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We employ singular value decomposition (SVD) to study the eigenvalue spectra of random spin systems. By
SVD, eigenvalue spectrum is decomposed into orthonormal modes Wk with weight λk . We show that the scree
plot (λk with respect to k) in the ergodic phase contains two branches that both follow power law λk ∼ k−α but
with different exponents α. By evaluating Wk , we verified the part of λk with k > kTh is universal that follows
random matrix theory, where kTh is related to the Thouless energy. We further demonstrate that α corresponds
only to the exponential part of the level spacing distribution while being insensitive to the level repulsion, or
equivalently the system’s symmetry. Consequently, α gives an underestimation for the many-body localization
transition point, which suggests a nonergodic behavior that may be attributed to the Griffiths regime.
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I. INTRODUCTION

The quantum phases of matter in isolated systems is a focus
of modern condensed matter physics where the existence of
two generic phases has been well established: an ergodic
phase and a many-body localized (MBL) phase [1,2]. In an er-
godic phase, the system acts as the heat bath for its subsystem,
which results in extensive quantum entanglement that follows
volume law. In contrast, a MBL phase is where localization
persists in the presence of weak interactions, which leads
to area-law entanglement. The different scaling behaviors
of quantum entanglement provide the modern understanding
about these two phases [3–11] .

On the other hand, the ergodic and MBL phases are tra-
ditionally distinguished by their eigenvalue statistics [12–20]
whose foundation is laid by the random matrix theory (RMT)
[21,22]. RMT is a powerful mathematical tool that describes
the universal properties of the eigenvalues in the ergodic
phase which depend only on the system’s symmetry while
independent of microscopic details. Specifically, the Gaussian
orthogonal/unitary ensemble (GOE/GUE) describes systems
with/without time reversal symmetry, and Gaussian symplec-
tic ensemble (GSE) stands for time-reversal invariant systems
with broken spin rotational invariance. On the contrary, the
eigenvalues in MBL phase are independent of each other and
belong to the Poisson ensemble.

Compared to the properties of each phase, the evolution
between them is much less understood, especially on the
ergodic side. There are two issues of particular interest. The
first one concerns the energy scale called Thouless energy
ETh, defined through the Thouless time tTh = h̄/ETh, which
measures the average time a particle takes to diffuse over the
system. Therefore, eigenvalue fluctuations below E Th are well
characterized by RMT and hence universal, while those above
ETh are model dependent. This energy scale ETh is difficult to
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observe with local spectral statistics such as level spacing or
spacing ratio distributions, but can be probed by long-range
spectral measures such as the number variance [23–25] or
spectral form factor [26–29]. The second issue regards the
Griffiths regime near the transition region [30–34], where
an inhomogeneous mixture of locally thermal and localized
regions coexist and result in anomalously slow dynamics and
multifractality of eigenstates. Unlike the Thouless energy, the
study of tge Griffiths effect is normally based on eigenfunc-
tions.

In this work, we employ the singular-value decomposition
(SVD) to study the eigenvalue spectra of random spin systems
with MBL transition and show that both the Thouless energy
and Griffiths regime can be revealed through the scaling of
singular values. The advantages of this method are two-fold.
For the Thouless energy, SVD requires no unfolding proce-
dure, which is necessary for studying number variance and
the spectral form factor, and therefore avoids the potential am-
biguity raised by the concrete unfolding strategy [35] . Very
recently, Berkovits employed SVD to the study of Thouless
energy in the Anderson model [24] and the identification of
a nonergodic extended phase in the Rosenzweig-Porter model
[25,36]. We now bring it to the many-body regime. For the
Griffiths effect, the inputs of SVD are the eigenvalue spectra,
which are numerically much easier to obtain than the eigen-
functions.

