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Demonstrating Majorana non-Abelian properties using fast adiabatic charge transfer
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Demonstration of Majorana non-Abelian properties is a major challenge in the field of topological super-
conductivity. In this work, we propose a minimal device and protocol for testing non-Abelian properties using
charge-transfer operations between a quantum dot and two Majorana bound states combined with reading the
parity state using a second dot. We use an adiabatic perturbation theory to find fast adiabatic paths to perform
operations and to account for nonadiabatic errors. We find the ideal parameter sweep and a region in parameter
space that reduces the charge-transfer operation time 1–2 orders of magnitude with respect to constant velocity
driving. Using realistic parameters, we estimate that the lower bound for the timescale can be reduced to ∼10 ns.
Deviations from the ideal parameters lead to the accumulation of an undesired dynamical phase, affecting the
outcome of the proposed protocol. We furthermore suggest to reduce the influence from the dynamical phase
using a flux echo. The echo protocol is based on the 4π periodicity of the topological state, absent for trivial
bound states.
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I. INTRODUCTION

The realization and verification of Majorana bound states
(MBSs) have received a substantial amount of attention in the
past decade [1–7]. MBSs are exotic zero-energy quasiparticle
states appearing at the ends of one-dimensional topologi-
cal superconductors (TSs) or in vortices of two-dimensional
TSs [8–10]. MBSs exhibit non-Abelian exchange properties
contrary to topologically trivial subgap states. Experimental
demonstration of MBSs non-Abelian properties is one of
the key goals in the field as it will probe their topological
origin, distinguishing them from trivial states. An additional
promising feature of MBSs is their ability to store quantum
information in nonlocal fermionic degrees of freedom, be-
coming robust to local perturbations [3]. In this way, MBSs
can encode quantum information in the degenerate ground-
state manifold. Braiding operations (exchange of MBSs) can
perform Clifford gates, thus implementing (nonuniversal)
topological quantum computing [1].

To experimentally realize MBSs, a number of structures
and devices have been proposed [13]. Hybrid semiconductor-
superconductor heterostructures are widely used platforms
in the attempt to realize one-dimensional spin-polarized p-
wave superconductors hosting MBSs at its ends [9,10].
Recent progress on fabrication techniques has made it pos-
sible to measure signatures consistent with MBSs. Early
observations include the measurement of a robust zero-bias
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conductance peak [14,15]. Later experiments indicated the
2e2/h-quantization of the zero-bias peak [16]. Measurements
have shown coherent transport through a Majorana island
[17], exponential scaling of energy separation with length
[18,19], and hybridization characteristics with quantum dot
states [15,20]. Despite the mounting signatures consistent
with MBSs, direct observation of their non-Abelian exchange
properties remains a challenge in the field. Such demonstra-
tion could provide smoking-gun evidence for the topological
origin of MBSs, while having the outlook of being a first step
in implementing protected gates in Majorana qubit devices.

In practice, showing non-Abelian exchange properties
through real space braiding of MBSs in T or Y junctions is
expected to be a great experimental challenge as it is dif-
ficult to tune in and out of the topological regime [7,21].
For this reason, this paper instead focuses on implement-
ing braiding-like operations of MBSs in parameter space.
Following Refs. [11,12], we consider manipulating the oc-
cupation of MBSs through charge-transfer processes with a
nearby quantum dot in the Coulomb-blockaded regime, see
Fig. 1 for a device schematic similar to Ref. [11]. In a suc-
cessful charge-transfer process, an electron is adiabatically
exchanged between the gate-controlled quantum dot and the
MBSs, changing the Majorana parity. An advantage of this
parameter space operation is that it generalizes the real space
braiding to rotations through a continuum of angles, extending
the space of possible operations through braiding operations
alone. The immediate downside, however, is that charge-
transfer operations are not topologically protected and require
accurate tuning of the parameters to achieve high fidelity.

Noncommutativity of braiding-like operations can provide
evidence for the non-Abelian nature of MBSs. Concretely,
we search for protocols where interchanging two charge-
transfer operations influence the measured parity of the
Majorana state. A protocol consists of two sequences with
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FIG. 1. Schematic of the proposed device for demonstrating
MBSs non-Abelian properties. Three long TS nanowires (light blue)
extend from a trivial superconducting backbone (blue). MBSs (red)
form at the ends of the TSs. M1, M2, and M3 are tunnel coupled to
quantum dots (green) D1 and D2 with coupling strengths wi. The dot
energies εi are controlled with nearby gates (orange). In our proto-
cols, D1 is used for initialization and read out of the M1/M2 pair
using a charge sensor (purple). D2 is used for charge-transfer pro-
cesses involving the M2/M3 pair [11,12]. Magnetic fluxes �1, �2

control the splitting between the even and odd parity states. The
remaining MBSs (M4, M5, and M6) are separated from M1, M2,
and M3 and do not contribute to the system dynamics.

charge-transfer operations applied in different order, testing
the noncommutativity of the operations [11]. In the device
shown in Fig. 1, the principal source of error is due to split-
ting of the ground state degeneracy with imperfect tuning
of the parameters. This leads to a relative dynamical phase
between the split states, reducing the visibility of the ge-
ometric phase originated from non-Abelian charge-transfer
operations. As the charge-transfer process is meant to operate
on long, adiabatic timescales, even a small energy splitting can
lead to a substantial relative phase error, overwhelming the
non-Abelian signal. This presents a trade-off between driving
the system slowly enough to remain in the ground state and
fast enough to avoid the effects of the splitting.

In this study, we propose an experiment for testing the
non-Abelian properties of MBSs. We simplify the device and
reduce the number of operations needed with respect to the
original proposal in Ref. [11]. We improve the visibility of
the MBSs non-Abelian signature by optimizing the adiabatic
charge-transfer processes. We also design a 4π -periodic flux
echo protocol that cancels the undesired dynamical phase of
subsequent operations.

Specifically, our device and protocol proposals are minimal
as they require controlling a single quantum dot (D2) and one
tunneling amplitude (w4), see Fig. 1. A second quantum dot,
D1, is used to measure the parity of the nonlocal fermion
formed by M1 and M2 [22–27]. We propose two variants
of the protocol: with and without the echo mechanism. Both
protocols, depicted in Fig. 2, require using one dot and three
adiabatic charge-transfer processes. In the flux echo protocol,

Sequence A

Sequence B

Sequence A+B

E
ne

rg
y

t

|w3|
|w4|

γ2 U UInitialize Read-out

E
ne

rg
y

t

|w3|
|w4|

U γ2 UInitialize Read-out

F
lu

x
t

Φ2

Φecho
2

E
ne

rg
y

t

ε2

FIG. 2. Diagram of the two sequences (top and middle panels),
consisting of three charge-transfer processes. In each diagram, both
the protocols with and without the echo effect are depicted. (Top)
Sequence A. Here, |w4| is initially set to zero during the first charge-
transfer process. For the two subsequent charge-transfer processes,
it is ideally set to |w4| = |w3|. As indicated, the echo protocol is
achieved by adjusting the magnetic field before the third charge-
transfer process. (Middle) Sequence B. Here, |w4| is instead set to
zero during the second charge-transfer process, reversing the order
of the first two operations. (Bottom) Level energy of D2 for both
sequences.

the dynamical phase is canceled by flipping the sign of the
energy splitting in between charge-transfer operations. This
is accomplished by tuning the magnetic field �2 to induce
an additional superconducting (SC) phase difference, flipping
the sign of the energy splitting between the even and odd
parity ground states. We find that the echo protocol is robust to
drifts in the SC phase difference and that the deviations in the
additional SC phase can be as large as ∼10% from the ideal
value, 2π . As the flux echo relies on the 4π periodicity of
Majorana parity states, it also makes it possible to distinguish
from 2π -periodic trivial states.

