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Propagation of coherent elastic waves in solids containing randomly distributed resonant cylindrical cavities
is studied numerically and experimentally. This work focuses especially on the case of water-filled cavities in
aluminum alloys, which exhibit numerous Mie resonances in the frequency range investigated. Coherent wave
measurements are performed in transmission at normal incidence for longitudinal waves and at oblique incidence
beyond the critical angle for shear waves. Experimental observations are completed by numerical simulations
made with an in-house code called MuScat adapted to the solid matrix case with wave conversions at the surface
of each scatterer. The effective wave numbers obtained experimentally and numerically are compared with
those predicted by statistical models based on the multiple scattering theory. Remarkable agreements between
theoretical, numerical, and experimental results are obtained up to a concentration of 9.9% of cylinders.
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I. INTRODUCTION

Multiple scattering of elastic waves in solid media is a topic
of fundamental interest, especially in geophysics, nondestruc-
tive testing (NDT), and medical imaging. In NDT, this may
concern the propagation of elastic waves in fiber-reinforced
composites [1–3] as well as in elastic metamaterials [4,5].
However, the topic of the multiple scattering by discrete scat-
terers has been less studied in solid media, compared to fluid
matrices. The main difference is the existence of wave con-
versions that occur at the surface of each scatterer, leading to
the coupled propagation of bulk longitudinal and shear waves.
This coupling affects the propagation of both longitudinal
and shear waves and it cannot be neglected, especially in the
presence of resonances.

Lot of studies have been dedicated to the propagation in
phononic crystals where the periodical arrangement induces
interesting properties for the propagation. In comparison less
attention has been paid to randomly distributed scatterers in
a solid matrix. Extending the classical Fikioris and Water-
man’s multiple scattering theory for scalar waves, Conoir and
Norris [6] (CN model hereafter) have developed a statistical
model to get the properties of coherent waves in elastic multi-
ple scattering medium. This model outlines the importance of
the wave conversions even at low concentration. It has been
validated by numerical studies [7,8] and experiments [8] in
the case of nonresonant scatterers. Chekroun et al. [7] com-
pared the results of the CN model to numerically estimated
effective wave numbers (direct resolution of the equations of
elastodynamics) of coherent elastic waves propagating in con-
crete materials up to a concentration φ = 25% of scatterers
whose properties were close to the matrix ones. Yu et al.
measured the effective wave number of coherent longitudinal
waves propagating in a resin containing randomly distributed
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aluminum rods [8]. For this configuration, the elasticity and
mass density contrasts between the two constituents being
small, the scattering effects are relatively weak, allowing them
to study high concentrations of scatterers up to 40%. Recently,
shear coherent waves have been measured in epoxy sam-
ples containing hard dense spheres that exhibit strong dipolar
subwavelength resonances [9]. No numerical or experimental
studies address the effects of Mie scatterers in a solid matrix,
although it has been shown they have a strong effect on coher-
ent acoustic waves [10–12].

The contributions of this work are, on one hand, to charac-
terize both the coherent longitudinal and shear waves in a solid
medium and, on the other hand, to observe the impact of Mie
resonances on these coherent waves. Analyses are made on
aluminum alloys containing water-filled cavities. Parameters
of the longitudinal and shear coherent waves are measured by
transmission experiments through samples. Experiments are
performed at normal incidence for longitudinal waves and at
oblique incidence beyond the critical angle for shear waves.
Numerical simulations are then performed in order to high-
light the influence of wave conversions on coherent waves.

The paper is structured as follows. In Sec. II, the scattering
of elastic waves by a single water-filled cavity in an aluminum
alloy is presented in order to identify the Mie resonances due
to the propagation of circumferential waves around the cavi-
ties. In Sec. III, the experimental setup used to generate and
to measure coherent elastic waves is described. The numerical
model used to simulate the propagation is presented in Sec. IV
and its detailed derivation is given in the Appendix. Then
the propagation is studied for an elastic coherent longitudinal
wave in Sec. V and for a coherent shear wave in Sec. VI.

II. SCATTERING BY A SINGLE WATER-FILLED CAVITY
IN AN ALUMINUM ALLOY

Before addressing the propagation of elastic waves in mul-
tiple scattering media, the scattering of elastic waves by a
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FIG. 1. (a) Dispersion curves of the whispering gallery waves
and the Rayleigh and Franz waves as a function of frequency. Mark-
ers correspond to resonance frequencies of circumferential waves.
(b) Normalized scattering cross sections of elastic waves as a func-
tion of frequency.

single cavity must be studied. In this paper we focus our
analysis on the case of water-filled cavities which exhibit
many Mie resonances due to circumferential waves [13,14].

