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We investigate the interplay between unitary and nonunitary dynamics after a quantum quench in a noninter-
acting fermionic chain. In particular, we consider the effect of localized loss processes, for which fermions are
added and removed incoherently at the center of the chain. We focus on the hydrodynamic limit of large distances
from the localized losses and of long times, with their ratio being fixed. In this limit, the localized losses gives rise
to an effective imaginary delta potential (nonunitary impurity), and the time-evolution of the local correlation
functions admits a simple hydrodynamic description in terms of the fermionic occupations in the initial state
and the reflection and transmission amplitudes of the impurity. We derive this hydrodynamic framework from
the ab initio calculation of the microscopic dynamics. This allows us to analytically characterize the effect of
losses for several theoretically relevant initial states, such as a uniform Fermi sea, homogeneous product states,
or the inhomogeneous state obtained by joining two Fermi seas. In this latter setting, when both gain and loss
processes are present, we observe the emergence of exotic nonequilibrium steady states with stepwise uniform
density profiles. In all instances, for strong loss and gain rates the coherent dynamics of the system is arrested,
which is a manifestation of the celebrated quantum Zeno effect.
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I. INTRODUCTION

The interaction between a many-body quantum system and
its environment can give rise to exotic and counterintuitive
out-of-equilibrium behavior. One of the most intriguing is the
so-called quantum Zeno effect [1–3]: As a consequence of
the interaction with an environment, for instance performing
some type of repeated measurement on the quantum system,
the coherent Hamiltonian dynamics freezes. In nonequilib-
rium settings, this effect has been shown to be responsible
for suppression of transport in quantum systems [4–6]. On
the other hand, dissipation can be also exploited to engineer
desired quantum states [7], to perform quantum computation
[8], or even to prepare topological states of matter [9]. The
possibility of analyzing the interplay between dissipation and
quantum criticality [10–15] is also particularly intriguing.
However, unfortunately, modeling the system-environment in-
teraction within an analytic or numerical framework is in
general a daunting task.

In Markovian regimes, the Lindblad equation provides a
well-defined mathematical framework to treat open quantum
systems [16]. Still, exact results for the Lindblad equation are
rare [17–28], with the notable exception of noninteracting
systems with linear dissipators [17]. Interestingly, also a
perturbative field-theoretical treatment of the Lindblad equa-
tion is possible [29]. Furthermore, the recent discovery of
Generalized Hydrodynamics [30,31] (GHD) triggered a lot of
interest in understanding whether the hydrodynamic frame-
work could be extended to open quantum systems [26,32–35].
Remarkably, for simple free-fermion setups it is possible to
apply the so-called quasiparticle picture [36–39] to describe

the quantum information spreading [40,41] in the presence of
global gain/loss dissipation.

In this paper, we focus on the hydrodynamic descrip-
tion of the out-of-equilibrium dynamics of one-dimensional
free-fermion systems in the presence of localized dissipation,
namely a dissipative impurity. This setting is nowadays the
focus of growing interest [42–51], since this type of dissi-
pation can also be engineered in experiments with optical
lattices [52–57]. Recent experiments also aim at investigating
the effect of localized losses in quantum transport in fermionic
systems [58,59]. In particular, we consider here the case of
localized gain and loss of fermions. Our paper takes inspira-
tion from Ref. [48] (see also Ref. [49] for similar results in a
bosonic chain), which deals with the case of a fully-occupied
noninteracting fermionic chain subject to losses. (The effects
of losses on a uniform Fermi sea have also been studied in
Ref. [45].) Here, we consider several homogeneous as well as
inhomogeneous out-of-equilibrium initial states.

The actual setup of interest is illustrated in Fig. 1. An
infinite chain is subject to both gain and loss processes with
rates γ + and γ −, respectively. The dissipation acts at the
center of the chain (x = 0), removing or adding fermions
incoherently. Here we consider the dynamics ensuing from
a homogeneous initial state [see Fig. 1(a)], such as a uniform
Fermi sea with generic filling, or initial product states, such as
the fermionic Néel state, in which every other site of the chain
is occupied. Furthermore, we also consider the dynamics from
inhomogeneous initial states, as depicted in Fig. 1(b). We take
as initial state the one obtained by joining two Fermi seas
with different filling. This is a well-known setup to study
quantum transport in one-dimensional systems. In the absence
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FIG. 1. An infinite free-fermion chain with localized gain and
loss processes acting at the center of the chain. Here γ ± are the
dissipation rates and J = 1 the hopping. In (a) the chain is initially
prepared in a homogeneous state |�〉. Here we consider the case with
|�〉 being the fully occupied state |F 〉, a Fermi sea with generic
filling kF and the fermionic Néel state. In (b) the initial state is
obtained by joining two semi-infinite homogeneous chains L and R,
prepared in two different states.

of dissipation it has been studied in Ref. [60]. If one of the two
chains is empty, this becomes the so-called geometric quench
[61]. If the left chain is fully-occupied the setup is that of the
domain-wall quench [62].

In all these cases, we show that the evolution of the
fermionic correlators Gx,y := 〈c†

xcy〉 is fully captured by a
simple hydrodynamic picture, which we derive from the exact
solution of the microscopic Lindblad equation. The hydrody-
namic regime holds in the space-time scaling (or hydrody-
namic) limit of large times and positions (see Fig. 1) x, y, t →
∞ with their ratios ξx := x/(2t ) and ξy := y/(2t ) fixed. Cru-
cially, in the hydrodynamic limit the local dissipation acts
as an effective delta potential, with momentum-dependent
reflection and transmission amplitudes that depend on the dis-
sipation rate. This becomes manifest in the singular behavior
at x = 0 of the profile of local observables. For arbitrary ξx

and ξy the hydrodynamic result contains detailed information
about the model and the quench, and it can be derived easily
only in a few cases. Interestingly, for ξx ≈ ξy the hydrody-
namic result can be expressed entirely in terms of the initial
fermionic occupations and the effective reflection and trans-
mission amplitudes of the dissipative impurity. This is remi-
niscent of what happens in the absence of dissipation [60].

Our findings demonstrate how a quantum Zeno effect [1,2]
arises quite generically in the strong dissipation limit. In
the presence of localized losses we show that the depletion
of a uniform state, both at equilibrium as well as out-of-
equilibrium after a quantum quench, is arrested for large
dissipation rates. Similarly, quantum transport between two
unequal Fermi seas is inhibited. What happens is that for
strong dissipation, the central site is continuously subject to
particle injection or ejection, and this determines a constant
projection of its state into the occupied or empty state. This
projection effectively disconnects the central site from the
rest of the chain. In turn, this effect hinders the depletion of
the uniform state as well as the particle transport between
the two halves of the chain [5]. This interpretation can also
be formalized by considering that for large rates γ ±, the
Hamiltonian acts as a perturbative effect and the exchange
of fermions between the central site and the rest can only

take place at a rate 1/γ ± [6]. This is a clear manifestation
of a Zeno effect in dissipative nonequilibrium settings [4–6].
Furthermore, in such a strong dissipation limit, the spatial
profile of the fermionic density is expressed in terms of the
Wigner semicircle law, reflecting that the scattering with the
impurity is “flat” in energy.

Finally, we discuss the dynamics starting from two unequal
Fermi seas in the presence of balanced gain and loss dissipa-
tion, i.e., with γ + = γ −. It is well-known that in the absence
of dissipation a non-equilibrium steady state (NESS) [60,63]
develops around x = 0. The NESS exhibits the correlations of
a boosted Fermi sea. For balanced loss/gain dissipation, an in-
teresting “broken” (piecewise homogeneous) NESS appears.
The corresponding density profile has a step-like structure
with a discontinuity at x = 0, reflecting once again that the
local dissipation mimics an effective delta potential.

The paper is organized as follows. In Sec. II we introduce
the model, the Lindblad treatment of localized gain and losses,
and the different quench protocols. In Sec. III we focus on the
effect of losses on homogeneous out-of-equilibrium states. In
Sec. III A we consider the case of localized losses in the fully-
filled state, which was considered in Ref. [48]. In Sec. III B
we discuss losses on the out-of-equilibrium state emerging
after the quench from the Néel state. In Sec. IV we focus on
the dynamics starting from inhomogeneous initial states. In
Sec. IV A we generalize the results of Sec III to the domain-
wall quench. In Sec. IV B we discuss the quench from the two
Fermi seas. We conclude and discuss future perspectives in
Sec. V. In Appendix A we present details on how to derive
the solution of the problem with both gain and loss dissipation
given the solution for dissipative loss only. In Appendix B we
derive the reflection amplitude for the effective delta potential
describing the dissipative impurity. In Appendix C we report
the derivation of the results of section IV B. Finally, in Ap-
pendix D we discuss the effect of losses on a uniform Fermi
sea.