The underlying mechanism behind SVD is to view the
eigenvalue spectrum of a complex quantum system as a time
series [37–43] and by performing SVD to the “sample matrix”
[see Eq. (2) in Sec. II] we are able to distinguish the trend and
fluctuation modes therein. This technique is, in essence, iden-
tical to the unsupervised machine learning algorithm called
principal component analysis (PCA), which has also found
various applications in condensed matter physics [44–47].
However, while PCA deals with several components with the
largest weights, we shall see the universal information of the
MBL system is encoded in the intermediate components with
lower weights.
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This paper is organized as follows. In Sec. II we introduce
the SVD method, and show the scree plot (singular values as a
function of the level index) for the MBL phase reflects a clear
integrable behavior, while that for the ergodic phase breaks
into two branches—a universal high-order part that belongs
to RMT and a nonuniversal part, with the starting point of
the former identifying the Thouless energy ETh. In Sec. III
we dig into the structures of the principal components, show
the higher-order ones are close to the Fourier modes of the
eigenvalue spectrum, and explain why the higher-order part
of the scree plot is universal. In Sec. IV we demonstrate that
the scree plot only reflects the exponential part of the level
spacing distribution while being insensitive to the level repul-
sion, or equivalently the system’s symmetry. Consequently, as
detailed in Sec. V, it gives an underestimation on the ergodic-
MBL transition point, which suggests a nonergodic behavior
that may be attributed to the Griffiths regime. A discussion
and conclusion are presented in Sec. VI.

II. SVD ON EIGENVALUE SPECTRA

In this work we consider the paradigmatic spin model with
ergodic-MBL transition, that is, the antiferromagnetic Heisen-
berg model with random external fields [48], the Hamiltonian
reads

H =
L∑

i=1

Si · Si+1 +
L∑

i=1

∑
τ=x,y,z

hτ ε
τ
i Sτ

i , (1)

where the coupling strength is set to be 1, and ετ
i s are random

variables within range [−1, 1]. We first consider the orthog-
onal case with time-reversal symmetry, that is, hx = hz =
h �= 0 and hy = 0, where an ergodic-MBL transition happens
at hc � 3 [14,15]. Using exact diagonalization, we generate
N = 1000 samples of eigenvalue spectra at various random-
ness h in an L = 13 system, with the Hilbert space dimension
being 213 = 8192. For each spectrum, we take out the middle
P = 1000 eigenvalues and arrange them into an N × P matrix
X ,

X =

⎛⎜⎜⎜⎜⎜⎜⎝

E (1)
1 E (1)

2 . . . E (1)
P

E (2)
1 E (2)

2 . . . E (2)
P

. . . .

. . . .

. . . .

E (N )
1 E (N )

2 . . . E (N )
P

⎞⎟⎟⎟⎟⎟⎟⎠, (2)

where E ( j)
i stands for the ith eigenvalue in the jth sample. For

clarity, we shall call X the “sample matrix.” We then perform
SVD on X , which equals reexpressing X as

X = U�W ≡
∑

k

σkX (k), X (k)
i j = UikWk j , (3)

where � is an N × P matrix whose nonzero elements �i,i ≡
σi are the ordered singular values σ1 � σ2 � . . . � σr with
r � min[N, P] = Rank[X ]. This technique is equivalent to
the machine learning algorithm called principal component
analysis (PCA), the spirit of which is to view the eigenvalue
spectrum as multi-dimensional data, and by SVD we decom-
pose it into orthonormal modes Wk—the kth row of the P × P
matrix W —with weight σk . The Wk is called the principal

FIG. 1. Scree plots of {λk/λ1} at various randomness strengths.
Despite the two dominant modes, λk in the MBL phase (h = 5)
follows a power law k−α with α � 2 reflecting the integrable be-
havior. Two-branch structures appear for λk in the ergodic phase
(h < 3), separating the model-dependent lower part and the universal
higher part that belongs to RMT, the starting point of the higher part
provides an estimation of the Thouless energy.

component in the terminology of PCA, and encodes one fea-
ture (character) of the eigenvalue spectrum whose physical
meaning is read by evaluating its behavior Wk[i], where i
denotes the energy level index. Given the decreasing tendency
of σk , we can approximate the original sample matrix X by
X̃ = ∑m

k=1 σkX (k) with some value m, hence achieving the
purpose of dimension reduction. In most applications of PCA,
we only keep several dominant components with the largest
weights. However, as we shall see, the universal information
of the random spin system is encoded in the intermediate
components with lower weights.

