB)sα] −rBcβ −rBsβ

−rBcα +rBsα +[sβ + (qB + rB)cβ] +[cβ + (qB + rB)sβ]
−rAcα −rAsα +[sβ + (pA + rA)cβ] −[cβ + (pA + rA)sβ]

⎤
⎥⎦ (16)

and the vectors C and B are given by

C =

⎡
⎢⎣

C1α

C2α

C1β

C2β

⎤
⎥⎦, (17)

B =

⎡
⎢⎢⎢⎢⎣

qA
(
ρA

eq − Fτ
)

pB
(
ρB

eq − Fτ
)

qB
(
ρB

eq − Fτ
)

pA
(
ρA

eq − Fτ
)

⎤
⎥⎥⎥⎥⎦. (18)

The solution for the values of the four coefficients C1i and C2i

of Eq. (8) is given by

C = Q−1B, (19)

where Q−1 is the inverse of Q. The quasi-steady-state step
velocities can then be evaluated from expressions obtained
using Eqs. (2)–(9):

vA = −
√

D

τ

(
sαC1α + cαC2α + sβC1β − cβC2β

ρ0

)
, (20)

vB = −
√

D

τ

(
sαC1α − cαC2α + sβC1β + cβC2β

ρ0

)
. (21)

The final expressions needed are those for the equilibrium
adatom densities at the steps ρ

j
eq that enter the boundary con-

ditions (2)–(5) and the vector B. These expressions include
an effective repulsion between the steps owing to entropic
and strain effects. As in previous work [3,6], we relate the
equilibrium adatom density at a step to an adatom chemical
potential μ j via

ρ j
eq = ρ0

eq exp(μ j/kT ), (22)

where ρ0
eq = (ρA

eqρ
B
eq )1/2 is the mean equilibrium adatom den-

sity at zero growth rate, and μ j depends on the terrace widths.
In our case, with two different types of steps, j = A and B, the
chemical potentials are given by

μA

kT
= −μB

kT
= M ≡ M0 +

(
�β

wβ

)3

−
(

�α

wα

)3

. (23)

Here, a nonzero offset M0 arises from the difference in the
adatom density in equilibrium with isolated A or B steps,
and the �i are two step repulsion lengths, that can differ for
the two types of terraces. The step repulsion term prevents
step collisions. For example, if the alpha terrace width wα

approaches zero, the equilibrium adatom density for the A step
approaches zero and that for the B step increases without limit.
One can see from Eqs. (2)–(7) that this increases J+

α and J−
α

and decreases J+
β and J−

β , increasing vA and decreasing vB,
thus tending to increase wα .

We consider the overall vicinal angle of the surface to fix
the sum w of the widths of α and β terraces, so that the widths
can be expressed as wi = fiw, where there is one independent
terrace fraction fα , and the other is given by fβ = 1 − fα . In
this case we can express the chemical potentials using

M( fα ) = M0 +
(

�

w

)3
[(

1 − f 0
α

1 − fα

)3

−
(

f 0
α

fα

)3
]
, (24)

where the coefficients � and f 0
α are related to the �i by

�α = f 0
α �, (25)

�β = (
1 − f 0

α

)
�. (26)

Here � = �α + �β is the total step repulsion length and the
coefficient f 0

α is the equilibrium terrace fraction at zero growth
rate for M0 = 0. Figure 3 shows the dependence on fα of the
scaled step chemical potential (w/�)3(M − M0) for various
values of f 0

α .
For isolated steps, with w → ∞, A and B steps can have

different equilibrium adatom densities, ρA
eq = ρ0

eq exp(M0)
and ρB

eq = ρ0
eq exp(−M0), if M0 is nonzero. Recent ab initio

calculations [35–37] suggest that A and B steps can have
different adatom attachment energies. To estimate the offset
M0, one would have to consider not only adatom attachment
energies at steps, but also the equilibrium concentration of
adatoms attached to steps that result in zero net kink motion.
We discuss this in Appendix A. When ρA

eq and ρB
eq differ, estab-

lishment of equilibrium on a vicinal surface with alternating
step types requires that the step repulsion terms balance M0

to give M = 0. This occurs at a terrace fraction fα = f ∗
α , the

equilibrium terrace fraction at zero growth rate, related to M0
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FIG. 3. Scaled and offset step chemical potential (w/�)3(M −
M0 ) as a function of fα from Eq. (24) for various values of f 0

α shown
in legend.
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FIG. 4. Equilibrium terrace fraction at zero growth rate f ∗
α as a

function of the scaled step chemical potential offset (w/�)3M0 for
various values of f 0

α shown in legend.

by the implicit expression

−M0 =
(

�

w

)3
[(

1 − f 0
α

1 − f ∗
α

)3

−
(

f 0
α

f ∗
α

)3
]
. (27)

Figure 4 shows f ∗
α as a function of the scaled offset (w/�)3M0

for various values of f 0
α . Inspection of Eqs. (24) and (27) and

Figs. 3 and 4 shows that the functional relationship between
f ∗
α and −(w/�)3M0 is simply the inverse of the relationship

between (w/�)3(M − M0) and fα . Figure 5 shows f ∗
α as a

function of f 0
α for various values of scaled M0. For M0 = 0,

one has simply f ∗
α = f 0

α .
The net growth rate G in monolayers per second (ML/s) is

proportional to the sum of the step velocities

G = vA + vB

w
= −

√
D

τ

(
2sαC1α + 2sβC1β

wρ0

)
. (28)
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FIG. 5. Equilibrium terrace fraction at zero growth rate f ∗
α as a

function of f 0
α for various values of the scaled step chemical potential

offset (w/�)3M0 shown in legend.
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FIG. 6. Rate of change of the terrace fraction dfα/dt as a func-
tion of terrace fraction fα , calculated from Eq. (29) with parameter
values given in Table I. The full-steady-state values f ss

α are marked
with a circle.

The rate of change of the α terrace fraction fα is proportional
to the step velocity difference

dfα
dt

= vA − vB

w
=

√
D

τ

(
2cβC2β − 2cαC2α

wρ0

)
. (29)

This equation can be integrated to solve for the evolution
of fα (t ) at quasi-steady state. To obtain the full-steady-state
value of fα , the A and B step velocities must be equal and
stable against fluctuations,

dfα
dt

= 0, (30)

∂ (dfα/dt )

∂ fα
< 0. (31)

When the net growth rate is zero and the terrace fraction has
reached its full-steady-state value, in this case equilibrium
fα = f ∗

α , the step velocities are both zero, the diffusion fluxes
are zero, the adatom densities are constant at a value ρα =
ρβ = ρA

eq = ρB
eq = ρ0

eq, and the adatom chemical potentials at
the steps are zero, μA = −μB = 0.

B. Calculation of quasi-steady-state dynamics and full steady
state

Here we show some specific results calculated using the
BCF theory for surfaces with alternating step types. Figure 6
shows the quasi-steady-state rate of change of the terrace
fraction dfα/dt as a function of terrace fraction fα , calculated
from Eq. (29) with parameter values given in Table I. These
values are chosen to approximately match the experimental
results for GaN (0001), using the fit SM1 in Sec. III below.
One curve is for a situation with no deposition flux, F = 0,
where evaporation causes the net growth rate to be negative,
G = −0.0018 ML/s, while the other is for a deposition flux
of F = 1.43 × 1017 m−2 s−1, giving a positive net growth rate
of G = 0.0109 ML/s. The full-steady-state values of terrace
fraction f ss

α where dfα/dt = 0 are marked in Fig. 6 and given
in Table I. For these parameter values there is only a single
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TABLE I. Parameter values used in BCF theory calculations
shown in Figs. 6–8, from fit SM1 and estimates given below. Also
shown are derived values of G and f ss

α for each F .

w = 5.73 × 10−8 m ρ0 = 1.13 × 1019 m−2

� = 9.1 × 10−10 m ρ0
eq = 3.44 × 1012 m−2

τ = 1.66 × 10−4 s D = 1.35 × 10−8 m2 s−1

κA
+ = 1.0 × 103 m s−1 κB

+ = 7.40 × 10−1 m s−1

κA
− = 1.0 × 10−3 m s−1 κB

− = 1.0 × 10−3 m s−1

κA
0 = 1.0 × 10−3 m s−1 κB

0 = 1.50 × 100 m s−1

f 0
α = 0.441 M0 = 0

Condition No. 1 3

F (1017 m−2 s−1) 0 1.43
G (ML/s) −0.0018 0.0109
f ss
α 0.146 0.837

full-steady-state solution for each curve, but from the non-
monotonic shapes of the curves, one can see that two stable
full-steady-state solutions can occur with other choices of
parameter values. (When the curve for dfα/dt crosses zero
three times, only the outer two solutions with negative slope
are stable; the middle solution with positive slope is unstable.)

Figure 7 shows the distribution of adatom density on a se-
quence of α and β terraces at full steady state, corresponding
to the two growth rates shown in Fig. 6. Since the fractional
deviations from ρ0

eq are very small, these are shown as the
excess density ρi − ρ0

eq. In Fig. 7(a), where G is negative (i.e.,

evaporation is faster than deposition), the excess densities are
negative and tend to go through minima on each terrace, while
in Fig. 7(b), where G is positive (i.e., deposition is faster
than evaporation), the excess densities are positive and tend
to go through maxima. The discontinuities in ρi at the steps
reflect the differences in the adatom attachment coefficients
from above and below, κ

j
+ and κ

j
−. The low values of κA

− and
κB

− used imply large ES barriers at the downhill (positive y)
edges of the terraces, moving the maximum or minimum to
that side. The value of κB

0 gives significant transport across
the B step, reducing the difference in adatom densities across
that step.

Figure 8 shows the calculated time dependence of fα ob-
tained by integrating the quasi-steady-state result (29) for
changes between the two conditions G = −0.0018 ML/s and
G = 0.0109 ML/s. Note that the predicted shapes are not
simple exponentials.