II. NONINTERACTING FERMIONS WITH GAIN AND
LOSS: THE PROTOCOLS

In this paper, we consider the infinite free-fermion chain
defined by the tight-binding Hamiltonian

H =
∞∑

x=−∞
(c†

xcx+1 + c†
x+1cx ), (1)

where c†
x , cx are creation and annihilation operators at the

different sites x of the chain. They obey canonical anticommu-
tation relations. The Hamiltonian in Eq. (1) becomes diagonal
after taking a Fourier transform with respect to x. One can
indeed define the fermionic operators bk as

bk :=
∞∑

x=−∞
e−ikxcx, cx =

∫ π

−π

dk

2π
eikxbk, (2)

and in terms of these operators, Eq. (1) is equivalent to

H =
∫ π

−π

dk

2π
εkb†

kbk, εk := 2 cos(k). (3)

The Hamiltonian H conserves the particle number. At a fixed
density n f = kF /π , the ground state can be obtained from

054303-2



NONINTERACTING FERMIONIC SYSTEMS WITH … PHYSICAL REVIEW B 105, 054303 (2022)

the Fermi vacuum |0〉, by occupying the quasi-momenta bk

with single-particle energies in k ∈ [−kF , kF ], where kF is the
Fermi momentum. For n f = 1 (kF = π ) one has the fully-
filled state |F 〉, which is a product state. For 0 < kF < π the
ground state of (1) is instead critical, i.e., with power-law de-
caying correlation functions. For later convenience, we define
here the group velocity vk of the fermions as

vk := dεk

dk
= −2 sin(k). (4)

In addition to the Hamiltonian contribution, we consider a
dynamics, which is also affected by localized gain/loss pro-
cesses at the center of the chain (see Fig. 1). To account for
these dissipative contributions, we exploit the formalism of
quantum master equations [16]. The time-evolution of the sys-
tem state ρt is implemented by a Lindblad generator, through
the following equation

dρt

dt
= −i[H, ρt ] +

∑
i=+,−

(
Liρt L

i † − 1

2
{Li †Li, ρt }

)
. (5)

Here, the so-called jump operators Li are given by L+ =√
γ +c†

0 and L− = √
γ −c0 (see Fig. 1 for a pictorial defini-

tion), and account for gain and loss, with rates γ + and γ −,
respectively.

The relevant information about the system is contained in
the fermionic two-point correlation functions

Gx,y(t ) := Tr(c†
xcyρ(t )). (6)

The dissipative dynamics of this covariance matrix is obtained
as

G(t ) = et�G(0)et�† +
∫ t

0
dze(t−z)�	+e(t−z)�†

, (7)

with G(0) being the matrix containing the initial correlations.
The matrix � is defined as

� = ih − 1
2 (	+ + 	−), (8)

where h = δ|x−y|,1 implements the Hamiltonian contribution
while 	± = γ ±δx,0 account for the localized dissipative ef-
fects. The correlation functions Gx,y in (7) satisfy the linear
system of equations (we drop the explicit time dependence
when this does not generate confusion)

dGx,y

dt
= i(Gx+1,y + Gx−1,y − Gx,y+1 − Gx,y−1)

− γ + + γ −

2
(δx,0Gx,y + δy,0Gx,y) + γ +δx,0δy,0. (9)

We mainly consider the loss process, setting γ + = 0 in (9)
and (7). This is not a severe limitation since the knowledge of
Gx,y for γ + = 0 is sufficient to reconstruct Gx,y also in cases
of a nonzero γ + (see Appendix A). We also notice that equa-
tions of the type of (9) can be efficiently numerically solved by
standard iterative methods, such as the Runge-Kutta method
[64]. This is especially useful to treat the case of nonquadratic
Liouvillians, for instance, in the presence of dephasing or
incoherent hopping [40]. In our case this is not necessary
because the solution of (9) is given by (7). Indeed, Eq. (7)
can be evaluated numerically after noticing that the matrix �

is L × L, and it can be diagonalized with a computational cost
O(L3). This allows to efficiently evaluate the integral in (7).

In the following sections we discuss the effect of gain/loss
dissipation in several theoretically and experimentally rel-
evant situations. We consider both equilibrium as well as
out-of-equilibrium systems, i.e., after a quantum quench
[65–69]. At equilibrium we are interested in understanding
how the local dissipation affects the critical correlations of a
homogeneous Fermi sea with arbitrary filling 0 < kF < π . We
also review the effect of losses in the non-critical state |F 〉,
which was discussed in Ref. [48]. Furthermore, we consider
the case in which the initial state is a product state that is how-
ever not an eigenstate of the Hamiltonian (1). In the absence of
dissipation this is one of the paradigm of quantum quenches.
The generic out-of-equilibrium dynamics ensuing from an
initial product state is in fact highly nontrivial, as for instance
reflected by the ballistic growth of bipartite entanglement.
Interestingly, for integrable systems, this growth is due to
the propagation of pairs of entangled quasiparticles [36–39].
Our setting thus allows us to investigate the interplay between
localized dissipation and quench dynamics. For concreteness,
we focus on the situation in which the initial state is the
fermionic Néel state |N〉 := ∏

x even c†
x |0〉, in which only every

other site is occupied.
Finally, we consider quenches from inhomogeneous ini-

tial states obtained by joining two homogeneous Fermi seas
with different Fermi levels kl

F and kr
F [see Fig. 1(b)]. The

choice kl
F = π/2 and kr

F = 0 corresponds to the so-called
geometric quench [61], whereas kl

F = π and kr
F = 0 to the

domain-wall quench [62,70–73]. The case with kl
F �= kr

F is
particularly interesting since, in the absence of dissipation and
at long times, a non-equilibrium steady state (NESS) emerges
around the interface between the two parts of the chain. Such
a NESS exhibits the critical correlations of a boosted Fermi
sea [60,63]. Interestingly, the space-time profile of physical
observables and of the von Neumann entropy in these setups
admit an elegant field theory description in terms a Conformal
Field Theory in a curved space [26,72,74–79]. For generic in-
tegrable systems without dissipation, similar inhomogeneous
protocols can be studied by using the recently-developed gen-
eralized hydrodynamics [30,31] (GHD).

III. HOMOGENEOUS OUT-OF-EQUILIBRIUM STATES

In this section we discuss the effect of losses on homoge-
neous out-of-equilibrium states. To introduce the notation, we
start by reviewing the quench from the fully-filled state [48]
in Sec. III A. Note that, in the absence of dissipation there is
no dynamics since such state is an eigenstate of Eq. (1). We
will obtain analogous results in the more general context of
Sec. IV. In order to study the interplay between unitary and
dissipative dynamics, in Sec. III B we consider the quench
from the fermionic Néel state.

A. Fully-filled state

Let us consider the out-of-equilibrium dynamics starting
from the fully-filled state |F 〉 defined as

|F 〉 :=
∞∏

x=−∞
c†

x |0〉. (10)
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The above state is a product state, with diagonal correlator
Gx,y, given by

Gx,y(0) = δx,y. (11)

To solve (9) with γ + = 0 we employ a product ansatz [48] for
Gx,y. Specifically, we take Gx,y of the form

Gx,y =
∞∑

k=−∞
Sk,xS̄k,y, (12)

where the bar denotes complex conjugation. A similar prod-
uct ansatz will be used in Sec. IV. The factorization as in
(12) arises naturally when treating transport problems in free-
fermion models [60]. Equation (12) is consistent with (9)
provided that Sk,x satisfies

dSk,x

dt
= i[Sk,x+1 + Sk,x−1] − γ −

2
δx,0Sk,x. (13)

From Eq. (11) we obtain as initial condition for Sk,x

Sk,x(0) = δx,k . (14)

Equation (13) is conveniently solved by a combination of
Laplace transform with respect to time and Fourier transform
with respect to the space coordinate x. Let us define the
Laplace transform Ŝk,x (s) as

Ŝk,x(s) =
∫ ∞

0
dte−st Sk,x(t ). (15)

This allows us to rewrite (13) as

sŜk,x − Sk,x(0) = i[̂Sk,x+1 + Ŝk,x−1] − γ −

2
δx,0Ŝk,x. (16)

We can now perform the Fourier transform with respect to x,
by defining

Ŝk,q =
∞∑

x=−∞
Ŝk,xe−iqx, (17)

with q ∈ [−π, π ] being the momentum. From now on, we
will use Ŝk,q/p to indicate the Laplace and Fourier transform
of Sk,x; instead Ŝk,x/y will stand for the Laplace transform
of Sk,x/y only. After substituting in (16) and using the initial
condition (14), we obtain

sŜk,q − e−iqk = iŜk,q(eiq + e−iq ) − γ −

2
Ŝk,x=0. (18)

The solution of (18) is straightforward, yielding

Ŝk,q =
[

e−iqk − γ −

2
Ŝk,x=0

]
1

s − 2i cos(q)
. (19)

We note that Ŝk,x=0 is conveniently written as

Ŝk,x=0 = 1

2π

∫ π

−π

dqŜk,q. (20)

We can now take the inverse Fourier transform in (19), and
using that

1

2π

∫ π

−π

dq
eiqx

s − 2i cos(q)
= 1√

s2 + 4

( 2i

s + √
s2 + 4

)|x|
,

(21)
we obtain

Ŝk,x = 1√
s2 + 4

(
2i

s + √
s2 + 4

)|k−x|

− γ −/2

(γ −/2 + √
s2 + 4)

√
s2 + 4

(
2i

s + √
s2 + 4

)|k|+|x|
.