The dispersion curves of circumferential waves propagat-
ing around a cylindrical water-filled cavity in an elastic host
are calculated by using the modeling of Hassan and Nagy [15].
The aluminum alloy is characterized by the Lamé constants
λ = 58 GPa and μ = 26.4 GPa and the mass density ρ =
2800 kg/m3. The radius of the cavity is R = 1 mm, the
sound velocity in water is cF = 1480 m/s, and the density
is ρF = 1000 kg/m3. Figure 1(a) shows the dispersion curves
of the first whispering gallery waves (WGs) m = 1 to 6, the
Rayleigh wave (R), and the Franz wave (F) as a function of the
frequency f . Each integer value kR = n, represented by mark-
ers in Fig. 1(a), corresponds to a resonance. In the frequency
range investigated experimentally, i.e., f ∈ [0, 5–4] MHz,
many resonances can therefore be excited. The resonances for
n = 0 are associated with pure radial compressional motions
and those for values n � 1 correspond to the number n of
rounds of circumferential waves around the cavity. These res-
onances result from the propagation of circumferential waves

around the cavity, clockwise and counterclockwise, that su-
perpose in phase after each period, leading to a standing wave.

In order to determine which resonances are excited and
impact coherent waves, the scattering cross sections are
evaluated. The scattering cross sections normalized by the
geometric section of the scatterer are given by [16]

γIM = 2

kI R

∞∑
n=−∞

∣∣T IM
n

∣∣2
, (1)

where T IM
n is the scattering coefficient of the mode n for

an incident wave I (with I = L, T ) and a scattered wave M
(with M = L, T ). The calculations of these coefficients are
presented in Ref. [17]. The wave numbers kL = ω/cL and
kT = ω/cT are related to angular frequency ω and velocities
of bulk longitudinal and shear waves that are given by

cL =
√

λ + 2μ

ρ
and cT =

√
μ

ρ
. (2)

The normalized scattering cross sections γIM of elastic
waves are plotted as a function of frequency in Fig. 1(b). The
parameters γLT and γT L, which quantify the wave conversions,
are generally smaller than γLL and γT T , respectively. However,
at some resonances γLT is similar and even superior to γLL,
implying that the conversions between longitudinal and shear
waves can be important.

It is difficult to link the peaks of the scattering cross sec-
tions to resonance frequencies appearing in dispersion curves.
To achieve this, the contribution of each mode n to the scatter-
ing cross sections γLL and γT T is plotted in Fig. 2 as a function
of frequency. Markers correspond to resonance frequencies
appearing in Fig. 1(a). Figure 2 clearly shows the influence
of the resonances of the whispering gallery waves m = 1 to
6 on γLL and γT T . For these waves, each peak or dip on the
scattering cross sections correspond to a resonance. Only the
first resonance of the Franz wave seems to be excited and
to have an influence on the mode n = 0. This wave being
very attenuated, the other resonances are not observed. The
resonances of the Rayleigh waves are excited only in the case
of a shear incident wave. This last point is easily explained
by the fact that the Rayleigh wave polarization is strongly
transverse.

III. EXPERIMENTAL SETUP

We propose to measure coherent elastic waves through
transmission experiments. The main difficulty is to design
reproducible measurements with shear waves. To achieve this,
experiments are done at oblique incidence beyond the critical
angle for shear waves and at normal incidence for longitudinal
waves.

The samples are aluminum alloy 2017A plates of thickness
50 mm and widths H and ht as shown in Fig. 3. A layer of
width ht and thickness h contains a monodisperse and ran-
dom distribution of circular holes of radius R = 1 mm. Three
samples are studied in the following with different parameters
given in Table I. The number of water-filled cavities Np is
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FIG. 2. Contributions of each mode to the normalized scattering
cross sections γLL and γT T as a function of frequency. Stars corre-
spond to resonance frequencies of whispering gallery waves, disks to
those of the Rayleigh wave, and squares to those of the Franz wave.
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FIG. 3. Scheme of a sample of thickness H . The scatterers are
randomly distributed within a layer of thickness h.

TABLE I. Dimensions of samples and parameters of the
distributions.