Another interpretation of SVD is to treat X as a multi-
variate time series, with λk ≡ σ 2

k being the eigenvalue of the
covariance matrix X T X . It was demonstrated [24,25,37] that
λk with large k follows the power-law behavior

λk ∼ 1

kα
, (4)

with α = 1(2) in the chaotic (integrable) system, correspond-
ing to the ergodic (MBL) phase, respectively.

As a demonstration, we generate the sample matrix X for
Eq. (1) with L = 13 at various randomness strengths and
plot the resulting λk after SVD with respect to index k (the
so-called scree plot) in a log-log scale in Fig. 1. Without
loss of generality, we divide each λk by the largest value λ1.
For comparison, we also generate eigenvalue spectra from
modeling GOE matrices [orthogonal matrices with random
elements drawn from standard Gaussian distribution N (0, 1)]
of the same size, the resulting λk/λ1 appear as the grey dots
therein. Clearly, in all cases, the first two modes are orders of
magnitudes larger than the rest, which indicates the existence
of two overwhelming features in the eigenvalue spectrum. For
reasons detailed in the next section, we identify them to be the
mean energy 〈E〉 and mean level spacing 〈s〉. While for large
modes with k > 300, the weights drops very rapidly, indicat-
ing they contribute little to the properties of the eigenvalue
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spectrum. The universal information is thus expected to be
encoded in the intermediate modes with 2 < k < 300.

More specifically, for the case in the MBL phase (h = 5),
the scree plots with 3 � k � 200 fits well into the power-law
behavior Eq. (4) with α = 1.962, very close to the value
of 2 for the integrable system, as expected. While for data
in the ergodic phase (h = 1), λk divides into two parts:
the higher-part 30 � k � 200 with power-law exponent α2 �
1.085 almost coincides with that of modeling GOE, reflecting
a clear chaotic behavior, and this part is identified to be uni-
versal below Thouless energy and related to RMT; while the
lower-part 3 � k � 15 follows a super-Poissonian power-law
behavior with α1 � 2.567, and is therefore identified to be
the model-dependent part beyond Thouless energy. A more
detailed analysis will be provided in Sec. III. Interestingly, this
value of α1 happens to be close to the one in the metallic phase
of a three-dimensional (3D) Anderson model [24], which may
suggest a subtle correspondence between these two models.

From Fig. 1 we can see such a two-branch scree plot is
general for data in the ergodic phase, and quantitatively we
identify the Thouless energy ETh through the starting point of
the chaotic behavior λk ∼ k−1, which is kTh ∼ 30 for the case
h = 1 . As the randomness grows, the kTh increases—which
indicates ETh decreases—and the two branches gradually get
mixed. At the transition point h � 3, the scree plot becomes
almost identical to that of the MBL phase, suggesting the
saturation of α2 may be an indicator for the MBL transition.
However, as discussed in detail in Sec. V, this may not provide
an accurate estimation.

Up to now, we have shown the scree plots provides a
transparent way to reveal the Thouless energy ETh. However,
since there is an artifact in determining where the chaotic
behavior λk ∼ k−1 begins to hold, this method is less ac-
curate in quantitatively determining E Th than more standard
probes like the spectral form factor. Meanwhile, the numerics
clearly indicate that ETh decreases with randomness strength,
which is qualitatively consistent with the results in Ref. [29].
Moreover, as stated in Sec. I, the central advantage of SVD is
that it requires no unfolding procedure. To further pursue the
physics behind the scree plot, we now turn to the analysis of
the principal components Wk .

III. PRINCIPAL COMPONENT ANALYSIS

The kth principal component of the eigenvalue spectrum
is represented by the kth row of the matrix W , we therefore
evaluate the behavior of Wk with respect to the energy level
index i to read out the physics. The results in this section are
based on the data from h = 1, and we checked they hold in
other cases as well.