(22)

Note the absolute value |x| in the second term in (22). The
last step is to take the inverse Laplace transform of (22).
This is straightforward for the first term in Eq. (22), which
accounts for the unitary part of the evolution, and gives a term
J|x−y|(2t ), with Jx(t ) the Bessel function of the first type. The
second term in Eq. (22) encodes the effects of the losses. One
can write [48]

Sk,x (t ) = i|x−k|J|x−k|(2t ) − γ −

2
i|x|+|k|K|x|+|k|(t ). (23)

Here K|x|+|k| is the inverse Laplace transform of the second
term in Eq. (22). To determine K|k|+|x| analytically, one can
use the inverse Laplace transform

D|x| :=L−1

(
1

γ −
2 + √

s2 + 4

(
2i

s + √
s2 + 4

)|x|)
= i|x|J|x|(2t )

− i|x|
γ −

2

∫ t

0
dze−γ −z/2

(
t − z

t + z

)|x|/2

J|x|(2
√

t2 − z2),

(24)

together with the fact that

L−1

(
1√

s2 + 4

)
= J0(2t ). (25)

This allows us to obtain the inverse Laplace of the second term
in (22) as the convolution

L−1

(
1

( γ −
2 + √

s2 + 4)
√

s2 + 4

(
2i

s + √
s2 + 4

)|k|+|x|)

=
∫ t

0
dτJ0(2(t − τ ))D|x|+|k|(τ ), (26)

with D|x|+|k| defined in Eq. (24). We anticipate that we will
also employ Eq. (24) in Sec. IV.

Here we are interested in the space-time scaling limit
x, k, t → ∞, with their ratio fixed. We define the two scaling
variables u, ξx as

u := k

2t
, ξx := x

2t
. (27)

Since the initial state is homogeneous and the dissipation acts at x = 0 we expect local observables, such as the fermionic
density, to be even functions of x. Thus, we can restrict ourselves to ξx > 0. The asymptotic behavior of J|x−k| and K|x|+|k| is
derived analytically [48] and is given by

J|x−k|(2t ) 
 cos
[
2t

√
1 − (u − ξx )2 − 2t |u − ξx| arccos |u − ξx| − π

4

]
√

πt [1 − (u − ξx )2]1/4 , (28)

054303-4



NONINTERACTING FERMIONIC SYSTEMS WITH … PHYSICAL REVIEW B 105, 054303 (2022)

which holds for −1 � u − ξx � 1. For u, ξx outside of this interval the asymptotic behavior of J|x−k| is subleading in the scaling
limit. Similarly, one can show that [48]

K|x|+|k|(t ) 
 cos
[
2t

√
1 − (ξx + |u|)2 − 2t (ξx + |u|) arccos(ξx + |u|) − π

4

]
√

πt [γ −/2 + 2(ξx + |u|)][1 − (ξx + |u|)2]1/4 , (29)

which holds in the interval −1 � |u| + ξx � 1. As it will be
clear in Sec. IV, the scaling behavior of Gx,y will be given by
a simple formula, in the limit x, y, t → ∞ with x/t , y/t fixed
and |x − y|/t → 0. On the other hand, we should stress that by
using (23) together with the asymptotic expansions (28) and
(29) it is possible to obtain the behavior of Gx,y for large x, y, t
with arbitrary fixed ratios ξx = x/(2t ), ξy = y/(2t ). However,
as it is clear from (28) and (29) the result contains detailed
information about the quench parameters and dissipation.

Let us consider the dynamics of the density profile nx,t . We
have

nx,t =
∞∑

k=−∞
|Sk,x|2. (30)

The behavior of the density in the space-time scaling limit is
obtained by using (28) and (29) in (30). Let us assume ξx > 0.
We obtain

nx,t = 1 − γ −

π

∫ π/2

arcsin(x/(2t ))
dq

|vq|(
γ −
2 + |vq|

)2 . (31)

In deriving (31) we approximated the rapidly oscillating
trigonometric functions in (28) and (29) with their time av-
erage. An important remark is that the derivation above is
not valid near the origin at x = 0, where the density profile
exhibits a singularity. For x = 0 from (22) we obtain

Sk,0(t ) = i|k|J|k|(2t ) − i|k| γ
−

2

∫ t

0
dze−γ −z/2

(
t − z

t + z

)|k|/2

× J|k|(2
√

t2 − z2). (32)

In the scaling limit k, t → ∞ with u = k/(2t ) fixed we have( t − z

t + z

) |k|
2 
 e−2|u|z. (33)

This implies

Sk,0(t ) 
 2i|k||u|
γ −/2 + 2|u|J|k|(2t ). (34)

By using the asymptotic expansion of the Bessel function (28)
we obtain

n0,t = 1

π

∫ π/2

−π/2
dq

|vq|2(
γ −
2 + |vq|

)2 . (35)

We provide an alternative derivation of (31) and (35) in
Sec. IV. It is interesting to observe that from (31) in the limit
of large loss rate γ − one obtains the Wigner semicircle law as

nx,t = 1 − 1

γ −
8

π

√
1 − x2

4t2
. (36)

The behavior in Eq. (36) appears also in the case of the out-of-
equilibrium dynamics from the Néel state (see Sec. III B) and

from inhomogeneous initial states (see Sec. IV). Equation (36)
has a simple physical interpretation. Equation (31) in the limit
of large γ can be rewritten as

nx,t = 1 − 1

γπ

∫ π

−π

dqvq�(vq − x/t ). (37)

Now the integral in (37) describes the number of holes (equiv-
alently, the absorbed fermions) that are emitted at the origin
and at time t arrive at position x. Importantly, since dqvq =
dε, this means that the hole is produced at a rate ∝ 1/γ with
a uniform distribution in energy, i.e., at infinite temperature.

In the limit γ − → ∞ the density remains nx,t = 1. The
total number of fermions absorbed at a generic time t in the
limit γ − → ∞ is given as

na :=
∫ ∞

−∞
dx(1 − nx,t ) = 8

γ − t . (38)

The number of fermions that are lost at the origin increases
linearly with time. However, the rate goes to zero as
γ − → ∞, which is consistent with the emergence of a
Zeno effect. These results are checked in Fig. 2. The symbols
are numerical data obtained by using (7) for γ − = 0.5 and
γ − = 5. The different symbols correspond to different times.
To highlight the scaling behavior we plot 1 − nx,t versus
x/(2t ). All the data for different times collapse on the same
curve. Note the singularity at x = 0. Some corrections are
visible only for very short times. The continuous lines are
the analytical predictions (31) and (35), and are in perfect
agreement with the numerical data.

-1.5 -1 -0.5 0 0.5 1

x/(2t)

0

0.2

0.4

0.6

0.8

1-
n x,

t

γ-
=0.5 t=10

γ-
=0.5 t=20

γ-
=0.5 t=30

γ-
=5 t=10

γ-
=5 t=20

γ-
=5 t=30

hydrodynamics

FIG. 2. Density profile nx,t in a free fermion chain with localized
losses. Here we plot 1 − nx,t vs x/(2t ), with x the position with
respect to the center of the chain and t the time. The initial state
of the chain is the fully occupied state |F 〉. The symbols are exact
numerical data for “strong” loss rate γ − = 5 and “weak” loss rate
γ − = 0.5. Lines and the red circle at x = 0 are the analytic results in
the hydrodynamic limit.
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B. Homogeneous Néel quench

Let us now discuss the effect of losses on an out-of-
equilibrium state arising after the quantum quench from the
fermionic Néel state. The Néel state |N〉 is defined as

|N〉 :=
∏

x even

c†
x |0〉. (39)

The initial correlation matrix reads as

Gx,y(0) = δx,y, with x even. (40)

To proceed we impose that the solution of (9) is factorized as
in Eq. (12). We obtain the same equation as in (13). The initial
condition for Sk,x is

Sk,x(0) = δx,k, k even. (41)

After performing a Laplace transform with respect to time we
obtain (16). Now we can consider separately the cases of k
even and k odd. Let us first start considering the case with
k odd. It is straightforward to check that (13) together with
the initial condition (41) implies that Ŝk,n = 0 for odd k. Thus
we can restrict ourselves to even k. For k even we have to
distinguish the cases of even x and odd x. We define Se/o

k,x ,
where now x = 0, 1, . . . , L/2 labels the “unit cell” containing
the sites 2x, 2x + 1. These Se/o

k,x satisfy the set of equations

sŜe
k,x − δk,2x = i

[
Ŝo

k,x + Ŝo
k,x−1

] − γ −

2
δx,0Ŝe

k,x (42)

sŜo
k,x = i

[
Ŝe

k,x + Ŝe
k,x+1

]
. (43)