Sample H (mm) h (mm) ht (mm) Np φ (%) b/R

1 80 30 145 72 5 3
2 60 30 145 143 9.9 4.75
3 80 20 100 50 7.1 4

related to the concentration φ by

φ = NpπR2

hht
. (3)

Samples are immersed in a water tank and can be translated
laterally, i.e., perpendicularly to the acoustic axis. A pair of
identical piezoelectric transducers having central frequency
fc = 2.25 MHz and diameter D = 1/2 in. is used, which
allows us to reliably cover the frequency range [0.5–4] MHz.
The horizontal distance between the transmitter and receiver
transducers is noted �. The nearest surface of the sample to
the emitter is located in the far field of the emitter in order to
be probed with plane waves. The receiver is facing the emitter
and located close to the sample (i.e., ≈ 30 mm away) in order
to avoid possible diffraction effects by the bottom and top
interfaces of the sample, due to the beam divergence at low
frequency.

The distributions of scatterers of the three samples are
shown in Fig. 4. Samples 1 and 2 are used for normal inci-
dence measurements and sample 3 for the oblique incidence.
For sample 1, the exclusion distance between two scatterers
is b = 3R, implying that the constraints due to short range
correlations are weak for the concentration φ = 5%. On the

FIG. 4. Distributions of scatterers of the three samples.
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contrary, for sample 2, the exclusion distance is b = 4.75R
and the concentration φ = 9.9%, short range correlations be-
tween scatterers are strong. This can be seen in Fig. 4 where
the holes are more uniformly organized than in sample 1.

IV. NUMERICAL MODEL OF THE ELASTIC WAVE
PROPAGATION IN SOLID MULTIPLE

SCATTERING MEDIA

Between statistical multiple scattering models, which are
intrinsically limited by the concentration and the geometry
of the cluster of cylinders, and the direct resolution of the
equations of elastodynamics, which require important numer-
ical resources especially when statistics are required as with
coherent waves, there is an intermediate stage by considering
the resolution of multiple scattering equations [18]. Rohfritsch
et al. have recently proposed to simulate the propagation of
acoustic waves in a fluid containing parallel infinite cylinders
with a method called MuScat for multiple scattering [19].
This in-house numerical tool allows us to consider a very
large number of cylinders whatever the concentration and the
position of scatterers. This has been used later to highlight
the influence of the spatial correlations between scatterers
on the coherent acoustic waves [20] and to study the acous-
tic wave propagation in stealth hyperuniform distributions of
cylinders [21]. Nevertheless, in these previous studies this
software was restricted to acoustic waves since conversions
were not taken into account. In this paper we propose to
extend the MuScat code to host solids and thus to take into
account both longitudinal and shear waves and their conver-
sions by following the method developed by Mei et al. [22]
who investigated phononic crystals. The detailed derivation of
the multiple scattering equations with waves conversion at the
surface of each scatterer is given in the Appendix A. It yields
to a large linear system:

(I − T LLML −T T LMT

−T LTML I − T T TMT

)(BL

BT

)

=
(T LLFL + T T LFT

T LTFL + T T TFT

)
, (4)

where the unknown vectors BL and BT are, respectively, the
amplitudes of the cylindrical harmonics of each wave (lon-
gitudinal or transverse) scattered by each cylinder expressed
with scalar and vector potentials using the Helmholtz de-
composition [see Eq. (A1)]. Matrix T IJ = T IJ

p δpq gathers the
individual scattering matrices T IM

p associated with the cylin-
der p for an incident wave I and a scattered wave J , they take
into account wave conversions and depend on the mechanical
properties of the scatterer and on its radius. Matrix ML,T

contains cylindrical harmonics introduced by the use of the
addition theorem [23] and vector FL,T is linked to the incident
field which can have an arbitrary polarization or shape, I is the
identity matrix.

Note that the cancellation of the matrix determinant of
Eq. (4) leads to the determination of the eigenvalues of the
problem, which can be important especially for the calculation
of band diagrams of phononic crystals [22,24].

FIG. 5. Map of the transmitted signals through sample 1 as a
function of time and lateral position y.

To build the numerical solution, we follow the same steps
as those used for MuScat [19]. This linear system (4) can
be large and sparse, therefore direct methods are considered
inefficient because of their costs in terms of computation time
and memory. Iterative methods are more appropriate and a set
of these methods is present in the PETSC library (Portable,
Extensible Toolkit for Scientific Computation) [25–27], which
is chosen to solve the problem. This library works using the
parallel MPI (message passing interface) architecture, which
has the advantage that each processor has its own storage
memory. Data communication is performed from one proces-
sor to another. The resolution is done with computers that
can hold a large number of processors, thus increasing the
maximum size of problems if needed. As a conclusion, this
resolution method can deal with any situation with many
randomly distributed cylinders, combining numerous differ-
ent scattering matrices and a very large number of scatterers
whose properties can fit the framework of this study.