We saw in Fig. 1 that the scree plot is dominated by two
largest weights λ1 and λ2, which means the eigenvalue spec-
trum contains two dominant features that are overwhelming
over other features. We therefore draw the behaviors of two
dominant modes W1 and W2 in Fig. 2(a), it is clear that both of
them are linearly dependent with level index i, suggesting they
correspond to two nonfluctuating features of the eigenvalue
spectrum. We postulate these two dominant features to be
the mean energy 〈E〉 and the mean level spacing 〈s〉, both of
which are nonuniversal. To support this conjecture, we first

FIG. 2. (a) Behaviors of the two dominant components W1/2—
the linear behaviors indicate they correspond to two nonfluctuating
features of the eigenvalue spectrum, which are suspected to be
the mean energy 〈E〉 and level spacing 〈s〉. (b) Scree plots of λk

after performing SVD on the sample matrix comprised of level
spacings and spacing ratios, where the ratio of first two weights
λ1/λ2 = 789.14(2.25) in the respective cases. (c,d) Behaviors of typ-
ical higher components Wk . The quasisinusoidal behaviors indicate
they are close to the kth Fourier mode of the eigenvalues and the
frequency increases with k.

change the input data from the eigenvalues {Ei} to the level
spacings {si = Ei+1 − Ei}. With this input, the information of
the mean energy 〈E〉 is lost, leaving 〈s〉 as the only dominant
feature. Therefore, when applying SVD to this new sample
matrix X ′, we should observe only one dominant weight λ1.
This is verified in Fig. 2(b), where λ1/λ2 = 789.14 is ob-
served. We can further change the input to be the spacing
ratios {si+1/si}, where the information about 〈E〉 and 〈s〉 are
both lost, and the resulting scree plot is expected to contain
no dominant weights. This is also verified in Fig. 2(b), where
we see λ1 is the same order with λ2 (the precise value is
λ1/λ2 = 2.25), which confirms our conjecture.

Strictly speaking, the mean energy 〈E〉 and level spacing
〈s〉 are nonuniversal for different reasons. The 〈E〉 stands for
the global energy scale of the system and therefore depends
on the model’s details. While 〈s〉 is the value that can be ar-
tificially assigned when counting level statistics, which stems
from the mathematical degree of freedom in the joint proba-
bility distribution function of the eigenvalues. To be specific,
recall the eigenvalue distribution function in the standard WD
class is [21,22]

P({Ei}) = A1

∏
i< j

|Ei − Ej |βe−A2
∑

i E2
i ; β = 1, 2, 4, (5)

where A1 and A2 are two parameters constrained by the
single normalization condition

∫
P({Ei})

∏
i dEi = 1. From

P({Ei}) we can derive the celebrated WD distribution P(s) =
A1sβe−A2s2/2 using the Wigner surmise [21,22]. The single
normalization condition

∫
P(s)ds = 1 is not sufficient to de-

termine two parameters A1, A2, which gives us the freedom to
choose 〈s〉. In most practical studies, we take 〈s〉 to be 1.
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FIG. 3. Power spectrum function F (k) for ergodic (h = 1) and
MBL (h = 5) phases. In the first a clear two-branch structure appears
just like in the scree plot of λk . The power-law exponents γ � α are
observed in all cases.

Having understood the physics of the two dominant com-
ponents, we now return to analysis of the components Wk (k �
3) of the original sample matrix X , several of which are
plotted in Figs. 2(c) and 2(d). We observe clear sinusoidal
behaviors of Wk with respect to level index i, with the
frequency increasing with k. Specifically, we have Wk[i] ∼
cos( (k−1)π

N i + ϕk ) with N = 1000 being the number of eigen-
values, which indicates the component Wk is close to the
kth Fourier mode of the eigenvalue spectrum. Therefore, for
smaller k, Wk reflects the level fluctuations on larger energy
scale. When k is not so large, this energy scale goes beyond
Thouless energy, so its behavior is nonuniversal; while when
k exceeds certain threshold kTh, this energy scale falls within
the Thouless energy. This threshold kTh divides the λk into two
parts: the nonuniversal part with k < kTh and universal part
with k > kTh. This is the origin of the two-branch structure of
the scree plot in the ergodic phase.