We define the Fourier transforms as

Ŝe/o
k,q =

∞∑
x=−∞

Ŝe/o
k,x e−iqx. (44)

Taking the Fourier transform in (42) and (43) we obtain

sŜe
k,q − e−iqk/2 = iŜo

k,q(1 + e−iq ) − γ −

2
Ŝe

k,x=0 (45)

sŜe
k,q = iŜo

k,q(1 + eiq ). (46)

Similar manipulations as in Sec. III A yield

Ŝe
k,x = 1√

s2 + 4

(
2i

s + √
s2 + 4

)|k−2x|
− γ −

2

× 1

(γ −/2 + √
s2 + 4)

√
s2 + 4

(
2i

s + √
s2 + 4

)|k|+2|x|
,

(47)

and

Ŝo
k,x = i

∫ t

0
dτ

[
Ŝe

k,n(τ ) + Ŝe
k,x+1(τ )

]
. (48)

Equation (47) is the same as for the quench from the ferromag-
netic state [cf. (22)] discussed in Sec. III A, after redefining
x → 2x, i.e.,

Se
k,x = S|F 〉

k,2x, (49)

with S|F 〉
k,x given by (22). One can use (28) and (29) to obtain

the correlators Gx,y in the space-time scaling limit. We now

-1 -0.5 0 0.5 1

x/(2t)

0

0.1

0.2

0.3

0.4

1/
2-

n x,
t

γ-
=5 t=100

γ-
=5 t=98

hydrodynamics

FIG. 3. Density profile nx,t in a free fermion chain with local
losses: Dynamics starting from the Néel state. We plot the shifted
density 1/2 − nx,t vs x/(2t ). The symbols are exact numerical data
for γ − = 5 and t = 98 and t = 100. Note the strong oscillations with
time. Lines are the analytic results in the space-time scaling limit.

discuss the dynamics of the density profile. We restrict our-
selves to even sites ne

n,t . This is because translation invariance
is restored by the dynamics at long times and we expect the
result for odd sites to be the same. We now have

ne
x,t =

∞∑
k=−∞

|Se
2k,x|2. (50)

One obtains

ne
x,t = 1

2
− 1

2

γ −

π

∫ π/2

arcsin(x/(2t ))
dq

|vq|(
γ −
2 + |vq|

)2 . (51)

Note that this is the result obtained for the quench from the
fully-filled state (see Sec. III A) divided by two. In addition,
once again, the density profile is singular in x = 0. The value
of the density at x = 0 is the half of that found in (35). In the
absence of dissipation, i.e., for γ − = 0, the fermionic density
is uniform and is given as nx,t = 1/2. For strong dissipation,
instead, one obtains

ne
x,t = 1

2
− 1

γ −
4

π

√
1 − x2

4t2
, (52)

which is reminiscent of the Wigner semicircle law in Eq. (36).
It is useful to compare the results in (51) with numerical data.
We present some benchmarks in Fig. 3. In the figure we show
1/2 − nx,t versus x/(2t ). The symbols are numerical results
obtained by using (7). We only show data for γ − = 5. Strong
oscillating corrections are present. They disappear in the long
time limit t → ∞. Similar corrections are also present in the
unitary case, i.e., without dissipation. The continuous line is
the analytic result in the space-time scaling limit. Despite the
strong oscillations the agreement with the numerical data is
satisfactory.
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IV. QUENCHES FROM INHOMOGENEOUS
INITIAL STATES

In this section we address the effect of losses in out-of-
equilibrium dynamics starting from inhomogeneous initial
states. We first discuss the so-called domain-wall quench in
Sec. IV A. This can be straightforwardly treated by using the
results of Sec. III. We then discuss the generic situation in
which the initial state is obtained by joining two Fermi seas
with different fillings in Sec. IV B. We show that both the
fermionic density and the correlation functions admit a simple
hydrodynamic picture in the space-time scaling limit.

A. Domain-wall quench

Let us consider the domain-wall initial state, in which
the left part of the chain is fully filled, and the right one is
empty. This situation has been intensely investigated in the
past [62,70,72,74,80,81].

The full out-of-equilibrium dynamics ensuing from the
domain-wall state is obtained by a slight modification of the
method employed in Sec. III. The same ansatz as in (12) holds
true, with Sk,x satisfying (13). The initial condition for Sk,x is
now

Sk,x(0) = δk,x�(−k), (53)

where the Heaviside theta function �(−k) takes into account
that at t = 0 only the left part of the chain is fully occupied
with fermions. In taking the Laplace and Fourier transforms
of (12), we distinguish the case of k � 0 and k < 0, obtaining

sŜk,q − e−iqk = 2iŜq,k cos(q) − γ −

2
Ŝk,x=0 for k < 0 (54)

sŜk,q = 2iŜq,k cos(q) − γ −

2
Ŝk,x=0 for k � 0. (55)

The solution of the system above is straightforward and gives

Ŝk,x = Ŝ|F 〉
k,x for k < 0, (56)

Ŝk,x = 0 for k � 0, (57)

where Ŝ|F 〉
k,x [cf. (22)] is the same as for the quench from

the fully-occupied state (see Sec. III A). Let us consider the
density profile. For x > 0 we obtain

nx,t = 1

π

∫ π/2

arcsin(x/(2t ))
dq

|vq|2(
γ −
2 + |vq|

)2 . (58)

For x < 0 the density reads as

nx,t = 1

π

∫ π/2

arcsin(x/(2t ))
dq + (γ −)2

4

1

π

×
∫ π/2

arcsin(|x|/(2t ))
dq

1(
γ −
2 + |vq|

)2 . (59)

Here vq is the fermion group velocity (4). Clearly, from (58)
and (59) for γ − → 0 one recovers the expected result in the
absence of dissipation. This corresponds to the first term in
(59). Furthermore, in the limit of strong dissipation γ − → ∞,
Eq. (58) is, again, reminiscent of the Wigner semicircle law.

-1.5 -1 -0.5 0 0.5 1 1.5
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0.4
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n x,
t
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=0.5 t=10

γ-
=0.5 t=20

γ-
=0.5 t=30

γ-
=5 t=10

γ-
=5 t=20

γ-
=5 t=30

hydrodynamics

FIG. 4. Density profile nx,t in a free fermion chain with localized
losses: Dynamics starting from the domain-wall state. We plot nx,t vs
x/(2t ). The symbols are exact numerical data. Lines are the analytic
results in the space-time scaling limit.

In particular, for x > 0, from (59), one obtains that nx,t =
16/(γ −π )

√
1 − x2/(4t2).

In Fig. 4 we compare (58) and (59) with numerical re-
sults obtained from (7). We report data for strong dissipation
γ − = 5 and weak one γ − = 0.5 and several times. The data
show a perfect agreement when plotting nx,t versus x/(2t ).
The scaling functions are consistent with the numerical results
in the space-time scaling limit. Similarly to the quench from
the Néel state we should stress that by using (28) and (29)
it is possible to obtain the behavior of the generic fermionic
correlator Gx,y in the space-time scaling limit with arbitrary
ξx = x/(2t ) and ξy = y/(2t ). Finally, we also stress that (59)
can be rederived as a particular case of the double Fermi seas
expansion that we will discuss in the next section.

B. Inhomogeneous Fermi seas

In this section we discuss the situation in which two semi-
infinite chains [see Fig, 1(b)] are prepared in two Fermi seas
at different fillings kl

F and kr
F . The quench protocol is as

follows. The two chains are prepared in the ground state of (1)
with different fermionic densities, and with periodic boundary
conditions. At t = 0 the two chains are joined together. Note
that due to the initial periodic boundary conditions on the two
chains, this involves a “cut and glue” operation. The situation
in which the two initial systems have open boundary condi-
tions can be treated in a similar way, although we expect the
out-of-equilibrium dynamics not to be dramatically affected
by the choice of the boundary conditions. In the absence
of dissipation, the out-of-equilibrium dynamics starting from
two open chains that are joined together was obtained in
Ref. [60], in the space-time scaling limit. Note that by fixing
kl

F = π and kr
F = 0, one obtains the domain-wall quench (see

Sec. IV A). Instead, for kr
F = 0 and kl

F = π/2 one has the
so-called geometric quench [61], in which the ground state
of a chain is let to expand in the vacuum.
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It is straightforward to derive the initial correlation matrix
as

Gx,y(0) = sin
(
kr

F (x − y)
)

π (x − y)
�(x)�(y)

+ sin
(
kl

F (x − y)
)

π (x − y)
�(−x)�(−y), (60)

where �(x) is the Heaviside theta function. Equation (60) is
conveniently rewritten as

Gx,y(0) = 1

2π

∫ kl
F

−kl
F

dkeik(x−y)�(−x)�(−y)