V. COHERENT LONGITUDINAL WAVES

A. Measurement of the effective parameters

The effective wave number keff
L of coherent longitudinal

waves is determined experimentally by measuring the acous-
tic wave transmission at normal incidence (Fig. 3). The two
transducers are laterally translated over 40 positions with in-
crement δy = 1 mm and the transmitted signal through the
sample is acquired. The sample is turned over and 40 others
signals are acquired each time. The map of transmitted signals
through sample 1 is shown in Fig. 5 as a function of time and
lateral positions y. The ballistic wave is clearly dominant and
arrives at 134 μs. For each position, few echoes appear after
the ballistic wave.

After the acquisition of transmitted signals, the sample is
removed from the acoustic path and a reference signal sref(t )
corresponding to the propagation in a sample made of the
same material, without holes and having the same thickness,
is acquired. In order to extract the effective properties of the
coherent waves, the 80 transmitted signals are averaged. The
averaged signal savg(t ) is compared to the reference signal
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FIG. 6. Averaged signal savg(t ) and reference signal sref(t ) as a
function of time.

sref(t ) in Fig. 6. As previously mentioned, few echoes appear
after the ballistic wave, with the same shape and duration. Let
us denote by τi with i = 1, 2, 3, 4 the time of flight of the first
four echoes appearing in Fig. 6. Using the Hilbert transform of
the averaged signal, we evaluate the time of flight difference
between two successive echoes: �τ = τi+1 − τi ≈ 2, 74 μs
for i = 1, 2, 3. This duration corresponds to the propagation
of a bulk acoustic wave inside a water-filed hole along a dis-
tance that is twice the diameter: �τ = 4R/c f = 2, 73 μs [13].
These echoes are therefore identified as several reflections of
acoustic wave inside the cavity.

The signals savg(t ) and sref(t ) are windowed using an asym-
metric Tuckey window. This window starts just before the
ballistic wave and ends before the arrival of the second echo
in the sample. Thus, due to the large thickness of the sam-
ples (H = 80 mm), the window duration is large, implying
that edge effects are weak. The Fourier transform of the two
windowed signals can be expressed as follows:

Savg( f ) = A( f )tFLtLF eikF (�−H )eikL (H−h)eikeff
L h,

Sref( f ) = A( f )tFLtLF eikF (�−H )eikLH , (5)

where the coefficient A( f ) represents transduction effects in
emission and reception, and tFL and tLF are the transmission
coefficients at the water-sample and sample-water interfaces.
By calculating the ratio of spectra, the effective phase velocity
ceff

L and the attenuation αeff
L of the coherent waves are given by

ceff
L = ωh

kLh + arg
( Savg( f )

Sref ( f )

) ,

αeff
L = −1

h
ln

∣∣∣∣Savg( f )

Sref( f )

∣∣∣∣. (6)

These parameters are plotted in Fig. 7 as a function of
frequency for sample 1, i.e., for a concentration φ = 5% of
scatterers. Experimental results are compared to ISA and CN
models, as well as to the MuScat code. Here ISA refers to the
independent scattering approximation. This statistical multi-
ple scattering theory is limited to small concentrations and
does not take into account for wave conversions. Error bars

(a)

(b)

FIG. 7. Effective (a) phase velocity and (b) attenuation of co-
herent longitudinal waves propagating in sample 1 as a function of
frequency.

are difficult to define for such experiments, the standard devia-
tions of the effective phase velocity and attenuation calculated
for the 80 signals are displayed instead. The numerical and
theoretical results are in good agreement with the experimen-
tal data for the phase velocity, but less so for the attenuation.
For frequencies f > 1 MHz, the attenuation measured is
slightly superior to those predicted by the CN model and the
MuScat code and even more by that given by ISA. However,
results of the CN model are in remarkable agreement with
those of MuScat, for both the effective phase velocity and
attenuation, the discrepancy with the measured attenuation is
maybe due to the sample itself. Indeed, the distribution of
scatterers for this sample appears slightly nonhomogeneous
(see Fig. 4). The sample being translated after each signal
acquisition, the effective concentration, is maybe not the same
for all the positions of the sample. Finally, it is worth pointing
out that the behavior of the attenuation curves is very similar
to that of the normalized scattering cross section γLL, implying
that the influence of wave conversions on the coherent longi-
tudinal wave is weak. Resonances of circumferential waves
for n = 0, 1, and 2 have therefore a strong influence on the
attenuation. On the contrary. the influence of these resonances
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(a)

(b)

FIG. 8. Effective (a) phase velocity and (b) attenuation of co-
herent longitudinal waves propagating in sample 2 as a function of
frequency.

on the phase velocity is stronger for the lowest frequencies,
i.e., for f < 1 MHz (kLR < 1).

