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Real-time motion of open quantum systems: Structure of entanglement, renormalization
group, and trajectories

Evgeny A. Polyakov *

Russian Quantum Center, Skolkovo IC, Bolshoi Bulvar 30, Bld. 1, Moscow 121205, Russia

(Received 17 May 2021; revised 31 January 2022; accepted 1 February 2022; published 14 February 2022)

In this paper, we provide a complete description of the life cycle of entanglement during the real-time motion
of open quantum systems. The quantum environment can have arbitrary (e.g., structured) spectral density. The
entanglement can be seen constructively as a Lego: its bricks are the modes of the environment. These bricks
are connected to each other via operator transforms. The central result is that during each infinitesimal time
interval one new (incoming) mode of the environment gets coupled (entangled) to the open system, and one new
(outgoing) mode gets irreversibly decoupled (disentangled from the future). Moreover, each moment of time,
only a few relevant modes (three to four in the considered cases) are non-negligibly coupled to the future quantum
motion. These relevant modes change (flow or renormalize) with time. As a result, the temporal entanglement
has the structure of a matrix-product operator. This allows us to pose a number of questions and to answer them
in this paper: What is the intrinsic quantum complexity of a real time motion? Does this complexity saturate
with time or grow without bounds? How does one do the real-time renormalization group in a justified way?
How do the classical Brownian stochastic trajectories emerge from the quantum evolution? How does one
construct the few-mode representations of non-Markovian environments? We provide illustrative simulations
of the spin-boson model for various spectral densities of the environment: semicircle, subohmic, ohmic,
and superohmic.
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I. INTRODUCTION

A major innovation brought by quantum mechanics is that
a physical system can be in a superposition of its classical
configurations. While the classical state is a point in phase
space, the quantum state is a wave in the space of classical
configurations [1]. All current experimental evidence suggests
that the quantum theory works. Therefore, the superposition
principle is expected to apply at all scales: from a single
microscopic degree of freedom to one mole of any substance
with NA ∝ 1023 degrees of freedom. However, if we try to
imagine the quantum state as a wave in the 1023-dimensional
space, then the quantum reality appears before us as an object
of tremendous complexity. This complexity is reflected in the
notion of a Hilbert space [2].

We believe it is obvious that the overwhelming part of
this potential complexity is not realized in natural observable
processes [3–5]. It is enough to review those tremendous dif-
ficulties that the experimenters face in their attempts to build
a quantum computer [6,7]. This convinces us that there are
rather effective mechanisms of how the quantum complexity
decays during natural processes.

We can put it differently: It is expected that only a tiny
fraction of the Hilbert space is relevant for the observable mo-
tion of quantum systems. Therefore, to reduce the complexity,
we need some tools to identify this relevant subspace. We can
call this the problem of efficient Hilbert space decimation. The

*evgenii.poliakoff@gmail.com

motivation is twofold: conceptual and pragmatic. Conceptu-
ally, we want to understand the structure of quantum states
and their evolution; we want to answer basic questions like the
characterization of the boundary between the quantum and the
classical reality. Pragmatically, we want to be able to calculate
any property we are interested in.

The main idea of this paper is that the structure of entan-
glement can provide answers to all these questions. The whole
point is to look at the entanglement constructively. We con-
sider it like a Lego. The bricks of this Lego are the degrees of
freedom (the modes) of the environment in some trivial (sep-
arable) state. The entanglement is built by connecting these
bricks via some (non)unitary operators. If we know how the
entanglement is built in real time from its bricks, we can keep
track of them and rigorously consider such questions as, What
is the quantum complexity of real-time motion? How does
this complexity behave in time, whether it saturates or grows?
How does one construct a few-mode approximation of the
non-Markovian environment? What is even more important,
if we know how the entanglement is built, then we know how
to compute the properties of quantum state by disassembling
the entanglement brick by brick. This is the renormalization
group (RG) [8–13] in one of its most advanced forms.

As a specific example, we consider in this paper the model
of a finite quantum system coupled to an infinite environment.
This model plays an important role in quantum physics. Its
practical significance is due to the large number of covered
situations: behavior of mesoscopic degrees of freedom in
physical chemistry and condensed matter [14] and models of
quantum measurement and control [15–20]. At the same time,
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the unique combination of simplicity and capability to exhibit
many-body physics [21–24] makes it a paradigmatic model
which is used to challenge and improve our perspective on
quantum phenomena.

In this paper, we use the model of an open quantum system
to study the life cycle of entanglement during the real-time
evolution [25]. Suppose we couple the open system to the
environment. Then it starts to emit quanta into the environ-
ment. Some of them will be reabsorbed, but a significant
number of quanta will fly further and further into the en-
vironment, therefore entangling increasingly more modes of
the environment. This leads to a combinatorial growth of the
dimension of the joint wave function. Such a combinatorial
growth of complexity is called the entanglement barrier [26]
and it presents a significant obstacle both to interpretation and
real-time computational methods.

In an attempt to make sense of the entanglement barrier, let
us ask the question: What is the ultimate fate of the emitted
quantum field? First, we expect that the emitted field becomes
asymptotically decoupled from the future motion of an open
system. For concreteness, let us assume that at some time
moment t∗ a certain mode φout of the environment becomes
effectively and irreversibly decoupled. Then it is important
how this mode is entangled to the rest of the environment. The
mode φout can be entangled to those modes of the environment
which were coupled to the open system before t∗. We say figu-
ratively that φout is entangled to the past. However, φout cannot
be significantly entangled to any mode φin which couples to
the open system after t∗. This is because the entanglement
can only be created via unitary evolution under coupling,
which is effectively absent for φout after t∗. Therefore, we
say figuratively that φout is not entangled to the future. Now
suppose that we have succeeded in arranging the following
two streams of modes: (i) the stream of incoming modes such
that the mode φin(t ) assigned to the time moment t couples
to the open system only after t and (ii) the stream of outgoing
modes such that the mode φout(t ) assigned to the time moment
t is irreversibly decoupled from the future motion after t . This
system of modes leads to the entanglement structure depicted
in Fig. 1.

From this picture, one sees that our entanglement Lego
contains the two types of bricks: the incoming modes φin(tp)
and the outgoing modes φout(tp). If we look at how the en-
tanglement builds forward in time, we can observe that these
two types of bricks play different roles. The incoming modes
φin(tp) are sequentially attached to the structure via the evolu-
tions Û ′

p, thus increasing its complexity. At the same time, the
outgoing modes φout(tp) do not participate in the construction.
Therefore, we can remove them by tracing them out as soon
as they emerge. This is how we can disassemble the entangle-
ment by continuously removing all such emerging idle bricks.
The competition between the two processes, the attachment
of φin(tp), and the removal of φout(tp), determines the final
complexity of the structure. In Fig. 1, we have assumed that
φin(tp) and φout(tp) occur with equal rates in time. Then, in
each moment of time only a finite number of bricks (in Fig. 1,
they are the vertical salmon-colored lines connecting the ad-
jacent evolutions) are attached to the structure. The quantum
complexity of real-time motion only survives in these bricks.
The quantum complexity will saturate and become bounded
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FIG. 1. The temporal structure of entanglement which follows
from the existence of the streams of incoming and outgoing modes.
The blue line depicts the quantum numbers of the open system. The
evolution Û ′

p, which occurs during each infinitesimal time interval
[tp, tp+1] couples one additional incoming mode φin(tp). The corre-
sponding quantum numbers are denoted by the turquoise line. After
that, one additional outgoing mode φout(tp+1) becomes irreversibly
decoupled from the future evolution. Its quantum numbers are de-
noted by the gray line.

with time if the occupation of the coupled modes is bounded.
In other words, the flux jin(tp) of the quanta emitted by the
open system should balance the flux jout(tp) of the quanta
leaking out to the outgoing modes.

The structure in Fig. 1 yields a few-mode representation of
the bath. If we consider the reduced joint state of the open
system and the coupled modes, then all the effects of the
environment on the system will be taken into account. In this
paper, we verify this idea by considering the model of an open
quantum system in an environment with subohmic, ohmic,
superohmic, and semicircle (waveguide) spectral density.

The structure in Fig. 1 indicates that time plays the role
of a flow parameter of some RG: the movement in time
is accompanied with the emergence of degrees of freedom
which are unentangled to the future flow. In the language of
RG, they are called the irrelevant degrees of freedom. Such
degrees of freedom are iteratively traced out while computing
the flow. Here we mean the modern variants of RG, like
the entanglement renormalization (ER) [8–11]. In this paper,
we propose a numerical implementation of the real-time RG
which follows from Fig. 1. We verify the idea by a calculation
for the environment with a semicircle spectral density.
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The second thing we expect to eventually happen is that
the emitted field becomes observed. For example, one can
imagine that the environment is filled with observers at an
extremely low density, so when the emitted field hits the
observer, it has already effectively decoupled from the open
system. These observers can perceive, e.g., the signal of dis-
placed vacuum of the environment (i.e., they observe some
global classical background of the environment). Such a sig-
nal is expected to be a superposition of the stochastic vacuum
noise and some deterministic motion due to interaction with
the open system [27]. Because of the entanglement structure
in Fig. 1, such a measurement does not disturb the future
quantum evolution: the trace over the outgoing modes can
be represented as a stochastic average over the ensemble of
their measurement signals. In Fig. 1, this corresponds to re-
placing each occurring gray line with some classical noise.
Then we immediately conclude that there exist two kinds of
entanglement: (i) the entanglement which is coupled to the
future quantum motion—it appears to be a genuinely quantum
phenomenon—and (ii) the outgoing entanglement which is
irreversibly decoupled from the future quantum motion [and
which is carried by the outgoing modes φout(tp)]. The latter
kind of entanglement is equivalent to the stochastic ensem-
ble of classical signals. This fact has both pragmatic and
conceptual consequences. Pragmatically, we can efficiently
simulate/analyze the outgoing entanglement via the Monte
Carlo sampling of the signal realizations. The resulting pro-
cedure, the RG for quantum trajectories, is presented in this
paper. Conceptually, we conjecture that the outgoing entan-
glement is the carrier of classical reality. We verify the idea
by a calculation for the environment with a subohmic spectral
density.

In the following sections, we develop this picture up to nu-
merical schemes by proposing a measure of average coupling
to the future.

This paper is structured as follows. We place our ideas
into the current research context in Sec. II. The model of
an open quantum system and its environment are introduced
in Sec. III. Then, in Sec. IV, we study how the emitted
field decouples from its source. We encourage the reader to
pay special attention to Figs. 4 and 11, which describe the
physical mechanism of how the stream of incoming modes
and irreversibly decoupled (outgoing) modes emerge in real
time. We verify our ideas by providing the calculations for the
subohmic/ohmic/superohmic and semicircle environments.
The reader interested in the justification of the real-time RG
should pay attention to Sec. IV C and to the discussion of
Figs. 8 and 9. The Schrodinger equation for the model of
an open quantum system is reformulated in terms of the
incoming and outgoing modes in Sec. V. As a result, in
Fig. 17 we obtain the entanglement structure of Fig. 1. In
Sec. VI, the outgoing modes are traced out in real time as
soon as they occur: this is the RG for density matrix. We
verify this idea by a calculation for the semicircle spectral
density (waveguide environment). In Sec. VI F, Fig. 25, we
present a calculation which supports our conjecture that there
is a balance between the fluxes of incoming and outgoing
quanta, i.e., the complexity of real-time motion is expected to
saturate. In Sec. VII, we consider the Markovian limit of our
RG procedure. In Sec. VIII, we implement another alternative

for the RG procedure: to measure the irrelevant modes in real
time as soon as they occur. We verify this by a calculation
for the environment with a subohmic spectral density. Our
approach is compared with a state-of-the-art tensor network
method (TEMO [28]). In Sec. IX, we introduce the measure
of temporal entanglement. We conclude in Sec. X. There are
also four appendices where we provide some implementation
details of our RG procedures.

II. RELATION TO OTHER APPROACHES

Ultimately, our approach is to find such a quantum circuit
(Fig. 1) which shows how the entanglement is built along
the flow (which is the real time in our case) from some set
of uncoupled degrees of freedom. This promotes the view-
point of entanglement as some kind of Lego. Its bricks are
the uncoupled degrees of freedom. These bricks are stuck
together by applying (non)unitary operations. The merit of
this viewpoint is that the observable properties of the resulting
complex many-body states can be computed by gradually
disassembling this Lego brick by brick.

Actually, this viewpoint is close in spirit to the ideas of ER
[8–11]. However, we extend ER in the following two aspects:

First, ER studies of how the entanglement is arranged over
the increasing length scales. In other words, for ER the rel-
evant degrees of freedom are those which contribute to the
low-energy (infrared) properties. While this is appropriate for
the description of low-temperature equilibrium properties, it
becomes unjustified in the case of real-time evolution. During
the real-time motion, the widely separated energy scales may
become coupled, e.g., after a sudden quench of parameters.
We avoid this problem since in our approach the relevant
degrees of freedom are exactly those which have a non-
negligible coupling to the future evolution.

The second difference is how our circuit model is derived.
Below we introduce the metric I2[φ; τ ] which measures how
much the given mode φ at a given time moment τ is cou-
pled to the future motion. This way, we rigorously identify
the modes φout which are irreversibly irrelevant (decoupled)
because their metric I2[φout; τ ] is below a certain threshold.
Therefore, we prove our entanglement model. This should be
contrasted to the reasoning behind ER which is more heuristic,
e.g., by matching the structure of a tensor network against the
expected entanglement scaling laws [29]. The main justifica-
tion of ER comes from the corpus of the numerical calculation
results.

In literature, there are many other formal ways to describe
the evolution of open systems. They can be divided into the
following four groups. The first group isthe methods which do
not rely on the structure of entanglement. They are the master
equations [14,30] and their stochastic unravelings [31–34],
path integrals with influence functionals [35–40], equivalent
chain representations [41], pseudomodes [42,43], and Marko-
vian embeddings [44].

The second group of methods consists of the straightfor-
ward extensions of the Wilson RG ideas (e.g., the logarithmic
discretization of energy scales, the focus on the infrared
limit) to the real time case: impurity numerical RG [24].
These methods make the (often unjustified) assumption that
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the real-time structure of entanglement is similar to the equi-
librium case.

The third group of methods relies on the tensor network
models of quantum states and evolution [28,45–47], usually
within the framework of the influence functional formalism.
The language of tensor networks is suitable for the descrip-
tion of the structure of entanglement [48]. However, in these
methods the main focus is to employ the linear algebra meth-
ods (e.g., singular value decomposition (SVD)) to compress
the numerical representation of quantum states. They neither
reveal nor exploit the life cycle of entanglement in real time.

The final group consists of methods which are derived
from different principles but which, in our opinion, turn out
to implicitly exploit some aspects of the structure described
in Fig. 1. These are the non-Markovian quantum state diffu-
sion [27,49,50] and stochastic Schrodinger equations [51–54];
various variants of the approach of hierarchical equations of
motion [55–61].

III. MODEL OF OPEN QUANTUM SYSTEM

Here we describe the model for which we implement our
ideas in this paper: the open quantum system. The latter
is defined by a Hamiltonian Ĥs. The system is coupled to
bosonic environment via some operator ŝ. The environment
is harmonic with a Hamiltonian Ĥb:

Ĥb =
∫ +∞

0
dωâ†(ω )̂a(ω). (1)

Here the environment’s degrees of freedom are
[̂a(ω), â†(ω′)] = δ(ω − ω′). The environment is coupled
to the open system via some site operator

b̂ =
∫ +∞

0
dωc(ω )̂a(ω). (2)

The coupling constant is related to the spectral density J (ω) =
π |c(ω)|2. The total Hamiltonian of the joint system is

Ĥsb = Ĥs + ŝ†b̂ + ŝ̂b† + Ĥb. (3)

In the interaction picture with respect to the free environment,
we have

Ĥsb(t ) = Ĥs + ŝ̂b†(t ) + ŝ†b̂(t ), (4)

where

b̂(t ) =
∫ +∞

0
dωc(ω )̂a(ω)e−iωt . (5)

For convenience, we assume that initially at t = 0 the envi-
ronment is in its vacuum state |0〉b, so the initial joint state is

|�(0)〉sb = |φ0〉s ⊗ |0〉b, (6)

where |φ0〉s is the initial state of the system. The vacuum
initial condition can be easily generalized to a finite temper-
ature state of the environment [27,62]. Here the subscripts
b, s, and sb designate belonging to the Hilbert space of the
open system Hs, the Fock space Fb of the environment, and
the joint space Hs ⊗ Fb of the open system and environment,
correspondingly.