C. Analytical solution for nontransparent steps

Because all four boundary conditions implied by Eq. (15)
involve terms in all four coefficients C1i and C2i, the explicit
analytical solution of Eq. (19) for the coefficients gives very
elaborate expressions. In the case of nontransparent steps,
with rA = rB = 0, half of the elements of Q drop out and
the boundary conditions split into two sets of two equations,
each involving only two coefficients. In this case the analytical
solutions are

C1α = −Fτ [2pBqAsα + (pB + qA)cα] + (
ρA

eq + ρB
eq

)
pBqAsα + (

qAρA
eq + pBρB

eq

)
cα

(pB + qA)
(
s2
α + c2

α

) + 2(1 + pBqA)sαcα

, (32)

C2α = Fτ (pB − qA)sα + (
ρA

eq − ρB
eq

)
pBqAcα + (

qAρA
eq − pBρB

eq

)
sα

(pB + qA)
(
s2
α + c2

α

) + 2(1 + pBqA)sαcα

, (33)

C1β = −Fτ [2pAqBsβ + (pA + qB)cβ] + (
ρB

eq + ρA
eq

)
pAqBsβ + (

qBρB
eq + pAρA

eq

)
cβ

(pA + qB)
(
s2
β + c2

β

) + 2(1 + pAqB)sβcβ

, (34)

C2β = Fτ (pA − qB)sβ + (
ρB

eq − ρA
eq

)
pAqBcβ + (

qBρB
eq − pAρA

eq

)
sβ

(pA + qB)
(
s2
β + c2

β

) + 2(1 + pAqB)sβcβ

. (35)

D. Analytical solution for transparent steps

To obtain an analytical solution of Eq. (19) including the
effects of step transparency, we can work with an alternative,
mathematically equivalent, formulation of the boundary con-
ditions [10]

J+
α = −D∇yρ

+
α = +κ̃A

−
(
ρ+

α − ρ̃A
eq

)
, (36)

J−
α = −D∇yρ

−
α = −κ̃B

+
(
ρ−

α − ρ̃B
eq

)
, (37)

J+
β = −D∇yρ

+
β = +κ̃B

−
(
ρ+

β − ρ̃B
eq

)
, (38)

J−
β = −D∇yρ

−
β = −κ̃A

+
(
ρ−

β − ρ̃A
eq

)
, (39)

where the quantities with tildes are defined as

κ̃
j
+ ≡ 〈κ2〉 j

κ
j
−

, (40)

κ̃
j
− ≡ 〈κ2〉 j

κ
j
+

, (41)

ρ̃ j
eq ≡ ρ j

eq + v jρ0κ
j

0

〈κ2〉 j
, (42)

using a sum of products of kinetic coefficients for the type
j = α or β step denoted as

〈κ2〉 j ≡ κ
j
+κ

j
− + κ

j
+κ

j
0 + κ

j
−κ

j
0 . (43)

Note that in Eq. (42) the effective equilibrium adatom den-
sity ρ̃

j
eq at a step of type j depends on the step velocity v j .

The physical significance of κ̃
j
+, κ̃

j
−, and ρ̃

j
eq is discussed in

Appendix A.
The boundary conditions can be written as

Q̃C = B̃, (44)
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FIG. 7. Excess adatom density ρi − ρ0
eq on a sequence of α and

β terraces corresponding to the full-steady-state solution, calculated
with parameter values given in Table I, for (a) F = 0, G = −0.0018
ML/s, f ss

α = 0.146, and (b) F = 1.43 × 1017 m−2 s−1, G = 0.0109
ML/s, f ss

α = 0.837. Origin of position coordinate is at an A step.

where Q̃ and B̃ are given by

Q̃

=

⎡
⎢⎣

sα + q̃Acα cα + q̃Asα 0 0
sα + p̃Bcα −cα − p̃Bsα 0 0

0 0 sβ + q̃Bcβ cβ + q̃Bsβ

0 0 sβ + p̃Acβ −cβ − p̃Asβ

⎤
⎥⎦,

(45)

B̃ =

⎡
⎢⎢⎣

q̃A(ρ̃A
eq − Fτ )

p̃B(ρ̃B
eq − Fτ )

q̃B(ρ̃B
eq − Fτ )

p̃A(ρ̃A
eq − Fτ )

⎤
⎥⎥⎦, (46)

using alternative dimensionless step kinetic parameters

p̃ j ≡
√

τ

D
κ̃

j
+ = p jq j + p jr j + q jr j

q j
, (47)

q̃ j ≡
√

τ

D
κ̃

j
− = p jq j + p jr j + q jr j

p j
, (48)

for step types j = A and B. As in the case of nontransparent
steps, these boundary conditions consist of two sets of two
equations, each involving only two coefficients C1i and C2i

with i = α or β. The solutions are the same as Eqs. (32)–(35),
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FIG. 8. Calculated time dependence of fα obtained by integrat-
ing the quasi-steady-state result (29), following changes between
G = −0.0018 and 0.0109 ML/s at t = 0. Solid and dashed curves
are for increase or decrease of G, respectively.

with p j , q j , and ρ
j
eq replaced by p̃ j , q̃ j , and ρ̃

j
eq, respectively.

Unfortunately, since the ρ̃
j
eq that appear in the C1i and C2i

depend upon the step velocities v j , which in turn depend upon
the C1i and C2i via Eqs. (20) and (21), this still does not
provide an explicit solution for the C1i and C2i.

E. Simplified analytical solution for small terrace width

It is very useful to consider some broadly applicable limits
that simplify the analytical solution, allowing the full-steady-
state terrace fraction and its quasi-steady-state dynamics to
be expressed in terms of the net growth rate. We start with
Eqs. (32)–(35), with p j , q j , and ρ

j
eq replaced by p̃ j , q̃ j , and

ρ̃
j
eq, respectively. In the limit where the diffusion length within

an adatom lifetime is much larger than the terrace widths,√
Dτ � w, the adatom distributions ρi(y) are quadratic in y,

their gradients ∇yρi(y) are linear in y, and the Laplacians ∇2
y ρi

are constant. In Eqs. (32)–(35), the coefficients ci can be set
equal to unity, and the coefficients si are small quantities given
by si = wi/(2

√
Dτ ). In the limits M0 � 1 and �i � wi,

we have M � 1 and exp(M ) ≈ 1 + M, so that the adatom
densities ρi do not differ much from ρ0

eq, and thus the adatom
evaporation flux is relatively uniform at ρ0

eq/τ . Assuming the
second term in Eq. (42) is small, we can replace ρ̃A

eq and ρ̃B
eq

by ρ0
eq, except in the difference (ρ̃A

eq − ρ̃B
eq ). The formulas for

C1i simplify to be

C1α ≈ C1β ≈ ρ0
eq − Fτ. (49)

The net growth rate is then simply given by

G ≈ F − ρ0
eq/τ

ρ0
, (50)

which is the difference between the deposition flux F and a
uniform evaporation flux ρ0

eq/τ , converted to ML/s using ρ0.
If we also assume that the parameters p̃ j and q̃ j are gener-

ally greater than unity owing to large adatom lifetimes τ , so
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that p̃Aq̃B � 1 and p̃Bq̃A � 1, we can write the expressions
for the C2i as

C2α ≈
√

Dτ

w

[
Rα

(
ρ̃A

eq − ρ̃B
eq

) + Sαρ0G
]
, (51)

C2β ≈
√

Dτ

w

[
Rβ

(
ρ̃B

eq − ρ̃A
eq

) + Sβρ0G
]
, (52)

where each contains a term that is proportional to the net
growth rate G. The coefficients are given by

Rα ≡ w

D

(
κA

+
〈κ2〉A

+ κB
−

〈κ2〉B
+ w fα

D

)−1

, (53)

Rβ ≡ w

D

(
κB

+
〈κ2〉B

+ κA
−

〈κ2〉A
+ w(1 − fα )

D

)−1

, (54)

Sα ≡ Rαw fα
2

(
κA

+
〈κ2〉A

− κB
−

〈κ2〉B

)
, (55)

Sβ ≡ Rβw(1 − fα )

2

(
κB

+
〈κ2〉B

− κA
−

〈κ2〉A

)
, (56)

where the Ri are positive and dimensionless and the Si have
dimensions of time. The step velocities of Eqs. (20) and (21)
become

vA = wG

2
+ D

ρ0w

[
(Rα + Rβ )

(
ρ̃B

eq − ρ̃A
eq

) + (Sβ − Sα )ρ0G
]
,

(57)

vB = wG

2
+ D

ρ0w

[
(Rα + Rβ )

(
ρ̃A

eq − ρ̃B
eq

) + (Sα − Sβ )ρ0G
]
.

(58)

The difference of the effective equilibrium step adatom densi-
ties also contains a term that is proportional to G,

ρ̃A
eq − ρ̃B

eq = 2ρ0
eqM + ρ0G[S0 + R0(Sβ − Sα )]

1 + R0(Rα + Rβ )
, (59)

where the new coefficients are given by

R0 ≡ D

w

(
κA

0

〈κ2〉A
+ κB

0

〈κ2〉B

)
, (60)

S0 ≡ w

2

(
κA

0

〈κ2〉A
− κB

0

〈κ2〉B

)
. (61)

The rate of change of fα becomes

dfα
dt

= Kdyn( fα )

(
G

K ss( fα )
− 4M( fα )ρ0

eq

wρ0

)
, (62)

where we have introduced the combined kinetic coefficient
functions K ss( fα ) and Kdyn( fα ), defined by

K ss( fα ) ≡ w

2[−S0 + (Sβ − Sα )/(Rα + Rβ )]
, (63)

Kdyn( fα ) ≡ D

w[R0 + 1/(Rα + Rβ )]
. (64)

These functions have the same dimensions as the individual
κ

j
x coefficients (length/time). Kdyn( fα ) is always positive;

K ss( fα ) depends on the differences in the κ
j

x , such that in the
limit where all κ

j
x are equal, K ss → ∞. In this case the influ-

ence of G on fα becomes negligible, and the full-steady-state

α terrace fraction is always f ss
α = f ∗

α (i.e., the value where
M = 0), independent of G.