To mitigate nonadiabatic and phase errors, we formulate
a consistent theoretical framework for finding fast, adiabatic
paths based on adiabatic perturbation theory (APT) developed
in Ref. [28]. Within the framework, we find how to optimally
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control the level energy of the quantum dot to minimize
the dynamical phase without introducing nonadiabatic errors
such as transitions to excited states. Compared to driving the
system with constant (Landau-Zener) velocity, we find an adi-
abatic path that is one to two orders of magnitude faster than
a linear sweep of D2 energy, as used in Ref. [12]. We provide
numerical calculations supporting these results. Finding fast
adiabatic paths is crucial for adiabatic quantum computing
as discussed by previous attempts [29–32]. Specifically in
the context of Majorana-based systems, the velocity of real
space exchange and operations using varying tunnel couplings
between MBSs has been considered [33–45]. In this work,
we instead consider the nonadiabatic effects that occur when
MBSs are coupled to a driven quantum dot.

II. THEORY

We begin by reviewing the charge-transfer process follow-
ing Ref. [11] and formulate the non-Abelian operations in
terms of the relative geometric phase between the even and the
odd parity ground states. This enables us to identify the non-
Abelian operations resulting from charge-transfer processes
where the ground states energy split.

Then, we review the adiabatic perturbation theory follow-
ing Ref. [28] and formulate a framework for studying fast
adiabatic processes, resulting in predictions for the optimal
charge control.

A. Charge-transfer process

To describe the charge-transfer process between the quan-
tum dot D2 and the MBSs M2 and M3 (see Fig. 1), we
consider the low-energy Hamiltonian [11],

H = ε2d†
2 d2 + (w∗

3d†
2 − w3d2)γ2 + (w∗

4d†
2 − w4d2)γ3. (1)

The first term describes D2 with ε2 being its time-dependent
energy and d2 its electron annihilation operator. The second
and third terms in Eq. (1) describe the tunnel coupling to M2
and M3, with w3 and w4 being the tunneling amplitudes. Here,
γ2 and γ3 are the self-adjoint Majorana operators.

Our proposed protocol is based on operating on the state of
M23 using D2. The annihilation operator of the M23 fermion
is defined by f23 = 1/2(γ2 + iγ3), giving a Hilbert space
of dimension four. Due to the total parity conservation, the
Hamiltonian matrix corresponding to Eq. (1) is block diagonal
with even and odd parity blocks given by

Hρ =
(

0 wρ

(wρ )∗ ε2

)
, (2)

where wρ = w3 − ρ i w4. We use the even basis (ρ =
+) {|0〉D2 |0〉M23 , |1〉D2 |1〉M23} and odd basis (ρ = −)
{|0〉D2 |1〉M23 , |1〉D2 |0〉M23}, with 0(1) referring to the occu-
pation of D2 and M23.

We parametrize the tunnel couplings as w3 = w eiφ/2 cos θ

and w4 = w sin θ where the magnetic flux �2 controls the
SC phase difference φ = �2/(h/(2e)). Here, θ controls the
asymmetry on the tunnel coupling strength. The eigenenergies
of the Hamiltonian matrix in Eq. (2) are

Eρ
± = ε2/2 ±

√
(ε2/2)2 + w2(1 − ρ sin(2θ ) sin(φ/2)), (3)

with the corresponding eigenstates

ψ
ρ
± = 1√

(Eρ
±)2 + |wρ |2

(
wρ

Eρ
±

)
. (4)

The energy spectrum of the system is 4π -periodic, and the
even and the odd parity sectors are degenerate at integer values
of φ/(2π ).

In a successful charge-transfer process, an electron is trans-
ferred between D2 and the fermion formed by M23. This is
accomplished by inverting the energy on D2 from ε0 to −ε0,
allowing the exchange of a charge. The initial and final level
energies are not required to be equal in magnitude but they
should be much larger than the coupling strength to D2. We
assume ε0 > 0 in what follows and disregard the effect from
the continuum of states by taking the limit 
SC > ε0 � w.
The effect of the continuum of states above the supercon-
ducting gap 
SC has been discussed in Ref. [12]. We further
assume that the time T of the charge-transfer process is shorter
than the quasiparticle poisoning timescale, yet long enough
for the process to be adiabatic.

To understand the nonideal charge-transfer operations, it is
helpful to consider the geometric phase acquired by the even
parity ground state relative to the odd parity ground state.
Since the charge-transfer process is not a loop in parameter
space, the calculation of the geometric phase is slightly subtle
and can be found in Appendix A. The accrued relative geo-
metric phase between the even and odd parity ground states
during a process where the dot is filled (ε2 : ε0 → −ε0, ε0 >

0) is

θG = arctan[tan(2θ ) cos(φ/2)], (5)

with corrections of order (w/ε0)2. The corresponding opera-
tion on the MBSs is

U G = eiθG/2 f †
23 + e−iθG/2 f23

= cos(θG/2)γ2 + sin(θG/2)γ3. (6)

When the dot is filled, an electron tunnels from the super-
conductor to the dot. In the odd parity sector, the electron
jumps from the occupied M23 fermionic state (d†

2 f23). In the
even sector, the M23 fermion state is vacant. In this case, a
Cooper pair splits with one electron occupying the M23 state
while the other tunnels to the dot (d†

2 f †
23). Isolating the part

acting on the M23 fermion and inserting the relative geometric
phase, we arrive at Eq. (6). For the reverse process, the sign
of the geometric phase and the roles of even and odd sectors
with regards to the tunneling are both interchanged. For this
reason, Eq. (6) also holds when emptying the dot. In the ideal
situation, integer φ/(2π ) and adiabatic dot energy sweep, our
result simplifies to U G = cos θ γ2 + sin θ γ3, agreeing with
the original result found in Ref. [11].

It is straightforward to relate the relative phase between
the even and odd ground states to a parity measurement of
the fermion formed by the M12 pair using the dot D1. In
the measurement basis, we define f12 = 1/2(γ1 + iγ2) and
f34 = 1/2(γ3 + iγ4) with even {|0〉M12 |0〉M34 , |1〉M12 |1〉M34}
and odd {|0〉M12 |1〉M34 , |1〉M12 |0〉M34} occupation states. We
take as an example the ideal situation where θG/2 =
θ . Our proposed device can only initialize the fermion
M12 so we consider the initial state |0〉M12 |ψ〉M34 where
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|ψ〉M34 = α |0〉M34 + β |1〉M34 is a ground state. The final state
after the charge-transfer operation is found by applying U G to
the initial state,

U G |0〉M12 |ψ〉M34 = i cos θ |1〉M12 |ψ〉M34

+ sin θ |0〉M12 |ψ ′〉M34 , (7)

where |ψ ′〉M34 = α |1〉M34 + β |0〉M34. Using the dot D1 to
measure the occupation of the M12 fermion gives the result
f †
12 f12 = 0(1) with probability sin2 θ (cos2 θ ), which does not

depend on the initial state of the M34 pair. In this way, the
relative phase between the even and odd ground states could
be experimentally inferred from statistics.

Away from the degeneracy point, integer φ/(2π ), the even-
and odd-parity ground-states also acquire a relative dynamical
phase, θD, affecting the outcome of the final measurement. In
Sec. II D, we compute the relative dynamical phase for the
charge-transfer process we consider, see Eq. (51). The relative
dynamical phase, unlike its geometric counterpart, does not
switch sign when reversing the charge-transfer process and
its contribution accumulates with successive processes. This
makes a difference in the operations on the MBSs when filling
or emptying the dot. Including the relative dynamical phase to
Eq. (6), the operation depends on whether the dot is emptied
(−) or filled (+),

U = ei(θG∓θD )/2 f †
23 + e−i(θG∓θD )/2 f23

= cos

(
θG ∓ θD

2

)
γ2 + sin

(
θG ∓ θD

2

)
γ3. (8)

This is the full operator acting on the ground state of the sys-
tem after a charge-transfer process away from the degeneracy
point. The relative geometric and dynamical phases θG and θD

are given in Eqs. (5) and (51).