IV. HOW THE QUANTUM FIELD GRADUALLY
DECOUPLES FROM ITS SOURCE

In this section, we find the incoming and outgoing modes
from Fig. 1. The entanglement is generated by coupling.
Therefore, the analysis of the entanglement structure is es-
sentially the analysis of the decoupling mechanism. We
consider the superspositions of single-quantum states which
are emitted by the open system and describe the mechanism
behind their irreversible decoupling which was proposed in
Refs. [27,63]. Later in the next section, we apply this mecha-
nism to the full many-quanta case.

A. Physical mechanism of decoupling

During its evolution, the open system emits and absorbs
quanta in the environment. There are several important asym-
metries between the emission and absorption processes which
we discuss and exploit here.

Parametrization of the emitted quantum field

The Fock space of the environment Eq. (1) is infinite. The
important nontrivial fact is that the Fock space of the quantum
field which can be emitted by open system is dramatically
smaller. Indeed, since the open system sits at one local site
b̂† of the environment, clearly it cannot resolve the full Fock
space of the environment. The spatiotemporal resolution of
the emitted field is determined by the spectral properties of
b̂†(t ).

Formally, from the Hamiltonian Eq. (4) it is seen that at a
time moment t the quanta are emitted via b̂†(t ). Let us assume
that the evolution happens during the time interval [0, t], start-
ing from the initial state |�(0)〉sb, Eq. (6). One can imagine
that this time interval consists of a sequence of N time mo-
ments τ0, τ1 . . . , τp, τp+1, . . ., 0 � τp � t , p = 0 . . . N , which
are equally spaced at an infinitesimal interval dt . Then, at each
time moment τp the new quanta are created via b̂†(τp). This
means that the wave function |�(t )〉sb can only depend on
b̂†(τ0), . . . b̂†(τp), . . . b̂†(τN ). We may write it in the following
form:

|�(t )〉sb =
∞∑

n0=0

. . .

∞∑
nN =0

1√
n0! . . . nN !

× |φ(n0 . . . nN )〉s ⊗ b̂†n0 (τ0) . . . b̂†nN (τN )|0〉b. (7)

We can visualize the resulting evolution by imagining it as a
tape recorder, Fig. 2: the time is like a tape which moves with
a constant speed [64]. This tape is divided into discrete cells,
one cell for each time moment τp. Then the open system is
like a read/erase head. At time moment τp the head writes
new quanta into the τpth cell of the tape. At the same time, the
head can erase quanta from any past cell τq, τq � τp, with the
amplitude

[̂b(τp), b̂†(τq)] = 1

π

∫ +∞

0
dωJ (ω)e−iω(τp−τq )

= M(τp − τq), (8)

where M(τp − τq) is the so-called memory function of the
environment. This equation follows from Eq. (5) and from the
commutation relation [̂a(ω), â†(ω′)] = δ(ω − ω′). The past
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}

dt

OQS

τp τp−1 τp−2 τp−3 τp−4 τp−5 τp−6τp+1τp+2τp+3τp+4

b†(τp) b†(τp )−1 b†(τp )−2 3b†(τp )− 4b†(τp )− 5b†(τp )− b†(τp )−6

no new quanta will be emitted
into the past cells

...

FIG. 2. We may think of time as a stream of infinitesimally close time moments τ0, τ1, . . . , τp, τp+1, . . .. The time moves with constant
speed in one direction (the blue arrows) like a tape inside a tape recorder (or a Turing machine). Each time moment τp corresponds to a cell
of the tape (the light turquoise circles). Then the open system acts like a write/erase head. At the time moment τp, the head is located in front
of the corresponding cell. The head writes new quanta strictly to the cell τp [which is denoted by b̂†(τp)]—it is a local operation. At the same
time, the erasing of quanta is a causal but long-range operation: the quanta can be erased from an arbitrarily distant past cell τr , with a slowly
decaying amplitude M(τp − τq ) (red arrows). Erasing is the only way for the past cells to interact with the future motion. What is important
is that in this representation the complexity of the emitted quantum field grows gradually. For example, after one infinitesimal time step, the
Fock space of the emitted field is spanned by only one mode b̂†(τ0).

cells may be entangled with each other and with the head
(open system), as follows from Eq. (7).

We see that in this picture both the creation and the ab-
sorption of quanta are causal processes: the future cells with
τq > τp are empty and uncoupled from the open system. They
couple to the evolution one by one as the tape moves in front
of the head. We call them the stream of incoming modes. They
are the bricks of the Lego from which the entanglement is
being built in real time.

The first important asymmetry is that the new quanta can be
written in the present and future cells, with τq � τp, whereas
no new quanta are created in the past cells with τq < τp.
The past cells are coupled to the future motion only via the
annihilation of quanta.

The second important asymmetry is that the creation of
new quanta is a local operation, whereas the annihilation of
quanta is a long-range operation, since the memory function
M(t ) always has inverse-power law tails [27,63]. Indeed, since
the physical spectral function J (ω) cannot have negative-
frequency components, it should go to zero as a certain
power of ω: ωp0θ (ω), where θ is a Heaviside function and
p0 > 0. This leads to a tail ∝ (±it )−p0−1 in the large-t asymp-
totic behavior of M(t ). Moreover, every frequency ωk , where
J (ωk + δω) has a discontinuous part δωpk θ (±δω), leads to an
additional tail ∝e−iωkt (±it )−pk−1 in M(t ). These discontinu-
ities can be, e.g., the band edges. Such tails were called the
memory channels in Refs. [27,63].

For illustration, let us consider the widely used model of
the environment with a spectral density:

J (ω) = αωc

2

[
ω

ωc

]s

exp

(
− ω

ωc

)
. (9)

It covers many types of environments by varying the pa-
rameter s: the subohmic (0 � s < 1), ohmic (s = 1), and
superohmic (s > 1). This spectral density corresponds to the
memory function

M(t ) = αω2
c

2π


(s + 1)

(1 + itωc)s+1 , (10)

which has a tail ∝τ−s−1 due to the discontinuity at the
frequency ω = 0. Another example is the waveguide environ-
ment (in the Schrodinger picture),

Ĥb =
∞∑
j=1

{ĥa†
j+1̂a j + ĥa†

j â j+1 + ε̂a†
j â j}, (11)

with the open system being coupled to the first site â1. In
the interaction picture with respect to Ĥb, we get b̂(t ) ≡
â1(t ) = exp(it Ĥb )̂a1 exp(−it Ĥb). Such an environment has
a finite band of energies [ε − 2h, ε + 2h], and the memory
function is

M(t ) = e−iεt J1(2ht )

ht
∝ t− 3

2 e−i(ε−2h)t + t− 3
2 e−i(ε+2h)t , (12)

where now we have two tails, one tail per band edge at the
frequencies ω1 = ε − 2h and ω2 = ε + 2h.

This long-range character of M(t ) is a problem because
it leads to a large number of past cells which are entangled
and significantly coupled to the future motion. As a result, the
complexity of real-time motion accumulates combinatorially
fast and becomes prohibitive.

To solve this problem, let us consider the amplitude of the
annihilation process. Suppose that by the time moment τp one
quantum was emitted. Its state |φ〉b is a superposition of the
cell-write events:

|φ〉b = {φ0b̂†(τ0) + . . . + φp−1b̂†(τp−1)}|0〉b. (13)

Here, for the moment we neglect the degrees of freedom of
the open system (in the next section, Sec. V, we derive the
full equations of motion). Now suppose that in the future the
open system points to some cell τp′ , with τp′ > τp. Then it will
erase this quantum state Eq. (13) with the amplitude

Ap′ p[φ] =
p−1∑
r=0

M((p′ − r)dt )φr . (14)

We see that the quanta in the past cells are coupled to the fu-
ture via the convolution with M(t ). Now we recall that for the
distant past the memory function M(t ) behaves as a superposi-
tion of its tails Mk (t ) = e−iωkt (±it )−pk−1. Every such tail has
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FIG. 3. The emitted quantum field is coupled to the future motion
only via convolution with the memory function, Eq. (14). As a
result, the spectral content of the emitted quanta is completely de-
coupled from the future motion, except a progressively small vicinity
(salmon-colored area) of the singular frequencies ωk, ωk+1, . . . where
the spectral function J (ω) has discontinuities. These singular fre-
quencies may be, e.g., the boundaries of energy bands or other sharp
features of the spectral density.

the property that its local spectrum gradually becomes more
and more narrowed to the frequency ωk as the time argument
t is increased. Equivalently, one may say that as t is increased,
there is an increasingly large timescale �(t ) over which the
tail Mk (t ) can be considered as being effectively constant.
Therefore, starting from t every spectral component of φ out-
side the frequency range ≈ [ωk − �(t )−1, ωk + �(t )−1] will
be averaged to zero by convolving with M(t ) in Eq. (14).
Physically, this means that in the remote past, the spectral
content of the emitted quanta is completely decoupled from
the future motion, except a progressively small vicinity of
these singular frequencies ωk , see Fig. 3.

The analysis above convinces us that as the time proceeds,
new modes of the environment should continuously emerge
which are effectively decoupled from the future motion, see
Fig. 4. We call these the stream of outgoing modes. We will
construct them formally in the following section.

Now suppose we succeeded in constructing the degrees
of freedom which represent the different spectral areas in
Fig. 4, namely, the cells from Fig. 2 are treated as independent
quantum degrees of freedom. Then the frame is changed (via a
unitary transform, Fig. 5) so instead of the past cells we have
(i) the cells which are significantly coupled to the future (the
relevant modes, from the salmon-colored area in Fig. 4) and
(ii) the cells which are effectively and irreversibly decoupled
from the future (the outgoing modes, from the gray area in
Fig. 4), see Fig. 6. We expect that this way the coupling to the
past will become short ranged, and the complexity of the real-
time motion will become bounded. This is because the decou-
pled past modes can be traced out as we demonstrate below.

B. How to find the outgoing modes

In this section, we implement the intuition of Fig. 3: We
find the modes which are significantly coupled to the future

time of emissionτpτp 1 time of emissionτpτττpττ 11

ωk

ωk+1

fr
eq

ue
nc

y

FIG. 4. When the real-time evolution is propagated forward one
time step (blue arrow), from τp to τp+1, the emitted quantum field
is shifted one step further into the past (gray arrow). Then the fre-
quency scales �(t )−1 slightly shrink. As a result, each propagation
step yields new spectral content (gray area) which is irreversibly
decoupled from the future motion. The gray area should correspond
to some continuously emerging outgoing modes of the environment.

motion (lie inside the salmon-colored area) and those which
are irreversibly decoupled (lie outside the salmon-colored
area).

Let us again assume that by the time moment τp there is a
single-quantum state of the tape Eq. (13). Recall that Ap′ p[φ]
from Eq. (14) is the amplitude to annihilate this quantum at
a later time moment τp′ . We introduce the shorthand bra-ket
notation for Eq. (14),

Ap′ p[φ] = (p′|M|φ), (15)

where matrix M is the discretized memory function
Mlr = M((l − r)dt ), with l, r � 0. The set of amplitudes
φ0, . . . , φp−1 is considered as a semi-infinite vector φr , r � 0,
with φr = 0 for r � p. This vector is denoted in the bra-ket
notation as |φ). The notation (p|φ) means the amplitude on
the cell τp: (p|φ) = φp.

. . .

τ1τp

. . .
φ1 φ2 φp3φ

τp−1 τp−2

U

FIG. 5. If we find the degrees of freedom (the modes) which
correspond to the coupled and decoupled spectral components of the
emitted quantum field, then we can switch to the basis φ1, φ2, . . . of
such modes by applying a suitable unitary transform U to the past
cell degrees τ1, τ2, . . . , τp of freedom of the time tape. The new cells
φk are numbered in the decreasing order of their significance for the
future evolution. Their color match the color of the spectral areas in
Fig. 4.
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}

dt

OQS

τp 6
τp+1τp+2τp+3τp+4

b†(τp)

...

φ1 φ2 φ3 φ4 φ5 φ

φ†
1 φ†

2 φ†
3 φ†

4 φ†
5 φ†

6

FIG. 6. In the basis of the modes φk whose significance for future motion rapidly decreases, the coupling to the past is expected to become
short ranged.

To estimate the significance of φ for the future quantum
motion, we can evaluate the average intensity of annihilation
processes over all future time moments,

Iq[φ; τp] =
∞∑

p′=p

(|(p′|M|φ)|q)
1
q /(φ|φ )

1
2 , (16)

with some parameter q > 0. The quantity Iq[φ; τp] is the
power mean of Ap′ p[φ] over the time interval [τp,∞). Here
the denominator in Eq. (16) removes the trivial dependence
on normalization of φ. It is natural to expect that the mode
φ1 which makes the largest average contribution to the future
annihilation processes is the most important for the future mo-
tion. Such a mode can be found by maximizing Iq[φ; τp]. The
second-most important mode φ2 can be found by maximizing
Iq[φ; τp] subject to the orthogonality constraint (φ1|φ2) = 0.
Repeating iteratively this process by maximizing Iq[φ; τp]
subject to the constraint of orthogonality to all the previously
found modes, we find the fastest decoupling basis of modes
φ1 . . . φp.

Let us recall the intuitive picture of Fig. 3. The annihi-
lation amplitude Eq. (15) has the convolutional form. The
intensity Iq[φ; τp] is the average magnitude of such convolu-
tions which are shifted to future times. Therefore, we expect
that the modes which maximize Iq[φ; τp] correspond to the
salmon-colored spectral area in Fig. 3. The modes which yield
the least significant contribution to Iq[φ; τp] lie outside the
salmon-colored spectral area of Fig. 3.

In this paper, we consider the case of a root mean square
intensity I2[φ; τp]. In this case, the intensity assumes the form

I2
2 [φ; τp] = (φ|K (p)|φ), (17)

where the matrix K (p) is

K (p)r′r =
∞∑

p′=p

M∗((p′ − r′)dt )M[(p′ − r)dt], (18)

0 � r, r′ < p. Then the fastest decoupling basis φ1 . . . φp is
given by the eigenvectors of K (p),

K (p)|φk ) = λk|φk ), (19)

where k = 1, 2, . . ., and we sort the eigenvalues λk (p) in the
descending order.

1. Example calculations: Some tests of the ideas

As illustration, we present in Fig. 7 the plot of nor-
malized eigenvalues λk (p)/λ1(p) for the cases of subohmic

(s = 0.5), ohmic (s = 1.0) and superohmic (s = 2.0) environ-
ments, Eq. (10), for the time moment tp = pdt = 100. One
observes that the average coupling of these eigenvectors to
the future evolution decays exponentially fast.

If the intuition of Fig. 3 is valid, then the oscillations of
the eigenvectors φk should rapidly slow down so the spectral
content of φk remains in the progressively small vicinity of the
only singular frequency ω = 0. In Fig. 8, we present the plots
of φ10 for the cases of subohmic (s = 0.5), ohmic (s = 1.0),
and superohmic (s = 2.0) environments. It is seen that the
scale of their oscillations is almost constant on the logarithmic
scale of times τr , which supports our intuition.

A more stringent test of our intuition is to compute the
most important mode φ1 for the waveguide memory function
Eq. (12). If Fig. 3 is valid, and if the first eigenvalues of
K (p) indeed sample the salmon-colored spectral area, than
the tails of φ1 should behave as a superposition of e+i(ε−2h)t

and e+i(ε+2h)t . In Fig. 9, we present the plot of φ1 for the
waveguide with ε = 1 and h = 0.05.

Taking into account the exponentially fast decoupling of
the modes φk , we can keep the first m modes φ1, . . . φm

as the relevant modes, and consider the remaining modes
φm+1, φm+2, . . . as the outgoing modes. The latter are ir-
reversibly decoupled, which is supported by the following

1 5 10 15 20
k

10-20

10-15

10-10

10-5

100

k(t
)/

1(t
)

ohmic s=1.0
superohmic s=2.0
subohmic s=0.5

FIG. 7. The average contribution of the modes φk of the fastest
decoupling basis to the future evolution decays exponentially fast.
Here the cases of subohmic (s = 0.5), ohmic (s = 1.0), and super-
ohmic (s = 2.0) environments are considered for the time moment
tp = pdt = 100 and dt = 0.01. The saturation on the level of 10−16

is due to roundoff errors.
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10-2 10-1 100 101 102

p
-

r

0

0.05

0.1

0.15

0.2

0.25

0.3
subohmic s=0.5
ohmic s=1.0
superohmic s=2.0

FIG. 8. Plot of the fastest decoupling basis function |(r|φ10)| vs
τp − τr for tp = pdt = 100, for the cases of subohmic (s = 0.5),
ohmic (s = 1.0), and superhomic (s = 2.0) environments. Observe
that we plot with respect to the time of delay τp − τr between the
present τp and the past τr . The scales of their oscillations are approx-
imately constant on the logarithmic scales of delay times.

property of the average intensity:

Iq[φ; τp′ ] � Iq[φ; τp] for τp′ � τp, (20)

which follows from its definition Eq. (16).