The effective phase velocity and attenuation of coherent
longitudinal waves are shown in Fig. 8 for sample 2, i.e.,
for a concentration φ = 9.9% of cavities. As for sample 1,
numerical and theoretical results are in quantitative agreement
with experimental data. Moreover, ISA underestimates again
the attenuation, but the CN model is in better agreement with
experiments and numerical simulations. The parameter b/R is
equal to 4.75, the distribution of scatterers is more uniform
than that of sample 1. This is probably the reason why the
standard deviations of the effective phase velocity and attenu-
ation are smaller than those of sample 1.

The CN model has been numerically validated by
Chekroun et al. in the case of concrete up to a concentration
of 25% of scatterers. On the contrary, Yu et al. obtained a
bad agreement with the CN model compared to experimental
results with samples made of a resin containing aluminum
rods. In these two studies, the elasticity and mass density
contrasts between the two constituents are small, so the scat-
tering effects are relatively weak. In our samples, resonances
of water-filled cavities are strong and have an important in-
fluence on the coherent waves. Despite this, the CN model

FIG. 9. Maps of the real part of potentials (a) L and (b) T

calculated for an incident longitudinal wave. The arrow indicates the
propagation direction of the incident plane longitudinal wave and the
dashed vertical lines delimit the heterogeneous slab. The color bars
are fixed with respect to unit amplitude of the incident wave.

describes very efficiently the propagation of longitudinal co-
herent waves. Furthermore, the excellent agreement between
the numerical results and the CN model validates the use of
the exclusion distance b instead of the diameter 2R in the
CN model. In particular, for the second sample, this exclusion
distance is large, the short range correlations are strong and
well taken into account by the CN model, without using the
pair correlation function.

B. Construction of the coherent longitudinal waves

Numerical simulations are used to observe the construction
of the coherent wave. Potentials L and T are calculated in
a slab of thickness h = 50 mm and width ht = 300 mm. The
number of cylinders is Np = 500, corresponding to the con-
centration φ = 10.5%. The incident plane wave propagates
along the x axis. Potentials are averaged over 200 distributions
of cylinders. The chosen frequency f = 424 kHz corresponds
to the resonance of a dipolar mode n = 1 as shown by ana-
lyzing the scattering cross sections (Fig. 2). This resonance
affects both longitudinal and shear waves. For an incident
longitudinal wave, the conversion from longitudinal to shear
waves is strong (γLT = 1.6) and of the same order of magni-
tude as the scattering of longitudinal waves (γLL = 2.2).

The maps of the real part of potentials L and T cal-
culated for an incident longitudinal wave of unit amplitude
are shown in Figs. 9(a) and 9(b), respectively. The dashed
lines delimit the heterogeneous slab. Clearly the propagation
of the incident wave is weakly perturbed by the back-scattered
waves for x < 0 [cf. Fig. 9(a)]. As soon as the incident
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wave enters the slab, multiple scattering events occur and
the incident wave disappears to make way for the coherent
longitudinal plane wave, which is attenuated as it propagates
forward in the slab. The potential associated with shear waves
in Fig. 9(b) is diffuse, but not small, compared to that of
longitudinal waves. This shows that wave conversions have
to be taken into account in the modeling of the propagation
of longitudinal waves in solid heterogeneous media [28]. Can
a longitudinal incident wave generate a coherent shear wave?
This is an open question, but our results show that it does not
seem to be the case. We indeed observe that even if wave
conversions are important, they are not enough to create a
shear coherent wave.

C. Poynting vector

As the values of L and T can be calculated both inside
and outside the slab, the displacement field u can be evalu-
ated thanks to the Helmholtz decomposition (A1). It follows
that the Poynting vector can also be calculated everywhere
by MuScat. This section aims to present results about the
component of the Poynting vector in the propagation direction
in order to observe how it decreases into the slab.