The general equation to obtain the full steady state is

Gss( fα ) = 4 K ss( fα ) M( fα )ρ0
eq

wρ0
. (65)

This equation for Gss( fα ) can be inverted to obtain a master
curve for the full-steady-state value f ss

α as a function of G.
For both the dynamics (62) and the full steady state (65),
the six step-attachment parameters enter through the six com-
binations in the coefficients Ri, Si, R0, and S0. The adatom
diffusivity D enters only in the ratios D/κ

j
x and the product

DM. The only dependence on τ and F is through their com-
bination into G [Eq. (50)].

The curve Gss( fα ) always passes through G = 0 at fα = f ∗
α

since M is zero there. The slope of the curve at fα = f ∗
α is

given by

G∗ ≡ dGss

dfα

∣∣∣∣
f ∗
α

= 4 K ss( f ∗
α )M ′( f ∗

α )ρ0
eq

wρ0
, (66)

where M ′ is the derivative

M ′( fα ) ≡ dM

dfα
= 3�3

w3

[(
1 − f 0

α

)3

(1 − fα )4
+

(
f 0
α

)3

( fα )4

]
. (67)

The sign of the slope of Gss( fα ), and thus f ss
α (G), is de-

termined by the sign of K ss( f ∗
α ) since all other factors are

positive.
One can write Eq. (62) as

dfα
dt

= Kdyn( fα )

K ss( fα )
[G − Gss( fα )]. (68)

This form makes it clear that, near f ∗
α , fα is always stable

to a small perturbation from its full-steady-state value 	 fα ≡
fα − f ss

α (G). For example, when K ss is positive, and 	 fα is
positive, then G − Gss( fα ) ≈ −G∗	 fα will be negative, and
the perturbation will decay. The relaxation time t∗ of the per-
turbation can be obtained by substituting this approximation
into Eq. (68) to give

1

t∗ ≡ −1

	 fα

dfα
dt

≈ Kdyn( f ∗
α ) G∗

K ss( f ∗
α )

= 4 Kdyn( f ∗
α )M ′( f ∗

α )ρ0
eq

wρ0
.

(69)
Away from fα = f ∗

α , the solutions can become unstable.
The stability criterion (31) can be written as

∂ (dfα/dt )

∂ fα

∣∣∣∣
f ss
α

= −Kdyn( f ss
α )

K ss( f ss
α )

∂Gss

∂ fα

∣∣∣∣
f ss
α

< 0. (70)

Thus, the full-steady-state solution is stable whenever the
slope of Gss( fα ) has the same sign as K ss( fα ).

Criteria on parameter values for the self-consistency of
the approximations used to obtain the simplified analytical
solution are given in the Supplemental Material [58]. For
the parameter ranges we consider, these criteria are generally
satisfied, confirming the validity of this solution. We have
also checked that the exact solution obtained using the ma-
trix equations (15)-(19) agrees with the simplified analytical
solution when the criteria are satisfied.
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TABLE II. Comparison of measured values (left columns) and
calculated values from the four best fits of the simplified analytical
BCF model.

Condition Steady-state terrace fraction f ss
α

No. G (ML/s) Measured SD3 SM1 SM2 SM3

1 −0.0018 0.111 ± 0.013 0.117 0.146 0.153 0.145
2 0.0000 0.461 ± 0.018 0.464 0.441 0.461 0.442
3 0.0109 0.811 ± 0.014 0.828 0.837 0.843 0.832
4 0.0127 0.868 ± 0.011 0.839 0.848 0.853 0.843

Trans. 1 to 2 Measured SD3 SM1 SM2 SM3

t80 (s) 300 ± 30 263 248 239 261
t50 (s) 1290 ± 130 1397 1327 1305 1372
t20 (s) 3740 ± 370 4129 4601 4686 4594

Trans. 2 to 4 Measured SD3 SM1 SM2 SM3

t80 (s) 92 ± 9 104 87 81 91
t50 (s) 250 ± 25 264 273 269 273
t20 (s) 510 ± 50 410 481 528 460

Total χ 2 19.6 25.0 30.3 24.1

In the general model, e.g., Eqs. (1)–(7) and Eqs. (22)–
(24), there are 15 fundamental variables (F , τ , ρ0, w, D,
ρ0

eq, M0, �, f 0
α , and the six κ

j
x ). In the simplified analyti-

cal solution developed in this section, Eqs. (62)–(65), 12 of
the variables enter only through 9 combinations (G = [F −
ρ0

eq/τ ]/ρ0, Dρ0
eqM0, Dρ0

eq�
3, and the 6 ratios D/κ

j
x ), leaving

12 independent variables that determine the behavior. The
ratios D/κ

j
x have been named “kinetic lengths” [4,6,13,19].

Kinetic lengths much smaller or larger than the terrace widths
typically give diffusion- or attachment-limited kinetics, re-
spectively. Appendix B shows how the expressions developed
above for the simplified analytical solution reduce to simpler
expressions for cases in which the adatom kinetics on the ter-
races are limited by diffusion or by attachment or detachment
at steps.

III. COMPARISON OF BCF THEORY TO X-RAY
MEASUREMENTS DURING OMVPE

A primary motivation for the above development of BCF
theory for surfaces with alternating step types has been to
compare predictions with recent experimental measurements
during step-flow growth and evaporation of GaN (0001)
at T = 1073 K under organometallic vapor phase epitaxy
(OMVPE) conditions [49]. These microbeam surface x-ray
scattering measurements determined the steady-state terrace
fraction f ss

α as a function of growth conditions, as well as typ-
ical time constants for the dynamics of fα (t ) upon changing
conditions. The measured values are summarized in Table II,
along with theory fit values described below.

While we do not explicitly model the potentially complex
surface chemistry of OMVPE in this work, we expect that
the basic framework of BCF theory can be applied, with the
chemical states of the adatoms, steps, and terraces affecting
the parameter values in the model. The observed GaN growth
rate [49] has a simple transport-limited behavior, with a depo-
sition flux F that is linearly proportional to the supply of Ga

precursor, since the N precursor is supplied in excess. Under
the conditions studied, the proportionality is independent of
temperature, indicating that precursor reactions are not rate
limiting, as has been considered in some previous BCF mod-
els [17,22–24]. For each of the two deposition fluxes used
(F = 0 and 1.43 × 1017 m−2 s−1), carrier gas compositions
with and without H2 were employed. The addition of H2 to
the carrier gas reduces the adatom lifetime τ and increases the
evaporation flux ρ0

eq/τ from negligible to 2.0 × 1016 m−2 s−1.
From Eq. (50), one can see that this slightly reduces the net
growth rate G, which is proportional to the difference between
the deposition and evaporation fluxes; at zero deposition flux,
G is negative.

To apply the BCF model to the GaN OMVPE environment,
we have to consider terrace, step, and adatom structures that
are more complex than in simple cases such as vacuum depo-
sition of elemental metals. The GaN terraces have a surface
reconstruction involving passivation by adsorbed species such
as H [47,49]. The mobile “adatoms” likely involve both Ga
and N species. We expect the chemistry of the environment to
affect the kinetics of their diffusion and attachment at A and
B steps, as found in previous studies of epitaxial growth in
chemically active environments [35–37,46,59,60].

As shown in Table II, the experiments [49] give a mono-
tonic increase of f ss

α with G, and characteristic times for
relaxation of fα (t ) upon changing conditions. Our BCF model
predicts the dependence of the full-steady-state terrace frac-
tion on growth rate f ss

α (G), as well as the dynamics of the
transitions when G is changed. We can compare calculated
values to these measurements to understand the implications
for the physics in the model, such as the differences between
adatom attachment kinetics at A and B steps.

We have previously presented fits [49] of a version of
our BCF theory with M0 fixed to zero, to the experimental
results using only a single relaxation time trel for each of the
transitions, where trel is the time for 	 fα (t )/	 fα (0) to reach
1/e = 37%. Because the predicted relaxation of fα (t ) can be
significantly nonexponential, as shown in Fig. 8, here we have
fit the theory to three measured characteristic times for each
transition, rather than just a single relaxation time trel. The
three times given in Table II, t80, t50, and t20, are the times
for the normalized deviation of the terrace fraction from its
steady-state value 	 fα (t )/	 fα (0) to reach 80%, 50%, and
20%, respectively, after a change of growth rate at t = 0. De-
tails of the extraction of t80, t50, and t20 from the experimental
data are given in the Supplemental Material [58]. Here we also
allow M0 to deviate from zero in the fits of BCF theory.

In the experiments, the variables G, ρ0, and w are
controlled or directly determined, so the 12 independent pa-
rameters in the simplified analytical solution reduce to 9
unknown quantities (Dρ0

eqM0, Dρ0
eq�

3, f 0
α , and the 6 D/κ

j
x )

to be determined or constrained by the measurements. This is
a challenge because there are only 10 measured quantities (4
steady-state α terrace fractions f ss

α at different growth rates G,
and 6 characteristic times for transitions in G). As described
in Appendix B, in some limits the number of effective param-
eters is smaller since only certain combinations of D/κ

j
x enter

the solutions.
To calculate BCF model results to compare with the ex-

perimental conditions, we assume that the only parameter
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affected by the Ga precursor supply rate is the deposition
flux F , and that the only parameter affected by the presence
of H2 in the carrier gas is the adatom lifetime τ , and that
these enter only through the net growth rates G determined
in the experiments, given in Table II for each condition. The
assumption that the kinetic parameters are the same for all
growth conditions is reasonable since the experiments found
that the surface reconstruction did not vary over the range
of conditions studied [49]. We use the experimental values
ρ0 = 2a−2/

√
3 = 1.13 × 1019 m−2 and w = c/ sin(0.52◦) =

5.73 × 10−8 m, where a = 3.20 × 10−10 m and c = 5.20 ×
10−10 m are the lattice parameters of GaN at the growth tem-
perature of 1073 K [61].

To explore the full range of BCF model parameters and
the physics underlying them, we first searched for the best
fits using the expressions obtained in Appendix B for each of
the three limiting cases (diffusion limited, attachment limited,
and mixed kinetics). The best fit was determined by minimiz-
ing the goodness-of-fit parameter χ2 ≡ ∑

[(yi − ycalc
i )/σi]2,

where the yi and σi are the 10 measured quantities and their
uncertainties. (For this purpose the logarithms of the charac-
teristic times were used as yi.) These initial fits are described
in Appendix C. While several of the fits give reasonable
results, the parameter values obtained are not always self-
consistent with the limiting cases used.