C. Implications for the renormalization group:
The choice of relevant space

Looking at the fastest decoupling basis modes in Fig. 8, we
notice the emergent logarithmic scale when the only singular
frequency is ω = 0. This logarithmic scale is a characteristic
feature of the RG methods [65]. The interesting difference
is that traditional (equilibrium-inspired) RG methods perform
the logarithmic discretization of the energy band, whereas in
our case it is the time behavior which scales logarithmically.
However, the core principle is the same: (i) there is a flow
and (ii) as we proceed along the flow, only the low-energy

0 200 400 600 800 1000

p
-

r
 

-0.1

-0.05

0

0.05

0.1

R
e(

r|
1)

900 920 940 960 980 1000
-2

0

2
10-4

2h

FIG. 9. Plot of the most important mode φ1 for the waveguide
memory function Eq. (12) with ε = 1 and h = 0.05. It is seen on
the inset that the tail φ1 behaves like a supersposition of oscillations
with the frequencies ε − 2h and ε − 2h. This supports the intuition
of Fig. 3 that the coupled spectral content of the quanta emitted in
the past shrinks to the singular frequencies of the spectral function.

(a) (b) 

FIG. 10. Comparison between the traditional equilibrium-
inspired and the real-time renormalization groups (RG). (a) In the
traditional RG, we have initial energy interval [−1, 1] (in some
arbitrary units). Then one makes assumption that only the low energy
behavior is relevant for the problem at hand. The logarithmic dis-
cretization of the energy interval is introduced with � > 1. We obtain
an infinite sequence of energy shells D1 = [−1, −�−1] ∪ [�−1, 1],
. . . , Dk = [−�−k+1, −�−k] ∪ [�−k,�−k+1], . . . . The RG flow is
obtained by sequentially tracing out the degrees of freedom in shells
D1, D2, . . . Dk, . . .. (b) In the real-time RG, the relevant degrees of
freedom are contained in the progressively small vicinity of each
singular frequency ωk where the spectral density J (ω) has sharp fea-
tures (e.g., band edges). Thus we obtain the sequence of phase-space
shells Dp−1, Dp, Dp+1, . . .. The shell Dk contains the spectral content
which decouples from future evolution after the time moment τk , see
Fig. 4. Each shell Dk carries a degree of freedom φout(k), which are
constructed in Sec. IV D. These φout(k) are traced out in Sec. VI and
collapsed to classical noise in Sec. VIII.

behavior remains to be relevant, see Fig. 10. In equilibrium-
inspired RG methods, the flow is the decreasing characteristic
energy cutoff. In our case, the flow is the aging (moving to the
past in time) of the emitted field, and the relevant low-energy
behaviour is the progressively small vicinity of the singular
frequencies in spectral function J (ω), as in Fig. 3.

D. The emergence of outgoing modes in real time

In this section, we implement the intuition of Figs. 4 and
10: We construct the stream of outgoing modes. That is, for
each infinitesimal motion τp → τp+1, we identify the new
mode φout(p) of the environment that has just become irre-
versibly decoupled (which belongs to the gray area in Fig. 4
and to the shell Dp in Fig. 10).

We construct the stream of outgoing modes by induction.
Suppose we have chosen to keep no more than m relevant
modes. This is how we demarcate the boundary of the salmon-
colored area in Fig. 3. This means that for τp with p � m − 1,
all the modes are relevant since the matrix K (p) has no more
than m eigenvalues. This is the basis for our inductive con-
struction.

Now suppose that at a time moment τp, p � m − 1, we
know the relevant modes φ1(p), . . . , φm(p), and (zero or
more) outgoing modes φout(p − 1), φout(p − 2), . . . , φout(m),
see Fig. 11(a). At time moment τp, the open system (the
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(a) 

(b)

FIG. 11. (a) At a time moment τp, the open system gets coupled
to the new incoming mode φin(p). Since this mode is localized
(in τ ), it has a broadband spectrum (the vertical light turquoise
spectral area). The past cells are represented by the relevant modes
φ1(p), . . . , φm(p), which carry the coupled part of the emitted
quantum field [salmon-colored spectral area, under the decreasing
scale �(τ )−1]. There are also outgoing modes φout(p − 1), φout(p −
2), . . . , φout(m), which represent the irreversibly decoupled part of
the emitted quantum field (the gray spectral area). (b) After the
propagation to the next time moment τp → τp+1, the incoming mode
φin(p) becomes one of the past cells. Then the scale �(τ )−1 shifts to
the left, �(τ )−1 → �(τ − dt )−1, as described in Fig. 4. This leads to
the emergence of a new decoupled spectral content (light gray area).
This spectral content is represented by a new outgoing mode φout(p).
The latter is found via a unitary transform Wp, Eq. (21), to the frame
of the new relevant modes φ1(p + 1), . . . , φm(p + 1).

write/erase head in our tape model) points to cell τp. This cell
represents one incoming mode φin(p) which is localized on
this cell: (r|φin(p)) = δr p, with δ being the Kronecker delta.

The inductive step in our construction is to consider what
happens after the propagation to the next time moment τp →
τp+1. The incoming mode φin(p) becomes one of the past
cells (the write/erase head moves one position to the left).
As a result, by time moment τp+1 we have the following
m + 1 modes: φ1(p), . . . , φm(p) and φin(p). Our task is to
transform these modes into the new m relevant modes φ1(p +

(a) (b)

FIG. 12. (a). The tape model of real-time evolution assigns an
incoming mode φin(p) to each time moment τp. (b). The iterative
construction of the m most relevant modes changes the structure of
modes: Now we have the two streams of incoming φin(p) (turquoise
lines) and outgoing modes φout(p) (gray lines) and also the relevant
modes φ1(p) . . . φm(p) (salmon-colored lines), which represent the
corresponding spectral areas of Figs. 4 and 11.

1), . . . , φm(p + 1) and one new outgoing mode φout(p),⎡⎢⎢⎣
φ1(p + 1)

...

φm(p + 1)
φout(p)

⎤⎥⎥⎦ = Wp

⎡⎢⎢⎣
φ1(p)

...

φm(p)
φin(p)

⎤⎥⎥⎦, (21)

via some unitary transform Wp. Here Wp acts as or-
dinary matrix on the column entries, e.g., φk (p + 1) =∑

l (Wp)klφl (p) + (Wp)k,m+1φin(p). To determine Wp, we
choose the fastest decoupling basis. As the fastest decoupling
basis, we take the eigenvectors of K (p + 1) in the space
spanned by φ1(p), . . . , φm(p) and φin(p). The matrix elements
of K (p + 1) in this subspace are

K̃ (p + 1) =
[

Krr Kri

K†
ri Kii

]
, (22)

where the blocks of the matrix are the scalar Kii =
(φin(p)|K (p + 1)|φin(p)) = K (p + 1)pp = ∑∞

p′=1 |M(p′dt )|2,
the vector (Kri )q = (φin(p)|K (p + 1)|φq(p)), and the
matrix (Krr )qq′ = (φq(p)|K (p + 1)|φq′ (p)). This matrix has
dimension (m + 1) × (m + 1). Therefore, if we diagonalize
it and sort the m + 1 eigenvectors in the descending order of
their eigenvalues,

K̃ (p + 1) = U

⎡⎣λ1 0
. . .

0 λm+1

⎤⎦U †, (23)

we obtain Wp = U T for Eq. (21).
Iterating this inductive step, we construct the entire stream

of outgoing modes φout(p); see Fig. 12.

V. EQUATIONS OF MOTION IN TERMS OF INCOMING,
OUTGOING, AND RELEVANT MODES

In this section, we give a precise meaning to Fig. 1. In
the previous section, the treatment was on the level of su-
perposition of single-quantum states of the environment. Here
we derive the complete quantum equations of motions, which
fully take into account the many-body correlations between
the open quantum system and the environment.
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We remind you that our goal is to find a minimum num-
ber of degrees of freedom which contain everything what is
significant for the motion at future time moments. We want to
stay in the small relevant subspace (spanned by these degrees
of freedom) all the time. However, during each infinitesimal
time interval the quantum amplitudes leak outside this space
(due to the environment dispersion). In other words, at least
one new degree of freedom gets entangled. To keep the min-
imal number of relevant modes, we need to find some degree
of freedom (outgoing mode) which can be traced out. This
latter degree of freedom should be independent and decoupled
from everything. Otherwise, the real-time motion will become
corrupted on large times. We conclude that we need to attach
an independent degree of freedom to each infinitesimal time
moment. Otherwise, there will be nothing to trace out and
the number of coupled modes will grow with time. There-
fore, in this section we develop a formalism which treats the
infinitesimal time cells as independent degrees of freedom.
The model of open quantum system Eq. (52) is mapped to
the representation of independent time cells (tape model) in
an exact and rigorous way. Then we derive how the outgoing
modes can be traced out in a virtually exact way.

Observe the merit of the proposed picture of time cells. In
the Schrodinger (spatial) picture, the spread of entanglement
and decoupling happens simultaneously in the far degrees of
freedom. Therefore, it is difficult to distinguish between these
processes. However, we want to know how to separate them
because we hope to find a balance between these processes. In
contrast, in the model of time cells, Figs. 6 and 12, these two
processes are clearly distinguished and the balance conjecture
is easily formulated and checked.

A. Fock space for the tape cells

Each cell τp of the time tape (the light turquoise circles in
Figs. 2, 5, and 6) is considered as independent bosonic degree
of freedom with its own creation operator ψ̂†

p , [ψ̂q, ψ̂
†
p] = δqp.

The operator ψ̂†
p creates a quantum in the mode φin(p). Re-

calling Fig. 2, this implies that we map the creation operator
b̂†(τp) to ψ̂†

p :

b̂†(τp) → ψ̂†
p . (24)

As a result, the tape has its own vacuum |0〉t and the tape
Fock space Ft is spanned by applying ψ̂†

p’s to |0〉t. This
Fock space is formally different from that Fb defined by the
original model in Eq. (4). However, the quantum mechanics
permits many different formal representations of a physical
system, provided that the observable properties are invariant.
For the latter, it is enough to conserve the commutation rela-
tion Eq. (8), which is ensured by the mapping

b̂(τl ) →
l∑

r=0

Mlrψ̂r, (25)

were we again employ the matrix M with elements Mlr =
M((l − r)dt ). Now the tape model and the original model
Eq. (4) are in one-to-one correspondence. For example, the

states are mapped between these models as

ψ̂
†n0
0 . . . ψ̂

†np−1

p−1 |φ(n0, . . . np−1)〉s ⊗ |0〉t

←→ b̂†n0 (τ0) . . . b̂†np−1 (τp−1)|φ(n0, . . . np−1)〉s ⊗ |0〉b.

(26)

Here |φ(n0, . . . np−1)〉s is a wave function of the open system
which is not affected by the mapping. The vacuum initial
condition for the tape model becomes |�(0)〉st = |φ0〉s ⊗ |0〉t.

B. The Hamiltonian for the tape model

The Hamiltonian for the tape model is obtained by ap-
plying the mapping rules Eqs. (24) and (25) to the original
Hamiltonian Eq. (4):

Ĥsb(τp) → Ĥst(τp) = Ĥs + ŝψ̂†
p + ŝ†

p∑
r=0

Mprψ̂r . (27)

Observe that in the tape model, the real-time evolution hap-
pens in discrete time steps via jumps from one cell τp to
the neighboring one τp+1. Of course, we want this discrete
evolution to approximate the continuous one from the original
model Eq. (4). It is desirable that the global propagation error
is stable and vanishing as dt → 0. The latter can be achieved
by employing the implicit midpoint rule as a propagator,

|�(tp+1)〉st = |�(tp)〉st − idtĤst(τp) 1
2 {|�(tp+1)〉st

+ |�(tp)〉st} + O(dt3), (28)

where now we specify that the tape cells are located at the
midpoint times: τp = (p + 1

2 )dt . This equation is solved for
|�(tp+1)〉st by iterations with the initial guess |�(tp+1)〉st =
|�(tp)〉st. Here the Hamiltonian Ĥsb(τp) corresponds to the
head (open system) being coupled to the cell τp. Then the
midpoint rule forces us to think that the Hamiltonian Ĥsb(τp)
generates the evolution from the wave function |�(tp)〉st at
the time moment tp = pdt to the wave function |�(tp+1)〉st

at the next time moment tp+1 = (p + 1)dt . This ensures the
global error of O(dt2). The time moment tp corresponds to
the notation of Fig. 1.

The wave function |�(tp)〉st depends on the modes
ψ̂

†
0 , . . . , ψ̂

†
p−1. During each propagation step of Eq. (28), it

entangles one additional mode ψ̂†
p [which corresponds to

φin(p)], see Fig. 13. This is the usual growth of complexity
which we overcome in this paper.

C. Partial trace

To completely define the tape model, we need to discuss
how to compute the trace over the cell degrees of freedom.
Suppose we compute the reduced density matrix for the open
system via the partial trace over the environment,

ρ̂s(tp) = Trb{|�(tp)〉sb sb〈�(tp)|}, (29)

where |�(tp)〉sb is the wave function of the original model
Eq. (4). The effect of Trb is that each â†(ω) from the ket
|�(tp)〉sb becomes paired with â(ω)’s from the bra sb〈�(tp)|
at the same frequency. This follows from the commutation

054306-10



REAL-TIME MOTION OF OPEN QUANTUM SYSTEMS: … PHYSICAL REVIEW B 105, 054306 (2022)

FIG. 13. In the tape model of the open system, the evolution
happens between the discrete time moments t0 = 0, t1 = dt, . . . tp =
pdt, . . .. After propagation from tp to tp+1, one new incoming mode
φin(p) (turquoise line) corresponding to cell τp becomes entangled
to the open system (blue line). The evolutions Ûp happen under the
midpoint rule Eq. (28).

relations [̂a(ω), â†(ω′)] = δ(ω − ω′). We can rewrite the par-
tial trace Eq. (29) in such a form that all the pairings become
explicit:

ρ̂s(tp) = b〈0|
{

e
∫ +∞

0 dωâ†(ω )̂a(ω) × : |�(tp)〉sb sb〈�(tp)| :}A|0〉b.

(30)

Here the notation {: :}A means that the creation/annihilation
operators coming from the Taylor expansion of the pair-
ing function exp

∫ +∞
0 dωâ†(ω )̂a(ω) are antinormally ordered

around the term |�(tp)〉sb sb〈�(tp)|. The ordering of the lat-
ter term is not affected (which is indicated by placing it
between : :). Observe that when we order the Taylor ex-
pansion of the pairing function, we regard its constituent
creation/annihilation operators as commuting. The expres-
sions Eqs. (29) and (30) are equal because they describe
the same set of pairings between the â†(ω)’s from the ket
|�(tp)〉sb, and the â(ω)’s from the bra sb〈�(tp)|. The opera-
tion b〈0| · |0〉b denotes the projection of density matrix to the
subspace of zero quanta in the environment. This operation
does not affect the open system.

When defining the trace for the wave function |�(tp)〉st

of the tape model, we should take into account that each
pairing between ψ̂r and ψ̂†

s is possible due to the commutator

(a)

(b)

(c)

ρ (tp) =

(d)

Mrs =

FIG. 14. (a) It is very desirable to consider the wave function as
depending on quantum numbers of each infinitesimal time moment
(turquoise lines). This approach is natural for analyzing how the
entanglement gradually develops in real time. Especially, it is inter-
esting to track how it is happening continuously: what gets entangled
and disentangled each infinitesimal time moment. We succeed in
deriving equations of motion which treat the infinitesimal time cells
as independent degrees of freedom: see Eqs. (27) and (28). (b) Nev-
ertheless, there are no time-local states in quantum mechanics. Due
to the commutation relation Eq. (8), each time cell τk contributes to
the observables at another time moment t like a wave packet M1/2

τkt

with long-range tails. Here M1/2
τkt = (2π )−

1
2
∫ +∞

0 dωe−iω(τk−t )
√

J (ω).
(c) We reconcile the dynamical locality and the observable nonlocal-
ity by introducing the pairing function. This effectively smears the
time cells in time during the partial trace operation. The resulting
density matrix ρ̂s(tp) depends only on quantum numbers of the open
system (blue lines). (d) The elementary pairing Mrs corresponds to
the overlap (green area) between the wave packets of the two quanta
at τr and τs: Mrs = ∫ +∞

−∞ M1/2
τr t M1/2∗

τst dt .