The local fluctuations of the eigenvalue spectra can be
further revealed by considering the power spectrum function
whose definition is

Fm(k) =
∣∣∣∣∣1

r

r∑
n=1

[(
r∑

p=3

σpX (p)
mn

)
exp

(
−2π ink

r

)]∣∣∣∣∣
2

, (6)

where
∑r

p=3 σpX (p)
mn are the eigenvalue spectra after “global

unfolding” [37–39]. By averaging over the ensemble we get
the power spectrum function F (k) = 1

N

∑N
m=1 Fm(k), which

was shown to behave differently in integrable and chaotic
systems [24,37,40,49,50]. To this end, we calculate F (k) in
the h = 1(5) case standing for the ergodic (MBL) phase.
The results are shown in Fig. 3. As we can see F (k) be-
haves totally similar to λk: in the ergodic phase F (k) divides
into two branches that both follow 1/kγ , specifically, the
lower modes satisfy γ1 � 2.5 � α1 and higher modes satisfy
γ2 � 1 � α2; while for the MBL case, a single curve with
γ � 2 � α appears. This coincidence has also appeared in
the noninteracting Anderson model [24], which indicates that
F (k) and λk essentially contain identical physical information.

Based on the PCA results above, we can provide a qualitative
explanation as follows.

Weverified that Wk is close to the Fourier modes of eigen-
value spectrum for k � 3, hence the power-law behavior λk ∼
k−α essentially indicates a decreasing trend of the eigenval-
ues’ Fourier weights. On the other hand, the definition of
F (k) in Eq. (6) drops the first two dominant terms X (1/2),
which stand for the mean energy 〈E〉 and level spacing 〈s〉 that
are both nonfluctuating. Therefore, the fluctuating behaviors
of the original eigenvalue spectra and the one after “global
unfolding” (that is,

∑r
p=3 σpX (p)

mn ) should be the same. Conse-
quently, the scaling behaviors of λk and F (k) are expected to
be identical.

A technical issue worth mentioning is that the choice of
power spectrum in Eq. (6) is not unique. Another routine is to
construct the following time series [40–43]:

δn =
n∑

i=1

(si − 〈s〉) = sn − n〈s〉, (7)

where sn is the nth-order level spacing. It is clear that 〈δn〉
gets rid of the nonuniversal information about 〈E〉 and 〈s〉,
in a similar way to

∑r
k=3 σkX (k)

i j in Eq. (6), hence its Fourier
weight S(k) shows totally similar behaviors to F (k) in Fig. 3.
Despite these qualitative estimations, we also note the analyt-
ical derivation for S(k) was recently given in Refs. [51–53].

IV. RELATING α TO LEVEL SPACING DISTRIBUTION

Up to now, we demonstrated that the power-law exponent
α (which is α2 in the ergodic phase) for λk with large k
is universal that related to RMT. However, the power-law
exponent α is only a single number. It is still questionable
whether it can distinguish different random matrix ensembles
which may contain multiple parameters. For example, the
general form of the level spacing distribution P(s) contains
two parts: the polynomial part that reflects the level repulsion
and an exponential part that reflects large s decaying. As for
the random spin system, a widely used two-parameter spacing
distribution for the ergodic-MBL transition was proposed by
Serbyn and Moore [20], i.e.,

P(β1, β2, s) = C1sβ1 exp(−C2s2−β2 ). (8)

For the case deep in the ergodic phase, we have β1 = 1, β2 =
0 standing for the GOE distribution; while for the case deep in
the MBL phase, β1 = 0, β2 = 1 for the Poisson ensemble. We
conjecture that the power exponent α of λk corresponds only
to the parameter β2 in the exponential part, while being insen-
sitive to the level repulsion β1. If this conjecture is correct, two
deductions are immediate: (i) the scree plot with α = 2 does
not necessarily correspond to the Poisson ensemble, but also
to a number of intermediate ensembles whose spacing distri-
bution decays as e−Cs; (ii) the scree plot with α = 1 in ergodic
phase is insensitive to the level repulsion, or equivalently, the
symmetry of the system.