We have therefore fit the experimental data using the more
general expressions from the simplified analytical solution,
Eqs. (62)–(65). Six fits were carried out, labeled SD1, SD2,
SD3 and SM1, SM2, SM3. The starting points for fits SD1–
SD3 were parameter sets close to the diffusion-limited fits
D1–D3 in Appendix C, while the starting points for SM1–
SM3 were parameter sets close to the mixed kinetics fits
M1–M3, respectively. From these starting points, 8 or 9 pa-
rameters were allowed to vary to find the local minimum of
χ2. As in Appendix C, we considered three functional forms
for M: fixed M0 = 0 with varying f 0

α ; fixed f 0
α = 0.5 with

varying M0; and varying both M0 and f 0
α . The number in the

fit label (1, 2, or 3) corresponds to the form used for M.
The results are summarized in Table III. In each case, the

values of some of the kinetic lengths D/κ
j

x could be varied
with no significant effect, as long as they were sufficiently
smaller or larger than the terrace width w. All of the fits pro-
duce Gss( fα ) that increase monotonically. Figure 9 compares
the calculated f ss

α (G) curves for the four fits with the lowest
χ2 to the measured points, as well as the calculated dynamics
of the normalized deviations 	 fα (t )/	 fα (0) to the measured
characteristic times.

The mixed-kinetics fits SM1–SM3 are almost identical to
M1–M3 in Appendix C. All three give rather similar pa-
rameter sets and have low χ2. The near-diffusion-limited fits
SD1-SD3 give three significantly different parameter sets, in
particular for the kinetic lengths of the A steps. Only fit SD3
has a low χ2, and it is the lowest of all six fits. Table II com-
pares the experimental and calculated values for the four best
fits. The improvement of SD3 over SM1–SM3 is primarily in
the fit to f ss

α at negative G.
Different sets of the kinetic lengths take on limiting values

(either much larger or much smaller than w) for fits SD1–SD3
compared with fits SM1–SM3. All four of the fits having the
best χ2 values, i.e., SD3 and SM1–SM3, give similar values

TABLE III. Best-fit parameter values from the simplified an-
alytical BCF model corresponding to the diffusion-limited and
mixed-kinetics cases. Also given are characteristic values f ∗

α , G∗,
t∗, and (w/�)3M0 for each fit. For the kinetic lengths D/κ j

x , (small)
and (large) mean much smaller or much larger than the terrace width
w = 5.73 × 10−8 m.

Simplified analytical near diffusion limited

Fit type: SD1 SD2 SD3
Fix M0 = 0, Fix f 0

α = 0.5, Vary both
vary f 0

α vary M0 M0 and f 0
α

D/κA
+ (m) 4.04 × 10−9 (small) (large)

D/κA
− (m) (small) (small) 7.29 × 10−9

D/κA
0 (m) (large) 1.85 × 10−9 (large)

D/κB
+ (m) 4.57 × 10−9 2.26 × 10−9 4.57 × 10−8

D/κB
− (m) 4.04 × 10−9 2.44 × 10−9 5.58 × 10−8

D/κB
0 (m) (small) (small) (small)

Dρ0
eq�

3 (m3 s−1) 7.96 × 10−24 4.88 × 10−24 4.44 × 10−23

f 0
α 0.390 0.500 0.278

Dρ0
eqM0 (s−1) 0 3.13 × 10−2 −5.27 × 10−1

f ∗
α 0.390 0.410 0.464

G∗ (ML/s) 0.0026 0.0022 0.0062
t∗ (s) 4970 5730 2680
(w/�)3M0 0 1.21 −2.23

χ 2 59.5 108.7 19.6

Simplified analytical for mixed kinetics

Fit type: SM1 SM2 SM3
Fix M0 = 0, Fix f 0

α = 0.5, Vary both
vary f 0

α vary M0 M0 and f 0
α

D/κA
+ (m) (small) (small) (small)

D/κA
− (m) (large) (large) (large)

D/κA
0 (m) (large) (large) (large)

D/κB
+ (m) 1.82 × 10−8 1.90 × 10−8 1.80 × 10−8

D/κB
− (m) (large) (large) (large)

D/κB
0 (m) 8.98 × 10−9 1.19 × 10−8 7.66 × 10−9

Dρ0
eq�

3 (m3 s−1) 3.58 × 10−23 3.25 × 10−23 3.87 × 10−23

f 0
α 0.441 0.500 0.416

Dρ0
eqM0 (s−1) 0 8.16 × 10−2 −6.36 × 10−2

f ∗
α 0.441 0.461 0.442

G∗ (ML/s) 0.0028 0.0024 0.0032
t∗ (s) 4150 4540 3840
(w/�)3M0 0 0.47 −0.31

χ 2 25.0 30.3 24.1

of the combined parameter Dρ0
eq�

3. The combined parameter
Dρ0

eqM0 ranges between −0.527 and +0.082 s−1. To interpret
these combined parameter values, we can use estimates ex-
tracted from the literature [49] of ρ0

eq = 3.44 × 1012 m−2 and
D = 1.35 × 10−8 m2 s−1 for GaN (0001) at T = 1073 K un-
der similar OMVPE conditions. For example, the parameters
obtained from the SM3 fit then imply kinetic coefficients of
κB

+ = 0.75 m s−1 and κB
0 = 1.76 m s−1, a step repulsion length

of � = 9.4 × 10−10 m, and a step adatom affinity asymmetry
of M0 = −1.3 × 10−6. The example calculations shown in
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FIG. 9. Four best fits of the simplified analytical model from
Table III. (a) Calculated f ss

α (G) curves compared with experimental
f ss
α values (black squares). (b), (c) Calculated normalized deviations

	 fα (t )/	 fα (0) compared with experimental characteristic times at
80%, 50%, and 20% (black squares). Points on curves show cal-
culated values compared with experimental values from Table II to
obtain χ 2.

Figs. 6–8 and Table I correspond to the parameter values
estimated in this way for the SM1 fit.

IV. DISCUSSION AND CONCLUSIONS

The above analysis shows how the kinetic coefficients for
adatom attachment and transmission at the A and B steps
determine both the full-steady-state values f ss

α and the quasi-
steady-state dynamics fα (t ) of the fraction of α terraces on
the surface. The exact solution can be expressed using the
matrix formulas (15)–(19). We obtain a simplified analyti-
cal solution for the limit in which the diffusion length of
adatoms within their lifetime is much larger than the terrace
width,

√
Dτ � w, and the deviations of the adatom den-

sities from their equilibrium values are small, ρi/ρ
0
eq � 1.

In this limit the evaporation flux is uniform, the net growth
rate is simply proportional to the difference between the
deposition and evaporation fluxes G = (F − ρ0

eq/τ )/ρ0, and
the deposition flux F and adatom lifetime τ enter only in
this combination. We obtain explicit analytical expressions
(62)–(65) for both the full-steady-state terrace fraction as a
function of growth rate f ss

α (G) and the dynamics fα (t ) in terms
of the kinetic coefficients. The nature of f ss

α (G) reflects the
differences in the kinetic coefficients of the A and B steps,
and agrees qualitatively with expectations from previous work
[11,26,30,31,50,53]. For example, f ss

α (G) generally has a pos-
itive slope when the κA

x are larger than the κB
x . However,

because there are three independent coefficients for each step
type, giving six kinetic lengths D/κ

j
x whose values relative to

the terrace width affect behavior, a variety of specific cases
can arise. Diffusion-limited, attachment-limited, and mixed
kinetics cases are considered in Appendix B. For situations
outside the region of validity of the simplified analytical so-
lution, described in the Supplemental Material [58], the exact
matrix solution can be used.

We include the effects of step transparency, which can be
considered to be an artifact that arises in a one-dimensional
model to account for perpendicular transport of adatoms along
the steps. The discussion in Appendix A shows that the alter-
native coefficients κ̃

j
x introduced in Eqs. (36)–(39) are equal

to the elementary attachment coefficients in Eqs. (A9)–(A12)
that account for the density of adatoms attached to steps.
This analysis also provides a parameter that quantitatively
characterizes the transparency of the type- j step,

� j = κ
j
+κ

j
−/〈κ2〉. (71)

In the limits � j → 0 or � j → 1, the step is highly transparent
or nontransparent, respectively.

The analytical expressions obtained here can be used to fit
experimental observations of f ss

α (G) and fα (t ), to elucidate the
rate-limiting physical processes that underlie step-flow growth
and evaporation on surfaces with alternating step types. We
present a set of fits to recent data for steady-state and dynamic
values of the terrace fraction fα during OMVPE growth of
GaN (0001) [49] obtained from analysis of in situ surface
x-ray scattering [47]. Note that this x-ray scattering analysis
assumes that the α and β terraces form a sequence with a
period of m unit cells, with α terraces of n unit-cell width
and β terraces of m − n width, so that the α terrace fraction
is fα = n/m, where n and m are integers. Figure 1 shows an
example for n = 3, m = 5. However, the apparent locations
of the A and B steps (shown as vertical lines in Fig. 1) are
offset from the unit-cell boundaries at integer y/b, and the
offset differs by about 1

4 unit cell for the A and B steps.
Using these apparent step locations, which might be more
appropriate for modeling the step repulsion effects, would
give a terrace fraction of fα = (n + 0.25)/m. We neglect this
difference since the experimental terraces are many unit cells
in width, m ≈ 103.