[̂b(τr ), b̂†(τs)] = Mrs:

ρ̂s(tp) = t〈0|
{

e
∑p−1

rs=0 ψ̂†
r Mrsψ̂s : |�(tp)〉st st〈�(tp)| :}A|0〉t. (31)

This is how the partial trace is performed in the tape model.
The conceptual meaning of the pairing function is that the
time-cell degrees of freedom yield a nonlocal contribution to
the observables in quantum mechanics, see Fig. 14.

D. Propagation of wave function in terms of incoming,
outgoing, and relevant modes

The initial condition for the propagation is |�(0)〉st =
|φ0〉s ⊗ |0〉t. There are two regimes of propagation: tp < tm
and tp � tm.

As discussed in Sec. IV D, while tp < tm, all modes
ψ̂

†
0 . . . ψ̂

†
p−1 are relevant: φin(1) ≡ φ1(p − 1), . . . , φin(p −

1) ≡ φp−1(p − 1). Therefore, the propagation from |�(tp)〉st

to |�(tp+1)〉st is done via the application of the midpoint rule
Eq. (28). As a result, before time moment tm the entanglement
develops according to Fig. 13.

The situation changes for tp � tm. The wave function
|�(tp)〉st depends on the relevant modes φ1(p − 1) . . . φm(p −
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(a)

(b)

(c)

FIG. 15. The circuit model of how the wave function is propa-
gated during one time step in three stages: (a) At a time moment tp,
the wave function |�(tp)〉st depends on the occupations of outgoing
modes φout(k) ≡ φout(tk ), k = m . . . p − 1 (gray lines) and of relevant
modes φk ≡ φk (p), k = 1 . . . m (salmon lines). Also it depends on
the quantum numbers of the open system (blue line). Observe the
matrix-product-like structure of the wave function. This follows from
the facts that (i) only m modes are significantly coupled to the future
and (ii) each time step one outgoing mode is produced. (b) The
discrete-time Hamiltonian Eq. (32) is applied via the midpoint
rule Eq. (28), which approximates the evolution Ûp. As a result, one
incoming mode (turquoise line) gets entangled to the state. (c) The
frame is changed actively via Ŵp to produce one decoupled mode
(gray line). Observe that Ûp and Ŵp constitute the newly formed
additional block of the matrix product structure of |�(tp+1)〉st, see
Fig. 16.

1) via their creation operators φ̂
†
1 (p − 1) . . . φ̂†

m(p − 1).
Also, |�(tp)〉st depends on zero or more outgoing modes
φout(p − 1) . . . φout(m) via their creation operators φ̂

†
out(p −

1) . . . φ̂
†
out(m), see Fig. 15(a). Here each line represents the

occupation number of the corresponding mode. The salmon-
colored lines φk ≡ φk (p − 1), k = 1 . . . m, correspond to the
relevant modes which are populated via the creation operators
φ̂

†
k (p − 1). The blue line denotes the quantum numbers of the

open system. The gray lines are the outgoing modes.
The propagation begins with the entangling step: when

the discrete-time Hamiltonian Ĥst(τp) Eq. (27) is applied,
Fig. 15(b). We express the Hamiltonian in terms of the in-
coming mode ψ̂†

p , the relevant modes φ̂
†
k (p), and the irrelevant

modes φ̂
†
out(p),

Ĥst(τp) = Ĥs + ŝψ̂†
p + ŝ†M(0)ψ̂p + ŝ†

min(p,m)∑
i=1

Mi(p)φ̂i(p)

+ ŝ†
p−1∑

i=m+1

Mouti(p)φ̂out(i), (32)

where the coupling to the relevant modes is

Mi(p) =
p−1∑
r=0

Mprφi(p)r, (33)

and the coupling to the irrelevant modes is Mouti(p) =∑p−1
r=0 Mprφout(ti )r . Up to now, the treatment was exact (in

the limit dt → 0). Here we make an approximation for the
first time: The coupling between the incoming mode and the
irrelevant modes [the last line of Eq. (32)] is discarded, so we

(a)

(b)

FIG. 16. (a) In the frame of relevant/outgoing modes, the
real-time wave function |�(tp)〉st has the structure of a matrix-
product-state. (b) Each block (tensor) is a product of the entangling
and disentangling transforms

have

Ĥst(τp) = Ĥs + ŝψ̂†
p + M(0)ψ̂p + ŝ†

min(p,m)∑
i=1

Mi(p)φ̂i(p). (34)

Below we will use this form of the Hamiltonian.
After the propagation Ûp via the rule Eq. (28), the resulting

wave function |�̃(tp+1)〉st still depends on the old relevant
modes φ̂

†
k (p). The wave function |�̃(tp+1)〉st also entangles

one additional incoming mode ψ̂†
p [the turquoise line going

up from Fig. 15(b)]: hence the name entangling step.
The propagation is finished by the disentangling step:

we change to the basis of new relevant modes φ̂
†
k (p + 1),

Fig. 15(c),

|�(tp+1)〉st = Ŵp

∣∣�̃(tp+1)
〉
st, (35)

where the disentangler Ŵp is given by

Ŵp = exp(i[φ̂†
1 . . . φ̂†

mψ̂†
p]h(p)[φ̂1 . . . φ̂mψ̂p]T ), (36)

and the Hermitian (m + 1) × (m + 1) matrix h(p) = i ln Wp,
with the unitary matrix Wp defined in Eq. (21). Observe that
in Eq. (35) we apply the active form of the frame-change
transformation Eq. (36). As a result, the relevant modes
lose their time dependence, φ̂

†
k (p) ≡ φ̂

†
k , k = 1 . . . m. The re-

sulting wave function |�(tp+1)〉st has the same structure as
|�(tp)〉st, namely, it has the same matrix-product-state struc-
ture as in Fig. 15(a). Each block in this structure is formed by
a pair of entangler-disentangler transforms, Fig. 16.

Observe that as the result of Ŵp, one additional outgoing
mode φout(p) is produced in the wave function |�(tp+1)〉st.
The coupling of φout(p) to the future is negligible by con-
struction, so φout(p) will not become entangled to the future
incoming modes: hence the name disentangling step.

The iterative application of these propagation steps leads
to the circuit model presented in Fig. 17.

E. Decoupling of the pairing function

Let us recall that when computing the observables, we
need to apply the pairing function Eq. (31). It introduces
an additional nonlocal coupling between the future and the
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FIG. 17. The circuit model of real-time evolution of open quan-
tum system. At each time step tp, one new incoming mode φin(p) ≡
φin(tp) gets entangled to the open system via the Hamiltonian evolu-
tion Ûp. Afterward, one new irreversibly decoupled mode φout(p) ≡
φout(tp) gets disentangled via the active change of frame Ŵp. Observe
that the product ŴpÛp is equal to Û ′

p from Fig. 1.

past cell modes. One might wonder if this would spoil the
entanglement structure described in Figs. 15–17. The answer
is no. The coupling in the pairing function has the same
form of the convolutional annihilation process that was thor-
oughly analyzed in Sec. IV. Therefore, in the frame of the
incoming/outgoing/relevant modes, we can neglect the pair-
ings between the outgoing and the future incoming modes,
Fig. 18, analogously to transition from Eq. (32) to Eq. (34).
Below we ensure this by explicit calculation.

1. Change of frame in the pairing function

The pairing function in Eq. (31) is written in terms of the
original incoming modes ψ

†
k . Let us change to the frame of

incoming/outgoing/relevant modes in the pairing function.
Suppose that these frames are related as⎡⎢⎢⎢⎢⎢⎢⎢⎣

φ1(p)
...

φm(p)
φout(m)

...

φout(p − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= U

⎡⎣ φin(0)
...

φin(p − 1)

⎤⎦, (37)

where the unitary matrix U is the cumulative effect of the dis-
entanglers: U = WpWp−1 . . .Wm. The creation operators are
related in the same way,

φ̂
† ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ̂
†
1
...

φ̂†
m

φ̂
†
out(m)

...

φ̂
†
out(p − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= U

⎡⎢⎣ ψ̂
†
0
...

ψ̂
†
p−1

⎤⎥⎦, (38)

where φ̂
†

is shorthand for the column vector of creation

operators. Its components φ̂
†
1 . . . φ̂

†
m refer to φ̂

†
1 . . . φ̂†

m corre-

spondingly, and φ̂
†
m+1 . . . φ̂

†
m+p refer to φ̂

†
out(m) . . . φ̂

†
out(p − 1)

correspondingly. The inverse transforms are given by U †. We
have for the pairing function,

p−1∑
rs=0

ψ̂†
r Mrsψ̂s =

p−1∑
rs=0

U †
ruφ̂

†
uMrsU

T
svφ̂v

=
p−1∑
uv

φ̂
†
uM̃uv (p)̂φv, (39)

where the matrix M̃ has the block structure which reflects the
pairings between the relevant and outgoing modes:

M̃(p) =
[

Mrr Mro

M†
ro Moo

]
. (40)

Here Mrr generate the pairings between the relevant modes:
(Mrr )rs = (φr (p)|M|φs(p)), (Moo)rs = (φout(r)|M|φout(s))
generates the pairings between the outgoing modes, and
(Mro)rs = (φr (p)|M|φout(s)) defining the pairings between
the relevant-outgoing modes.

FIG. 18. (a) When evaluating observables or taking the partial trace, the pairing function introduces additional nonlocal coupling between
the time cells. This coupling has the same convolutional form as the annihilation processes considered in Sec. IV. (b) Therefore, in the
frame of incoming/relevant/outgoing modes, the couplings (i.e., pairings) between the past outgoing modes and the future incoming modes
are still negligible. This is the foundation of our approach. The pairing function decouples into the two separate parts: pairings involving
relevant-outgoing modes and the pairings involving incoming-relevant modes.
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FIG. 19. The joint density matrix ρ̂st(tp) for the open system (blue lines) and the time cells (turquoise lines) is defined by applying the
pairing function to |�(tp)〉st st〈�(tp)|.

2. Negligible pairings between the past outgoing and the future
incoming modes

Now suppose we have a new incoming mode φin(p) with
the creation operator ψ̂†

p . It will yield additional terms in the
pairing function:

ψ̂†
pM(0)ψ̂p +

p−1∑
s=0

{ψ̂†
pMpsψ̂s + ψ̂†

s Mspψ̂p}

= ψ̂†
pM(0)ψ̂p + ψ̂†

p

{∑
i

Mi(p)φ̂i +
∑

i

Mouti(p)φ̂out(i)

}
+ c.c. (41)

The last term in the second line, Mouti(p)φ̂out(i), can be dis-
carded by construction of the streams of outgoing modes.
Therefore, when taking the partial trace over the time cells,
we can assume that there are no pairings between the past
outgoing and the future incoming modes, and the described
above structure of entanglement, Fig. 17, is preserved.

VI. TRACING OUT THE OUTGOING MODES:
RENOMALIZATION GROUP FOR DENSITY MATRICES

In this section, we implement the idea that the idle bricks
in Fig. 1 can be removed as soon as they emerge. In the con-
ventional RG approach, we trace out the irrelevant degrees of
freedom as soon as they appear. Therefore, in this section we
introduce the joint density matrix ρ̂rel(tp) of the open system
and of the relevant degrees of freedom of the environment as a
partial trace over the irrelevant degrees. After that, an iterative
propagation procedure is derived for ρ̂rel(tp).

A. The convention of growing Fock space

We consider the case of the vacuum initial condition for
the environment. In this case, the incoming modes are always
in vacuum. Then the notation will be more concise if we as-
sume that the wave function |�(tp)〉st is defined on a growing
Hilbert space Hs ⊗ Ft(p) of the open system, the present and
the past tape cells. Namely, at t0 = 0 there are no cells at all, so
Ft(0) = �, and the initial condition is just |�(0)〉st = |φ0〉s.
After each propagation tp → tp+1, one additional incoming
mode ψ†

p gets coupled, and the Fock space is enlarged: Ft(p +
1) = Ft(p) ⊗ {space spanned by ψ†

p}. Below we follow this
convention.

B. Density matrix in the time domain

We recall the formula Eq. (31) for the partial trace over the
time cells. We can rewrite it as

ρ̂s(tp) = t〈0|̂ρst(tp)|0〉t, (42)

where we introduce the joint density matrix for the open
system and the time cells,

ρ̂st(tp) =
{

e
∑p−1

rs=0 ψ̂†
r Mrsψ̂s : |�(tp)〉st st〈�(tp)| :

}
A
, (43)

see also Fig. 19. This density matrix is Hermitian and
positive semidefinite. The latter follows from the fact that
|�(tp)〉st st〈�(tp)| is positive semidefinite, and the action of
the pairing function is a completely positive map since it has
the sandwich form required by the Stinespring factorization
theorem. Indeed, each elementary pairing has the form∑

rs

Mrsψ̂s : . . . : ψ̂†
r =

∫ +∞

−∞
dτ K̂ (τ ) : . . . : K̂†(τ ), (44)

where K̂ (τ ) = ∑
s M1/2

ττS
ψ̂s, and M1/2

ττ ′ = (2π )−
1
2
∫ +∞

0

dωe−iω(τ−τ ′ )√J (ω) is the wave packet of a single emission
event from Fig. 14.

However, the density matrix ρ̂st(tp) need not be normalized
in the conventional sense, Tr̂ρst(tp) �= 1. Instead, its vacuum
part is always normalized:

Tr{t〈0|̂ρst(tp)|0〉t} = 1. (45)

This follows from the fact that density matrix of open system
is normalized, Tr̂ρs(tp) = 1, and that the partial trace over
the environment involves the vacuum projection in the tape
model, Eq. (31). Let us remind that we have derived the trace
formula Eq. (31) from the formal requirement that all the
commutators are conserved, see Secs. V A and V C. However,
later, in Sec. VIII B, we find a physical interpretation of this
relation: partial trace Eq. (31) and the normalization Eq. (45)
can be interpreted as a result of vacuum fluctuations of the
classical background of the environment.

C. Definition of the relevant density matrix

Here we define the relevant density matrix ρ̂rel(tp), and
in the next section we discuss how it can be computed. To
introduce the relevant density matrix ρ̂rel(tp), we first switch
to the frame of incoming/relevant/outgoing modes in the
definition Eq. (43) of ρ̂st(tp), Fig. 20(a). This change of
frame was described in Sec. V E 1. After that, all the outgoing
modes which have emerged by time moment tp are projected
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(a)

(b)

FIG. 20. Renormalization group method amounts to tracing out the the irrelevant degrees of freedom as they emerge during the flow. This
results in the density matrix ρ̂rel which is the joint reduced state of relevant degrees of freedom and open system. This matrix is defined in two
steps: (a) we take the joint density matrix of open system and time cells ρ̂st(tp) in the frame of relevant/outgoing modes, (b) then we project to
the vacuum all the outgoing modes which have emerged by time moment tp.

to vacuum, Fig. 20(b),

ρ̂rel(tp) = out(p)〈0|
{

e
∑p−1

rs=0 ψ̂†
r Mrsψ̂s

× : |�(tp)〉st st〈�(tp)| :}A|0〉out(p), (46)

where

|0〉out(p) = |0〉φout (p−1) ⊗ . . . ⊗ |0〉φout (m) (47)

is the joint vacuum of the outgoing modes φout(m),
. . . , φout(p − 1) which have emerged by time moment tp. The
operation out(p)〈0| · |0〉out(p) in Eq. (46) denotes the projection
of density matrix to the subspace of zero quanta in the outgo-
ing modes φout(m), . . . , φout(p − 1). This operation does not
affect the other degrees of freedom. Actually, this projection
restricts the growing Fock space Ft(p) to the subspace Frel

spanned by the relevant modes φ1 . . . φm. The reduced density
matrix for the open system is obtained via the projection

ρ̂s(tp) = rel〈0|̂ρrel(tp)|0〉rel, (48)

where here and below, under |0〉rel we designate the joint
vacuum for the relevant modes φ̂

†
1 , . . . , φ̂

†
m.

D. Propagation of density matrix

Given an environment with a spectral density J (ω),
one computes its memory function M(t − t ′). Then the
incoming/outgoing/relevant modes and disentanglers Wp are
found according to the algorithm of Sec. IV D. This needs to
be done once for a given J (ω).

The initial condition for the propagation is ρ̂rel(0) =
|φ0〉s s〈φ0|, since there are no relevant modes at t0 = 0.