B. Protocol

A charge-transfer operation changes the parity of the su-
perconductor regardless of whether it is in its trivial or
topological phase. It is therefore insufficient to perform only
a single operation to distinguish between topologically triv-
ial and nontrivial subgap states. To probe the non-Abelian
properties associated with topologically nontrivial states, we
instead test the noncommutativity of operations executed on
the degenerate Majorana subspace. In our proposed exper-
iment, we compare the resulting states after executing two
sequences of operations. These sequences consist of the same
set of operations ordered in different ways, see Fig. 2. The dot
D1 is used to initialize and measure the occupation of the M12
Majorana pair. Applying the two sequences on the initial state
|0〉M12 |ψ〉M34 give the following final states,

Sequence A:

U U γ2 |0〉M12 |ψ〉M34 = i cos θD |1〉M12 |ψ〉M34

+ sin θD |0〉M12 |ψ ′〉M34 . (9)

Sequence B:

U γ2 U |0〉M12 |ψ〉M34 = i cos(θG + θD) |1〉M12 |ψ〉M34

+ sin(θG + θD) |0〉M12 |ψ ′〉M34 .

(10)

Here, we assume that the energy sweeps during the charge-
transfer processes are adiabatic. We also take the parameters
θ and φ to be the same for the operations U . The operation
γ2 performs a charge-transfer process where w4 is turned
off (corresponding to θ = 0), without inducing any relative
phase between the even and odd parity sectors. The order
of the first two operations in Eqs. (9) and (10) is switched
between sequence A and B. Due to the noncommutativity
of γ2 and U , each sequence has a different geometric phase.
This difference can be sampled statistically by measuring the
occupation of the M12 Majorana pair using the dot D1 [22].
In the final measurement, the probability of measuring the
state |0〉M12 is sin2(θD) and sin2(θG + θD) for the sequences
A and B. In the ideal situation, integer φ/(2π ), the relative
phases simplify to θD = 0 and θG = 2θ . The two sequences
are maximally distinguishable for θ = π/4, corresponding to
symmetric coupling w3 = w4. For these finely tuned values,
the final state is |1〉M12 and |0〉M12 for the sequences A and B.

The dynamical phase, θD, acquired during the operations
described in Eqs. (9) and (10) can overwhelm the Majorana
signature, coming from θG. This effect of θD can be mitigated
using a mechanism similar to the spin-echo used in spin qubits
[46]. In Majorana devices, parity echo or flux echo have been
proposed to increase the fidelity of certain operations [47,48].
We consider implementing a flux echo based on the following
observation: the relative dynamical phase in Eq. (51) depends
on the SC phase difference as θD ∝ sin(φ/2). Due to the 4π

periodicity, changing φ → φ + 2π , the sign of θD changes. In
this way, the dynamical phase contributions from subsequent
operations cancel out. Concretely, we propose to adjust the
SC phase difference by tuning the magnetic flux �2 and set
its value to φ when performing the first two charge-transfer
process in Fig. 2. Ideally, φ/(2π ) is integer, but presumably it
is difficult to assess its value in experiment and it may drift.
Then, for the last operation, the SC phase difference is tuned
φ → φ + 2π . Optimally, this cancels the dynamical phase in
the two U operations in sequences A and B. This is contrasted
by trivial states whose 2π -periodic spectrum will not see the
effect of the flux echo.

An advantage of this flux echo is that the required change
in the SC phase difference is independent of the (unknown)
value of φ. This is in contrast to proposals such as φ → −φ

which also flips the sign of the relative dynamical phase [48].
A byproduct of the change φ → φ + 2π is that the sign of
the relative geometric phase also changes, see Eq. (5). We
therefore define primed charge-transfer operators U ′ which
are equal to the original operators introduced in Eq. (8), re-
placing φ by φ + 2π , which leads to a sign flip of θG and
θD with respect to U . Including the flux echo as described in
sequence A and B gives the following.

Sequence A′,

U ′ U γ2 |0〉M12 |ψ〉M34 = i cos θG |1〉M12 |ψ〉M34

+ sin θG |0〉M12 |ψ ′〉M34 . (11)

Sequence B′,

U ′γ2U |0〉M12 |ψ〉M34 = i |1〉M12 |ψ〉M34 . (12)

Because of the 4π periodicity of the spectrum, we can design a
flux echo, equivalent to flipping the system parity. It increases
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the regime with maximal visibility due to the cancellation of
the dynamical phase. Also, the outcome becomes insensitive
to the operation timescale. In sequences A′ and B′, the final
state is |0〉M12 with probability sin2 θG and 0 respectively.
Maximal visibility thus occurs for θG = π/2.

To make a measure of the discernibility of the outcome of
the two sequences, we introduce the sequence visibility .
We define  as the difference in probability of measuring
the state |0〉M12 after the two sequences where unit visibility
corresponds to the ideal situation. Thus the sequence visibility
for sequences A and B is

 = sin2(θG + θD) − sin2(θD). (13)

For sequences A′ and B′, the visibility would simply be

′ = sin2(θG), (14)

due to the cancellation of dynamical phase. The sequence
visibility quantifies the degree to which the orders of oper-
ations can be distinguished to show the MBS non-Abelian
properties.

In a realistic experiment, tuning the additional SC phase
contribution for the flux echo is presumably simpler than
tuning φ to the degeneracy point, integer φ/(2π ). However,
inaccuracies and phase fluctuations can play a role, leading
to a nonzero dynamical phase. An additional complication is
that the relative dynamical phase is dependent on the exact
dynamics of the adiabatic transport. In the next section, we
approach the problem of minimizing the dynamical phase
contribution using APT to study fast adiabatic processes.

C. Deriving adiabatic perturbation theory

The adiabatic theorem predicts that a system initialized in
an eigenstate |n(t = 0)〉 of the initial Hamiltonian H (t = 0)
will follow the instantaneous eigenstate |n(t )〉 of the slowly
varying time-dependent Hamiltonian H (t ). The instantaneous
eigenstates fulfill the instantaneous Schrödinger equation,

H (t ) |n(t )〉 = En(t ) |n(t )〉 . (15)

Typically, the adiabatic approximation is valid for∣∣ 〈m(t )〉 dn(t )
dt

∣∣
|Em(t ) − En(t )| =

∣∣ 〈m(t )| dH (t )
dt |n(t )〉 ∣∣

(Em(t ) − En(t ))2
� 1, n �= m.

(16)
However, this is not always a sufficient condition to en-
sure adiabaticity [49]. Adiabatic perturbation theory (APT)
[28] attempts to determine the validity of the adiabatic ap-
proximation, describing nonadiabatic corrections. APT has
previously been used in a variety of situations, including
quench dynamics through a quantum critical point [50],
quasiadiabatic Monte Carlo algorithm [51], as well as correc-
tions to non-Abelian processes involving Majorana exchange
[33]. Additionally, APT has also inspired Floquet adiabatic
perturbation theory [52–54].

APT is based on a perturbative expansion in the small
parameter 1/T where T is the relevant timescale of the system
[28]. In our case, T is the time of a single charge-transfer oper-
ation. The APT expansion parameter 1/T is not dimensionless
as required by perturbation theories and should be compared
to a relevant energy scale. In our system, we have two energy

scales ε0 and w whose ratio x0 = ε0/(2w) we take to be large.
It is therefore not obvious how to a priori choose the proper
dimensionless expansion parameter.

In our study of APT, we simultaneously address this issue
and find fast adiabatic energy sweeps of the dot energy to
perform efficient charge-transfer operations. While our results
are specific to the charge-transfer processes, the framework
we use is completely general and may be applied to any
nondegenerate quantum system. Further work can presumably
extend the framework to degenerate systems as well [55]. We
begin our treatment by giving a brief overview of APT as
presented in Ref. [28]. Then, we apply it to the charge-transfer
process, addressing the issues due to the dimensionful expan-
sion parameter 1/T , and studying fast adiabatic paths.