We only consider periodically spaced steps in this paper
and do not evaluate the multistep bunching instability [12–18]
(apart from A-B step pairing). The motivating experiments
[49] show that multistep bunching does not occur under the
conditions studied.
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The fits of the simplified analytical solution to the experi-
mental data are summarized in Table III. Four fits were found
that give similar locally minimized values of χ2, shown in
Fig. 9 and Table II. The best fit obtained with M0 fixed at
zero is the SM1 fit, indicating mixed kinetics (not completely
diffusion or attachment limited) with some kinetic lengths
D/κ

j
x larger and some smaller than the terrace width. When

M0 is allowed to vary, a slightly better fit is obtained with
a rather different set of parameters (SD3). There are two
significantly different sets of parameter values, fit SD3 and
the similar results of fits SM1–3, that reproduce the results
of the experiments. A more extensive range of experimental
data, such as values of f ss

α at additional growth rates, would
be needed to better differentiate between these cases. Inter-
estingly, the four best fits all give the same results for the
transparencies of the steps. In all cases, �B is small, indicating
that the B step is highly transparent, while �A has an inde-
terminate value, so that the transparency of the A step is not
determined. Likewise, the similar values of Dρ0

eq�
3 obtained

from the four fits give a consistent value for the step repulsion
length of � = 9.4 ± 0.5 × 10−10 m using estimated values
of D and ρ0

eq.
Our analysis of the experimental results assumes that the

only difference between the four conditions studied is the net
growth rate G, and that other parameters are the same. In
particular, we assume that the presence of H2 in the OMVPE
carrier gas only affects the adatom lifetime τ , to explain its
observed effect on G. In principle, the presence of H2 could
also affect kinetic parameters such as D and the κ

j
x , even

though the same surface reconstruction is observed under all
conditions. To address this question, further experiments are
needed with more than two deposition fluxes F at each H2

condition (e.g., conditions giving the same G with different
combinations of F and τ ) to better determine whether all f ss

α

values collapse onto a single curve when plotted versus G.
Our BCF treatment introduces a new parameter M0 to

quantify the difference in the terrace adatom densities in equi-
librium with isolated A or B steps. From arguments based on
adatom binding energies, discussed in Appendix A, we expect
that the value of M0 is close to zero for hcp-type systems.
However, when the terrace width w is relatively large, the
behavior of the equilibrium terrace fraction at zero growth
rate f ∗

α is extremely sensitive to even slight deviations of
M0 from zero. This is because of the large multiplier (w/�)3

in the relation between M0 and f ∗
α , shown in Fig. 4. While

the magnitudes of (w/�)3M0 given by the fits in Table III
are of the order of unity, the values of M0 are very small,
e.g., M0 = −1.3 × 10−6 from the SM3 fit. Using this value,
the analysis in Appendix A implies that the sum of the step
and kink attachment energies for adatoms E j

step + E j
kink are

the same for A and B steps to within 2kT M0 ≈ 1 × 10−7 eV.
Thus, the observation of f ss

α close to 0.5 when G = 0 provides
a very sensitive test of the equality of E j

step + E j
kink for A

and B steps. Nonetheless, even such a tiny difference has an
observable effect.

The BCF analysis developed here predicts that for some
combinations of material parameters, Gss( fα ) can be non-
monotonic, giving full-steady-state terrace fractions f ss

α (G)
with multiple stable (and unstable) solutions in some region

of G. For example, in both the attachment-limited and mixed
kinetics cases, K ss( fα ) can change sign as a function of fα ,
which typically leads to this situation. Likewise, our analysis
predicts that the dynamics of fα (t ) after a change in con-
dition can have a significantly nonexponential behavior, as
shown in Fig. 8. While neither effect is strongly apparent in
the experimental results discussed here, their appearance in
future experiments could provide insight into the atomic-scale
mechanisms.
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APPENDIX A: STEP TRANSPARENCY AND ADATOM
DIFFUSION ALONG STEPS

The last term in Eqs. (2)–(5) accounts for step transparency
[4,10,13,21], a phenomenon in which adatoms cross the step
to exchange between neighboring terraces without attachment
at a kink site on the step. This process involves temporary
adatom attachment from a terrace onto a step and some dif-
fusion along the step, but with adatom detachment onto the
opposite terrace before a kink is encountered. Thus, we can
better understand step transparency by considering the density
ρ

j
L(x) of adatoms attached to steps and how it varies in the x

direction along a step of type j. Here we develop a simple
model of line diffusion of adatoms along a step between kinks
that couple to the model presented above for surface diffusion
on terraces, to relate the kinetic coefficients κ

j
+, κ

j
−, and κ

j
0

to the line diffusivity, kink attachment coefficients, and kink
density. Models for diffusion of adatoms attached to steps
have been presented previously [62–64], including discrete
two-dimensional models with kinks on steps [52–54]. Here we
couple orthogonal one-dimensional step and terrace diffusion
models via the boundary conditions at steps for adatom diffu-
sion on the terraces [Eqs. (2)–(5)]. Since our model of terrace
diffusion allows variation only in the y direction normal to the
steps, it couples to the model for adatoms attached to steps
through the average value 〈ρ j

L〉 on the step. These considera-
tions give physical interpretations to the modified coefficients
κ̃

j
x and ρ̃

j
eq in the alternative terrace boundary conditions (36)–

(39). They also can be used to obtain expressions for ρ0
eq and

M0 in terms of the adatom attachment energies at steps and
kinks. These results apply to the standard BCF theory for
surfaces with only one type of step, as well as the extension
developed here for surfaces with alternating step types.

1. Terrace boundary conditions with step adatom densities

We start by rewriting the terrace boundary conditions in
a form that explicitly accounts for the average density of
adatoms attached to steps:

J+
α = −D∇yρ

+
α = +kA

− ρ+
α − kAd

−
〈
ρA

L

〉
ρ0y, (A1)
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J−
α = −D∇yρ

−
α = −kB

+ ρ−
α + kBd

+
〈
ρB

L

〉
ρ0y, (A2)

J+
β = −D∇yρ

+
β = +kB

− ρ+
β − kBd

−
〈
ρB

L

〉
ρ0y, (A3)

J−
β = −D∇yρ

−
β = −kA

+ ρ−
β + kAd

+
〈
ρA

L

〉
ρ0y, (A4)

where the coefficients k j
− and k jd

− are elementary kinetic coef-
ficients for adatom attachment and detachment, respectively,
to a step of type j from a terrace on the uphill side, k j

+ and
k jd
+ are elementary kinetic coefficients for adatom attachment

and detachment, respectively, to a step from a terrace on the
downhill side, 〈ρ j

L〉 is the mean linear density of adatoms
attached to the step of type j, and ρ0y is the linear density of
sites perpendicular to the step (in the y direction). As before,
the + or − superscripts on Ji, ρi, and ∇yρi indicate evaluation
at the terrace boundaries y = +wi/2 or y = −wi/2, respec-
tively. The use of mean adatom densities on each step 〈ρ j

L〉 is
justified under the assumption that the kink spacing is much
smaller than the terrace width, so that nonuniformity along
the step can be neglected and the terrace transport remains a
nearly one-dimensional problem. The linear densities ρ

j
L and

ρ0y have dimensions of (length)−1, while the areal densities ρi

have dimensions of (length)−2. Regarding the sign notations
in Eqs. (2)–(5) and Eqs. (A1)–(A4), note that while we use
the same notation as in most of the literature [4,6,9,10,12–
14,19] for the subscripts on the kinetic coefficients (i.e., κ j

+ for
attachment from below and κ

j
− for attachment from above),

we use the opposite notation as in much of the literature
[4,6,9,10,12,13,19] for the superscripts on Ji, ρi, and ∇yρi

(since here evaluation at y = +wi/2 is the boundary above
a step, and y = −wi/2 is the boundary below a step).

To obey detailed balance, all fluxes must be zero at equi-
librium. At equilibrium we have〈

ρ
j
L

〉 = ρ
j
Leq, (A5)

ρ+
α = ρ−

β = ρA
eq, (A6)

ρ−
α = ρ+

β = ρB
eq, (A7)

where ρ
j
Leq is the equilibrium adatom linear density on the

type- j step. Detailed balance then relates the detachment and
attachment coefficients by

k jd
−

k j
−

= k jd
+

k j
+

= ρ
j
eq

ρ
j
Leqρ0y

. (A8)

Using this to eliminate the detachment coefficients, the
boundary conditions become

J+
α = −D∇yρ

+
α = +kA

−
(
ρ+

α − ρA
eq

〈
ρA

L

〉/
ρA

Leq

)
, (A9)

J−
α = −D∇yρ

−
α = −kB

+
(
ρ−

α − ρB
eq

〈
ρB

L

〉/
ρB

Leq

)
, (A10)

J+
β = −D∇yρ

+
β = +kB

−
(
ρ+

β − ρB
eq

〈
ρB

L

〉/
ρB

Leq

)
, (A11)

J−
β = −D∇yρ

−
β = −kA

+
(
ρ−

β − ρA
eq

〈
ρA

L

〉/
ρA

Leq

)
. (A12)

The six coefficients in this form of the boundary conditions,
k j
+, k j

−, and ρ
j
eq 〈ρ j

L〉/ρ j
Leq, for j = A and B, can be related to

kink

kink

k
L-
j   |  k

L+
j

k
L-
j   |  k

L+
j

Positive adatom flux J
L
 

Positive coordinate x 

y

x

FIG. 10. Schematic of kinks on a step of type j, showing kinetic
coefficients for adatom attachment at kinks. Note all kinks are iden-
tical on a given type step in this model.

the six kinetic coefficients in Eqs. (2)–(5), κ
j
+, κ

j
−, and κ

j
0 , as

well as the six kinetic coefficients in the alternative boundary
conditions (36)–(39), κ̃

j
+, κ̃

j
−, and ρ̃

j
eq. In the latter case the

relations are especially simple,

κ̃
j
+ = k j

+, (A13)

κ̃
j
− = k j

−, (A14)

ρ̃ j
eq = ρ j

eq

〈
ρ

j
L

〉
/ρ

j
Leq. (A15)

This gives a physical meaning to the alternative coefficients
κ̃

j
x introduced for mathematical reasons in Eqs. (36)–(39).

The κ̃
j

x are equal to the elementary attachment coefficients
in Eqs. (A1)–(A4) and Eqs. (A9)–(A12) that account for the
density of adatoms attached to steps. The density ρ̃

j
eq is the

adatom density on the terraces in equilibrium with steps hav-
ing average adatom densities 〈ρ j

L〉 that can differ from the
value in equilibrium with kinks ρ

j
Leq and depend on growth

rate.