+ 1

2π

∫ kr
F

−kr
F

dkeik(x−y)�(x)�(y). (61)

Crucially, Eq. (61) suggests that we can parametrize Gx,y as

Gx,y = 1

2π

∫ kr
F

−kr
F

dkSl
k,xS̄l

k,y + 1

2π

∫ kl
F

−kl
F

dkSr
k,xS̄r

k,y, (62)

where Sl/r
k,x have to be determined. Clearly, the ansatz (62)

is similar to the one used in section (12). After substituting
Eq. (62) in (9), we obtain that Sl/r

k,x satisfy (13). The initial
conditions are given as

Sr/l
k,x (0) = eikx�(±x), (63)

where the plus and minus signs are for Sr
k,x and Sl

k,x, respec-
tively. The Laplace and Fourier transforms of (62) read

Ŝl/r
k,q = Ŝl/r,U

k,q + Ŝl/r,D
k,q , (64)

where we separated the unitary part from the contribution of
the dissipation, as stressed by the superscripts U and D in (64).
Here we defined

Ŝl,U
k,q = 1

s − 2i cos(q)

1

1 − ei(q−k+i0)
(65)

Ŝr,U
k,q = − 1

s − 2i cos(q)

1

1 − ei(q−k−i0)
(66)

Ŝl,D
k,q =

∫ π

−π

d p

2π

Z (p)

1 − ei(p−k+i0)
(67)

Ŝr,D
k,q = −

∫ π

−π

d p

2π

Z (p)

1 − ei(p−k−i0)
. (68)

The function Z (p) is defined as

Z (p) = −
γ −
2

γ −
2 + √

s2 + 4

√
s2 + 4

s − 2i cos(p)

1

s − 2i cos(q)
. (69)

The terms ±i0 in the equations above are convergence factors,
and their sign is chosen to impose the �(±x) in the initial
conditions for Sl/r

k,x [cf. (63)]. From (62) it is clear that in order
to determine Gx,y one has to compute the integrals I l and Ir

defined as

I l = 1

4π2

∫ kl
F

−kl
F

dk

(1 − ei(p−k+i0))(1 − e−i(q−k−i0))
(70)

Ir = 1

4π2

∫ kr
F

−kr
F

dk

(1 − ei(p−k−i0))(1 − e−i(q−k+i0))
. (71)

Similar integrals were discussed in Ref. [60]. The integration
over k in Eqs. (70) and (71) can be performed easily in the
complex plane. The derivation is as in Ref. [60], and we do
not report it here. We obtain

4π2I l/r = i

1 − ei(p−q±i0)

[
ln

eikl
F − eiq

e−ikl
F − eiq

− ln
eikl

F − eip

e−ikl
F − eip

∓ 2π iχ l/r (p)

]
, (72)

where the terms with i0 and −i0 in the exponential in (72) cor-
respond to I l and Ir , respectively. Here the function χ l/r (p)
is one if p is in the interval [−kl/r

F , kl/r
F ], while it is zero

otherwise.
The next step is to determine the large x behavior of Sl/r,D

k,x .
This requires to calculate the inverse Fourier transform of
Z (p) with respect to q [cf. (69)] and its inverse Laplace trans-
form with respect to s. More precisely, one has to determine
the asymptotic behavior for large x, t of

F D
x := L−1

(
1

2π

∫ π

−π

dqZ (p)eiqx

)
. (73)

The derivation is reported it in Appendix B. Here we quote
the final result, which reads

F D
x (p) = χxe2it cos(p)+i|x||p|r(p), (74)

where vp is the fermions group velocity defined in (4). Here
χx is defined as

χx(p) := �

(
|vp| − |x|

t

)
, (75)

with vp the group velocity of the fermions [cf. (4)]. In (74) we
defined the reflection amplitude r(p) as

r(p) := −γ −

2

1
γ −
2 + |vp|

. (76)

Note that r(p) appears in the scattering problem of a plane
wave with a delta potential with imaginary strength [82].

Finally, we discuss the behavior of Gx,y in the space-time
scaling limit for t, x, y → ∞ with x/(2t ), y/(2t ) fixed and
|x − y|/t → 0. Let us start by discussing the different con-
tributions in Eqs. (65)–(68). We first consider the unitary
contribution

1

2π

∫ kl
F

−kl
F

dkSl,U
k,x S̄l,U

k,y

= 1

2π

∫ π

−π

d pdqe2it cos(p)−2it cos q+ipx−iqy I l (p, q). (77)

The analysis is essentially the same as in Ref. [60]. Let us
first consider the case with x, y > 0. We employ the standard
stationary phase approximation [83]. In the large t, x, y limit
the stationary points in the double integral in (77) satisfy the
equations

− 2t sin(p) + x = 0 (78)

− 2t sin(q) + y = 0 (79)
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As it is clear from (78) and (79), in the space-time scaling, the
integral (77) is dominated by the region with p → q. Thus, we
define K := (p + q)/2 and Q := (p − q). In the limit Q → 0
we have

I l/r (p, q) = ∓ 1

2π i

1

Q ± i0
�(kl/r

F − |K|), (80)

where the term with Q + i0 refers to I l , and the one with Q −
i0 to Ir . By combining (80) with the well-known formula

1

2π i

∫ ∞

−∞
dQ

eiQx

Q ∓ i0
= ±�(±x) (81)

we obtain the relatively simple result

1

2π

∫ kl
F

−kl
F

dkSl,U
k,x S̄l,U

k,y

=
∫ kl

F

−kl
F

dK

2π
eiK (x−y)�

(
2t sin(K ) − x + y

2

)
. (82)

This coincides with the result in Ref. [60]. The derivation of
the remaining terms entering in the definition of Gx,y [cf. (62)
and (64)] is similar although more cumbersome due to the
presence of the absolute values |p| and |q| in the integrands.
We illustrate the main steps of the derivations in Appendix C.
We obtain

Gx,y(t ) =
∫ kl

F

−kl
F

dK

2π

{
eiK (x−y)�

(
2t sin(K ) − x + y

2

)

+ eiK (|x|−|y|)�(K )(�(x) + �(y))χxχyr

+ �(K )eiK (|x|−|y|)χxχyr2

}
+ l ↔ r, (83)

with χx as defined in (75). Note that χx, χy and r are func-
tions of K . Here the last term l ↔ r is obtained by changing
the integration boundaries as kl

F → kr
F , and by replacing

K → −K and x, y → −x,−y in the integrand in (83). Equa-
tion (83) holds only in the space-time (hydrodynamic) limit
|x|, |y|, t → ∞ with fixed x/(2t ) ≈ y/(2t ). Note that, similar
to the previous sections, the correlation matrix Gx,y is singular
at x, y → 0. This happens because of fast oscillating terms
in the limit x → ∞ that cannot be neglected at x ≈ 0. In the
region x/t, y/t → 0 one obtains

Gx,y =
∫ kl

F

0

dK

2π
(eiKx + reiK|x|)(e−iKy + re−iK|y|)

×
∫ 0

−kr
F

dK

2π
(eiKx + reiK|x|)(e−iKy + re−iK|y|). (84)

Before discussing the numerical checks of (83) it is useful to
address its physical interpretation. To this purpose it is useful
to focus on the dynamics of the fermionic density Gx,x(t ).
Equation (83) is rewritten as

Gx,x =
∫ π

−π

dk

2π

(
nl

x,t (k) + nr
x,t (k)

)
, (85)

where n(l/r)
x,t (k) describe the evolution of the fermions with

momentum k originated in the initial left and right chains. As
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FIG. 5. Density profile nx,t in a free fermion chain with localized
losses with rate γ −: Dynamics starting from the inhomogeneous state
(see Fig. 1) obtained by joining two Fermi seas with kl

F = π/2 and
kr

F = π/3. The symbols are exact numerical data for γ − = 0.5. Lines
are the analytic results in the space-time scaling limit. Inset: The
case without dissipation. Note the formation of the non-equilibrium
steady state (NESS) at the interface between the two chains.

it is clear from (83), nl
x,t (k) is written as

nl
x,t (k) = nl

0(k)[�(−x)�(k)(1 + |r|2�(x + 2t sin(k))

+ �(x)�(k)�( − x + 2t sin(k))|τ |2
+ �(−x)�(−k)�( − x + 2t sin(k))]. (86)

In (86) we defined the transmission amplitude τ (k) as

τ (k) := vk
γ −
2 + |vk|

, (87)

where vk is the fermion group velocity [cf. (4)]. Note that τ 2 +
r2 �= 1, signaling that the evolution is not unitary. Note that
τ (k) coincides with the transmission amplitude for the scat-
tering with a delta potential with imaginary strength [82]. In
(86), nl

0 is the initial momentum distribution for the left chain
nl

0 = �(kl
F − |k|), and r the reflection amplitude defined in

(76). Now Eq. (86) has a simple physical interpretation. The
first row in (86) describes the fermions moving towards the
dissipative impurity and the scattered ones. The second row
describes the fermions that are transmitted to the chain on the
right at x > 0. Finally, the last row accounts for the fermions
that are in the left chain and are moving with negative
velocity.