The component of the Poynting vector along the propaga-
tion direction of the plane incident wave, i.e., the x direction,
is defined by the relation

Px = 1

2
Re [σ · u �] · e x = −ω

2
[iσxxu�

x + iσxyu�
y], (7)

where stresses are related to displacements by Hooke’s law

σxx = (λ + 2μ)
∂ux

∂x
+ λ

∂uy

∂y
,

σxy = μ

(
∂ux

∂y
+ ∂uy

∂x

)
. (8)

These stresses and the displacement components are averaged
over 200 distributions of scatterers. The averaged component
Px is calculated along the x axis, using these averaged stresses
and displacement components and is then averaged over the
position y. The component 〈Px〉y normalized by its value at
x = 0 is plotted as a function of position x in Fig. 10 for
frequencies f = 1, 2, 3, and 3.5 MHz in the case of an in-
cident longitudinal wave. Numerical parameters are the same
as those used in Sec. V B, except that the concentration is
φ = 5.2%. It is worth noting that the averaged component
〈Px〉y does not start to decrease at x = 0, but approximately
at x = 2R. It implies that the coherent wave does not take the
place of the incident wave at the beginning of the heteroge-
neous slab, but only after at least one event of scattering. The
use of the thickness h in the treatment of the previous sec-
tion to obtain the effective wave number is therefore debatable
and the use of an effective “width” heff ≈ h − 2R instead of
h remains an open question [29]. In order to interpret these
results, we assume that the normalized component 〈Px〉y is
given by the Beer-Lambert law [30]

〈Px(x, y)〉y

〈Px(x = 0, y)〉y
= e−2αeff

L x. (9)

FIG. 10. Component of the Poynting vector in the direction of
propagation as a function of the position x.

Dashed curves in Fig. 10 correspond to this expression
by using the attenuation αeff

L given by the CN model. For
highest frequencies, namely f = 3 and 3.5 MHz, the Beer-
Lambert law with the CN model is in quantitative agreement
with numerical results. This result is not trivial because the
component Px is calculated in an exact way by MuScat, i.e.,
from the displacements, while Px, which is modeled using
the Beer-Lambert law and the CN model, involves only the
knowledge of the potentials in order to calculate αeff

L .

VI. COHERENT SHEAR WAVES

A. Measurement of the effective parameters

Shear wave measurements are often performed using
contact transducers that need to use coupling materials to
efficiently transmit waves in the samples. Such couplings are
difficult to reproduce, we chose to adapt the immersion tech-
nique used for longitudinal wave measurements to oblique
incidence in order to convert longitudinal acoustic waves to
shear waves. The main advantage is that liquid wetting en-
sures a reproducible transmission at the liquid-sample and
sample interfaces. Moreover, using angle of incidence beyond
the critical angle allows us to generate by refraction only
a shear traveling wave in the sample [31]. Two transducers
are placed on either side of the sample to be probed. The
incident wave propagates in water with the angle of inci-
dence θF from the normal of the front surface of the sample
(Fig. 11). By imposing an angle θF = 20◦ larger than the
first critical angle arcsin(cF /cL ) ≈ 13.6◦, the interaction of
the incident wave with this liquid-solid interface gives rise
to a single shear wave propagating in the sample with the
angle of incidence θT = 45.2◦. The value of the angle of
incidence θF is chosen to maximize the wave transmission
through the two interfaces of the front and back sides of
the sample. The length of the acoustic path in the sample is
H̃ = H/ cos θT = 11, 3 cm. The acoustic beam in the sample
is deviated by refraction, the receiver is translated laterally of
a distance δ = H̃ sin(θT − θF ) = 4, 8 cm.
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FIG. 11. Scheme of the experiment for measuring the coherent
shear wave.

The transmitted signal through the sample is averaged over
30 positions. The Fourier transforms of the averaged signal
and of the reference signal in a sample without holes are
expressed by

Savg( f ) = A( f )tFT tT F eikF (�1+�2 )eikT (H̃−h)eikeff
T h,

Sref( f ) = A( f )tFT tT F eikF (�1+�2 )eikT H̃ , (10)

where tFT and tT F are the transmission coefficients at the
water-aluminum alloy and aluminum alloy-water interfaces.
The ratio of these spectra leads to the expressions of the
effective phase velocity ceff

T and attenuation αeff
T given by the

relations (6) in which kL is replaced by kT .
These effective parameters are shown in Fig. 12 for sample