Now suppose we have ρ̂rel(tp), which is an operator acting
in Hs ⊗ Frel, Fig. 21(a). The first step of propagation is the
entangling step, Fig. 21(b). Here the Hamiltonian Ĥst(τp) of
Eq. (34) is applied. We use the following three facts: First,
since Ĥst(τp) is not Hermitian, the bra state st〈�(tp)| evolves
under Ĥ†

st(τp), whereas the ket state |�(tp)〉st evolves under
Ĥst(τp). Second, the Hamiltonian Ĥst(τp) can be commuted
to the left of the pairing function in Eq. (46). Analogously,
the Hamiltonian Ĥ†

st(τp) can be commuted to the right of
the pairing function. Third, the Hamiltonian Ĥst(τp) entan-
gles one additional incoming mode ψ̂†

p . Therefore, the Fock
space is enlarged from Frel to Frel+i due to the states gener-
ated by ψ̂†

p . The the density matrix ρ̂rel(tp) is embedded into
the space Hs ⊗ Frel+i as ρ̂rel+i(tp) = ρ̂rel(tp) ⊗ |0〉ϕin (p)ϕin (p)〈0|.

It propagates as

ρ̂
(1)
rel+i(tp+1) = ρ̂rel+i(tp)

− idt
{
Ĥst(τp )̂ρ (1/2)

rel+i (tp) − ρ̂
(1/2)
rel+i (tp)Ĥ†

st(τp)
}
,

(49)

where ρ̂
(1/2)
rel+i (tp) = 1

2 (̂ρ (1)
rel+i(tp+1) + ρ̂rel+i(tp)). This propaga-

tion corresponds to the operators Ûp and Û †
p in Fig. 21.

Observe that ρ̂
(1)
rel+i(tp+1) entangles one additional incoming

mode ψ̂†
p , and the pairing function in Eq. (46) does not yet

contain the pairings for this mode. As follows from Fig. 18
and Sec. V E, only the pairings of the incoming mode with
itself and with the relevant modes should be included. There-
fore, the second step is the pairing update, Fig. 21(c):

ρ̂
(2)
rel+i(tp+1) = {

eψ̂†
p M(0)ψ̂p+(ψ̂†

p

∑
i Mi (p)φ̂i+c.c.) : ρ̂

(1)
rel+i(tp+1) :

}
A.

(50)

During the propagation, the pairing update is the only
operation which can make the density matrix impure. This
is the non-Markovian analog of the jump Lρ̂L† terms in the
Markovian Lindblad dissipator [30,66].

In the third step of propagation, the disentangling step,
Fig. 21(d), we apply the disentangler Ŵp to convert the in-
coming mode ψ̂p into the new outgoing mode φ̂out(p):

ρ̂
(3)
rel+o(tp+1) = Ŵpρ̂

(2)
rel+i(tp+1)Ŵ −1

p . (51)

Here we change the subscript from rel+i to rel+o to make
explicit the fact that (i) we start with the Fock space spanned
by the relevant modes φ̂

†
1 . . . φ̂†

m and one incoming mode ψ̂†
p

and (ii) after the disentangler transform, we end with the
Fock space spanned by the relevant modes φ̂

†
1 . . . φ̂†

m and one
outgoing mode φ̂

†
out(p).

The last step, the oblivion, Fig. 21(e), is to discard the
quantum content of this irrelevant mode:

ρ̂rel(tp+1) = φout (tp)〈0|̂ρ (3)
rel+o(tp+1)|0〉φout (tp). (52)

As a result, we return to the smaller Fock space Frel . Then the
propagation procedure is repeated for the next time moment
tp+1.

These four steps, Eqs. (49)–(52) constitute one complete
iteration of the real-time RG flow. They can be imple-
mented numerically in a Fock space of the tape cells (see
Fig. 22), see Appendix A, which is truncated in the max-
imal total occupation of the modes. The pairing update
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 21. The life cycle of entanglement in course of real time evolution. It directly maps to the numerical recipe of the renormalization
group for density matrices.

Eq. (50) is inexpensive since we can truncate it to second
order, see Appendix B. The disentangler Eq. (52) can be
efficiently implemented using Lanczos-like algorithms: see
Appendix C.

E. Example calculation

In Fig. 23, we present the results of calculation of the RG
for density matrices for the system of a driven qubit coupled
to the waveguide Eq. (11) with ε = 1 and h = 0.05. We have
Ĥs = σ̂+σ̂− + 0.1 cos t , and ŝ = σ̂−. We conduct a series of
simulations with one (m = 1), two (m = 2), three (m = 3),
and five (m = 5) relevant modes. The convergence is achieved
when only the states of no more than two quanta were kept
in the tape Fock spaces Ft(p), Frel, Frel+i, Frel+o. It is seen
that the simulation already converges for the three (m = 3)
relevant modes. In Fig. 24, we compare the converged result
with the numerically exact solution of the Schrodinger equa-
tion. The Schrodinger equation was solved in the truncated
Hilbert space of the model Eq. (11). The truncation was done
by keeping the first m̃ lattice sites â†

1 . . . â†
m̃ and by keeping all

the Fock states â†n1
1 . . . â†nm̃

m̃ |0〉b with maximal total occupa-
tion n1 + . . . + nm̃ � ñ. The numbers m̃ and ñ were increased
until the convergence of observables on the considered time
interval: this occurs for m̃ = 14 and ñ = 7. Our RG procedure
yields a benefit in comparison with the bare solution of the
Schrodinger equation: three modes versus fourteen and two
quanta versus seven. The physical explanation is that among
the fourteen modes only three are non-neglibigly coupled to
the future motion, and their occupation is rather small, so two
quanta are enough.

F. Balance of complexity

As we discussed in the Introduction, the quantum com-
plexity is expected to saturate if the rates of occurrences of
incoming and outgoing modes are equal and the incoming
and outgoing fluxes are also equal. Here we discuss these
questions on the example of the driven qubit in the waveguide
from the previous section.

1. Rates of occurrences of incoming and outgoing modes

As seen from Fig. 22, the rates of outgoing modes are not
always equal to the rates of incoming modes. On the time
interval [0, tm], every incoming mode becomes relevant: no
outgoing modes are produced at all. During this initial period,
the dimension of the relevant space grows linearly with time.
However, due to the fastest decoupling property, Fig. 7, when
the dimension becomes equal to m, the contribution of new
relevant modes becomes exponentially small. The relevant
space saturates. We can keep the dimension fixed to m and
start to produce the outgoing modes with the rate equal to the
rate of incoming modes.

2. Balance of fluxes

For the same system of a driven qubit in the waveguide,
we check the proposed conjecture that the flux of the quanta
emitted into the incoming mode (the incoming current) and
the flux of the quanta discarded in the outgoing mode (the
outgoing current) should balance each other. The results of
Fig. 25 support our conjecture. The incoming current jin(tp)
is computed as the population of the incoming mode ϕin(p) at
the end of stage b in Fig. 21 (after propagation under Ûp . . . Û †

p
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FIG. 22. The renormalization group for density matrices has two
regimes: (1) Before time moment tm, all the time cells are relevant
and the tape Fock space continuously grows and (2) after time mo-
ment tm, the Fock space stops growing and starts to oscillate between
Frel, Frel+i, Frel+o. Here span(. . .) designates the Fock space gener-
ated by applying creation operators inside the brackets to the vacuum
state. In a numerical simulation, the Fock spaces are truncated in
the maximal total occupation of the modes. Such a truncation is
justified by the conjectured balance of complexity: see Sec. VI F. In a
numerical simulation, the Fock spaces Frel+i and Frel+o are the same:
it is our interpretation that the additional mode alternatively plays the
role of the incoming and outgoing modes.
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FIG. 23. For the system of a driven qubit in a highly non-
Markovian waveguide, only three relevant modes at a maximal
occupation of two quanta is enough to achieve the convergence of
observable properties. The calculation is done by RG for density
matrices.
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FIG. 24. For the same situation as in previous Fig. 23, we com-
pare the converged RG for density matrices with the numerically
exact solution of Schrodinger equation. The latter required us to keep
14 lattice sites in Eq. (11) and all states of maximum total occupation
of seven quanta.

but before the pairing update):

jin(tp) = 1

dt
Tr

{
ρ̂

(1)
rel+i(tp+1)ψ̂†

pψ̂p
}
. (53)

The outgoing current jout(tp) is computed as the population
of the outgoing mode φout(p) at the end of stage d in Fig. 21
(after disentangling under Ŵp . . .Ŵ †

p but before the oblivion):

jout(tp) = 1

dt
Tr

{
ρ̂

(3)
rel+o(tp+1)φ̂†

out(p)φ̂out(p)
}
. (54)

Finally, the total occupation of relevant modes is computed as

ntot(tp) = Tr

{
ρ̂

(1)
rel+i(tp+1)

(
ψ̂†

pψ̂p +
m∑

k=1

φ̂
†
k φ̂k

)}
. (55)

This balance of complexity has the following physical in-
terpretation, Fig. 26. The incoming modes inject new quanta
with the flux jin(tp) into the cavity which is formed by the
relevant modes. The mirrors of the cavity are formed by the
coupling to the future motion. These mirrors are imperfect:
the outgoing modes are continuously leaking out and carry
away with them a flux jout(tp) of quanta.
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FIG. 25. The system of a driven qubit in a waveguide. The out-
going current of quanta which are discarded in the outgoing modes
balances the incoming flux of quanta which are emitted into the
incoming modes. The units for the currents are common but other-
wise arbitrary. As a consequence, the total occupation of the relevant
modes saturates.
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(a)

(b)

FIG. 26. We conjecture that the quantum complexity of the real-time motion of open quantum systems is asymptotically bounded. The
interpretation is the following (a). Suppose we are given a joint quantum state |�(tp)〉st for the open system and the time cells, in the frame
of incoming/relevant/outgoing modes. (b). It can be interpreted that the relevant modes φ1 . . . φm play the role of the “cavity” modes. The
“mirrors” of the cavity are the coupling to the future evolution. New quanta are injected into the “cavity” with a flux jin(tp) via the incoming
mode ϕin(p). However the “mirrors” are imperfect: the outgoing modes are continuously leaking out and carry away with them a flux jout(tp)
of quanta. As a result, the total occupation ntot(tp) of the “cavity” modes is expected to be bounded due to the balance of the fluxes.

G. Analogies with the time-symmetric formulation
of quantum mechanics

Observe that the general structure of the RG flow described
above is time symmetric: If we apply the steps in Fig. 21
forward in time, then (i) one incoming mode in the vacuum
gets entangled and (ii) one outgoing mode gets disentangled
and projected to the vacuum. If we reverse this procedure
in time, we get (i’) one outgoing mode in the vacuum gets
entangled and (ii’) one incoming mode gets disentangled and
projected to the vacuum. This has interesting analogies to the
two-state vector formulation (TSVF) of quantum mechanics
by Aharonov and Vaidman [67]. In TSVF, one considers the
two measurements. The outcome of the first measurement at
time t produces the state ψin(t ). The outcome of the sec-
ond measurement at T > t produces the state ψout(T ). Then,
TSVF considers the quantum evolution inside the interval
[t, T ] with the fixed initial and final boundary conditions
ψin(t ) and ψout(T ), correspondingly, Fig. 27. This formalism
is applied when analyzing the experiments with the postselec-
tion of measurement results [68]. This formalism also yields
an interpretation of quantum mechanics: One may assume
that there is a final boundary condition for the universe which
singles out a definite outcome for all the measurements [69].
However the real-time entanglement structure suggests an in-
teresting alternative: Instead of global initial and final states,
one may consider the streams of initial and final states, so

there is a continuous competition between the birth and death
of the quantum reality in real time, see Fig. 27.

VII. MARKOVIAN LIMIT

In this section, we relate our RG procedure Fig. 21 to the
Lindblad master equation which is applied in the Markovian
regime [66,70]. This will help us to develop intuition about
the steps of our RG procedure.

There are many ways to perform the Markovian limit. A
good way should be based solely on the spectral decoupling
mechanism represented in Sec. IV. A rough way is to apply
the conventional formal arguments which lead to the Lindblad
master equation. Here we choose the latter to connect the
RG procedure to the conventional terms. Moreover, later it
will help us to assess the additional insights provided by the
spectral decoupling mechanism.

We choose the derivation of the Markovian limit via the
quantum stochastic differential equations [66,70]. Essentially,
this approach assumes that we are dealing with a small-
coupling, near-resonant, and broadband setup. Then the time
cells can be considered as local independent degrees of free-
dom, [̂b(t ), b̂†(t ′)] = 
δ(t − t ′). In terms of the stream of
discrete time moments, this reads

[̂b(τp), b̂†(τq)] = dt−1
δpq. (56)
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FIG. 27. (a) In the time-symmetric formulation of quantum mechanics (also called the two-state vector formalism, TSVF) of Aharonov
and Vaidman [67], the quantum evolution is considered which starts from some initial state ψin(t ). Then one assumes that there exists a
final boundary condition in the future ψout(T ). The conjecture is that this final boundary condition is fine-tuned to yield an effective collapse
to definite outcomes of all the quantum measurements happening inside the interval [0, T ] [69]. (b) However, the real-time structure of
entanglement suggests an interesting alternative: Instead of the speculated global future boundary condition, there are streams of initial ϕin(p)
and final ϕout(p) states, so there is a continuous competition between the birth and death of the quantum reality during each infinitesimal time
interval.

This means that we have m = 0 relevant modes: only the
incoming mode appears in Fig. 21. The disentangler in
Fig. 21(d) is the identity operator: φout(p) = φin(p). The
small-coupling assumption means that we can consider at
most one quantum in the incoming mode.

Figure 21(a) considers the relevant density matrix ρ̂rel(tp)
at a time moment tp, which is simply

ρ̂rel(tp) = ρ̂s(tp), (57)

where ρ̂s(tp) is a reduced density matrix of open system.
Let us assume for a moment that ρ̂rel(tp) is a pure state

|φ〉rel. After the entangling step, Fig. 21(b), this state becomes

|φ(1)〉rel+i = (1 − iĤsdt )|φ〉rel ⊗ |0〉ϕin (p)

− îs|φ〉rel ⊗ |1〉ϕin (p)dt

− 1
2 
̂s†ŝ|φ〉rel ⊗ |0〉ϕin (p)dt . (58)

Here we keep only O(dt ) terms in the midpoint propagation
under Eq. (34). In the last line, we see the second-order vir-
tual process because there is dt−1 in the memory function
commutator Eq. (56). We observe that the first line yields
the unitary free motion of open system −i[Ĥs, ρ̂rel] in the
Lindblad equation and the last line yields the standard term
− 1

2
{̂s†̂s, ρ̂rel}, which describes the decay of probability of
no-emission event.

After applying the pairing update, Fig. 21(c), to the state
|φ(1)〉rel+i, we obtain the quantum jump term from the second

line of Eq. (58):

ρ̂
(2)
rel+i(tp) = (̂ρrel − i[Ĥs, ρ̂rel]dt ) ⊗ |0〉ϕin (p)ϕin (p)〈0|

− 1
2
{̂s†ŝ, ρ̂rel}dt ⊗ |0〉ϕin (p)ϕin (p)〈0|

+ 
̂ŝρrel̂s
†dt ⊗ |0〉ϕin (p)ϕin (p)〈0|

+ {terms containing either |1〉ϕin (p) or ϕin (p)〈1|}.
(59)

Finally, the oblivion step, Fig. 21(e) removes the emitted
quanta and the incoming mode. We obtain the conventional
Lindblad equation:

ρ̂s(tp+1) = ρ̂s(tp) − i[Ĥs, ρ̂s]dt

− 1
2
{̂s†ŝ, ρ̂s}dt + 
̂ŝρŝs

†dt . (60)

Therefore, we obtain the following rough picture of the
Markovian mode. At each infinitesimal time interval, one in-
coming mode ϕin(p) is coupled to the open system, a quantum
is emitted into ϕin(p) during the entangling step, and the
quantum jump is taken into account via the pairing update.
After that, the incoming mode (which is equal to the outgoing
mode in this case) is irreversibly decoupled and the quantum
is discarded.

In summary, our RG procedure can be considered an
entanglement-assisted non-Markovian generalization of the
Lindblad master equation [30].
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VIII. STOCHASTIC UNRAVELLING:
RENORMALIZATION GROUP ALONG

A QUANTUM TRAJECTORY

Here we implement our intuition that the outgoing modes
in Fig. 1 can be replaced by a classical stochastic signal.
In other words, we explore the second alternative for the
irrelevant degrees of freedom: Instead of tracing them out, we
collapse them to a classical noise as soon as they emerge. This
results in a stochastic variant of RG which we call the RG
along a quantum trajectory. This way, we completely imple-
ment the intuitive picture of Introduction that the ultimate fate
of the emitted field is not only to decouple but also to become
observed.