To verify (i), we consider the random matrix model called
the short-range plasma model (SRPM) [54], which describes
the eigenvalues as an ensemble of one-dimensional parti-
cles with only nearest-neighboring logarithmic interactions.
SRPM holds the semi-Poisson distribution which is widely
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FIG. 4. (a) {λk/λ1} of SRPM with different level repulsion β. The integrable behavior λk ∼ k−2 appears in all cases. (b) {λk/λ1} for the
unitary spin system, the behaviors of both the ergodic (h = 1) and MBL (h = 5) phases are totally similar to those in the orthogonal system
in Fig. 1, indicating the scree plot is insensitive to the system’s symmetry. (c) {λk/λ1} for the Gaussian β ensemble with several nonstandard
values of β. Chaotic behavior λk ∼ k−1 appears in all cases.

accepted as the critical distribution at the MBL transition
point. It was shown [54] that the large s behavior of SRPM
decays as sβe−(β+1)s with β being the Dyson index controlling
the strength of level repulsion. Thus, if the deduction (i) holds,
we should observe identical power-law exponents α for cases
with different β. To effectively obtain the eigenvalue spectrum
of the SRPM, we make use of an elegant correspondence be-
tween SRPM and the Poisson ensemble, that is, the spectrum
comprised of every (β + 1)th eigenvalue from the Poisson
ensemble is identical to the eigenvalue spectrum of SRPM
with index β [55]. Therefore, we can easily obtain the sample
matrix of SRPM to perform SVD, and the resulting scree plots
for β = {1, 2, 3, 4} are displayed in Fig. 4(a). As expected,
the scree plots are totally similar, and the power-law exponent
α � 2 appears in all cases, which verifies (i).

For deduction (ii), we first consider a unitary spin sys-
tem that breaks time-reversal symmetry, i.e., the case with
hx = hy = hz = h �= 0 in Eq. (1). This model undergoes an
ergodic-MBL transition at around hc � 2.5 [14,15], with the
level spacing distribution evolving from GUE to Poisson. We
likewise take h = 1 and h = 5 to represent the ergodic and
MBL phases, respectively. With the same size of samples, we
obtain the resulting scree plots shown in Fig. 4(b), where we
also draw {λk/λ1} from a modeling GUE for comparison. As
can be seen, λk ∼ 1/k appears in both the higher part of the
ergodic phase and modeling GUE, which are totally similar to
the cases in Fig. 1 and λk ∼ 1/k2 appears for the data in the
MBL phase, as expected. We further consider the Gaussian
β ensemble which holds the same form of eigenvalue dis-
tribution as WD classes [Eq. (5)], but with β different from
{1, 2, 4}. The eigenvalue spectra of the general Gaussian β

ensemble can be efficiently generated by diagonalizing the
following tridiagonal matrix [56]:

Mβ = 1√
2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x1 y1

y1 x2 y2

.
.

.

.
.

.

.
.

.
yN−2 xN−1 yN−1

yN−1 xN

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

(9)

where the diagonals xi (i = 1, 2, . . . , N) follow the normal
distribution N (0, 2) and yk (k = 1, 2, . . . , N − 1) follows the
χ distribution with parameter (N − k)β. Without loss of gen-
erality, we select several nonstandard values of β and generate
1000 samples of eigenvalue spectrums with the matrix di-
mension N = 4000 to construct the sample matrix X . The
resulting scree plots are displayed in Fig. 4(c). We see the
chaotic behavior λk ∼ k−1 appears in all cases, as expected.
Thus, combining Figs. 4(b) and 4(c) we confirm deduction
(ii).

V. EVOLUTION OF α2 DURING
ERGODIC-MBL TRANSITION

Given the universal information of the system is encoded
in the power exponent α2 of the higher part of the scree plot,
it is a natural idea to employ it to detect the ergodic-MBL
transition, without referring to the study of eigenfunctions. We
expect the exponent α2 to evolve from 1 in the ergodic phase to
2 in the MBL phase. Specifically, we consider the orthogonal
spin model Eq. (1) with length L = 13 in the randomness
range h ∈ [1, 5] with interval δh = 0.2. We generate 1000
samples of the eigenvalue spectra at each h, and select 1000
eigenvalues in the middle to construct the sample matrix X
and hence obtain λk . The exponent α2 is determined by fitting
λk ∼ k−α2 for 50 < k < 250 in all cases.