For a nondegenerate N-level quantum system, APT is
based on the following ansatz for the time-evolved state [28]:

|�(s)〉 =
∞∑
p

1

T p

N−1∑
n,m=0

e−iT ωm (s)eiξm (s)b(p)
nm(s)|n(s)〉, (17)

which is given in terms of the dimensionless time s = t/T .
The quantities ωm(s) and ξm(s) are the dynamical and geo-
metric phases of the instantaneous state |m(s)〉,

ωm(s) =
∫ s

0
Em(s) ds′, (18)

ξm(s) = i
∫ s

0
〈m(s′)〉 dm(s′)

ds′ ds′. (19)

The expansion in Eq. (17) introduces complex, time-
dependent coefficients b(p)

nm(s) to be determined. Due to the
dimensionful expansion parameter 1/T , the coefficients also
carry dimensions such that b(p)

nm(s)/T p is dimensionless. The
ansatz in Eq. (17) recasts the problem of solving the time-
dependent Schrödinger equation,

i

T

d

ds
|�(s)〉 = H (s) |�(s)〉 , (20)

into computing the coefficients b(p)
nm(s) from linear, recursive

equations. The initial conditions for the coefficients are deter-
mined by the initial state. In the expansion, the zeroth-order
terms correspond to the adiabatic approximation at all times,

b(0)
nm(s) = 0, n �= m. (21)

It further implies that the initial state is described by the
adiabatic approximation, giving the initial constraint on the
p � 1 order coefficients:∑

m

b(p)
nm(0) = 0, p � 1. (22)

By inserting the ansatz in Eq. (17) into the time-dependent
Schrödinger equation (20) and taking the inner product with
〈m(s)| , we get

i
nm(s)b(p+1)
nm (s) + ḃ(p)

nm(s) + Wnm(s)b(p)
nm(s)

+
∑
k �=n

Mnk (s)b(p)
km (s) = 0. (23)
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The following quantities have been defined,


nm(s) = En(s) − Em(s), (24)

Mnm(s) = 〈n(s)〉 ṁ(s) = 〈n(s)| Ḣ (s) |m(s)〉

mn(s)

, (25)

Wnm(s) = Mnn(s) − Mmm(s), (26)

where the dot denotes time differentiation, d/ds. Equa-
tion (23) is the main result of Ref. [28] from which the
coefficients of order p + 1 can be recursively computed from
the p-order coefficients.

For illustration purposes, we compute the first-order cor-
rection in a two-level system initialized in the ground state.
Using the initial condition b(0)

00 (0) = 1, the first-order coeffi-
cients are

b(1)
01 (s) = 0, (27)

b(1)
10 (s) = iM10(s)


10(s)
, (28)

b(1)
00 (s) = i

∫ s

0

|M10(s′)|2

10(s′)

ds′, (29)

b(1)
11 (s) = − iM10(0)


10(0)
. (30)

These first-order coefficients will be the starting point of the
next section where we apply APT to the charge-transfer pro-
cess. We find the optimal adiabatic path and investigate what
conditions must be satisfied to be consistent with the adiabatic
approximation.

D. Applying adiabatic perturbation theory

We continue our study by applying APT to the two-level
system given in Eq. (2), which describes two MBSs coupled
to a quantum dot. We use Eqs. (24)–(26) to compute the rele-
vant quantities in the expansion 
10(s) = −
01(s), M10(s) =
−(M01(s))∗,W10(s) = −W01(s). At the degeneracy point
sin(2θ ) sin(φ/2) � 1, we find


10(s) = 2w
√

x(s)2 + 1, (31)

M10(s) = ẋ(s)

2(x(s)2 + 1)
, (32)

W10(s) = 0. (33)

We have expressed the above quantities in terms of the dimen-
sionless level energy x(s) = ε2(s)/(2w). Notice that M10(s) is
dimensionless and 
10(s) has dimension of energy.

To find fast adiabatic paths, we minimize the first-order
coefficient b(1)

00 (s), describing the leading correction to the
adiabatic evolution. That is, we minimize the integral

I (s) = 1

T

∫ s

0

|M10(s′)|2

10(s′)

ds′, (34)

= 1

8T w

∫ s

0

ẋ(s′)2

(x(s′)2 + 1)5/2
ds′. (35)

We choose to minimize this coefficient as it describes the
nonadiabatic corrections accumulated during the operation.
We could also have considered b(1)

10 (s) or b(1)
11 (s) which depend

on the instantaneous configuration. Before APT, a condition
corresponding to b(1)

10 (s) and Eq. (16) was heuristically chosen
to find the so-called local adiabatic evolution [29–31]. By
minimizing Eq. (35), we find the optimal adiabatic energy
sweep xopt(s). Later, we check whether the found adiabatic
path is consistent with APT, i.e., the magnitude of the coeffi-
cients decrease with the order p and do not grow with x0 � 1.

The integral in Eq. (35) is straightforward to minimize by
standard methods. Using the Beltrami identity, we find that
the optimal path fulfills

ẋopt(s) = ±�η[xopt(s)2 + 1]η/2 ∝ [
10(s)]η, (36)

where the ± sign in front corresponds to emptying or filling
the dot and �η > 0 is a constant dependent on the initial
conditions. The minimization of Eq. (35) leads to η = 5/2 as
the ideal adiabatic path. The further analysis below, however,
shows that η = 5/2 is not optimal as higher-order coefficients
are significant for this η value. In the following of the section,
we find the optimal η value in Eq. (36) consistent with APT
constraints. Eq. (36) is the simplest parametrization which
can be physically motivated: the speed of the dot level sweep
is proportional to the energy gap between the ground and
excited state raised to a power. The energy sweep and the
energy gap for η = 0, 1, 2 is displayed in the right panel of
Fig. 3. The case η = 0 corresponds to a linear energy sweep
of the quantum dot, independent from the gap to the excited
state. η > 0 describes an increasing energy speed of the dot
with the gap between the ground and the excited states. APT
also allows to describe more general ansatzes than the one in
Eq. (36).

The solution to Eq. (36) can be given in terms of the Gaus-
sian hypergeometric function 2F1(a, b; c; z), see Appendix B.
This enables us to compute the scaling of �η to leading order
in 1/x0 for x0 � 1,

�η ≈

⎧⎪⎪⎨
⎪⎪⎩

√
π�( η−1

2 )
�( η

2 ) for η > 1,

2 sinh[−1](x0) for η = 1,

2
1−η

x1−η

0 for η < 1.

(37)

We provide the complete analytic expressions in Appendix B.
Importantly, �η scales with x0 for η � 1. It can be problematic
for APT when evaluating Eq. (35) at s = 1 in the limit x0 � 1.
Using xopt(s) from Eq. (36),

I (1) = �η

8T w

√
π�

( 4−η

2

)
�

( 5−η

2

) , for η < 4. (38)

A necessary (but insufficient) condition for APT to hold
is I (1) � 1, or equivalently, T w � �η. It means that for
η < 1, T w � x1−η

0 , which thus requires very slow processes
to achieve adiabaticity. For η = 1, �η scales logarithmically
with x0. For η > 4, Eq. (35) scales as xη−4

0 . This analysis tells
us that for 1 < η < 4, we need T w � 1 to satisfy I (1) � 1.
Outside this range, T scales with x0, meaning that the total
time for to complete the operation is sensitive to the large
energy ε0. We may also check that the other first-order cor-
rections are small,

M10(s)

T 
10(s)
= �η

4T w
(xopt(s)2 + 1)

η−3
2 � 1, (39)
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FIG. 3. Characteristics of a single charge-transfer process at the degeneracy point (integer φ/(2π )) for different values of η and x0 = 100.
(Left) Operation timescale T (relative to w) as a function of η for fixed dimensionless expansion parameter �η/(T w) = 0.5, see Eqs. (49) and
(B4). The panel shows an optimal region for 1 < η � 2 with an optimal point η = 2, where the adiabatic timescale is the minimal. Colored
markers at η = 0, 1, 2 are reference for the middle and right panels. (Middle) Dot occupation 〈d†

2 d2〉 = ∂E−/∂ε2 as a function of dimensionless
time s = t/T . For the optimal path (η = 2), charge is smoothly transferred during the entire process. For the linear sweep (η = 0), charge is
transferred only near the half-way point of the process (s ≈ 1/2), necessitating a longer operation time to ensure adiabatic charge-transfer.
(Right) Energy sweeps ε2(s) (solid lines) and excitation energies 
10(s) (dashed lines). For the optimal path (η = 2), most of the operation
time is spend where the gap is smallest to avoid nonadiabatic errors. For the linear sweep (η = 0), most of the operation time is spend where
the gap is large, leading to a large timescale of the process.