It is useful to check (83) and (84) against exact numerical
data. This is discussed in Fig. 5. We plot the fermionic density
nx,t versus the scaling variable x/(2t ). We consider the case
with kl

F = π/2 and kr
F = π/3. Interestingly, in the absence of

dissipation a non-equilibrium steady state (NESS) emerges at
the interface between the two chains with a flat density profile
for [− sin(kr

F ) � x/(2t ) � sin(kr
F )]. The fermionic density in

the flat region is the average density (kl
F + kr

F )/(2π ). The case
without dissipation is shown in the inset of Fig. 5. As it is clear
from the main figure, in the presence of losses the NESS is
depleted. Also the density profile exhibits a clear asymme-
try under x → −x with a discontinuity at x = 0. Cusp-like
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FIG. 6. Depleted non-equilibrium steady state (NESS). We show
the dynamics of the off-diagonal correlator Re(Gx,x+1) in the free
fermion chain with localized losses. The data are exact numerical
results for γ − = 0.5 for the infinite chain. We show results for the
inhomogeneous initial state obtained by joining two Fermi seas with
Fermi levels kl

F = π/2 and kr
F = π/3 [see Fig. 1(b)]. The curve is

the result in the space-time scaling limit t, x → ∞.

features are present at ±kr
F . These are also present in the

absence of dissipation [60]. Finally, we report in the Figure the
analytic result in the space-time scaling limit (83). This is
in perfect agreement with the numerical data. Note that the
agreement is also good for x = 0. The theoretical prediction
for x = 0 is given by (84) and it is reported as a circle in the
figure. Deviations are present near the singularities related to
the Fermi momenta, similar to the non-dissipative case [60],
and are expected to vanish in the limit x, t → ∞. Finally, we
should mention that by imposing kl

F = kr
F = kF in (83) one

obtains the space-time limit behavior of the correlator Gx,y

for the problem of a uniform Fermi sea with Fermi level kF .
This is explicitly discussed in Appendix D. In Figs. 6 and 7
we show the behavior of the off-diagonal correlation function
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FIG. 7. Depleted non-equilibrium steady state (NESS). We show
the dynamics of the fermion current Im(Gx,x+1) in the free fermion
chain with localized losses. The initial state and the dissipation are
the same as in Fig. 6. The curve is the result in the space-time scaling
limit t, x → ∞.
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FIG. 8. Broken NESS with balanced gain and losses. We show
the fermionic density nx,t in the free fermion chain with gains and
losses. The data are exact numerical results for γ − = γ + = 1. The
initial state is obtained by joining two Fermi seas with Fermi levels
kl

F = π/2 and kr
F = π/3 [see Fig. 1(b)]. The dashed line is the NESS

density π (kl
F + kr

F )/2 in the absence of dissipation. In the inset we
show the off-diagonal correlators Re(Gx,x+1) and Im(Gx,x+1).

Gx,x+1 in the space-time scaling limit. We present Re(Gx,x+1)
and Im(Gx,x+1), which is the fermion current, separately. Sim-
ilar to the density (see Fig. 5), the exact numerical data for
Gx,x+1 obtained by numerically solving (9) collapse on the
same curve when plotted as a function of x/(2t ), at least for
large enough x, t . The scaling curve is perfectly described
by the analytic result (83) and (84). Note that similar to
Fig. 5 a singularity is present at x = 0 in both Figures and
the same cusp-like features at x/(2t ) = sin(kr

F ) can be ob-
served. We observe that the current is zero for |x|/(2t ) � 1, as
expected since for |x|/(2t ) � 1 the system is at equilibrium.
Note also that Im(Gx,x+1) < 0 for any x, and does not change
its sign across the singularity. Finally, we should stress that
on increasing γ − the transport between the two chains is
suppressed, which is, again, a manifestation of the quantum
Zeno effect. This is nicely encoded in the value assumed by
the reflection and transmission coefficients; for γ− → ∞, we
have r(k) → −1 and τ (k) → 0.

To conclude we discuss an interesting effect that arises
when one restores the gain dissipation. We consider the case
of balanced gain/loss dissipation, i.e., with γ + = γ −. Our
results are reported in Fig. 8. We focus on the density profile
nx,t plotted versus x/(2t ). We fix kl

F = π/2 and kr
F = π/3

and γ − = γ + = 1. Interestingly, as it is clear from Fig. 8
the density profile now exhibits a “broken” NESS structure.
Specifically, two flat regions are visible for − sin(kr

F ) � x � 0
and 0 < x � sin(kr

F ), with a step-like discontinuity at x = 0.
The dashed line in the figure shows the NESS density in
the absence of dissipation. In the inset of Fig. 8 we report
the behavior of the off-diagonal correlation Re(Gx,x+1) and
Im(Gx,x+1), which show a nontrivial structure. We should
mention that the behavior of the correlator in the presence of
both gain and loss can be derived analytically by using the
results in Appendix A, although we do not report its explicit
expression.
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V. CONCLUSIONS

We have provided exact results on the out-of-equilibrium
dynamics of free-fermion systems subject to localized
gain/loss dissipation, playing the role of a dissipative defect.
We considered different setups with both homogeneous and
inhomogeneous initial states, and derived general results on
the fermionic correlations Gx,y(t ) = Tr(c†

xcyρ(t )). Our find-
ings hold in the space-time scaling limit (hydrodynamic limit)
with x, y, t → ∞, their ratios ξx = x/(2t ), ξy = y/(2t ) being
fixed. In this limit, we have shown that dissipation acts as
an effective delta potential with momentum-dependent re-
flection and transmission amplitudes. For generic ξx, ξy, the
fermionic correlation functions depend on the details of the
model. On the other hand, in the limit ξx ≈ ξy, the dynamics
of fermionic correlations is completely characterized by the
initial fermionic occupations and the emergent reflection am-
plitude of the dissipative impurity.

Our results pave the way for several further studies. For
instance, it would be interesting to extend them to more com-
plicated free-fermion models, e.g., the transverse field Ising
chain. Another interesting direction concerns the investigation
of the effect of localized dissipation in free-bosonic systems
[49]. An intriguing question is how local dissipation affects
the entanglement scaling at finite-temperature critical points.
An ideal setup to explore this is provided by the so-called
quantum spherical model, for which entanglement properties
can be studied effectively [84–86]. Furthermore, it would
be of interest to study how localized gain/loss dissipations
may affect entanglement spreading, for instance, by studying
the dynamics of the logarithmic negativity [87–90] and com-
paring with the quasiparticle picture [91]. In the absence of
dissipation the entanglement dynamics has been investigated
for both the geometric quench [92–94] and the domain-wall
quench [63,74,79]. Moreover, it is important to generalize our
findings to the interacting case. Although this is a challenging
task, the results in Ref. [32] provide first steps in this direction.
It would be also interesting to understand whether it is possi-
ble to incorporate the effects of dissipation in the Conformal
Field Theory framework put forward in Refs. [72,74] or in
the quantum GHD [95]. Finally, it would be important to
clarify the correlation structure of the broken NESS discussed
in Sec. IV B, and to understand whether it can be observed
experimentally.
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APPENDIX A: RESTORING FERMION PUMPING

Here we discuss how to obtain the solution of the general
equation (9) for γ + �= 0 and γ − �= 0 from the solution for the

case with loss only, i.e., γ + = 0. The equation for Gx,y to be
solved is (9)

dGx,y

dt
= i(Gx+1,y + Gx−1,y − Gx,y+1 − Gx,y−1)

− γ + + γ −

2
(δx,0Gx,y + δy,0Gx,y) + γ +δx,0δy,0.

(A1)

Let us define as G̃x,y the solution for the case with pure losses
with effective loss rate γ + + γ −, i.e., the solution of (A1)
where we neglect the last term. We have

dG̃x,y

dt
= i(G̃x+1,y + G̃x−1,y − G̃x,y+1 − G̃x,y−1)

− γ + + γ −

2
(δx,0G̃x,y + δy,0G̃x,y). (A2)

Let us impose the initial condition as

G̃x,y(0) = Gx,y(0). (A3)

Now we define the correlator G′
x,y as the solution of the prob-

lem

dG′
x,y

dt
= i(G′

x+1,y + G′
x−1,y − G′

x,y+1 − G′
x,y−1)

− γ + + γ −

2
(δx,0G′

x,y + δy,0G′
x,y), (A4)

with delta initial condition

G′
x,y(0) = δx,0δy,0. (A5)

Clearly, G′
x,y is the solution of the problem with only losses

with rate γ + + γ − for the empty chain with one fermion at
x = 0. We can now write the solution Gx,y of (A1) as

Gx,y(t ) = γ +
∫ t

0
dτG′

x,y(t − τ ) + G̃x,y(t ). (A6)

By direct substitution, one can verify that Eq. (A6) is the
solution of (A1) with initial condition (A3).