A. Ensembles versus quantum trajectories

Let us recall that in the Markovian regime the motion of an
open quantum system can be described in two alternative but
equivalent ways [66]. The first way is the ensemble descrip-
tion. It is given in terms of a reduced density matrix and its
evolution is governed by the Lindblad master equation. The
second way is the description by the quantum trajectories.
Here one takes into account the fact that every open system
will exercise a random motion under the influence of the
environment. The environment stores a classical record of the
history of such motion. The quantum trajectory is the quantum
evolution which is conditioned on a particular realization of
the record. This results in a stochastic pure-state evolution
which is known under various names in literature: quantum
jumps, quantum state diffusion, stochastic wave function, etc.
Then the description in terms of the reduced density matrix
is recovered as an average over the ensemble of all possi-
ble records (hence the name ensemble description). In other
words, the quantum trajectories provide a stochastic unravel-
ling of the dissipative master equations.

The merit of quantum trajectories is twofold. First, they
yield efficient Monte Carlo simulation methods for the dis-
sipative dynamics. This is because the size of the density
matrix scales as N2 with the dimension N of the Hilbert space
[30,71], while the size of a pure state of the quantum trajectory
scales as N . Second, they provide the interpretation for the
experiments on observing and manipulating a single quantum
system under the Markovian conditions [66].

Our RG for density matrices can also be considered an
ensemble description. Then the question arises: What is the
corresponding quantum trajectory description? The merit of
this is again twofold: We obtain (1) efficient Monte-Carlo sim-
ulations for pure states and (2) insights into how the classical
records are stored in the non-Markovian environment.

B. Pairing function as average over the vacuum
fluctuations of environment

In the Markovian regime, the sandwich term 
̂ŝρŝs† arises
as an average over the ensemble of quantum-jump histories
[30,66,70]. In our RG, the pairing function plays the role of
the non-Markovian sandwich term, see Eqs. (44) and (59).
Therefore, we want to represent it as an ensemble of some
observable events. Here we show that as such events, one can

choose the vacuum fluctuations of the classical field in the
environment, see Fig. 28.

The classical field z is carried by the coherent state

|z〉b = Qvac(z)
1
2 exp

(∫
dωz∗(ω )̂a†(ω)

)
|0〉b, (61)

where the normalization factor Qvac(z) is the probability to
observe a vacuum fluctuation z of the field,

Qvac(z) = |b〈z|0 〉b|2 ∝ exp

(
−

∫
dω|z(ω)|2

)
. (62)

At the coupling site b̂†(t ), the vacuum fluctuation z appears
as a colored (non-Markovian) noise ξ ∗(t ):

ξ ∗(t ) =
∫

dωc∗(ω)z∗(ω)eiωt . (63)

This noise has the Gaussian statistics

ξr = ξ ∗
r = 0, ξrξ ∗

s = Mrs, (64)

where we consider the noise ξ at the midpoint times: ξr =
ξ (τr ). Each realization of z leads to a single realization of the
entire time trajectory of ξ ∗(t ).

It turns out that the pairing function can be represented as
an average over these vacuum fluctuations, Fig. 28,{

e
∑∞

rs=0 ψ̂†
r Mrsψ̂s

}
A

= [{
e
∑∞

r=0 ξr ψ̂
†
r e

∑∞
s=0 ξ∗

s ψ̂s
}

A

]
ξ
, (65)

where {·}A is the antinormal averaging. Observe that in the
pairing function we extend the summation range from [0, p −
1] [as in Eq. (43)] to [0,∞). This is possible since the
incoming modes φin(p), φin(p + 1), . . . are empty at a time
moment tp. Then the density matrix Eq. (43) is represented as
an average over the ensemble of pure states, Fig. 29:

ρ̂st(tp) = [|�(ξ, tp)〉st st〈�(ξ, tp)|]
ξ
. (66)

Here the joint pure state of the time cells and of the open
system is

|�(ξ, tp)〉st = e
∑∞

s=0 ξ∗
s ψ̂s |�(tp)〉st. (67)

Observe the interpretation of the state |�(ξ, tp)〉st. The action
of operator

Ŝ(ξ ) = e
∑∞

s=0 ξ∗
s ψ̂s (68)

induces a nonunitary Bogoliubov transform of the
creation/annihilation operators in |�(tp)〉st:

Ŝ(ξ )ψ̂r Ŝ−1(ξ ) = ψ̂r, (69)

Ŝ(ξ )ψ̂†
r Ŝ−1(ξ ) = ψ̂†

r + ξ ∗
r . (70)

In other words, the operation Ŝ(ξ ) introduces a classical back-
ground ξ in state |�(tp)〉st, see Fig. 29. As a result, each
emitted quantum ψ̂†

r in |�(ξ, tp)〉st becomes a superposition
of the classical background ξ ∗

r and of a purely quantum part:

ψ̂†
r → ξ ∗

r + ψ̂†
r . (71)

We call |�(ξ, tp)〉st the quantum state over a classical back-
ground ξ . When we perform the partial trace Eq. (42),

ρ̂s(tp) = [t〈0 |�(ξ, tp)〉st t〈�(ξ, tp)|0〉t]ξ , (72)
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Pairing Function ==ρ (t ) S (ξ) S (ξ)†{ {
ξ

FIG. 28. The pairing function can be stochastically decoupled into the two separate displacement operators Ŝ(ξ ) and Ŝ†(ξ ) which act on the
ket and the bra states, correspondingly. The averaging is over the displacement ξ which is a classical noise of vacuum fluctuations at coupling
site b̂†(t ).

the purely quantum part gets discarded due to projection to the
vacuum. In other words, all the quanta collapse to the classical
background,

ψ̂†
r → ξ ∗

r , (73)

and then we average over all the possible vacuum fluctuations.

C. Renormalization group along a quantum trajectory

Now we derive the evolution equations in which the irrele-
vant degrees are collapsed to a classical noise as soon as they
emerge.

Below we follow the convention of the growing Fock space
of Sec. VI A. Then the wave function |�(tp)〉st belongs to
space Hs ⊗ Ft(p), with the Fock space Ft(p) being spanned
by the time cells ψ

†
p−1 . . . ψ

†
0 .

Let us introduce the relevant wave function

|�(ξ, tp)〉rel = out(p)〈0|e
∑p−1

s=0 ξ∗
s ψ̂s |�(tp)〉st, (74)

which means that we take the quantum state |�(ξ, tp)〉st over
the classical background ξ and collapse all the outgoing
modes φout(m), . . . , φout(p − 1) which have emerged by time
moment tp, Fig. 30. As a result, the relevant wave function
belongs to the space Hs ⊗ Frel.

Given an environment with a spectral density J (ω),
one computes its memory function M(t − t ′). Then the
incoming/outgoing/relevant modes, and disentanglers Wp are
found according to the algorithm of Sec. IV D. This needs to
be done once for a given J (ω).

|Φ (ξ, tp) =

. . .τp τ0

. . . τ0τp

S (ξ)

FIG. 29. The density matrix ρ̂st(tp) can be represented as the
ensemble of displaced pure states |�(ξ, tp)〉st. This state is displaced
by Ŝ(ξ ). The result is that the emitted quanta are “centered” on a
classical signal ξ , see Eqs. (68)–(70).

Suppose we have a random noise sample ξ . The initial
condition for evolution is |�(ξ, 0)〉rel = |φ0〉s, since there are
no relevant modes at t0 = 0.

The steps of how |�(ξ, tp)〉rel is propagated in time closely
mirror those of RG for density matrices of Sec. VI D, see
Fig. 31. The first step, the entangling step, begins by enlarging
the Hilbert space Hs ⊗ Frel with the states of the incom-
ing mode via the embedding |�(ξ, tp)〉rel → |�(ξ, tp)〉rel+i =
|�(ξ, tp)〉rel ⊗ |0〉ϕin (p). It is followed by the Hamiltonian
propagation:

|�(1)(ξ, tp+1)〉rel+i = |�(ξ, tp)〉rel+i

− idtĤst(ξ, τp) 1
2 {|�(1)(ξ, tp+1)〉rel+i

+ |�(ξ, tp)〉rel}, (75)

where the Hamiltonian

Ĥst(ξ, τp) = Ŝ(ξ )Ĥst(τp )̂S−1(ξ )

= Ĥs + ŝ{ψ̂†
p + ξ ∗

p } + ŝ†M(0)ψ̂p

+ ŝ†
min(p,m)∑

i=1

Mi(p)φ̂i (76)

takes into account the classical noise of vacuum fluctuations.
Here the subscript rel+i means that the Hilbert space is en-
larged by an additional incoming mode φin(p).

The second step, the disentangling step, identifies the new
outgoing mode φout(p) which has already decoupled:

|�(2)(ξ, tp+1)〉rel+o = Ŵp|�(1)(ξ, tp+1)〉rel+i. (77)

Please note that since we apply the active change of frame
Ŵp, the quantum content of the outgoing mode φout(p) just
replaces the content of φin(p), so the Hilbert space rel+o is
actually equal to rel+i.

Finally, in the oblivion step, the quantum content of the
newly formed outgoing mode is discarded (it collapses to the
classical noise):

|�(ξ, tp+1)〉rel = φout (tp)〈0
∣∣�(2)(ξ, tp+1)

〉
rel+o. (78)

Observe that, as a result, we return to the Hilbert space Frel ⊗
Hs. Then the propagation procedure is repeated for the next
time moment tp+1.
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FIG. 30. The relevant wave function |�(ξ, tp)〉rel is defined as a joint pure state of open system and relevant modes. All the outgoing modes
φout(m), . . . , φout(p − 1) which have emerged by time moment tp are projected to vacuum (their quantum content is discarded).

D. Computing the observables

The observables ô for the open system are computed as

〈̂o(tp)〉 ≡ Tr{̂ôρs(tp)}
= [rel〈�(ξ, tp)|0〉rel̂o rel〈0 |�(ξ, tp)〉rel]ξ Z−1(tp),

(79)

where |0〉rel is the joint vacuum for the relevant modes
φ̂

†
1 , . . . , φ̂

†
m; the state rel〈0|�(ξ, tp)〉rel belongs to Hs; the

normalization

Z (tp) = ‖rel〈0 |�(ξ, tp)〉rel‖2
ξ

(80)

is equal to 1 in the exact simulation, but should be included in
the approximate computation to keep the normalization of the

(a)

(b)

(d)

(e)

(f)

FIG. 31. The renormalization group along a quantum trajectory.
For each realization (trajectory) of the classical noise ξ of vac-
uum fluctuations of the environment, the relevant wave function
|�(ξ, tp)〉rel is propagated in time. The full quantum dynamics is
obtained as average over ξ . The realizations of ξ can be generated
via Monte Carlo sampling. On a conceptual level, this structure
shows the life cycle of the quantum complexity during the real-time
evolution. First the complexity is generated at step (b). However,
eventually the quantum complexity is destroyed in step (e). This is
because the decoupled entanglement is equivalent to the stochastic
ensemble of classical records.

probability. The observables for the environment can also be
computed via the mappings Eqs. (24) and (25).

E. Monte Carlo sampling of vacuum fluctuations

The realizations of the noise ξ can be sampled
stochastically by

ξr =
√

�ω
∑

k

c(ωk )e−iωkτr zk, (81)

where we have introduced a discretization of the frequency
axis ωk . The coefficients c(ωk ) = √

J (ωk )/π , which follows
from Eqs. (5) and (8). The complex random numbers zk have
the statistics

zk = z∗
k = 0, zkz∗

l = δkl . (82)

We generate a sample of M noise instances ξ 1 . . . ξM , and
the averages Eqs. (79) and (80) are computed as the sample
means.

The states |�(ξ, tp+1)〉rel are represented in the Hilbert
space Hs ⊗ Frel which is truncated in the maximal total oc-
cupation of the relevant modes. Such a truncation is expected
to converge uniformly on wide timescales if we make the
reasonable assumption that there is a balance between the flux
of quanta jin(tp) being emitted by the open system and the
flux of quanta jout(tp) which are eventually discarded in the
outgoing modes, see Sec. VI F.

F. Importance sampling

Observe that the Hamiltonian Ĥst(ξ, τp) is not Hermitian
and does not conserve the norm. As a consequence, it may
turn out that the ensemble of noise samples Eqs. (81) and
(82) becomes nonrepresentative: the rarest noise realizations
receive the highest weights. This can be fixed by applying
an importance sampling technique. Any such technique will
require shifting the noise sample, ξ → ξ + �ξ . In this paper,
we employ the continuous shift of the noise with time. We
refer the interested reader to Appendix D for the derivation.
Here we present the resulting simulation procedure.

Given an environment with a spectral density J (ω),
one computes its memory function M(t − t ′). Then the
incoming/outgoing/relevant modes and disentanglers Wp are
found according to the algorithm of Sec. IV D. This needs to
be done once for a given J (ω).
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The initial condition for the simulation is |�(ξ, 0)〉rel =
|φ0〉s. A noise sample ξ is generated as described in
Sec. VIII E. Then the relevant wave function |�(ξ, tp)〉rel is
propagated for the noise sample ξ starting from the initial
condition |�(ξ, 0)〉rel.

For a given noise sample ξ , the open system observable ô
is averaged at a time tp as

o(tp; ξ ) = Tr{̂o × rel〈0 |�(ξ, tp)〉rel rel〈�(ξ, tp)|0〉rel}
‖rel〈0 |�(ξ, tp)〉rel‖2 . (83)

Then the full quantum average of ô is given by averaging
over ξ :

〈̂o(t )〉 ≡ Tr{̂ôρs(t )} = [o(tp; ξ )]
ξ
, (84)

which is implemented by generating a sample of M noise
instances ξ 1 . . . ξM , and computing the sample mean of
o(tp; ξ k ), k = 1 . . . M.

The propagation of |�(ξ, tp)〉rel is done as follows.
Suppose we know |�(ξ, tp)〉rel at a time step tp. The
propagation to the next time moment begins with the en-
tangling step: the embedding |�(ξ, tp)〉rel → |�(ξ, tp)〉rel+i =
|�(ξ, tp)〉rel ⊗ |0〉ϕin (p) and the Hamiltonian evolution

|�(1)(ξ, tp+1)〉rel+i = |�(ξ, tp)〉rel+i

− idtĤ ′
st(ξ, τp) 1

2 {|�(1)(ξ, tp+1)〉rel+i

+ |�(ξ, tp)〉rel+i}. (85)

The Hamiltonian Ĥ ′
st(ξ, τp) takes into account the continuous

noise shift fp,

Ĥ ′
st(ξ, τp) = Ĥs + ŝ{ψ̂†

p + ξ ∗
p + f ∗

p }

+ (̂s† − s∗(τp; ξ ))

{
M(0)ψ̂p +

min(p,m)∑
i=1

Mi(p)φ̂i

}
.

(86)

The shift fp is computed as a convolution of averages s(τp; ξ )
of ŝ at all the previous midpoint times τp with the memory
function:

fp = −i
dt

2
M

(
dt

2

)
s(τp; ξ )

− idt
p−1∑
l=0

M((p − l )dt )s(τl ; ξ ). (87)

Here one can approximate s(τl ; ξ ) ≈ {s(tl+1; ξ ) + s(tl ; ξ )}/2,
and s(tl ; ξ ) is the average of ŝ according to Eq. (83). Observe
that when solving Eq. (85) by iteration, the shift fp should also
be recomputed for each iteration since it contains the midpoint
term s(τp; ξ ) which changes from iteration to iteration.

The second step, the disentangling step, identifies the new
outgoing mode φout(p) which has already decoupled:

|�(2)(ξ, tp+1)〉rel+o = Ŵp|�(1)(ξ, tp+1)〉rel+i. (88)

Finally, in the oblivion step, the quantum content of the
newly formed outgoing mode is discarded (it collapses to the
classical noise):

|�(ξ, tp+1)〉rel = φout (tp)〈0
∣∣�(2)(ξ, tp+1)

〉
rel+o. (89)
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FIG. 32. For the system of a driven qubit with a non-RWA cou-
pling to the subohmic environment, the good almost quantitative
result is provided by m = 3 relevant modes. The convergence is
achieved for m = 4 relevant modes. The computation is by RG along
a quantum trajectory.

Then the propagation procedure is repeated for the next
time moment tp+1.