which decreases with x0 for η < 3 and grows as xη−3
0 for

η > 3, introducing a further restriction to APT validity: η < 3.
In summary, this preliminary analysis suggests that the first-
order corrections are small for T w � 1 when 1 < η < 3. If
η is chosen outside this range, T grows with x0 � 1. In the
following, we show that it is insufficient to demand that the
first-order corrections are small for APT to be applicable. This
was not mentioned in Ref. [28], but the sufficient conditions
are nevertheless contained in APT. Like in the above analy-
sis, we find that T w � 1 is sufficient but only in the range
1 < η � 2. Outside of this range, large x0 values can make
higher-order contributions more significant than the lowest
ones in the expansion in Eq. (17). As exemplified in Eqs. (38)
and (39), this is due to the w and ε0 dependence of the dimen-
sionful coefficients resulting from the dimensionful expansion
coefficient. To resolve this, we express the coefficients in (17)
of order p + 1 in terms of p-order coefficients,

b(p+1)
nm (s) = i


nm(s)

d

ds
b(p)

nm(s) (n �= m)

+
∑
k �=n

iMnk (s)


nm(s)
b(p)

km (s), (40)

b(p+1)
nn (s) =

∑
k �=n

∫ s

0

iMnk (s′)

nk (s′)

d

ds′ b
(p)
kn (s′) ds′ (n = m)

+
∑
k �=n
l �=k

∫ s

0

iMnk (s′)Mkl (s′)

nk (s′)

b(p)
ln (s′) ds′

−
∑
k �=n

b(p+1)
nk (0). (41)

We demand that the sum of the magnitude of the coefficients
of order p + 1 should be smaller than the corresponding sum

of order p,

∑
n

∑
m

∣∣b(p+1)
nm (s)

∣∣
T p+1

�
∑

n

∑
m

∣∣b(p)
nm(s)

∣∣
T p

. (42)

In Appendix C, we insert Eqs. (40) and (41) into Eq. (42) and
get the following adiabatic convergence criteria:

�η(xopt(s)2 + 1)
η−1

2

T 
10(s)
� 1, (43)

|M10(s)|
T 
10(s)

� 1, (44)∫ s

0
�η(xopt(s

′)2 + 1)
η−1

2
|M10(s′)|
T 
10(s′)

ds′ � 1, (45)∫ s

0

|M10(s)|2
T 
10(s)

ds′ � 1. (46)

Notice that Eq. (44) is identical to the usual adiabatic condi-
tion in Eq. (16). Furthermore, Eqs. (44) and (46) correspond to
the conditions found in the first-order coefficients in Eqs. (38)
and (39). Our extended analysis in Appendix C have thus
provided two additional conditions to satisfy adiabaticity,
Eqs. (43) and (45). The additional conditions come from terms
in Eqs. (40) and (41) which do not appear when computing
the first-order coefficients but become relevant in higher-order
ones.

In the regime |xopt(s)| ∼ 1, the conditions (43)–(46) result
in �η/(T w) � 1, which gives the lower bound η > 1 as
discussed above. For large |xopt(s)|, the convergence of the
integral in Eq. (45) gives the upper bound η < 3 which was
the same as in the conditions (39) and (44). Importantly, the
first condition (43) gives a further restriction for large |xopt(s)|,

�η

T w
xη−2

0 � 1. (47)

This is the final restriction on η and gets us the bound for
optimal operation time T w � 1,

1 < η � 2. (48)
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We note that both the linear energy sweep (η = 0) and the
best adiabatic path (η = 5/2) predicted by the first-order cor-
rection in Eq. (35) lie outside the optimal range.

To make an unified statement about the proper dimension-
less expansion parameter, we define a quantity closely related
to �η, including the scaling for η > 2,

�η =
{
�ηxη−2

0 for η > 2,

�η for η � 2.
(49)

We thus propose �η/(T w) as the proper dimensionless ex-
pansion parameter, fulfilling �η/(T w) � 1 for APT to hold.
This expansion parameter depends in a nontrivial way on w

and ε0 and the chosen path parametrized by η.
APT predicts that the fastest adiabatic path is the solution

to Eq. (36) for η = 2, which minimizes the dimensionless
expansion parameter �η=2/(T w) = π/(T w), see left panel
of Fig. 3. For η = 2, the solution to Eq. (36) has a particularly
simple expression given by

xopt(s) = ± tan[arctan(x0)(2s − 1)]. (50)

This result realizes the so-called local adiabatic evolution of
the system [29–31]. In Fig. 3, the optimal sweep (η = 2) is
compared to a linear sweep (η = 0). The ratio �η=0/�η=2 ≈
2x0/π quantifies how much faster the optimal sweep of xopt(s)
can be with respect to a linear one. This means that, for the
same parameters, the ideal sweep is ≈64 times faster than
the linear one for x0 = 100. The intuition is that the charge
is exchanged at a nearly constant rate for η = 2, see middle
panel of Fig. 3. However, the system spends most of the
time in a region where no charge is transferred for η = 0.
Finally, using Eq. (36), we compute the relative dynamical
phase considered in Sec. II A to first order in sin(2θ ) sin(φ/2)
and in the limit x0 � 1,

θD = −T
∫ 1

0
(E+

− (s) − E−
− (s))ds,

= − sin(2θ ) sin(φ/2)

√
π�

(
η

2

)
�

(
η+1

2

) T w

�η

. (51)

This equation describes a decreasing undesired dynamical
phase when η increases. This further motivates the choice
η = 2 for the charge-transfer process.

We conclude this section by outlining the presented frame-
work for finding fast adiabatic paths while checking adiabatic
conditions. The method can be broken down into the follow-
ing five steps:

(1) Write down the first-order corrections using APT,
Eqs. (27)–(30).

(2) From the first-order coefficients, choose a relevant
functional, Eqs. (34) and (35), and minimize it.

(3) Extend the family of considered paths by parametrizing
the minimizing differential equation, Eq. (36).

(4) Check the adiabatic conditions, constraining the param-
eters, Eqs. (37) and (40)–(48).

(5) Choose the set of parameters that minimizes the
proper dimensionless expansion parameter, Eq. (49). The path
obtained through this procedure, Eq. (50), is the optimal adia-
batic one for the family considered in step 3.

This procedure thus provides an optimal adiabatic path,
taking into account nonadiabatic corrections. The framework
is general and may be used to find fast adiabatic paths in other
systems. Future efforts may also expand the framework to
include degenerate quantum systems [55].

In general, higher time-derivatives of the Hamiltonian at
s = 0 and s = 1 can lead to additional nonadiabatic contri-
butions not captured by APT. We have not considered these
effects as they appear to play a minor role due to the large
initial and final energy gaps between the ground and excited
states. In the case where these gaps are comparable to other
energy scales in the system, the contributions from the higher
time derivatives of the Hamiltonian can have some influence
in the result. In this case, boundary cancellation techniques
can be used to reduce such contributions [56]. Finally, we
would like to mention the existence of methods exploiting
symmetry to improve the error scaling [44,57]. It may further
reduce the timescale of the charge-transfer process.

III. NUMERICAL RESULTS

In this section, we test the predictions of APT numeri-
cally. We show that the dimensionless expansion parameter
�η/(T w) describes the adiabatic condition. We pick an opti-
mal path based on the APT prediction, which minimizes the
operation timescale and the nonadiabatic errors. We simulate
numerically the protocol with and without the flux echo. We
find that the echo protocol substantially extends the parameter
space where MBS non-Abelian properties can be shown using
charge-transfer operations.

In the left panel of Fig. 4, we display the probability of
transitioning to the excited state, �, as a function of η and
the inverse operation time, (T w)−1. We show results after a
single charge-transfer operation in the case where the even and
odd parity sectors are degenerate. As expected, the transition
probability to the excited state decreases when the operation
time increases. The white line is a contour of the dimen-
sionless expansion parameter, �η/(T w) = 2. As suggested
from APT, the dimensionless expansion parameter separates
well the adiabatic (suppressed � region below the line) and
the nonadiabatic regimes (larger � region above the line).
APT agrees quantitatively with the numerical calculations for
η � 2. For η > 2, the contour avoids the regions of nonzero
transition probability in the lower right corner. In this region
outside of the APT regime, the system behavior is nonmono-
tonic, as shown by the local � maxima as a function of the
operation time. In Appendix C, we further discuss the APT
prediction at η > 2.