3, i.e., for a concentration φ = 7.1% of scatterers. As for the
longitudinal case, these results are compared to those obtained
by ISA, the CN model, and the MuScat code. Resonances
of the circumferential waves therefore strongly impact the
effective phase velocity and attenuation of the coherent shear
waves. The attenuation curves have by the way the same
behavior as that of the scattering cross section γT T in Fig. 1(a).
From 1 to 3 MHz, the CN model is in quantitative agree-
ment with numerical and experimental results. The sample
is tilted, the distance � between transducers is larger than
for the normal incidence measurements. Experimental results
are therefore potentially influenced by diffraction effects due
to the beam divergence in the lowest frequencies. In highest
frequencies, the attenuation predicted by ISA has the same
behavior as those of experimental results, but its mean value
is smaller. This effect is less pronounced for the attenuation
given by the CN model and MuScat. Thus, as in the case
of the longitudinal coherent wave, the CN model is validated
experimentally and numerically for modeling coherent shear
waves in two-dimensional multiple scattering media.

B. Construction of the coherent shear waves

The maps of the real part of potentials L and T calcu-
lated for an incident shear wave of unit amplitude are shown
in Figs. 13(a) and 13(b), respectively. Results are very similar
to those of Fig. 9. The potential associated with longitudinal
waves in Fig. 13(b) is not small, compared to that of shear

(a)

(b)

FIG. 12. Effective (a) phase velocity and (b) attenuation of
coherent shear waves propagating in sample 3 as a function of
frequency.

waves. The scattering cross section γT L = 0.8 is small com-
pared to γT T = 4.6, we could expect a weak influence of wave
conversions on coherent shear waves. This is not the case be-
cause of the multiple scattering. This result is quite surprising
and reinforces the idea that wave conversions have to be taken
into account in the modeling of elastic waves propagating in
solid heterogeneous media, even for shear incident waves.
Nevertheless, we can make the same remark as previously,
namely that an incident shear wave does not generate a coher-
ent longitudinal wave which would be detectable.

VII. CONCLUSION

Propagation of coherent elastic waves in solids containing
strong resonant cylindrical scatterers has been studied numer-
ically and experimentally.

Numerical modeling is based on the semianalytical solu-
tion of multiple scattering, where incident and scattered waves
are expanded on cylindrical harmonics. This modeling, ini-
tially derived for fluid hosts, has been adapted for solid cases
and thus takes into account wave conversions at the surface
of each scatterer. Numerical results highlights the influence of
wave conversions in the low frequency regime on the coherent
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FIG. 13. Maps of the real part of potentials (a) L and (b) T

calculated for an incident shear wave. The arrow indicates the prop-
agation direction of the incident plane shear wave and the dashed
vertical lines delimit the heterogeneous slab. The color bars are fixed
with respect to unit amplitude of the incident wave.

elastic waves and the necessity to take them into account in
solid heterogeneous media. It has been shown that an incident
longitudinal wave does not generate a coherent shear wave.
In this case, no constructive interference is observed between
the bulk shear waves so that the transverse component of the
coherent wave exists but remains diffusive. Constructive inter-
ference occurs only for longitudinal bulk waves. Similarly, an
incident shear wave does not generate a coherent longitudinal
wave. It has also been shown that the Poynting vector calcu-
lated by MuScat obeys the Beer-Lambert law in which the
attenuation is calculated from the CN homogenization model.

Coherent wave measurements have also been performed
in transmission at normal incidence for longitudinal waves
and at oblique incidence beyond the critical angle for shear
waves. The originality of the shear wave measurements is that
they are carried out in water; the conversion at the water-
solid interface is used to generate shear waves in the multiple
scattering medium. Measurements highlighted the strong in-
fluence of the resonances on the coherent waves. Remarkable
agreements between results up to a 9.9% of scatterers for
longitudinal waves and 7.1% for shear waves highlight the
efficiency of both the Conoir-Norris model and the MuScat
code to predict coherent elastic waves.

Since the MuScat code can handle a large number of cylin-
ders randomly distributed in space, many studies are possible
as the transition from ballistic to diffusive regimes for elastic
waves [32] or the propagation of elastic waves in dense mate-
rials [33] or stealh hyperuniform materials [34,35].

APPENDIX: DERIVATION OF THE NUMERICAL MODEL

Let us consider the cartesian coordinate system R =
(O, x, y, z). Our study is restricted to the plane (x, y). As the
cylinders are all parallel to the z axis, it follows that only lon-
gitudinal and shear vertical waves propagate in the solid. For
the sake of simplicity, the time dependence e−iωt is omitted
throughout the text. We assume the Helmholtz decomposition
of the displacement in the form

u = grad L + rot (T e z ), (A1)

where the potentials L and T are associated, respectively,
with longitudinal (L) and shear waves (T) are solutions to the
Helmholtz equation:

�M + k2
MM = 0, (A2)

where M = L, T designates the nature of the waves. It is
worth noting that the shear wave, whose polarization is par-
allel to cylinders, is not retained because it is decoupled to the
L and T waves, polarized in the (x, y) plane.