G. Example calculations

1. Driven qubit

Here we provide an example calculation for the model of
the driven open quantum system

Ĥsb(t ) = −�

2
σ̂x + σ̂z f cos ωt + σ̂z (̂b(t ) + b̂†(t )), (90)

with the Heaviside-regularized spectral density J (ω) =
2παω1−s

c ωsθ (ω − ωc) for α = 0.1, s = 0.5, � = 1, ωc = 1,
f = 0.1, ω = 1. This leads to the memory function M(τ ) =
2αω2

c
s+1 × exp(−iτωc) × 1F1(1, s + 2, iτωc). This situation cor-

responds to the non-RWA resonant driving and a highly
non-Markovian behavior due to the subohmic spectrum at the
origin and because the transition of the open system is at
the sharp edge of the band. This is a good benchmark prob-
lem since we expect that the resulting dynamics is strongly
determined by long-range memory effects. In Fig. 32, we
demonstrate that only m = 3 relevant modes are required to
yield almost quantitative agreement. The complete conver-
gence is achieved for m = 4. In Fig. 33, we demonstrate
the uniform convergence of RG with respect to the maximal
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FIG. 33. The system of a driven qubit with a non-RWA coupling
to the subohmic environment. Uniform convergence of the RG along
a quantum trajectory with respect to the maximal number of quanta
in the relevant modes.
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FIG. 34. The system of a driven qubit with a non-RWA coupling
to the subohmic environment. Comparison of the RG along a quan-
tum trajectory with the solution of Schrodinger equation (SE). In
RG, the number of relevant modes is m = 9, the maximal occupation
is truncated at n = 5 quanta. SE was computed for the two sets of
parameters: To validate the large-time asymptotics, the Fock space
was truncated at n = 5 quanta and m = 30 sites of the semi-infinite
chain; to validate the midtime solution, n = 8 and m = 14 was used.

occupation of the relevant modes for the same system. Again,
three quanta yield almost quantitative agreement, and the
full convergence is provided by five quanta. To test our ap-
proach, we also solve the Schrodinger equation for this model
represented in the semi-infinite chain form [72]. In Fig. 34,
we compare the stochastic RG versus the numerical solution
of the Schrodinger equation for α = 0.1, s = 0.5, � = 1,
ωc = 1, f = 0.1, ω = 1. It is seen that the RG simulation
quantitatively reproduces the time dependence of observables
up to the steady state.

2. Information backflow

When the dynamics of the open quantum system is non-
Markovian, it is accompanied by such a phenomenon as
information backflow [73–75]. This phenomenon refers to the
special time behavior of the distinguishability of states of the
open quantum system. The distiguishability of two quantum
states ρ̂1(t ) and ρ̂2(t ) (reduced density matrices) of the open
quantum system is measured by the trace distance [73]:

T (̂ρ1, ρ̂2; t ) = 1
2 Tr

√
(̂ρ1(t ) − ρ̂2(t ))2. (91)

In the Markovian regime, T (̂ρ1, ρ̂2; t ) should monotonically
nonincrease with time for any pair of states [76]. On the
contrary, in the non-Markovian mode, we can identify at least
one pair of states for which T (̂ρ1, ρ̂2; t ) is increasing for some
time interval. This is the information backflow and is one of
the signatures of non-Markovian behavior.

The concept of relevant modes presented in this paper
proposes a physical mechanism behind this phenomenon. As
shown in Fig. 26, the relevant modes play the role of a fi-
nite imperfect cavity. Then the interaction between the open
quantum system and these modes leads to the vacuum Rabi
oscillations, i.e., oscillating exchange of energy between the
open system and the cavity. These damped oscillations lead to
the nonmonotonous behavior of the measures of information
backflow. Roughly speaking, when the open quantum system
loses its energy, the available phase space shrinks and the
states get closer, becoming less distinguishable. However,
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FIG. 35. Time dependence for the trace distance T (̂ρ1, ρ̂2; t )
Eq. (91) between the initial open system states ρ̂1(0) = |↑〉〈↑| and
ρ̂2(0) = |↓〉〈↓| for the model Eq. (90) without driving ( f = 0). The
nonmonotonic behavior indicates that we are in the non-Markovian
regime.

when the energy flow is reversed, the available phase space of
the open quantum system expands and the states move away
from each other (becoming more distinguishable).

Here we present the calculation of the time dependence
of trace distance Eq. (91) for the system Eq. (90). We take
ρ̂1(0) = |↑〉〈↑| and ρ̂2(0) = |↓〉〈↓|. In Fig. 35, we present the
plot of T (̂ρ1, ρ̂2; t ) for the model Eq. (90) without driving
( f = 0): We observe the periodic increase of distinguishabil-
ity, so we are indeed in the non-Markovian regime.

3. Comparison with the tensor network methods

Here we provide a numerical comparison with the time-
evolving matrix product operator (TEMPO) method [28].
TEMPO is a state-of-the-art approach for the computation of
open quantum system dynamics. It was used in recent works,
e.g., to calculate the quantum heat statistics [77]. We use the
package provided by Ref. [78]. TEMPO represents the corre-
lated state of the open system and the environment as a matrix
product operator (MPO) state [28]. It depends on parameters
dt , K , and ε. The evolution is discretized with a time step
dt . The length K of the MPO corresponds to cutoff timescale
tcut = Kdt . All the correlation effects of the environment at
timescales larger than tcut are neglected. Finally, ε defines the
threshold below which the SVD components are discarded. In
Fig. 36, we present the time dependence of 〈σ̂z〉/2 computed
by the RG along a quantum trajectory and compare it with
the TEMPO computation. The system under consideration is
again given by Eq. (90) without driving ( f = 0). We start from
ρ̂s(0) = |↑〉〈↑|. We observe that only m = 4 relevant modes at
a finite occupation (five quanta) is enough to achieve the con-
verged time dependence on large timescales. At the same time,
the finite length K of the TEMPO corresponds to the finite re-
vival time tcut after which the computed evolution is corrupted.
The longer we want to simulate the dynamics, the longer
MPO should we employ. TEMPO cannot correctly capture the
large-time asyptotics with a finite number of variables. Also,
TEMPO requires a rather small SVD threshold ε = 10−9 to
quantitatively reproduce the observable properties of the open
quantum system. This leads to a rapid growth of the bond
dimension, Fig. 37. The computational time per one time step
(dt = 0.03) also increases. As a result of these two effects
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FIG. 36. Comparison of stochastic RG along trajectories and
TEMPO. Time dependence of 〈σ̂z〉/2 is computed for model Eq. (90)
without driving ( f = 0). Initial state is ρ̂s(0) = |↑〉〈↑|. Stochastic
RG (black line) is for m = 4 relevant modes and is truncated at n = 5
quanta. It yields the converged result on the presented timescales.
The TEMPO (dashed green and red lines) employs a matrix prod-
uct operator of length K = 400 with bond dimensions up to 358.
However, it can capture correctly the dynamics only up to the revival
time tcut = Kdt = 12, with dt = 0.03. TEMPO with SVD threshold
ε = 10−9 (green dashed line) agrees with the stochastic RG results
before the revival at tcut. However, each time step dt = 0.03 becomes
rather time consuming (≈ 40 min on a 40 CPU core cluster). TEMPO
with larger SVD threshold ε = 10−6 (red dashed line) starts to devi-
ate even before tcut, but can be efficiently propagated to larger times,
so we see clearly see the revival behavior.

(increasing length of MPO with the increasing bond dimen-
sions), the large time asymptotics of nonstationary evolution
is a computationally hard property for state-of-the-art tensor
network methods. That is why the conjectured boundedness of
complexity (as a function of simulation time) for the proposed
RG methods is a nontrivial result.

IX. ENTANGLEMENT IN THE TIME DOMAIN

In the previous sections, we repeatedly refer to the entan-
glement as a temporal property. For example, we say that the
outgoing mode φout(t ) is not entangled to the future (after t) in
Fig. 1. We also introduce the entanglers and disentanglers in
Figs. 15 and 17. However, the cautious reader may notice that
the entanglement is usually considered as a spatial property
and not a temporal one. The reason is that the entanglement is
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FIG. 37. For the same situation as in previous Fig. 36. The max-
imal bond dimension of TEMPO (K = 400, ε = 10−9, dt = 0.03) is
growing with the propagation time. This growth is accompanied with
the increase in the computation time per one time step dt .

defined by dividing a quantum system into parts with strictly
independent degrees of freedom. Due to the nonlocality of
the time degrees of freedom, Fig. 14, it is impossible to
perform such a strict partitioning in the time domain. Thus,
the question arises, What is the exact content of our concept
of temporal entanglement?

A. Absence of entanglement

We believe there are no doubts how one should define
the absence of entanglement. Suppose we have a pure state
|�(tp)〉st which depends on the time cell degrees of free-
dom ψ̂

†
0 , . . . , ψ̂

†
p−1 and on the quantum numbers of the open

system. Let us divide it into two subsystems. Subsystem A
consists of the open quantum system and of the q most recent
time cells ψ̂

†
p−q, . . . , ψ̂

†
p−1. Subsystem B is chosen to contain

the remaining time cells ψ̂
†
0 , . . . , ψ̂

†
p−q−1. There is no entan-

glement between A and B if after tracing out the B degrees of
freedom the reduced state of A is still pure. Recalling the trace
relation Eq. (31) for the tape model, we have for the reduced
density matrix of A:

ρ̂A = τp−q−1〈0| . . . τ0〈0|̂ρA|B|0〉τ0
. . . |0〉τp−q−1

, (92)

where |0〉τk is the vacuum of mode ψ̂
†
k and

ρ̂A|B = {
e
∑p−q−1

r=0

∑p−1
s=p−q (ψ̂†

r Mrsψ̂s+c.c.)e
∑p−q−1

rs=0 ψ̂†
r Mrsψ̂s

: |�(tp)〉st st〈�(tp)| :
}

A
(93)

takes into account the pairings between the time cells of B and
the cross pairings between the time cells of A and B. Observe
that there is no pairing between the time cells of A in ρ̂A|B: oth-
erwise ρ̂A could be mixed irrespectively of its entanglement
to B. We say that there is no entanglement between A and
B if ρ̂A is pure, ρ̂A = const × | f 〉AA〈 f |. In other words, after
tracing out B we still can consider that A is defined by a pure
state | f 〉A.

One example situation when A and B are not entangled is
the state of the form

|�(tp)〉st = | f 〉A ⊗ | fout(tp−q−1)〉B, (94)

where in state | fout(tp−q−1)〉B only the outgoing modes
φout(m), . . . , φout(p − q − 1) are populated by quanta. Then
the cross pairings in Eq. (93) are negligible by construction
of the incoming and outgoing streams in Sec. IV D and ρ̂A ∝
| f 〉A A〈 f | is pure. This is the exact meaning of saying that the
outgoing modes at time tp−q−1 are not entangled to the future
incoming modes.

B. Measure of temporal entanglement

There are situations when we need to measure the amount
of entanglement between the subsystems. For example, one
usually wants to know whether the entanglement is short
range or long range. If the entanglement is long range, then
it is interesting to know its asymptotical scaling. Therefore,
here we propose a measure of temporal entanglement.

The entanglement is measured by the entropy of dis-
tribution of nonzero eigenvalues over the ensemble of
eigenvectors. If ρ̂A [from Eq. (92)] is pure, then this distri-
bution is localized on a single eigenvector: the entropy is
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zero and there is no entanglement. In the opposite case of
a maximally mixed ρ̂A, the distribution is evenly smeared
over the eigenvectors: the entropy is maximal and so is the
entanglement.

Therefore, we define the entanglement entropy as

SA|B = − ln TrA{|̂ρA|/TrA |̂ρA|}2

= 2 ln TrA |̂ρA| − ln TrA |̂ρA|2. (95)

Here we base our definition on the Renyi entropy of the
second order. The absolute value |̂ρA| is employed because ρ̂A

may have negative eigenvalues. This is due to the restriction of
the set of pairings, see Sec. VI B. Also we normalize the den-
sity matrix by Tr|̂ρA| because ρ̂A is in general not normalized,
TrAρ̂A �= 1. Here, TrA is the trace in the conventional sense,
over some basis in the Fock space of the time cells Ft.

Our definition of the entanglement entropy reduces to the
conventional Renyi entropy in the limit of infinite-band envi-
ronment with M(t − t ′) = δ(t − t ′). It is reasonable because
in this limit the time cells are local independent degrees of
freedom, and the conventional partitioning into the indepen-
dent subsystems is possible.

C. Entanglement is long range in time

Let us consider as a simple example the pure state created
by the two emission events: one at τp and the other at τq, with
τp > τq:

|�〉t = ψ̂†
pψ̂

†
q |0〉t. (96)

Let us compute the entanglement entropy Sp|q between these
two time moments. Applying Eqs. (92), (93), and (95), we find

Sp|q = 2 ln (p1 + p2) − ln
(
p2

1 + p2
2

)
, (97)

where p1 = M(0)/(M(0) + |Mpq|2), p2 = |Mpq|2/(M(0) +
|Mpq|2). At a large time interval between the emission
times, the memory function decays as an inverse power law,
|Mpq|2 ∝ (τp − τq)−s, and the entanglement entropy also de-
cays according to the inverse power law Sp|q ∝ |Mpq|2 ∝
(τp − τq)−s. In Fig. 38, we present the plot of Sp|q vs τp − τq

for the ohmic memory function Eq. (10) with α = 1, ωc = 1,
s = 1.

D. Entanglement is finite range in the frame of
incoming/relevant/outgoing modes

Now let us consider the pure state |�〉t = ψ̂†
p φ̂

†
k |0〉t when

one quantum is emitted at a time moment τp, and the other is
in the fastest decoupling basis state φk , computed for the time
moment tp, see Sec. IV B. The formula Eq. (97) for the entan-
glement entropy still holds, with the substitution Sp|q → Sp|k
and Mpq → (p|M|φk ). In Fig. 39, we plot the dependence of
Sp|k with respect to the fastest decoupling basis element num-
ber k. We see that in the frame of incoming/relevant/outgoing
modes the entanglement becomes effectively finite-ranged.

X. CONCLUSION

A. Structure of entanglement

In this paper, we proposed a constructive way of how to
characterize the structure of entanglement. By tracking the
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FIG. 38. The entanglement entropy Sp|q of the state ψ̂†
pψ̂

†
q |0〉t

with two quanta emitted at τp and τp, τp > τq. It is a long-range
function of the time distance τp − τq: Sp|q ∝ |Mpq|2 ∝ (τp − τq )−s.
The plot is for the case of ohmic bath with the memory function
1
2 (1 + it )−2. Observe that although the state ψ̂†

pψ̂
†
q |0〉t seems to be

factorized, actually the states of emitted quanta are nonlocal in time,
see Fig. 14. That is why when we trace out one of the time cells, the
reduced state of the other time cell becomes mixed: the quanta are
distributed nonlocally between both time cells

degrees of freedom (the bricks) which couple to the evolution
and decouple (irreversibly) from the evolution, we obtained a
useful and intrinsic (free from ad hoc assumptions) charac-
terization. The entanglement starts to look like a Lego built
from these bricks. Here the evolution can be understood in a
generalized sense, e.g., as an RG flow parameter.

B. Real-time motion of open quantum systems

In this paper, we described the entire life cycle of the
entanglement, from its generation through the entanglement
of incoming modes to its death in the oblivion of outgoing
modes. This sheds light on a number of questions. First,
this shows that the true quantum complexity [3,4,46,79,80]
of the real-time motion survives only in the modes of the
environment which are non-negligibly coupled to the future
quantum motion. If there is a balance between the flux of
emitted quanta and the flux of quanta which are forgotten in
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FIG. 39. The entanglement entropy Sp|k of state ψ̂†
p φ̂

†
k |0〉t with

one quantum emitted at τp and the other quantum in the fastest
decoupling basis state φk , computed for the time moment tp, see
Sec. IV B. The case of ohmic bath with the memory function
1
2 (1 + it )−2. The plot is for Sp|k with respect to the fastest de-
coupling basis element number k. It is seen that the entanglement
entropy decays exponentially fast with k. Therefore, in the frame
of incoming/relevant/outgoing modes, the entanglement becomes
effectively finite ranged.
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the outgoing modes, then this complexity is asymptotically
bounded on large times. Then the real-time motion of open
quantum system becomes efficiently computable on a classi-
cal computer. Second, we find how the decoherence happens
continuously in the non-Markovian regime. We find how tiny
parts of quantum information decouple and disappear each
infinitesimal time moment. An interesting future direction
would be to study the distributed open quantum systems
when there is a number r of coupling sites b̂†

α (t ), α = 1 . . . r,
to the environment. We expect that the presented approach
should be straightforwardly extended to this case. The main
modification is that the memory function Eq. (8), the matrix
K (p) Eq. (18), and the relevant modes will acquire additional
indices α, α′ = 1 . . . r. The important question is whether it is
possible to construct low-dimensional relevant modes inside
the distributed open system so as to escape the growth of its
Hilbert space dimension.