Finally, by using the same strategy as in Sec. III one obtains
the correlator G′

x,t (t ) as

G′
x,y = SxS̄y, (A7)

where Sx in the space-time scaling limit is given as [48]

Sx(t ) 

⎧⎨
⎩

2|ξ |
γ++γ−

2 +2|ξ |J|x|(2t ) |x| > 0

− 1
(γ ++γ − )2t J1(2t ) x = 0

(A8)

where ξ = x/(2t ), and Jx(t ) are the Bessel functions of the
first type.

Finally, we should remark that it is possible to extract from
(A6) the hydrodynamic behavior in the limit x, y, t → ∞,
similar to (84). Indeed, the term G̃x,y in (A6) is the same as
in (84) except for a redefinition γ − → γ + + γ −. Let us now
discuss the first term in (A6). By using (A8) in (A6), one
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obtains

γ +
∫ t

0
dτG′

x,y(t − τ )

= γ +t
∫ 1

0
dτ

|x|/(τ t )

(γ + + γ −)/2 + |x|/(tτ )

× |y|/(τ t )

(γ + + γ −)/2 + |y|/(tτ )
J|x|(2tτ )J|y|(2tτ ). (A9)

After using the integral representation for the Bessel func-
tion J|x|(2t ) [see (B6)] one obtains the three-dimensional
integral

γ +
∫ t

0
dτG′

x,y(t − τ )

= γ +t
∫ 1

0
dτ r′

x(τ )r′
y(τ )Re

∫ π

0

dz

π

× eiz|x|−2itτ sin(z)Re
∫ π

0

dk

π
eik|y|−2itτ sin(k), (A10)

where we defined

r′
x(τ ) := |x|/(τ t )

(γ + + γ −)/2 + |x/(τ t )| . (A11)

Now it is clear that in the limit x, y, t → ∞ one can per-
form two of the integrals in (A10) (for instance, the integral in

τ and p) by using the stationary phase. A similar calculation is
reported in Appendix B [see (B7)]. It is also useful to observe
that in the limit x, y, t → ∞ with x/t, y/t fixed and x/t ≈ y/t
one can replace r′

x ≈ r′
y in (A10). By performing the integral,

one should be able to obtain the hydrodynamic limit of (A6)
[similar to (84)].

APPENDIX B: EFFECTIVE DELTA POTENTIAL OF THE
DISSIPATIVE IMPURITY

In this section we derive the asymptotic behavior of F D
x

[cf. (73)] in the limit x → ∞. This will allow us to derive the
reflection and transmission amplitudes of the effective delta
potential associated with the dissipative impurity. First, the in-
verse Fourier transform of Z (p) [cf. (69)] with respect to q can
be obtained analytically by using (21). Thus, to determine F D

x
[cf. (73)] one has to calculate the inverse Laplace transform

F D
x := L−1

( − γ −
2

γ −
2 + √

s2 + 4

(
2i

s + √
s2 + 4

)|x| 1

s − 2i cos(p)

)
.

(B1)

This can be obtained by using (24) and that

L−1

(
1

s − 2i cos(p)

)
= e2it cos(p). (B2)

Now we obtain

F D
x = − i|x|γ −

2
e2it cos(p)

[ ∫ t

0
dτJ|x|(2τ )e−2iτ cos(p) − γ −

2

∫ t

0
dτ

∫ τ

0
dze−γ −z/2

(
τ − z

τ + z

) |x|
2

J|x|(2
√

τ 2 − z2)e−2iτ cos(p)

]
(B3)

We now consider the space-time scaling limit x, t → ∞ with
the ratio ξx = x/(2t ) fixed. In the scaling limit we have(

τ − z

τ + z

) |x|
2


 e−2|ξx |z. (B4)

We can proceed as in Sec. III A to obtain

F D
x (p) := −γ −

2
ID
x

= −γ −

2
i|x|

∫ 1

0
dτJ|x|(τ t )e2it (1−τ ) cos(p) |x|

τ
γ −
2 + |x|

t

.

(B5)

Now we have to derive the large x, t behavior of the integral
ID
x . To proceed, we employ the integral representation of the

Bessel function Jn(x) as

Jx(xτ/ξx ) = Re
∫ 1

0
dzeix(πz−τ/ξx sin(πz)). (B6)

One now has to determine the large x behavior of the double
integral

ID
x (p) = 1

2
i|x|e2it cos(p)

∫ 1

0
dτ

∫ 1

0
dz

× [ei|x|(πz−τ/|ξx | sin(πz)−τ/|ξx | cos(p)) + z → −z]

× |x|
τ

γ −
2 + |x|

t

, (B7)

which is obtained by using (B6) in (B5). The integral in
(B7) can be evaluated by using the two-dimensional stationary
phase approximation [83]. The stationary point for the first
term in the square brackets is at

τ ∗ = |ξx|
| sin(p)| , z∗ = |p|

π
− 1

2
. (B8)

By imposing that the stationary point is in the integration
domain, one obtains the condition

π

2
� |p| � π − arcsin(|ξx|). (B9)

The second term within the square brackets in (B7) has a
stationary point at

τ ∗ = |ξx|
| sin(p)| , z∗ = 1

2
− |p|

π
. (B10)

The condition that the stationary points is in the integration
domain [0, 1] × [0, 1] gives the condition

arcsin(|ξx|) � |p| � π

2
. (B11)

The analysis above implies that F D
n (p) has a contribution ∝

1/|x| for arcsin(|ξx|) � |p| � π − arcsin(|ξx|). For values of
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p outside of this interval the integral in (B7) exhibits a faster
decay with increasing x and it does not contribute in the space-
time scaling limit.

We now apply the stationary-phase approximation to (B7).
Given two generic functions g(w) and f (w) in two dimen-
sions, the stationary phase method states that in the large x
limit one has [83]∫

�

g(w)eix f (w) 
 g(w0)| det H |−1/2

× exp(ix f (w0) + i/4πσ )
2π

x
. (B12)

Here � is the integration domain. In our case from (B7) �

is the square � = [0, 1] × [0, 1]. In (B12) H is the Hessian
matrix, σ denotes the signature of the eigenvalues of H , and
w0 is the stationary point, i.e., for which ∇w f (w) = 0. One
can show that in our case σ = 0. Moreover, the two stationary
points (B8) and (B10) give the same contribution. From (B5)
we obtain

| det H | = π2 sin2(p)

ξ 2
x

. (B13)

The phase factor in (B12) reads

f (w0) = −π

2
+ |p|. (B14)

After using (B14) (B13) in (B12) we obtain (74)

F D
x (p) = −γ −

2

χx
γ −
2 + |vp|

e2it cos(p)+i|x||p|, (B15)

where we used that vp = −2 sin(p) [cf. (4)] and χx is defined
in (75). The prefactor multiplying the exponential is the reflec-

tion amplitude r(p) in (76). For p such that χx = 0 the integral
in (B7) does not possess stationary points within the inte-
gration domain. Then, contributions originate from stationary
points at the boundary of the domain and are subleading,
i.e., they do not contribute in the space-time scaling limit.
These contributions can be analyzed systematically within the
stationary-phase approximation. Let us now briefly discuss
their origin. We use the trivial identity [83]

∫
�

dwg(w)eix f (w) = − i

x

∫
∂�

ds(�u · ν̂)eix f (w)

+ i

x

∫
�

dw( �∇ · �u)eix f (w), (B16)

where ∂� denotes the boundary of � and ν̂ is the unit vector
pointing outward normal to ∂�. In (B16) �u is defined as

�u = �∇ f

| �∇ f |2 g. (B17)

In the presence of a boundary stationary point, the first term
in the right hand side in (B16) gives a contribution 1/x3/2,
whereas the last term is subleading.

APPENDIX C: DOUBLE FERMI SEAS EXPANSION: SOME
TECHNICAL DERIVATIONS

In this section we report the derivation of (83). Specifically,
we first derive in detail the term

Ix,y := 1

2π

∫ kl
F

−kl
F

dkSl,U
k,x S̄l,D

k,y = 1

2π

∫ π

−π

d pdqe2it cos(p)−2it cos(q)+ipx−i|q||y|I l (p, q)χy(q)r(q). (C1)

This is obtained from (62), (65), and (67) with (69) and (70), and the asymptotic expansion (B15). In (C1), r(q) is the reflection
amplitude defined in (76), I l is defined in (70), and χy(q) is given by (75).