The solid cyan line, given by �η/(T w) = 0.5, lies in
the adiabatic region, where charge-transfer operations can be
done with high accuracy. In the right panel of Fig. 4, we
show the relative phase between the even and odd ground
states after a single charge transfer operation following the
cyan line in the left panel for φ = 0.05π . For charge-transfer
operations, small deviations from the ideal conditions can
lead to a significant relative dynamical phase as illustrated by
the difference between the dashed (ideal result) and the solid
lines. The agreement between the numerical result and APT is
good, except close to η = 0. This is due to the approximation
x0 → ∞ when computing θD in Eq. (51).
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FIG. 4. Numerical results for a charge-transfer process with θ = π/4 and x0 = 100. (Left) Color map of the transition probability after
a single charge-transfer operation at the degeneracy point (φ = 0) as a function of η and the inverse time (T w)−1. The two lines represent
the prediction from APT for �η/(T w) = 2 (dashed white) and �η/(T w) = 0.5 (solid cyan). For η � 2, the dashed white line separates the
adiabatic region (dark blue) from the nonadiabatic region (green and yellow). The solid cyan line lies well in the adiabatic region and is used
for reference to the right panel. (Right) Plot of the relative phase for a slight detuning φ = 0.05π from the ideal phase (φ = 0) following the
cut at the solid cyan line in the left panel (�η/(T w) = 0.5). We display the numerical result (cyan), theoretical prediction (orange) and the
geometric phase (dashed) for reference to the ideal situation.

Combining the results obtained by the numerically
simulated charge-transfer operations, we conclude that
�η/(T w) � 0.5 and η = 2 are the best values, as suggested
by APT. As for realistic parameters, we assume that the
induced superconducting gap is 
SC = 0.1 meV. To avoid
transitioning to the continuum of states, we take ε0 =
0.5 
SC = 50 μeV. Using a value of x0 = ε0/(2w) = 100,
we get w = 0.25 μeV and T ≈ 17 ns. It is thus possible
to perform fast adiabatic charge-transfer operations on the
∼10 ns scale. The transition probability for these parameters
is � < 10−5. Using the same parameters, but with a linear
sweep (η = 0), the corresponding timescale is approximately
1 μs with similar transition probability. Previous experiments
have shown that parity lifetime in trivial superconducting is-
lands are ∼1 μs [58], illustrating that it might not be possible
to perform accurate operations using a linear sweep.

Using the optimal path found, �η/(T w) = 0.5 and η = 2,
we simulate the protocols described in Sec. II B to demon-
strate MBS non-Abelian properties. The results are shown in
Fig. 5. Here we make color maps of the sequence visibility
 as a function of φ and the coupling asymmetry cos2 θ .
As explained around Eq. (13),  measures how well the se-
quences in Eqs. (9)–(12) can be distinguished by the measured
parity of the M12 fermion. It thus quantifies the confidence of
demonstrating non-Abelian properties. Here,  = ±1 means
that the parity of M12 fermion can distinguish between the
two sets of operations, while the protocol fails for  = 0.

In the top left panel of Fig. 5, we display numerical re-
sults for the visibility for the protocol without the echo. Note
that the optimal parameter values θ = π/4 and φ = 0 lie at
the central yellow sliver with maximal visibility. The narrow
width (≈0.1π ) of this high-visibility region is due to the con-
tribution of the dynamical phase and illustrates the importance
of accurately tuning φ. It appears less important to tune the
coupling asymmetry θ . In Appendix D, we display the se-
quence visibility for different T values to show that the width

of the high-visibility regions decreases as T is increased. The
top left panel should be compared to the numerical results
for the echo protocol displayed in the top right panel. Here
the central yellow region is significantly extended due to the
cancellation of the dynamical phase, making the experiment
rather insensitive to φ. The outcome is also insensitive to
T , as shown in Appendix D. The echo protocol, however,
depends on tuning φ → φ + δφ with δφ = 2π ideally and
is thus robust to drifts in φ. In Appendix E, we offset the
parameter δφ and find that the echo protocol is robust up to
deviation of ∼0.2π in δφ. For completeness, we show the
probability to end up in the state |0〉M12 after each sequence
in Appendix F.

In the bottom panels of Fig. 5, we display the visibility
obtained from APT, in good agreement with the numerical
results shown in the top row panels. However, there is a
discrepancy in the region sin(2θ ) sin(φ/2) ∼ 1. The disagree-
ment between theory and the numerical results is due to the
closing of the gap between the ground and the excited states as
w

√
1 − ρ sin(2θ ) sin(φ/2), Eq. (3). This results in transitions

and large nonadiabatic errors to the phase in that region.

IV. CONCLUSIONS AND DISCUSSIONS

In this work, we have proposed a minimal experiment
for demonstrating Majorana non-Abelian properties. The ex-
periment requires three Majorana bound states (MBSs), the
minimal number to measure non-Abelian signatures. Our
proposal is based on charge-transfer operations between a
quantum dot and two MBSs. Another quantum dot is used
for the initialization and readout. We also devise a minimal
protocol relying on two sequences of three adiabatic charge-
transfer operations. The final result depends on the order of
operations due to Majorana non-Abelian properties.

We study the robustness of the protocol as a function of the
model parameters, taking into account nonadiabatic effects.
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FIG. 5. Sequence visibility, Eq. (13), as a function of the initial detuning φ and the coupling strength asymmetry cos2 θ . We compare
numerical simulations of the protocol proposed in Sec. II B (top panels) and APT predictions (bottom panels). We show results with (right
panels) and without the flux echo protocol (left panels).

To this end, we develop a framework based on adiabatic
perturbation theory (APT) for finding fast adiabatic paths in
nondegenerate quantum systems. This framework describes
the optimal adiabatic energy sweep for the charge-transfer
operation. We find that the experiment is sensitive to the
SC phase difference, φ. Small deviations, ∼0.05π from the
degeneracy point (φ = 0) lead to a substantial dynamical
phase that can dominate over the non-Abelian signal. To
solve this issue, we propose a flux echo protocol that sig-
nificantly reduces the sensitivity on φ. The flux echo relies
on increasing the superconducting phase difference by 2π

between subsequent operations, exploiting the 4π periodicity
of the topological state. The tolerance on the additional phase
is ∼0.2π , while the outcome of the protocol is insensitive to
the operation time and robust to drifts in φ.

Since our proposal relies on parameter space operations
rather than real space braiding, it is relevant to discuss the
uniqueness of the MBS signature in the proposed experi-
ment. A system hosting trivial subgap states may also acquire
geometric and dynamical phases during charge-transfer op-
erations. As a result, charge-transfer operations might not
commute, leading to potentially large  values for some
parameters. However, the flux echo, exploiting MBSs 4π -
periodicity, leads to a robust non-Abelian signal over a wide

range of parameters. This is in contrast to trivial bound states,
which are 2π -periodic, where large  values only appear at
fine-tuned situations due to the dynamical phase. Other than
trivial states, the experiment might also suffer from various
sources of error that can lead to a reduction of the non-Abelian
signal. First, fluctuations in the superconducting phase dif-
ference will introduce a random phase. However, the flux
echo protocol reduces their effect if the operations are faster
than the timescale of phase fluctuation. Second, the coupling
between MBSs will split the ground state degeneracy intro-
ducing a constraint on the upper limit for the charge-transfer
operations. However, as shown in Ref. [12], this effect is likely
not a limiting factor. Additionally, quasiparticle poisoning is
detrimental to the experiment and its timescale should there-
fore be longer than that of the experiment. Finally, nonzero
temperature and electric fluctuations in the gates will reduce
the non-Abelian signal. In these cases, the tunnel coupling
strength should be larger than the temperature and electric
variations. Also, the optimal path found, minimizing the oper-
ation timescale reduces their impact.
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APPENDIX A: THE GEOMETRIC PHASE

There is a technical subtlety when computing the relative
geometric phase in Eq. (5): a single charge-transfer process
does not constitute a loop in parameter space. It makes diffi-
cult to determine the acquired geometrical phase. We instead
compare the geometric phases collected by the even and odd
ground states during a charge-transfer process. However, the
even and odd parity ground states live in different Hilbert
spaces. Since there is a clear one-to-one mapping between
these two spaces, we treat the ground state vectors as living
in the same Hilbert space.