C. Few-mode approximations of non-Markovian environments

It turns out that for each moment of time, only a finite
number m of degrees of freedom of the environment are
significantly coupled to the future motion. Moreover, the
significance of the neglected degrees of freedom decreases ex-
ponentially fast. This opens an interesting perspective on the
few-mode approximations of the environments with memory.

D. RG methods

We also obtained a persepective on RG methods. Tradition-
ally, these methods are based on the iterative application of
the scale and coarse-graining transformations. Here we went
beyond this paradigm. Any evolution can be considered as a
certain RG flow provided it is accompanied by the continuous
emergence of degrees of freedom which are not entangled to
the future evolution. These degrees of freedom are irrelevant
and can be iteratively traced out. Then the relevant subspace
of such an RG procedure is not the conventional infrared limit,
but the subspace of degrees of freedom which are significantly
coupled to the future evolution. We illustrated this point (down
to the resulting numerical schemes) for the case of real-time
flow for open systems. To extend this idea to other many-body
problems is a subject of future research.

E. Emergence of classical records

There is a interesting interrelationship between the en-
tanglement, RG, and the models of continuous measurement
[81]. The irrelevant degrees of freedom (which are not en-
tangled to the future) can be collapsed [82,83] to a classical
measurement signal as soon as they emerge. Computationally,
this leads to a stochastic RG along a quantum trajectory. The
numerical benefit over the deterministic RG for density matri-
ces is that the latter scales as N2 for N being the dimension of
the relevant Fock subspace, whereas the former scales as N .

F. Quantum trajectories

In this paper, we promoted a constructive viewpoint on
quantum trajectories [84–89]: We proposed to define the

quantum trajectory as a model of how the quantum complexity
decays into the classical complexity of a stochastic ensemble.

These results were illustrated with a number of calcula-
tions for the model of a two-level system (qubit), with and
without driving, which was coupled to the environments with
subohmic/ohmic/superohmic and semicircle spectral densi-
ties. In particular, in the cases considered, only three to
four relevant modes were enough to achieve the numerical
convergence.

Of course, we illustrated these ideas on a single specific
model: the spin in the bosonic bath. However, we believe
the picture presented in the Introduction and the concept of
irreversible decoupling as a negligible average intensity of
future interactions (sec. IV) are rather physically transparent
and general. They can be applied to a variety of other models
and situations, although specific formal implementation may
differ.
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APPENDIX A: SOLVING EQUATIONS IN THE
TRUNCATED FOCK SPACE

The total Hilbert space for the procedure in Sec. VI D has
the basis elements

|q〉s ⊗ |n1〉1 ⊗ |n2〉2 ⊗ . . . |nm+1〉m+1, (A1)

where |q〉s is some basis in the Hilbert space Hs of the open
system and |ni〉i is the state of ni quanta in mode i. The modes
i = 1 . . . m are our relevant modes. The mode m + 1 becomes
coupled only after t = tm and alternatively plays the role of
incoming and outgoing modes.

We truncate the Hilbert space at a certain number n of
quanta: only the basis states with

∑
i ni � n are being kept.

Let us assume that N is the total number of remaining basis
elements. All the basis elements Eq. (A1) are numbered

|k〉 = |q(k)〉s ⊗ ∣∣n(k)
1

〉
1 ⊗ ∣∣n(k)

2

〉
2 ⊗ . . .

∣∣n(k)
m+1

〉
m+1 (A2)

for k = 1 . . . N . Then the joint many-particle wave function
|�〉 of the open system and the modes is represented as
|�〉 = ∑N

k=1 �k|k〉, with �k being the 1 × N array of com-
plex numbers. The density matrix is represented as ρ̂ =∑N

kl=1 ρkl |k〉〈l|, with ρkl being the N × N Hermitian matrix
of complex numbers.

The operators of the open system, the creation/annihilation
operators for modes are represented as sparse matrices in the
basis of |k〉. Therefore, all the operations Eqs. (49)–(52) are
implemented in terms of space matrix multiplications.

Please observe that at time tp, mode min(m + 1, p) plays
the role of the incoming mode before the disentangling step
Eq. (51). After the disentangling step, mode min(m + 1, p)
plays the role of the outgoing mode. The oblivion step Eq. (52)
is implemented by setting to zero all elements of ρkl which
correspond to non-zero occupation of mode min(m + 1, p).
After the oblivion step, at the next time moment, p → p + 1,
the mode min(m + 1, p) again becomes the incoming mode.

054306-27



EVGENY A. POLYAKOV PHYSICAL REVIEW B 105, 054306 (2022)

APPENDIX B: COMPUTING THE PAIRING UPDATE

Our propagation procedure is permitted to have a local
error O(dt3). Then it is sufficient to compute the pairing up-
date Eq. (50) up to the error O(dt3). Observe how the pairing
update Eq. (50) is acting: If we consider the Taylor series of
the pairing function, then at order n it annihilates at least n
quanta in the incoming mode, either from the left (via ψ̂p) or
the right (via ψ̂†

p) of the density matrix ρ̂
(1)
rel+i(tp+1). However,

the amplitude to find n quanta in the incoming mode scales
as dtn. Indeed, looking at the propagation Eq. (49) and the
Hamiltonian Ĥst(τp), Eq. (34), we see that the new quanta are
created via ∝ dtψ̂†

p . Therefore, with second-order accuracy
we compute the pairing update Eq. (50) as

ρ̂
(2)
rel+i(tp+1) = ρ̂0 + ρ̂1 + 1

2 ρ̂2, (B1)

where

ρ̂0 = ρ̂
(1)
rel+i(tp+1), (B2)

and the recurrent relation between ρ̂i and ρ̂i−1,

ρ̂i = M(0)ψ̂pρ̂i−1ψ̂
†
p +

∑
i

Mi(p)φ̂iρ̂i−1ψ̂
†
p

+
∑

i

M∗
i (p)ψ̂pρ̂i−1φ̂

†
i , (B3)

for i = 1, 2.

APPENDIX C: COMPUTING THE DISENTANGLER
TRANSFOM

Here we present the algorithm we use to apply the disen-
tangler transforms Eqs. (51) and (77). The latter are defined as
a unitary transformation, Eq. (36). The unitary transform has
the general form

Ŵ = exp

(
i
∑

kl

ψ̂
†
k hkl ψ̂l

)
≡ exp(iĤW ), (C1)

with suitably defined ψ̂l , ψ̂
†
l and a Hermitian matrix hkl . Here

we introduce the effective Hamiltonian ĤW which generates
Ŵ . We need to apply Ŵ to some wave function |�〉:

|�W 〉 = Ŵ |�〉. (C2)

In general, hkl is a dense matrix [as it turns out to be in
Eq. (36)]. Therefore, each application of ĤW is expensive if
|�〉 is many-particle. We need to devise an algorithm which
minimizes the number of applications ofĤW .

Suppose that our budget is M applications of ĤW . Then
we construct the orthonormal basis |�0〉 . . . |�M〉 from M +
1 vectors |�〉, ĤW |�〉, . . . , ĤM

W |�〉. The basis is constructed
recurrently. We begin as

|�0〉 = |�〉/‖�‖, (C3)

where we normalize |�〉 since it is normalized differently in
the tape model, see Eq. (45). Now suppose we know |�k〉. We

apply ĤW and find a new unnormalized basis element |�̃k+1〉:
|�H

k 〉 = ĤW |�k〉, βk = 〈
�k

∣∣�H
k

〉
,

|�̃k+1〉 = ∣∣�H
k

〉 − βk|�k〉 − αk−1|�k−1〉,
αk = ‖�̃k‖,

(C4)

where we set α−1 = 0, |�−1〉 = 0. Starting from k = 1, we
additionally orthogonalize |�̃k+1〉 to all the previous basis
elements:

|�⊥
k+1〉 = (1 − |�k〉〈�k|) . . . (1 − |�0〉〈�0|)|�̃k+1〉. (C5)

Otherwise, the procedure will be numerically unstable. Fi-
nally, we normalize the basis element:

|�k+1〉 = |�⊥
k+1〉/‖|�⊥

k+1〉‖. (C6)

As a result, ĤW is represented as a tridiagonal matrix:

Hch =

⎡⎢⎢⎢⎢⎢⎣
β0 α0 0 0
α0 β1 α1 0

0 α1
. . .

...
...

. . .
. . . αM−1

0 0 αM−1 βM

⎤⎥⎥⎥⎥⎥⎦. (C7)

We see from this form that the Hamiltonian ĤW is represented
as a semiinfinite chain attached to |�0〉. The hopping between
the sites of the chain is given by αk . Therefore, we obtain the
first criterion for truncation: If α2

k is below some threshold,
e.g., 10−5, then the remaining sites are effectively decoupled
and we can stop at k applications of ĤW and set M = k.
The second criterion is the norm ‖|�⊥

k+1〉‖2
: If it is below

some threshold, e.g., 10−4, then the new basis elements are
essentially linearly dependent, so we stop at k applications of
ĤW and set M = k.

Finally, the M × M tridiagonal matrix Hch, Eq. (C7), is
diagonalized,

Hch = U

⎡⎣ω1 . . . 0
...

. . .
...

0 . . . ωM

⎤⎦U †, (C8)

and the approximation |�M
W 〉 to |�W 〉 is computed as

∣∣�M
W

〉 =
M∑

k,l,l ′=1

exp (−iωk )Ulk|�l〉U ∗
l ′k〈�l ′ |�〉. (C9)

If α2
k and ‖|�⊥

k+1〉‖2
are still above their thresholds, then the

last, fourth criterion, is that we stop adding basis elements
when ‖|�M

W 〉 − |�M+1
W 〉‖2

is below some threshold, e.g., 10−3.
Then we set |�W 〉 ≈ |�M

W 〉. For the numerical computations in
the paper, we obtain that M lies in the range 3 . . . 16.

APPENDIX D: IMPORTANCE SAMPLING

The noise shift leads to an additional Bogoliubov transform
in the state vector Eq. (74):

S(�ξ ) = e
∑∞

s=0 �ξ∗
s ψ̂s . (D1)

Then the restriction on �ξ is that S(�ξ ) should not couple to
the outgoing modes which have appeared by the time moment
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tp. Otherwise, the entanglement structure will be spoiled and
the oblivion step Eq. (78) will become invalid. This restricts
the shifts to

�ξr =
{

arbitrary for r � p
const × Mpr for r < p.

(D2)

Apart from this, there is no restriction on the choice of impor-
tance sampling technique.

In this paper, we derive the importance sampling technique
from the evolution of the probability distribution Q(ξ, tp) of
the classical noise trajectories ξ at a time tp. At t0 = 0, this
distribution coincides with the probability distribution of the
vacuum fluctuations:

Q(ξ, 0) ∝ exp

(
−

∞∑
rs=0

ξ ∗
r [M−1]rsξs

)
. (D3)

However, at later time moments it becomes weighted,

Q(ξ, tp) = ‖t〈0 |�(ξ, tp)〉st‖2Q(ξ, 0), (D4)

which follows from the partial trace relation Eq. (72). This
probability distribution is properly normalized in the sense
that [

Q(ξ, tp)

Q(ξ, 0)

]
ξ

= 1, (D5)

which follows from Eq. (72) and Tr̂ρs(tp) = 1. The impor-
tance sampling is required when the ratio on the left of
Eq. (D5) starts to fluctuate violently.

Let us find the master equation for Q(ξ, tp) [27]. From the
tape model Hamiltonian Eq. (27), we find

∂t Q(ξ, tp) = −iTrs{|ξ 〉t t〈ξ |[Ĥst(τp)|�(tp)〉st st〈�(tp)| − c.c.]}

= −iTrs

{[
|ξ 〉t t〈ξ |

(̂
sψ̂†

p + ŝ†
∞∑

r=0

Mprψ̂r

)
− c.c.

]

×|�(tp)〉st st〈�(tp)|
}

, (D6)

where we introduce the time-cell coherent states:

|ξ 〉t = Q
1
2 (ξ, 0)e

∑∞
s=0 ξsψ̂

†
s |0〉t. (D7)

In the second line of Eq. (D6), we have employed the cyclic
trace property and the fact that Ĥs commutes with the time-
cell coherent state projections. Observe that we extend the
summation to infinity in the annihilation term on the second
line of Eq. (D6). This is possible since the incoming modes
are in vacuum. It turns out that Eq. (D6) can be reduced to the
convection (drift) form:

∂t Q(ξ, tp) =
∑

r

∂ξr {Ar (tp)Q(ξ, tp)}

+
∑

r

∂ξ∗
r
{A∗

r (tp)Q(ξ, tp)}. (D8)

To demonstrate this, we employ the fact that the creation ψ̂†
s

and annihilation ψ̂s operators act as differential operators on

the coherent state projections:

|ξ 〉t t〈ξ |ψ̂†
p = ξ ∗

p |ξ 〉t t〈ξ |, (D9)

ψ̂p|ξ 〉t t〈ξ | = ξp|ξ 〉t t〈ξ |, (D10)

|ξ 〉t t〈ξ |
∞∑

r=0

Mprψ̂r =
{ ∞∑

r=0

Mpr∂ξ∗
r
+ ξp

}
|ξ 〉t t〈ξ |, (D11)

∞∑
r=0

M∗
prψ̂

†
r |ξ 〉t t〈ξ | =

{ ∞∑
r=0

M∗
pr∂ξr + ξ ∗

p

}
|ξ 〉t t〈ξ |. (D12)

Substituting these into Eq. (D6), we find

Ar (tp) = is(tp; ξ )
∞∑

r=0

M∗
pr, (D13)

where the conditional average s(tp; ξ ) of the coupling operator
ŝ is defined as

s(tp; ξ ) = Tr{̂s × t〈0 |�(ξ, tp)〉st st〈�(ξ, tp)|0〉t}
‖t〈0 |�(ξ, tp)〉st‖2 . (D14)

Switching to the frame of incoming/relevant/outgoing modes
and employing the relevant wave function, we reexpress this
equation as

s(tp; ξ ) = Tr{̂s × rel〈0 |�(ξ, tp)〉rel rel〈�(ξ, tp)|0〉rel}
‖rel〈0 |�(ξ, tp)〉rel‖2 , (D15)

which is Eq. (83). The velocity Eq. (D13) means that the noise
trajectory ξ is shifted with time as

ξ (τ ; tp) = ξ (τ ) − i
∫ tp

0
dts(t ; ξ )M∗(t − τ ). (D16)

Observe that here we switch back and forth between the
continuous and the discrete-time relations. This is permissible
because we have chosen the discrete propagator in Sec. V B so
it converges to the continuous evolution with the global error
O(dt2).

The importance sampling procedure is to shift the noise ξ

continuously in time according to the relation Eq. (D16). As
mentioned in Eq. (D1), the infinitesimal shift of noise

ξr (tp+1) = ξr (tp) − idtM∗
prs(τp; ξ ) (D17)
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will generate the infinitesimal Bogoliubov transform

S(dξ ) = 1 + idts∗(τp; ξ )
p−1∑
r=0

Mprψ̂r, (D18)

which should be incorporated into the Hamiltonian. The latter
for the continuously shifting noise becomes

Ĥ ′
st(ξ, τp) = Ĥs + ŝ{ψ̂†

p + ξ ∗
p + f ∗

p }

+ (̂s† − s∗(τp; ξ ))

{
M(0)ψ̂p +

min(p,m)∑
i=1

Mi(p)φ̂i

}
,

(D19)

which is Eq. (86). Here ξ ∗
p are sampled from the

vacuum probability distribution and the self-consistent

displacement is

fp = −i
∫ tp

0
dts(t ; ξ )M(τp − t ). (D20)

The consistent midpoint discretization of fp leads to Eq. (87).
The Hamiltonian Ĥ ′

st(ξ, τp) should be employed in the entan-
gling step Eq. (75). The rest of the RG procedure is the same
except that the average of any system observable ô should be
computed as

〈̂o(tp)〉 =
[

Tr{̂o × rel〈0 |�(ξ, tp)〉rel rel〈�(ξ, tp)|0〉rel}
‖rel〈0 |�(ξ, tp)〉rel‖2

]
ξ

.

(D21)

The reason is that now we directly sample the probability
distribution Eq. (D4), hence the denominator.
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