2. Calculation of adatom density on steps

To calculate the mean adatom linear density ratios
〈ρ j

L〉/ρ j
Leq, we can write a one-dimensional model in the

x direction (along the steps) analogous to the above one-
dimensional model in the y direction (perpendicular to the
steps), where the kinks that bound straight step segments play
the role of the steps that bound the terraces. As shown in
Fig. 10, we assume that that the kinks all have the same sign
and are uniformly spaced by the amount needed to satisfy the
geometrical requirement imposed by the overall step direc-
tion. This can be analyzed in terms of the probabilities n+
and n− for positive or negative kinks to occur at each lattice
site on the step. For a close-packed surface, the geometrical
requirement gives

n+ − n− = 2/(
√

3/ tan φ + 1), (A16)

where φ is the angle of the step with respect to the atomic
rows in the [2110]-type directions. The geometrically required
average kink spacing is a/(n+ − n−), where a is the lattice
parameter.

The density of kinks on a step can be larger due to
additional thermally generated kink pairs [1]. The kink prob-
abilities must satisfy

n+n− = exp(−Epair/kT ), (A17)
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where Epair is the energy cost to generate a kink pair, and we
assume the kink probabilities are much smaller than unity. For
simplicity we assume Epair/kT � 1 and neglect kink pairs
generated thermally or by nucleation from adatoms meeting
in the step, so that all kinks have the same sign. Thus, we
model “kink flow” growth on a step with a finite angle φ.

We can write continuity equations for adatom transport on
the straight step segments between the kinks,

∂ρ
j
L

∂t
= D j

L ∇2
x ρ

j
L + ρ0v j, (A18)

where D j
L is the line diffusivity for step type j, and the last

term is the adatom source/sink term from the two neighboring
terraces.

The line-flux boundary conditions at the kinks can be writ-
ten as

J j+
L = −D j

L ∇xρ
j+
L = +k j

L− ρ
j+
L − k jd

L− ρ0x, (A19)

J j−
L = −D j

L ∇xρ
j−
L = −k j

L+ ρ
j−
L + k jd

L+ ρ0x, (A20)

where J j
L is the adatom line flux along a step of type j = A

or B, the coefficients k j
L− and k jd

L− are elementary kinetic coef-
ficients for adatom attachment and detachment, respectively,
to a kink from the “uphill” side, k j

L+ and k jd
L+ are elementary

kinetic coefficients for adatom attachment and detachment,
respectively, to a kink from the “downhill” side, and ρ0x is the
linear density of sites along the step (in the x direction). The
+ or − superscripts on J j

L , ρ j
L, and ∇xρ

j
L indicate evaluation at

the terrace boundaries x = +dj/2 or x = −d j/2, respectively,
where d j is the distance between kinks on steps of type j and
the spatial coordinate x is taken to be zero in the center of the
step segment.

To obey detailed balance, all fluxes must be zero at equi-
librium. At equilibrium we have

ρ
j+
L = ρ

j−
L = ρ

j
Leq. (A21)

Detailed balance then relates the detachment and attachment
coefficients by

k jd
L−

k j
L−

= k jd
L+

k j
L+

= ρ
j
Leq

ρ0x
. (A22)

Using this to eliminate the detachment coefficients, the bound-
ary conditions become

J j+
L = −D j

L ∇xρ
j+
L = +k j

L−
(
ρ

j+
L − ρ

j
Leq

)
, (A23)

J j−
L = −D j

L ∇xρ
j−
L = −k j

L+
(
ρ

j−
L − ρ

j
Leq

)
. (A24)

A standard positive kink-Ehrlich-Schwoebel effect [65] is
given by k j

L+ > k j
L−.

The kink velocity on a type- j step can be obtained from the
adatom flux arriving from each side,

v
j
kink = (

J j+
L − J j−

L

)
/ρ0x. (A25)

Note that we have neglected advective terms due to the ve-
locity of the kinks, and will check the self-consistency of this
assumption below.

At quasi-steady state, the general solution for the distribu-
tion of adatoms on the step ρ

j
L(x) satisfying Eq. (A18) with

∂ρ
j
L/∂t = 0 is a quadratic function

ρ
j
L = a jx

2 + b jx + c j, (A26)

with derivatives

∇xρ
j
L = 2a jx + b j, (A27)

∇2
x ρ

j
L = 2a j . (A28)

By substituting these into the boundary conditions, we can
solve for the coefficients to obtain

a j = −ρ0v j

2D j
L

, (A29)

b j = ρ0v j
(
k j

L+ − k j
L−

)
d j

2
[
D j

L

(
k j

L+ + k j
L−

) + k j
L+ k j

L− d j
] , (A30)

c j = ρ
j
Leq + ρ0v j d j

[
D j

L + (
k j

L+ + k j
L−

)
d j/4

]
D j

L (k j
L+ + k j

L−) + k j
L+ k j

L− d j

. (A31)

We can evaluate the mean adatom linear density as

〈
ρ

j
L

〉 = 1

d j

∫ d j/2

−d j/2
ρ

j
Ldx

= a jd
2
j /12 + c j

= ρ
j
Leq + ρ0v jd2

j

D j
L

×
(

1

12
+ 1 + d j (k

j
L+ + k j

L−)/(4D j
L )

d j (k
j
L+ + k j

L−)/D j
L + d2

j k j
L+ k j

L− /(D j
L )2

)
.

(A32)

Thus, the deviation of 〈ρ j
L〉 from ρ

j
Leq is proportional to the

net influx of adatoms to the step ρ0v j . The proportionality
depends in a complex way on the line diffusivity D j

L, the kink
kinetic coefficients k j

L+ and k j
L−, and the kink spacing d j .

The terrace boundary conditions (A9)–(A12) give a second
relationship between 〈ρ j

L〉 and ρ0v j for each step type j = A
or B,

〈
ρA

L

〉 = ρA
Leq

(
kA
− ρ+

α + kA
+ ρ−

β − ρ0vA

(kA− + kA+) ρA
eq

)
, (A33)

〈
ρB

L

〉 = ρB
Leq

(
kB
− ρ+

β + kB
+ ρ−

α − ρ0vB

(kB− + kB+) ρB
eq

)
, (A34)

where we have used Eqs. (6) and (7) between the fluxes and
the v j . By setting these relations equal to those from the
step solution, Eq. (A32), and eliminating ρ0v j , we can obtain
expressions for the mean adatom linear density ratios〈

ρA
L

〉
ρA

Leq

= �A + (1 − �A)

(
kA
− ρ+

α + kA
+ ρ−

β

(kA− + kA+) ρA
eq

)
, (A35)

〈
ρB

L

〉
ρB

Leq

= �B + (1 − �B)

(
kB
− ρ+

β + kB
+ ρ−

α

(kB− + kB+) ρB
eq

)
, (A36)
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where we have defined the fraction � j by

� j = Rincorp

Rincorp + Rdetach
, (A37)

Rincorp ≡ D j
L

d2
j

×
(

1

12
+ 1 + d j

(
k j

L++k j
L−

)
/
(
4D j

L

)
d j

(
k j

L++k j
L−

)
/D j

L+d2
j k j

L+ k j
L− /

(
D j

L

)2

)−1

,

(A38)

Rdetach ≡ (k j
+ + k j

−) ρ j
eq / ρ

j
Leq. (A39)

The fraction � j varies between zero and unity, and can be
treated as the probability that an adatom attached to a step
incorporates at a kink that it reaches via diffusion along the
step, rather than detaching from the step onto a neighboring
terrace [63]. The incorporation rate per unit step adatom den-
sity Rincorp can be limited by diffusion to a kink, attachment at
a kink, or a combination, depending upon the relative values
of the kinetic lengths D j

L/k j
L+ and D j

L/k j
L− and the kink spac-

ing d j . The detachment rate is the flux per unit 〈ρ j
L〉, given

by Rdetach = (k jd
− + k jd

+ )ρ0y, which can be evaluated using
Eq. (A8).

If we substitute expressions (A35) and (A36) for 〈ρ j
L〉 into

the terrace boundary conditions (A9)–(A12) and then equate
these to the original terrace boundary conditions (2)–(5), we
obtain expressions for the kinetic coefficients in the original
boundary conditions

κ
j
+ = � j k j

+, (A40)

κ
j
− = � j k j

−, (A41)

κ
j

0 = (1 − � j ) k j
+ k j

−
k j
+ + k j

−
, (A42)

〈κ2〉 j = � j k j
+ k j

−. (A43)

Thus, the fraction � j determines the transparency of the
step of type j; when � j approaches unity, e.g., large Rincorp,
the step is nontransparent (κ j

0 � κ
j
+, κ

j
−), while when � j

approaches zero, e.g., large Rdetach, the step can be highly
transparent (κ j

0 � κ
j
+, κ

j
−).

One can invert these expressions to obtain

k j
+ = 〈κ2〉 j / κ

j
−, (A44)

k j
− = 〈κ2〉 j / κ

j
+, (A45)

� j = κ
j
+ κ

j
− / 〈κ2〉 j . (A46)

Comparing these to the definitions of the coefficients in
the alternative boundary conditions (40)–(42), one obtains
Eqs. (A13)–(A15) and

ρ̃ j
eq = ρ j

eq + (1 − � j ) ρ0v j

� j (k j
+ + k j

−)

= ρ j
eq

(
1 + ρ0v j

ρ
j
Leq Rincorp

)
. (A47)

Two previous treatments [63,65] have evaluated diffusion
of adatoms along steps to obtain expressions for the kinetic
coefficients including the effects of step transparency. Both
considered only a single type of step. The first treatment
[65] used a continuity equation for adatoms attached to steps
similar to Eq. (A18) but with an additional loss term due to
a uniform kink density ν(ρL − ρLeq ), with a kinetic coeffi-
cient ν. The continuity equation and boundary conditions for
terrace adatom transport were the same as Eqs. (1) and (A9)–
(A12). Expressions for the kinetic coefficients were obtained
only for a uniform adatom density on the step ρL = 〈ρL〉.
As in Eq. (A32), this gives a deviation of 〈ρL〉 from ρLeq

proportional to the net influx of adatoms to the step ρ0v =
ν(〈ρL〉 − ρLeq ). The expressions obtained for the kinetic coef-
ficients are equivalent to Eqs. (A40)–(A42) if we identify ν as

ν = � (k+ + k−) ρeq

(1 − �) ρLeq
. (A48)

The second treatment [63] used a continuity equation for
adatoms attached to steps equivalent to Eq. (A18) with bound-
ary conditions at kinks equivalent to Eqs. (A23) and (A24).
It considered only the case kL− = kL+ (no kink-Ehrlich-
Schwoebel effect). The expressions obtained for the kinetic
coefficients are equivalent to Eqs. (A40)–(A42) but with a
different formula for �. In our notation their formula is

� = tanh Q

Q
(
1 + 2DL

d kL
Q tanh Q

) , (A49)

Q ≡ d

2

[
(k+ + k−)ρeq

DL ρLeq

]1/2

. (A50)

In this limit, our formula for � can be written as

� = 1

1 + (
1
3 + 2DL

d kL

)
Q2

. (A51)

The two formulas (A49) and (A51) have similar behavior,
with identical limits for Q → 0 and Q → ∞ when the 1

3 term
in Eq. (A51) is negligible. However, in the limit of large Q
and small DL/(dkL ) (e.g., diffusion-limited step transport),
Eq. (A49) reduces to � = Q−1[1 + DLQ/(dkL )]−1, while
Eq. (A51) gives � = 3Q−2. Although these both approach
zero at large Q, the detailed derivation provided above sug-
gests that the latter is more accurate.