Here we are interested in the space-time scaling limit x, y, t → ∞ with ξx = x/(2t ) and ξy = y/(2t ) fixed and |x − y|/t → 0.
In this regime the integral in (C1) is dominated by the region q ≈ p. Thus, it is convenient to define Q := p − q and K :=
(p + q)/2. By treating carefully the absolute value |q| in (C1), we can rewrite (C1) as

Ix,y = −
∫ π/2

−π/2

dK

2π

∫ 2K

−2π+2|K|
dQeiK (x−|y|)+i((x+|y|)/2−2t sin(K ))Q 1

2π i(Q + i0)
χy(K )r(K )

−
∫ π

π/2

dK

2π

∫ 2π−2K

−2π+2K
dQeiK (x−|y|)+i((x+|y|)/2−2t sin(K ))Q 1

2π i(Q + i0)
χy(K )r(K )

−
∫ π/2

−π/2

dK

2π

∫ 2π−2|K|

2K
dQeiK (x+|y|)+i((x−|y|)/2−2t sin(K ))Q 1

2π i(Q + i0)
χy(K )r(K )

−
∫ −π/2

−π

dK

2π

∫ 2π−2|K|

2|K|−2π

dQeiK (x+|y|)+i((x−|y|)/2−2t sin(K ))Q 1

2π i(Q + i0)
χy(K )r(K ). (C2)

The first two rows correspond to q > 0, the other two to q < 0. In (C2) we used that in the limit q ≈ p Eq. (80) holds. We now
observe that in the first two integrals in (C2) only the region with K > 0 contribute, whereas the remaining two integrals get
contributions from the region with K < 0. The final result reads as

1

2π

∫ kl
F

−kl
F

dkSl,U
k,x S̄l,D

k,y =
∫ kl

F

0

dK

2π
eiK (x−|y|)�

(
2t sin(K ) − x + |y|

2

)
χyr +

∫ 0

−kl
F

dK

2π
eiK (x+|y|)�

(
2t sin(K ) − x − |y|)

2

)
χyr, (C3)
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where we used (81). A similar calculation allows us to obtain

1

2π

∫ kl
F

−kl
F

dkSl,D
k,x S̄l,U

k,y =
∫ kl

F

0

dK

2π
eiK (|x|−y)�

(
− |x| + y

2
+ 2t sin(K )

)
χxr

+
∫ 0

−kl
F

dK

2π
eiK (−|x|−y)�

(
− −|x| + y

2
+ 2t sin(K )

)
χxr. (C4)

We also have

1

2π

∫ kl
F

−kl
F

dkSl,D
k,x S̄l,D

k,y =
∫ kl

F

0

dK

2π
eiK (|x|−|y|)�

(
2t sin(K ) − |x| + |y|

2

)
χxχy|r2

+
∫ 0

−kl
F

dK

2π
eiK (−|x|+|y|)�

(
2t sin(K ) − −|x| − |y|

2

)
χxχyr2 (C5)

The expressions above can be simplified as follows. Let us consider the case with x, y �= 0. We observe that in Eq. (C3) we can
neglect oscillating contributions in the limit x, y → ∞. Eq. (C3) becomes

1

2π

∫ kl
F

−kl
F

dkSl,U
k,x S̄l,D

k,y =
∫ kl

F

0

dK

2π
eiK (|x|−|y|)�[sign(x)(vK − |ξx| − |ξy|)]χyr. (C6)

In a similar way we obtain that

1

2π

∫ kl
F

−kl
F

dkSl,D
k,x S̄l,U

k,y =
∫ kl

F

0

dK

2π
eiK (|x|−|y|)�[sign(y)(vK − |ξx| − |ξy|)]χxr. (C7)

One should observe that (C6) and (C7) are nonzero only for
x > 0 and y > 0, respectively. Finally, we observe that in (C5)
only the first term contributes. We obtain

1

2π

∫ kl
F

−kl
F

dkSl,D
k,x S̄l,D

k,y =
∫ kl

F

0

dK

2π
eiK (|x|−|y|)

× �[vK − |ξx| − |ξy|]χxχyr2. (C8)

By using that in the space-time scaling limit |x − y|/t → 0,
we can rewrite (C6) as

1

2π

∫ kl
F

−kl
F

dkSl,U
k,x S̄l,D

k,y =
∫ kl

F

0

dK

2π
eiK (x−|y|)�(x)χxχyr. (C9)

Equation (C7) becomes

1

2π

∫ kl
F

−kl
F

dkSl,D
k,x S̄l,U

k,y =
∫ kl

F

0

dK

2π
eiK (|x|−y)�(y)χyχxr. (C10)

Finally, we have that (C8) is rewritten as

1

2π

∫ kl
F

−kl
F

dkSl,D
k,x S̄l,D

k,y =
∫ kl

F

0

dK

2π
eiK (|x|−|y|)χxχyr2. (C11)

Let us comment on the terms with Sr
k,x [see (62)]. It is clear

from the symmetry of the problem (see Fig. 1) that these
coincide with (82), (C9), (C10), and (C11) after replacing
kl

F → kr
F and after changing K → −K and x, y → −x,−y in

the integrands.

APPENDIX D: TWO EQUAL FERMI SEAS: DIRECT
DERIVATION

In this section we present the direct derivation of the
fermionic correlator Gx,y for the free-fermion chain with only
losses and kl

F = kr
F = kF . This corresponds to the uniform

Fermi sea as initial state. For a uniform state the calcula-
tions are somewhat easier than in Sec. IV B because only the
asymptotic behavior of F D

x (p) [cf. (73)] in the limit x, t → ∞
is required, whereas the stationary phase approximation dis-
cussed in Sec. IV B is not necessary. The result coincides with
Eq. (83) after fixing kl

F = kr
F = kF , confirming the correctness

of the derivation in Sec. IV B.
For a Fermi sea with Fermi level kF the initial correlation

matrix reads

Gx,y = sin (kF (x − y))
π (x − y)

. (D1)

We now use the parametrization

Gx,y = 1

2π

∫ kF

−kF

dkSk,xS̄k,y (D2)

As in Sec. IV B, the equation for Sk,x is

Sk,x

dt
= i[Sk,x+1 + Sk,x−1] − γ −

2
δx,0Sk,x. (D3)

The initial condition reads as

Sk,x(0) = eikx. (D4)

We now use that
∞∑

x=−∞
eixz = W (z) := 2π

∞∑
p=−∞

δ(z − 2π p). (D5)

The Laplace/Fourier transforms of (D3) read as

Ŝk,q = ŜU
k,q + ŜD

k,q. (D6)

Here we defined

ŜU
k,q = 1

s − 2i cos(q)
W (k − q) (D7)
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and

ŜD
k,q = − γ −

4π

∫ π

−π

d p
W (k − p)

γ −/2 + √
s2 + 4

×
√

s2 + 4

s − 2i cos(p)

1

s − 2i cos(q)
. (D8)

Following the same steps as in Sec. IV B, we can rewrite SD
k,n

and SU
k,n as

SU
k,x = 1

2π

∫ π

−π

dqe2it cos(q)+iqxW (k − q) (D9)

SD
k,y = 1

2π

∫ π

−π

d pW (k − p)e2it cos(p)+i|x||p|χxr. (D10)

The integrations over p and q in (D9) and (D10) are straight-
forward, in contrast with Sec. IV B, because of the simple
structure of W (z) [cf. (D5)]. The net effect of the integration
is to fix q = k and p = k. The final result is given as

Gx,y(t ) = 1

2π

∫ kF

−kF

dk[eikx + χxrei|k||x|][e−iky + χyre−i|k||y|]

(D11)

It is interesting to observe that in (D11) the time-dependent
terms e2it cos(k) drop out. The only time dependence is in the
term χ|ξx | and χ|ξy|. Finally, it is straightforward to check that
in the space-time scaling limit x, y, t → ∞ after neglecting

-1 -0.5 0 0.5 1

x/(2t)

0.1

0.2

0.3

0.4

0.5

n x,
t

γ-
=0.5 time=22

γ-
=0.5 time=11

γ-
=0.5 time=5

γ-
=5 time=22

γ-
=5 time=11

γ-
=5 time=5

hydrodynamics

FIG. 9. Density profile nx,t in a free fermion chain with local
losses. The chain is prepared in a uniform Fermi sea at half filling,
i.e., with kF = π/2. The symbols are exact numerical data for γ − =
0.5 and γ − = 5. Lines are exact results in the space-time scaling
limit. The oscillating correction are an artifact of the approximations
and vanish in the space-time scaling limit.

oscillating terms Eq. (D11) coincides with (83) with kl
F =

kr
F = kF .

In Fig. 9 we discuss exact numerical data for the fermionic
density nx,t = Gxx obtained by solving numerically Eq. (9)
with γ + = 0. We fix kF = π/2. In the Figure we show results
for both “strong” dissipation (γ − = 5) and “weak” dissipa-
tion (γ − = 0.5). Note that a singularity is present at x = 0,
as expected. Also, for |x|/(2t ) > 1 one has nx,t = 1/2. The
continuous lines in Fig. 9 are (D11). Note that oscillating
corrections are present. These are an artifact of the derivation
of (D11). The corrections vanish in the limit x, t → ∞ and
Eq. (D11) fully describes the numerical data.
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