For comparison, we employ another eigenvalue-based
quantity to detect the MBL transition, that is, the intersample
randomness, whose definition goes as follows. First, we adopt
a variant definition of spacing ratio, which is [12]

ti = min {si+1, si}
max {si+1, si} , (10)

where si = Ei+1 − Ei is the ith level spacing. The mean value t
in different ensembles was calculated to be [57] tGOE = 0.536
and tPoisson = 0.386. The calculation of t contains two steps:
first we calculate the mean spacing ratio tS = 〈ti〉samp in one
sample, then we average tS over an ensemble of samples to
get t = 〈tS〉en. The two steps generate two types of variance.
The first one is VS = 〈t2

S − t2〉en, i.e., the variance of a sample-
averaged spacing ratio over the ensemble, which measures
the intersample randomness. The second one is VI = 〈vI〉en

where vI = 〈t2
i − t2

S 〉samp, measuring the intrinsic intrasample
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FIG. 5. Evolutions of VS and the power-law exponent α2 with
respect to the randomness strength h. The grey shaded area represents
a nonergodic region that may be attributed to the Griffiths regime.

randomness. In an MBL system driven by random disorder,
such as Eq. (1), the distribution of tS near the transition region
will deviate from a Gaussian function—a manifestation of the
Griffiths regime—which results in a peak of VS at the transi-
tion point [58–60]. Therefore, we can compute the evolution
of VS to locate the transition.

The evolutions of VS and α2 are drawn collectively in Fig. 5.
The peak of VS identifies the transition point to be hc � 3.2,
which is very close to the widely accepted value hc � 3
[14,15], while α2 saturates to 2 at roughly h = 2.6, smaller
than the transition value. This clearly indicates a nonergodic
region in the ergodic phase.

One explanation for this result is the existence of Griffiths
regime close to the transition point that contains locally local-
ized small regions. To be specific, the evolution of the spacing
distribution in Eq. (8) during the ergodic-MBL transition was
discussed by Serbyn and Moore [20], where they showed
that the Griffiths effects affect the large s decaying of P(s)
more than the small s behavior. Consequently, the parameter
β2 becomes β2 ∼ 1 even when the system is globally in the
metallic phase. As demonstrated in the previous section, α2

detects only the power exponent in the exponential part of
P(s) (that is, β2), it is not surprising that α2 saturates earlier
than the transition happens. However, we cannot rule out other
possibilities such as the existence of a nonergodic extended
phase [61–65] without studying the distribution of eigenvec-
tors. A possible way to gain further evidence would be to
study the MBL system with the quasiperiodic potential that is

free of the Griffiths regime. It is intriguing to see whether α2

will underestimate the transition point in such systems. This,
however, goes beyond the scope of the current work.

VI. CONCLUSION AND DISCUSSION

We employed the singular value decomposition (SVD) to
study the eigenvalue spectra of the random spin systems. By
treating the eigenvalue spectrum as a time series, we show
the eigenvalue spectra are dominated by two nonuniversal
features—the mean energy 〈E〉 and level spacing 〈s〉, while
the higher component Wk (k � 3) is close to the spectrum’s
k th Fourier mode. Consequently, the scree plot of the sin-
gular values λk in the ergodic phase exhibits a two-branch
structure: a nonuniversal (model-dependent) lower-order part
and a universal higher-order part that belongs to RMT, and
the starting point of the second of these gives an estimation
for the Thouless energy. Compared to more standard probes
like number variance or the spectral form factor, this approach
requires no unfolding procedure.

Moreover, we also improve the understanding about the
power-law behavior λk ∼ k−α . By studying the scree plots
of SRPM, unitary spin chain, and non-standard Gaussian β

ensembles, we verified the universal exponent α corresponds
only to the parameter β2 in the exponential part of the level
spacing distribution in Eq. (8) while being insensitive to the
level repulsion parameter β1, or equivalently, the symmetry of
the system. Consequently, α gives an underestimation for the
ergodic-MBL transition point, which suggests a nonergodic
behavior that may be attributed to the Griffiths regime.

The existence of a subtle correspondence between the
eigenvalues and eigenfunctions is an intriguing property of
complex quantum system [66], and there is certainly more
hidden information in the eigenvalues deserves to be explored.
One immediate direction is to construct an eigenvalue-based
time series that is able to read the symmetry of the system
(most probably through the level repulsion). It is also possible
to apply SVD to non-Hermitian MBL systems with complex
eigenvalues [67,68]. It is exciting to see whether such power-
law scree plots appear in these systems or not.
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