To evaluate the advective contribution to adatom transport
on steps, we note that at quasi-steady state, the divergence of
the line flux is a constant,

∇x · J j
L = −D j

L ∇2
x ρ

j
L = ρ0v j . (A52)

The kink velocity of Eq. (A25) can be expressed as

v
j
kink = d j∇x · J j

L/ρ0x = d jρ0y v j, (A53)

where we have made use of the relation ρ0 = ρ0xρ0y. The kink
and step velocities are related to each other and the growth rate
via

ρ0Gw = ρ0x

(
vA

kink

dA
+ vB

kink

dB

)

= ρ0xρ0y(vA + vB). (A54)
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The advective contributions to the line fluxes ρ
j
L v

j
kink =

ρ
j
L d j ρ0yv j are thus always a small fraction of the line flux

obtained by integrating the divergence d j ∇x · J j
L = d jρ0v j

when the adatom coverage on the step is small ρ
j
L � ρ0x.

3. Adatom binding energies

We can relate ρ0
eq and M0 to the binding energies for

adatoms at steps and kinks. Such adatom binding energies at
steps (but not kinks) have been calculated for GaN (0001)
in OMVPE conditions [35–37]. If we assume isolated steps
and neglect step-step and kink-kink interactions, the equilibria
between adatom densities on steps and terraces can be written
as

ρ
j
Leq = ρ0x exp

(−E j
kink/kT

)
, (A55)

ρ j
eq = ρ

j
Leq ρ0y exp

(−E j
step/kT

)
, (A56)

where E j
step is the binding energy of a terrace adatom to a

step of type j, and E j
kink is the binding energy of an adatom

attached to a step of type j to a kink. These combine to give

ρ j
eq = ρ0 exp

(
−E j

step + E j
kink

kT

)
, (A57)

where the sum E j
step + E j

kink is the total energy for a terrace
adatom to bind to a kink. From Eqs. (22) and (23) we obtain

ρ0
eq = (

ρA
eqρ

B
eq

)1/2

= ρ0 exp

(
−EA

step + EA
kink + EB

step + EB
kink

2kT

)
, (A58)

M0 = 1

2

(
ln ρA

eq − ln ρB
eq

)

= EB
step + EB

kink − (
EA

step + EA
kink

)
2kT

. (A59)

Nearest-neighbor bond-counting arguments can be used to
give E j

step + E j
kink = Ebulk − Eads, where Ebulk is the bulk cohe-

sive energy of the crystal per atom, and Eads is the adsorption
energy of an adatom on the terrace below the step. For hcp-
type systems, where we expect Eads to be the same for α and
β terraces, this argument gives EA

step + EA
kink = EB

step + EB
kink,

or M0 = 0. The estimated value of ρ0
eq = 3.44 × 1012 m−2

for GaN (0001) at T = 1073 K in OMVPE conditions [49]
and the value of ρ0 = 1.13 × 1019 m−2 gives a value of
EA

step + EA
kink = EB

step + EB
kink = 1.39 eV.

APPENDIX B: LIMITING CASES OF THE SIMPLIFIED
ANALYTICAL SOLUTION

Here we show how the expressions developed above for the
simplified analytical solution reduce to simpler expressions
for cases in which the adatom kinetics on the terraces are lim-
ited by diffusion or by attachment or detachment at steps. For
each, we consider the subcases of nontransparent or highly
transparent steps, and examine the factors that determine the
sign of K ss, and thus whether f ss

α (G) has a positive or negative

slope. We finally consider a mixed case in which α and β

terraces have different limiting kinetics.

1. Diffusion-limited kinetics

In the diffusion-limited case, the first two terms are negligi-
ble in Eq. (53) for Rα and in Eq. (54) for Rβ . These expressions
reduce to Rα = f −1

α and Rβ = (1 − fα )−1. The coefficients Sα

and Sβ become independent of fα . The expression for K ss is
given by

K ss ≈ [
W dl

0 + W dl
1 fα (1 − fα )

]−1
, (B1)

where we have introduced coefficients

W dl
0 ≡ κB

0

〈κ2〉B
− κA

0

〈κ2〉A
, (B2)

W dl
1 ≡ κB

+
〈κ2〉B

+ κB
−

〈κ2〉B
− κA

+
〈κ2〉A

− κA
−

〈κ2〉A
. (B3)

Since the κ
j

x must all be positive, the values of these coef-
ficients obey the limits |W dl

0 | � wR0/D and |W dl
1 | � w/D,

where the second relation is based on the diffusion-limited
approximation. The expression for Kdyn becomes

Kdyn ≈ D

w[ fα (1 − fα ) + R0]
. (B4)

For the subcase of nontransparent steps, with κA
0 = κB

0 =
0, we have 〈κ2〉 j = κ

j
+κ

j
− for both steps j = A and B. The

expression for K ss becomes

K ss ≈
[

fα (1 − fα )

(
1

κB−
+ 1

κB+
− 1

κA−
− 1

κA+

)]−1

. (B5)

Here the smallest of the individual κ
j
+ or κ

j
− tends to dominate

and determine the sign of K ss. The sign of K ss is positive if
the smallest coefficient is for the B step, e.g., if the B step has
the higher ES barrier, so that κB

− is smallest. If there are no
ES barriers, i.e., κ

j
− = κ

j
+, then the step with the smaller κ

j
+

determines the sign. In this subcase we have R0 = 0, which
simplifies Eq. (B4) for dfα/dt .

For the subcase of highly transparent steps, with κ
j

0 � κ
j
+

and κ
j
−, we have 〈κ2〉 j = κ

j
0 (κ j

+ + κ
j
−) for both steps j = A

and B. The expression for K ss becomes a constant, indepen-
dent of fα ,

K ss ≈
(

1

κB− + κB+
− 1

κA− + κA+

)−1

. (B6)

Here the behavior just depends on the sums κ
j
− + κ

j
+ for each

step. It does not matter whether there are ES barriers; the sign
of K ss is positive if (κA

− + κA
+) > (κB

− + κB
+).

2. Attachment-limited kinetics

In the attachment-limited case, the final term is negligible
in Eq. (53) for Rα and in Eq. (54) for Rβ . The coefficients Rα

and Rβ become independent of fα . The expression for K ss is
given by

K ss ≈ [
W al

0 + W al
1 (1 − 2 fα )

]−1
, (B7)
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with coefficients

W al
0 ≡ 〈κ2〉A − 〈κ2〉B + (κA

+ + κA
−)κB

0 − (κB
+ + κB

−)κA
0

(κB+ + κB−)〈κ2〉A + (κA+ + κA−)〈κ2〉B
,

(B8)

W al
1 ≡ κB

+κA
+ − κB

−κA
−

(κB+ + κB−)〈κ2〉A + (κA+ + κA−)〈κ2〉B
. (B9)

The expression for Kdyn is independent of fα ,

Kdyn ≈
{[(

κB
+

〈κ2〉B
+ κA

−
〈κ2〉A

)−1

+
(

κB
−

〈κ2〉B
+ κA

+
〈κ2〉A

)−1
]−1

+ κA
0

〈κ2〉A
+ κB

0

〈κ2〉B

}−1

.

(B10)

The diffusion coefficient D does not enter into the solution for
the attachment-limited case; its role in the dynamics is taken
by the combination of all the κ coefficients given in Eq. (B10).
Since the denominators in Eqs. (B8) and (B9) are always
positive, the sign of K ss is determined by the numerators.

For the subcase of nontransparent steps, with κA
0 = κB

0 =
0, 〈κ2〉 j = κ

j
+κ

j
−, the expressions for the coefficients in K ss

become

W al
0 ≡ κA

+κA
− − κB

+κB
−

(κB+ + κB−)κA+κA− + (κA+ + κA−)κB+κB−
, (B11)

W al
1 ≡ κB

+κA
+ − κB

−κA
−

(κB+ + κB−)κA+κA− + (κA+ + κA−)κB+κB−
. (B12)

This is the most complex subcase. Near fα = 0.5, the sign of
K ss is positive if κB

+κB
− < κA

+κA
−. At fα > 0.5, if the steps have

normal ES barriers with κ
j
− < κ

j
+, the W al

1 term will favor a
negative sign. Thus, the sign of K ss can change with fα . The
expression for Kdyn becomes

Kdyn ≈
(

1

κB−
+ 1

κA+

)−1

+
(

1

κB+
+ 1

κA−

)−1

. (B13)

The dynamic coefficient has an interesting form, dominated
by the terrace with the largest value of the smallest attachment
coefficient at its edges.