The gauge choice in Eq. (4) is such that for each parity,
there is no mathematical contribution to the geometric phase
when changing ε2 : ε0 → −ε0 in time T ,

i
∫ T

0
dt (ψρ

−)† dψ
ρ
−

dt
= 0. (A1)

This is easy to see as the ground states have the form (ψρ
−)† =

(eiξ cos(λ(t )), sin(λ(t ))). The gauge choice in Eq. (4), how-
ever, is different for the two parity sectors and this gives a
relative geometric phase between the even and odd parity
ground states. To compute this relative geometric phase con-
tribution, we evaluate the phase difference between the ground

states using arctan[ �[(ψ+
− )†· ψ−

− ]
�[(ψ+

− )†· ψ−
− ]

] and compare the results at
initial and final values of the level energy. This calculation
leads to the result in Eq. (5).

The relative geometric phase can also be understood as a
proper loop in parameter space by noticing that the even and
odd parity Hamiltonian and eigenvectors can be transformed
into each other by θ → −θ . We can thus compute the relative
geometric phase by considering the loop ε0 → −ε0, θ → −θ ,
−ε0 → ε0, −θ → θ . This can be understood as performing a
charge-transfer operation in the even parity state, inverting θ

to transform it to the odd parity state. We then perform another
operation and invert again the sign of θ to return to the even
subspace. The geometric phase due to this loop corresponds
to the relative geometric phase acquired between the even
and odd parity ground states due to a single charge-transfer
process. There is no contribution to the geometric phase for
large negative level energies as the ground states become
(ψρ

−)† = (0,−1) in this limit. At the other side of the loop,
where the level energy has a large positive value, the ground
states are (ψρ

−)† = (wρ/|wρ |, 0). Using the gauge in Eq. (4)
no geometrical phase is acquired by the system when varying
ε2. The relative geometric phase is given by

θG = i
∫ θ

−θ

dθ ′ (ψ−
− )† dψ−

−
dθ ′ , (A2)

in the limit of large positive level energies. This approach pro-
vides an alternative picture of how to calculate the geometric
phase, but mathematically it is tedious to carry out. Perform-
ing the integration in Eq. (A2) and evoking the identity

2 arctan(tan(x) cos(y)) = arctan

(
tan x

cos y
− tan y

cos x

)

+ arctan

(
tan x

cos y
+ tan y

cos x

)
, (A3)

we arrive at Eq. (5).

APPENDIX B: SOLUTION IN TERMS OF THE GAUSSIAN
HYPERGEOMETRIC FUNCTION

For a symmetric charge-transfer following:

ẋopt(s) = ±�η[xopt(s)2 + 1]η/2, (B1)

the solution is

±�η(s − 1/2) = xopt(s) 2F1

(
1

2
,
η

2
;

3

2
; −xopt(s)2

)
, (B2)

where the Gaussian hypergeometric function is defined by

2F1(a, b; c; z)

= �(c)

�(a)�(b)

∞∑
n

�(a + n)�(b + n)

�(c + n)n!
zn, |z| < 1. (B3)

The initial and final conditions determine �η,

�η = 2x0 2F1

(
1

2
,
η

2
;

3

2
; −x2

0

)
. (B4)

To get the approximation for large x0 in Eq. (37), we use the
transformation rule

2F1(a, b; c; z) (B5)

= �(c)�(b − a)

�(b)�(c − a)
(−z)−a

2F1(a, a − c + 1; a − b + 1; 1/z)

(B6)

+ (a ↔ b), for| arg(−z)| < π. (B7)

APPENDIX C: DERIVING ADIABATIC CONDITIONS

In this section, we derive the adiabatic conditions,
Eqs. (43)–(46) in the main text, starting from Eqs. (40)–(42).
We omit in the following the time variable for simplicity.

In Eq. (42), we split the left-hand side term into contribu-
tions from n = m and n �= m,

∑
n

∑
m

∣∣b(p+1)
nm

∣∣
T p+1

=
∑

n

(∑
m �=n

∣∣b(p+1)
nm

∣∣
T p+1

+
∣∣b(p+1)

nn

∣∣
T p+1

)
. (C1)

The condition (42) is satisfied if each term is individually
smaller than its right-hand side,

∑
n

∑
m �=n

∣∣b(p+1)
nm

∣∣
T p+1

�
∑

n

∑
m

∣∣b(p)
nm

∣∣
T p

, (C2)

∑
n

∣∣b(p+1)
nn

∣∣
T p+1

�
∑

n

∑
m

∣∣b(p)
nm

∣∣
T p

. (C3)
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We study these two cases separately. We begin with the n �= m
case, substituting Eq. (40) in Eq. (C2)

∑
n

∑
m �=n

∣∣b(p+1)
nm

∣∣
T p+1

=
∑

n

∑
m �=n

∣∣∣∣∣ i

T 
nm

d

ds

b(p)
nm

T p
+

∑
k �=n

iMnk

T 
nm

b(p)
km

T p

∣∣∣∣∣ (C4)

�
∑

n

∑
m �=n

(
1

T |
nm|
∣∣∣∣ d

ds

b(p)
nm

T p

∣∣∣∣ +
∑
k �=n

|Mnk|
T |
nm|

∣∣b(p)
km

∣∣
T p

)
.

(C5)

Again, the condition (42) is satisfied if each term fulfills

∑
n

∑
m �=n

1

T |
nm|
∣∣∣∣ d

ds

b(p)
nm

T p

∣∣∣∣ �
∑

n

∑
m

∣∣b(p)
nm

∣∣
T p

, (C6)

∑
n

∑
m

( ∑
k �=n,m

|Mnk|
T |
mk|

)∣∣b(p)
nm

∣∣
T p

�
∑

n

∑
m

∣∣b(p)
nm

∣∣
T p

, (C7)

where we have relabelled the sums. Similarly, by substituting
Eq. (41) to the left-hand side of Eq. (C3) and considering each
term separately, we get

∑
n

∑
m �=n

∫ s

0

|Mnm|
T |
nm|

∣∣∣∣ d

ds′ b
(p)
nm

∣∣∣∣ ds′ �
∑

n

∑
m

∣∣b(p)
nm

∣∣
T p

, (C8)

∑
n

∑
m

∫ s

0

∣∣∣∣∣
∑

k �=n,m

MmkMkn

T 
mk

∣∣∣∣∣
∣∣b(p)

nm

∣∣
T p

ds′ �
∑

n

∑
m

∣∣b(p)
nm

∣∣
T p

,

(C9)∑
n

∑
m �=n

∣∣b(p+1)
nm (0)

∣∣
T p+1

�
∑

n

∑
m

∣∣b(p)
nm

∣∣
T p

. (C10)

Note that the last of these conditions is included in Eq. (C2).
We first focus on Eqs. (C7) and (C9), which are the sim-

plest inequalities. They are satisfied for∑
k �=n,m

|Mnk|
T |
mk| � 1, (C11)

∫ s

0

∣∣∣∣∣
∑

k �=n,m

MmkMkn

T 
mk

∣∣∣∣∣ ds′ � 1. (C12)

For a two level system as the one considered in Sec. II D,
Eqs. (C11) and (C12) results in the conditions in Eqs. (44)
and (46).