The host solid contains a distribution of Np parallel, infinite
cylinders of radius Rp that do not interpenetrate. An arbitrary
coordinate system R0 is defined to describe the propagation
of the incident wave and each scatterer p is associated with
a coordinate system Rp whose origin coincides with its cen-
ter. Generally speaking, two incident longitudinal and shear
waves can propagate in the matrix; their potential in the coor-
dinate system R0 are expanded on cylindrical harmonics:

(inc,M )(x 0) = [ψ (kM, x 0)]tAM, (A3)

where the superscript t stands for the transpose of a vector and
with

ψn(k, x ) = Jn(kr)einθ , (A4)

where Jn is the Bessel function of the first kind and order
n. The vector AM depends on the kind of incident wave,
i.e., plane wave, source point, Gaussian beam, etc. It has Nm

components, with Nm the number of modes taken into account
that increases with the frequency.

The potentials (scat,M ) associated with the scattered longi-
tudinal or shear waves are the sum of the fields scattered by
each cylinder:

(scat,M ) =
Np∑

p=1


p
M (x p). (A5)

As for the incident wave, the potential of the scattered wave
by each cylinder is expanded on cylindrical harmonics


p
M (x p) = [χ (kM, x p)]tBM

p , (A6)

with

χn(k, x p) = Hn(krp)einθp, (A7)

where Hn ≡ H (1)
n is the Hankel function of the first kind and

order n. The components of the vector BM
p are the unknowns

of the problem. The incident field on the cylinder p corre-
sponds to the incident wave represented by (inc,M ) and the
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scattered waves by all the other cylinders, namely


p
(inc,M ) = (inc,M )(x 0) +

Np∑
q=1
q 	=p


q
M (x q) (A8)

or, using cylindrical harmonics expansions (A3) and (A6),


p
(inc,M ) = [ψ (kM, x 0)]tAM +

Np∑
q=1
q 	=p

[χ (kM, x q)]tBM
q . (A9)

This expression of the potential 
p
(inc,M ) involves several co-

ordinate systems. All potentials are then expressed in the
coordinate system Rp associated with the p cylinder. To do
this, let us define a point P, marked by the position vectors
xi and x j in the coordinate systems Ri and R j , respectively.
The vector xi j describes the position of the point Oj in the
coordinate system Ri. Using the Graf’s addition theorem,
cylindrical harmonics at the position xi in the coordinate sys-
tem Ri can be expressed as a function of cylindrical harmonics
at the position x j in the coordinate system R j thanks to the
relations [23]

[χ (k, xi )]
t = [ψ (k, x j )]

tM(k, xi j ),
(A10)

[ψ (k, xi )]
t = [ψ (k, x j )]

tN (k, xi j ),

with

Mνn(k, xi j ) = χn−ν (k, xi j ),

Nνn(k, xi j ) = ψn−ν (k, xi j ). (A11)

Using these relations, the potential of the incident wave on the
cylinder p can be put in the form


p
(inc,M )(xp) = [ψ (kM, xp)]tCM

p , (A12)

with

CM
p = N (kM, x0p)AM +

Np∑
q=1
q 	=p

M(kM, xqp)BM
q . (A13)

Amplitudes of incident waves are linked to those of the scat-
tered waves are by the relation

BM
p =

∑
I=L,T

T IM
p CI

p, (A14)

where T IM
p is the scattering matrix associated with the cylin-

der p for an incident wave I and a scattered wave M. This
matrix is diagonal whose coefficients are the scattering coef-
ficients T IM

pn . These coefficients are calculated independently
for each scatterer, they take into account wave conversions and
depend on the mechanical properties of the scatterer and on its
radius.

Let us define the vectors FM and the matrices T M1M2 and
MM as follows:

FM
p = N (kM, x0p)AM,

T M1M2
pq = T M1M2

p δpq,

MM
pq = M(kM, xqp)(1 − δpq). (A15)

We finally obtain the set of equations:

BL =
∑

M=L,T

T ML(FM + MMBM ),

BT =
∑

M=L,T

T MT (FM + MMBM ), (A16)

which can be recasted into a matrix/vector form [see Eq. (4)].
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