For the subcase of highly transparent steps, with κ
j

0 � κ
j
+

and κ
j
−, 〈κ2〉 j = κ

j
0 (κ j

+ + κ
j
−), the expression for K ss becomes

a constant identical to that for diffusion-limited kinetics with
highly transparent steps,

K ss ≈
(

1

κB− + κB+
− 1

κA− + κA+

)−1

. (B14)

As before, the full-steady-state behavior just depends on the
sums κ

j
− + κ

j
+ for each step. The dynamics still differs from

the diffusion-limited case since the expression for Kdyn differs
from Eq. (B4):

Kdyn ≈
(

1

κB− + κB+
+ 1

κA− + κA+

)−1

. (B15)

3. Mixed kinetics

The limits considered above assume that both terraces
have the same type of kinetics, either diffusion or attachment
limited, and that both steps have the same transparency, ei-
ther zero or high. Because the attachment coefficients can
be different for each step type, other limiting cases are pos-
sible. Here we consider a particular mixed limit in which
the κA

+ coefficient is much larger than the other five κ
j

x (giv-
ing an A step with a high ES barrier), and we assume that
κA

− + κA
0 � D/w fα . We also assume that κB

− � κB
+κB

0 /(κB
+ +

κB
0 ), so that the B step also has a high ES barrier. In this

case we have 〈κ2〉A = κA
+(κA

− + κA
0 ) and 〈κ2〉B = κB

+κB
0 . The

second and third terms in Eq. (53) are negligible, giving
Rα = (w/D)(κA

− + κA
0 ). The second term in Eq. (54) is neg-

ligible, giving Rβ = [D/(wκB
0 ) + (1 − fα )]−1 and Rβ � Rα .

The second terms in Eqs. (55) and (56) are negligible, giving
Sα = w2 fα/(2D), Sβ = (w/2)(1 − fα )/[D/w + (1 − fα )κB

0 ].
The first terms in Eqs. (60) and (61) are negligible, giving
R0 = D/(wκB

+), S0 = −w/(2κB
+). This results in expressions

K ss ≈
[

1

κB+
+ (1 − 2 fα )

κB
0

− w fα (1 − fα )

D

]−1

, (B16)

Kdyn ≈
[

1

κB+
+ 1

κB
0

+ w(1 − fα )

D

]−1

. (B17)

Even though κA
+ has the largest value, the sign of K ss can

be negative depending upon the relative size of the terms in
Eq. (B16). It will be negative near fα = 0.5 for D/κB

+ < w/4.
If κB

0 is small, it can become negative for fα > 0.5.

4. Summary of limiting cases

While there are nine free parameters in the full sim-
plified analytical solution, in the limiting cases considered
above the number of effective parameters is smaller since
only certain combinations of D/κ

j
x enter the solutions. The

diffusion-limited kinetics solutions reduce these six to three
combinations, leaving a total of six unknown quantities. The
subcases of nontransparent or highly transparent steps reduce
the number of effective parameters by one or two more. The
attachment-limited kinetics solutions reduce these six to two
combinations, leaving a total of five unknown quantities. The
highly transparent subcase reduces this by one. The mixed
kinetics solution reduces these six to two combinations, leav-
ing a total of five unknown quantities D/κB

+, D/κB
0 , Dρ0

eqM0,
Dρ0

eq�
3, and f 0

α .
Figure 11 shows some examples of master curves of f ss

α

vs G/G∗, calculated using the simplified analytical solutions
(63)–(66) with parameter values given in Table IV. These cor-
respond to the limiting cases discussed above. Curves for both
the diffusion-limited cases (nontransparent or highly trans-
parent) have inversion symmetry around G = 0, f ss

α = 0.5,
reflecting the symmetry of Eqs. (24), (65), and (B1) when
M0 = 0 and f 0

α = 0.5. The curves for both highly transpar-
ent cases (diffusion or attachment limited) are identical. The
attachment-limited nontransparent case is not symmetric, re-
flecting the W al

1 term in Eq. (B7). The mixed case is least
symmetric, and its shape depends in a complex way on the
relative sizes of the terms in Eq. (B16). When M0 and f 0

α

054312-17



GUANGXU JU et al. PHYSICAL REVIEW B 105, 054312 (2022)

-2 -1 0 1 2

Scaled Growth Rate G/G*

0

0.2

0.4

0.6

0.8

1
S

te
ad

y-
S

ta
te

 
 T

er
ra

ce
 F

ra
ct

io
n diff. lim. non-trans.

highly trans.
att. lim. non-trans.
mixed

FIG. 11. Master curves of f ss
α vs G/G∗ for different subcases:

diffusion-limited kinetics with nontransparent steps, attachment-
limited kinetics with nontransparent steps, either kinetics with highly
transparent steps, and mixed kinetics. Parameter values used are
given in Table IV.

values are used that deviate from 0 and 0.5, respectively, all
curves become asymmetric.

APPENDIX C: LIMITING-CASE FITS

To understand how well the measurements constrain the
BCF model parameters and the physics underlying them, we
searched for the best fit using the expressions obtained in
Appendix B for each of the three limiting cases (diffusion
limited, attachment limited, and mixed kinetics). Table V
summarizes the best-fit values of the parameters obtained, and
also gives the characteristic values f ∗

α , G∗, t∗, and (w/�)3M0

for each fit. Nine fits were carried out. For each of the three
limiting cases, we considered three functional forms for M:
fixed M0 = 0 with varying f 0

α ; fixed f 0
α = 0.5 with varying

M0; and varying both M0 and f 0
α . The fits are labeled with a

letter (D, A, or M) indicating the kinetic limit and a number
(1, 2, or 3) corresponding to the form used for M.

The fits using the mixed kinetics limit (M1, M2, and M3)
generally give better results (lower χ2) than the diffusion-
or attachment-limited cases. The best fit obtained previously

TABLE IV. Parameter values used in BCF theory calculations
for subcases shown in Fig. 11. All used w = 5.73 × 10−8 m, ρ0 =
1.13 × 1019 m−2, � = 9.1 × 10−10 m, ρ0

eq = 3.44 × 1012 m−2, f 0
α =

0.5, M0 = 0.

Limited by: Diff. Diff. Attach. Attach. Mixed
Transparency: Zero High Zero High Mixed

D (m2 s−1) 10−14 10−14 10−4 10−4 10−8

κA
+ (m s−1) 102 102 102 102 106

κA
− (m s−1) 101 101 101 101 10−3

κA
0 (m s−1) 0 103 0 103 0

κB
+ (m s−1) 101 101 101 101 0.5

κB
− (m s−1) 100 100 100 100 10−4

κB
0 (m s−1) 0 103 0 103 1

G∗ (10−3 ML/s) 0.4 1.2 1.2 1.2 0.2

TABLE V. Best-fit parameter values for the three limiting cases
of the BCF model.

Diffusion-limited kinetics

Fit type: D1a D2a D3a

Fix M0 = 0, Fix f 0
α = 0.5, Vary both

vary f 0
α vary M0 M0 and f 0

α

R0 4.11 × 10−2 6.61 × 10−3 6.19 × 10−1

DW dl
0 (m) 2.13 × 10−9 3.79 × 10−10 1.71 × 10−8

DW dl
1 (m) −3.89 × 10−9 3.15 × 10−9 −5.73 × 10−8

Dρ0
eq�

3 (m3 s−1) 7.85 × 10−24 4.09 × 10−24 4.32 × 10−23

f 0
α 0.388 0.500 0.286

Dρ0
eqM0 (s−1) 0 3.93 × 10−2 −4.52 × 10−1

f ∗
α 0.388 0.377 0.453

G∗ (ML/s) 0.0027 0.0025 0.0067
t∗ (s) 4900 4910 2530
(w/�)3M0 0 1.81 −1.97

χ 2 60.4 101.6 25.3

Attachment-limited kinetics

Fit type: A1 A2 A3b

Fix M0 = 0, Fix f 0
α = 0.5, Vary both

vary f 0
α vary M0 M0 and f 0

α

KdynW al
0 8.29 × 10−2 7.88 × 10−2 7.94 × 10−2

KdynW al
1 3.27 × 10−2 7.59 × 10−2 9.60 × 10−2

Kdynρ0
eq�

3 5.06 × 10−16 2.85 × 10−16 2.04 × 10−16

(m2 s−1)
f 0
α 0.379 0.500 0.584

Kdynρ0
eqM0 0 2.52 × 106 3.14 × 106

(m−1 s−1)

f ∗
α 0.379 0.384 0.396

G∗ (ML/s) 0.0023 0.0019 0.0018
t∗ (s) 4720 5400 5720
(w/�)3M0 0 1.66 2.90

χ 2 72.9 51.9 50.2

Mixed kinetics

Fit type: M1 M2 M3
Fix M0 = 0 Fix f 0

α = 0.5 Vary Both
Vary f 0

α Vary M0 M0 and f 0
α

D/κB
+ (m) 1.82 × 10−8 1.90 × 10−8 1.80 × 10−8

D/κB
0 (m) 9.09 × 10−9 1.19 × 10−8 7.67 × 10−9

Dρ0
eq�

3 (m3 s−1) 3.58 × 10−23 3.25 × 10−23 3.87 × 10−23

f 0
α 0.443 0.500 0.416

Dρ0
eqM0 (s−1) 0 8.16 × 10−2 −6.40 × 10−2

f ∗
α 0.443 0.461 0.442

G∗ (ML/s) 0.0028 0.0024 0.0032
t∗ (s) 4150 4540 3840
(w/�)3M0 0 0.47 −0.31

χ 2 25.0 30.3 24.1

aParameters obtained from diffusion-limited kinetics fits are incon-
sistent with the limiting approximation (see text).
bThe A3 fit gives nonmonotonic variation of Gss( fα ).

[49] using a single relaxation time for each transition is sim-
ilar to the M1 fit. However, here the diffusion-limited case
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with variable M0 and f 0
α (D3) gives a similar low value of

χ2. All of the fits except one (A3) produce Gss( fα ) that
increase monotonically. A nonmonotonic Gss( fα ) is prob-
lematic because it leads to nonunique f ss

α (G) values needed
for comparison with the experiments. [For A3 we used only
the monotonic portion of the Gss( fα ) curve up to the first

maximum to obtain f ss
α (G).] Another issue arises with the

diffusion-limited kinetics fits. The parameter sets from the
fits are not self-consistent with the approximations used to
obtain the expressions for this limit, which require |DW dl

1 | �
w = 5.73 × 10−8 m. The D3 fit most clearly violates this
approximation.
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