To continue with Eqs. (C6) and (C8), we need to under-
stand how db(p)

nm/ds relates to b(p)
nm for n �= m. For that, we

restrict ourselves to the example of a two level system, Eq. (2).
In the following, we make an argument based on induction for
the approximation∣∣∣∣ d

ds
b(p)

nm

∣∣∣∣ ∼ �η(x2 + 1)
η−1

2
∣∣b(p)

nm

∣∣ n �= m. (C13)

The argument relies on the basic observation that all operators

10, M10 and d/ds = ẋ (∂

√
x2 + 1/∂x) ∂/∂

√
x2 + 1, used to

compute the coefficients b(p)
nm, are polynomial in

√
x2 + 1 with

rational exponents, see Eqs. (31), (32), and (36). We begin the
argument by checking that Eq. (C13) holds for the first-order
coefficients found in Sec. II C. Taking the derivative of the
only n �= m, nonconstant, first-order coefficient, we get∣∣∣∣ d

ds
b(1)

10

∣∣∣∣ = �η(x2 + 1)η/2

∣∣∣∣∂
√

x2 + 1

∂x

∣∣∣∣
∣∣∣∣∂ (M10/
10)

∂
√

x2 + 1

∣∣∣∣. (C14)

Since 
10 and M10 are polynomials in
√

x2 + 1, we make the
assertion ∣∣∣∣∂ (M10/
10)

∂
√

x2 + 1

∣∣∣∣ = |3 − η|
∣∣∣∣M10/
10√

x2 + 1

∣∣∣∣ (C15)

∼
∣∣∣∣M10/
10√

x2 + 1

∣∣∣∣ = |b(1)
10 |√

x2 + 1
. (C16)

Combining this with Eq. (C14) and dropping |∂√
x2 + 1/∂x|

as it is unimportant, we conclude that b(1)
10 fulfills Eq. (C13).

To complete the induction, we show that if the coefficients of
order p fulfill Eq. (C13), then also the p + 1 order coefficients
should fulfill Eq. (C13). We rewrite Eq. (40) using the hypoth-
esis in Eq. (C13),

b(p+1)
nm ∼ i�η(x2 + 1)

η−1
2


nm
b(p)

nm(s)

+
∑

k �=n,m

iMnk (s)


nm(s)
b(p)

km + iMnm(s)


nm(s)
b(p)

mm. (C17)

This equation consists of polynomials in
√

x2 + 1 and n �=
m coefficients of order p, which by the hypothesis fulfills
Eq. (C13). Therefore also the coefficients of order p + 1 obeys
Eq. (C13). The only exception in Eq. (C17) is the last term
with the n = m coefficient. However, for large |x|, this coeffi-
cient is almost constant as the tails of the integrals are very
close to zero and it is unimportant. For |x| ∼ 1, all of the
p-order coefficients are of the same magnitude, (�η/w)p, and
thus the coefficient of order p + 1 still fulfills Eq. (C13). This
completes the argument.

A heuristic argument that leads to the same scaling behav-
ior for large x is that whatever d/ds = ẋ d/dx acts on, gets
multiplied by ẋ while a power of x gets subtracted from the
differentiation d/dx.

We may now use Eq. (C13) to rewrite Eqs. (C6) and (C8)
and extract the corresponding adiabatic conditions:

�η(x2 + 1)
η−1

2

T |
nm| � 1 n �= m, (C18)∫ s

0
�η(x2 + 1)

η−1
2

|Mnm|
T |
nm| ds′ � 1 n �= m. (C19)

That is, if Eqs. (C18) and (C19) are satisfied, then also
Eqs. (C6) and (C8) are satisfied. By inserting 
10 and M10

we arrive at the conditions in Eqs. (43) and (45).
As a final remark, we discuss the APT prediction for

η > 2. The conditions in Eqs. (43) and (C18), that gives the
APT prediction for η > 2, rely on Eq. (C13) whose proof is
somewhat heuristic. The APT prediction for η > 2 is there-
fore approximated but still required to achieve adiabaticity as
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FIG. 6. Sequence visibility  obtained from numerical simulation with x0 = 100 and η = 2. The dimensionless expansion parameter is
varied from top to bottom: �η/(T w) = 0.25, 0.5, and 1.

shown in Fig. 4. The conditions in Eqs. (43) and (C18) are
important to ensure that higher-order contributions in the adi-
abatic expansion do not grow with the order. These conditions
do not appear in the first-order coefficients. It may therefore
be possible to relax the requirement in Eq. (42), replacing the
� with <, while still requiring that the first-order coefficients
are small. Convergence of the adiabatic expansion in Eq. (17)
is then ensured by the geometric series. This would relax
the condition for adiabaticity in the region 2 < η � 3 from
�η/(T w) � xη−2

0 to �η/(T w) < xη−2
0 . The other conditions

in Eqs. (44) and (46) would still be in effect.

APPENDIX D: SEQUENCE VISIBILITY
AT DIFFERENT TIMESCALES

In Fig. 6, we display the sequence visibility from numerical
simulation for different values of the dimensionless expansion
parameter. We show results for decreasing T values from
top to bottom. The panels in the left column show the pro-
tocol without the flux echo. Since this protocol is sensitive
to the dynamical phase, we observe an increased number
of fringes in the top left panel where the operation time is
slower. In the bottom left panel, we see fewer fringes but also
distortions due to nonadiabatic errors. In the right column,
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FIG. 7. Sequence visibility  obtained from numerical simulation with parameters x0 = 100, �η/(T w) = 0.5, and η = 2 for the echo
protocol. The additional phase δφ used is varied from top left to bottom right with increasing offset from the ideal point: δφ = 2π, 1.05 ×
(2π ), 1.1 × (2π ), and 1.15 × (2π ).

we show results for the flux echo protocol that cancels out
the contribution from the dynamical phase. For this rea-
son, we only see the contribution from the geometric phase
which is insensitive to the time of operation as long as it is
adiabatic.

The number of fringes ν in the left column panels can be
theoretically estimated. For symmetric couplings, θ = π/4,
the sequence visibility simply becomes

 = cos(2 θD) (D1)

= cos

(
2
√

π�
(

η

2

)
�

(
η+1

2

) T w

�η

sin(φ/2)

)
. (D2)

The number of fringes can then be counted by the number
of times  is ±1. In the region −π < φ < π , the number of
fringes is well-approximated by

ν = 2

⌊
2 �

(
η

2

)
√

π�
(

η+1
2

) T w

�η

⌋
+ 1, (D3)

for the optimal path found in this paper. Here, �·� is the floor
function. In agreement with the left column in Fig. 6, Eq. (D3)
predicts 11, 5, and 3 fringes for the top, middle, and bottom
panels.

APPENDIX E: ROBUSTNESS OF FLUX ECHO

In Fig. 7, we display the sequence visibility  for the
echo protocol at different values of the additional SC phase
φ → φ + δφ. In the top left panel, we show the ideal situation
of δφ = 2π . In top right and bottom panels, we tune slightly
away from the optimal point (δφ = 2π ) by 5%, 10%, and
15%. A 5% offset, as shown in the top right panel, still results
in a large region in parameter space with good visibility. At
a 10% offset, as shown in the bottom left panel, the region
size and visibility is slightly reduced and shifted to nonzero
coupling asymmetry. However, even for 10% error in δφ, a
high visibility can be reached by tuning θ , which gives the
ratio between w3 and w4. At 15% offset, as shown in the
bottom right panel, the dynamical phase plays a significant
role and reduces the visibility.

APPENDIX F: MEASUREMENT SIGNATURE
FOR EACH SEQUENCE

In Fig. 8, we resolve the sequence visibility into the specific
probabilities after each sequence. We display the probability κ

to end up in the |0〉M12 state. In the top panels, we show κ for
sequences A and B. Besides weak nonadiabatic corrections,
sequence A only gets contributions from the dynamical phase

045425-14



DEMONSTRATING MAJORANA NON-ABELIAN PROPERTIES … PHYSICAL REVIEW B 105, 045425 (2022)

Seq. A Num.

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

φ/π

co
s2

θ

0

0.2

0.4

0.6

0.8

1

κ

Seq. B Num.

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

φ/π

co
s2

θ

0

0.2

0.4

0.6

0.8

1

κ

Seq. A’ Num.

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

φ/π

co
s2

θ

0

0.2

0.4

0.6

0.8

1

κ

Seq. B’ Num.

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

φ/π

co
s2

θ

0

0.2

0.4

0.6

0.8

1

κ

FIG. 8. The probability of finding the state |0〉M12 after each sequence. Numerical results with parameters η = 2, �η/(T w) = 0.5, and
x0 = 100.

and sequence B gets contributions from both geometric and
dynamical phases. For sequences A′ and B′, where the flux
echo is in effect, there is no contribution from the dynamical

phase. In this case, only sequence A′ gets a contribution from
the geometric phase, this is the reason why κ remains zero
after sequence B′.
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