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Majorana braiding racetracks from charge Chern insulator-superconductor hybrids
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Recent experiments have provided evidence for chiral charge order in kagome superconductors (SCs). This
intriguing possibility motivates us to unveil the first pathway to engineer topological superconductivity by
harnessing the interplay of charge Chern insulators (CIs) and conventional SCs. We here identify under which
conditions a pyramidal SC/CI/SC heterostructure induces an effective one-dimensional spinless p-wave SC that
allows pinning Majorana zero modes (MZMs) at termination edges and domain walls. As we reveal, such a
MZM track is controlled by the phase difference of the two SCs involved and additional magnetic fields, which
are required for generating Rashba-type spin-orbit coupling. Further, we show that a SC/CI/SC/CI/SC double-
pyramidal hybrid defines a double MZM track, in which braiding occurs by varying the two superconducting
phase differences in space and adiabatically in time. Given the geometry of the MZM racetrack, we propose to
employ the time-averaged quadrupolar differential conductance to confirm the here-termed MZM track-exchange
process which is pivotal for braiding. In addition, we identify experimental knobs which enable the fusion
of MZM pairs, and the detection of the underlying non-Abelian topological order and twofold many-body

ground-state degeneracy by encoding it in a topological invariant.
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I. INTRODUCTION

Ground-breaking experiments have recently suggested the
emergence of chiral charge order in the family of kagome
superconductors (SCs) AV3Sbs, withA = K [1-6], Cs [7-11],
and Rb [12]. Up to date, the above experiments and related
theoretical works [13-19] indicate that a specific type of
triple-Q charge order [20] appears, and opens a gap at the M
point of the Brillouin zone. The emergence of the charge order
induces ground-state loop currents, and appears to be driven
by a phonon instability [6] which is stabilized by virtue of
van Hove singularities [21] in the electronic density of states.
In its insulating regime, this state of matter has a topological
character and is predicted to feature a nonzero Chern num-
ber [14,16], which can in turn lead to electronic chiral edge
modes for strip sample geometries. Assuming the absence of
an odd-under-inversion spin-orbit coupling (SOC), these edge
modes are spin degenerate. Therefore, the chiral charge order
in these kagome SCs becomes topologically equivalent to the
charge Chern insulator (CI) that was originally proposed by
Haldane [22].

In spite of its longstanding history, the charge CI is still
considered to be an elusive state of matter, with the high-T,
cuprates having so far constituted the most prominent material
candidates for its realization. In the cuprates, a number of
theoretical groups have proposed various interaction-driven
loop-current orders. These theories are divided into two
categories, i.e., either translationally invariant orders driven
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by multiorbital effects, which were put forward by Varma
[23-25] or order-two commensurate unconventional charge
density waves [26,27]. In the latter category, one also finds
a charge CI, the so-called chiral d,, + id,»_,» density wave
state [28-33]. Despite the intense activity, the unambiguous
verification of a charge CI in cuprates still remains open, thus
highlighting the importance of the possible discovery of this
exotic phase of matter in kagome SCs.

At this point we need to emphasize that we employ the
name charge CI to also differentiate the state of interest from
its close cousin, i.e., the quantum anomalous Hall insulator
(QAHI) phase [34,35], which also supports a nonzero Chern
number and has already been observed in ferromagnetically
doped topological insulators [36]. The experimental discov-
ery of the QAHI also opened perspectives for engineering
a topological SC (TSC) through the proximity of the QAHI
to a conventional SC [37,38]. However, related experiments
involving such hybrid systems did not result in an unam-
biguous detection of chiral Majorana edge modes [39,40].
In fact, it was shown in Refs. [41-43] that a number of
fingerprints which were initially associated with the discov-
ery of dispersive Majorana modes, could be understood by
invoking alternative explanations, such as the good electrical
contact between the QAHI and the SC [41], or the presence
of disorder [42]. Even more importantly, very recent experi-
ments [44—46] have emphasized the urgent need to fully settle
whether the bulk or the edge modes are the ones mediating
conduction in these systems before they can be employed for
functional hybrid devices.

While the above pending issues may challenge the suit-
ability of the QAHIs as platforms to detect the sought-after

©2022 American Physical Society
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A .
Josephson Junction

FIG. 1. (a) Side view of the pyramidal SC/CI/SC hybrid structure with a CI of a width W. The two SCs are kept at a phase difference §¢p =
¢ (W) — ¢(0). This can be experimentally implemented either by means of a Josephson junction or by imposing a supercurrent flow through
the two SCs. The CI harbors two counterpropagating chiral edge modes {®, ®}. The CI is under the additional influence of a homogeneous
magnetic field B = Bx and a magnetic stripe M (y) = M cos[Q(y — yo)]y. The offset y, controls the strength of the magnetization felt by the
two edges. It is crucial that Q = (2« + 1) /W with « = N so that M (y) is opposite on opposite edges. In our drawing we chose Q = 7 /W.
Since the properties of the TSC considered here solely stem from the chiral edge modes, it is sufficient for B and M (y) to be nonzero only
near the edges of the CI. (b) Top view of a pyramidal SC/CI/SC hybrid structure with a finite-sized CI strip. The two counterpropagating chiral
edge modes (dashed black arrows) become hybridized due to the finite-sized width W. The solid red arrows correspond to the magnetization
profile which is externally imposed on the CI depicted in (a). (c) The system in (b) harbors two MZMs (y; ») at the two termination edges. The
spatial support of the MZMs is sketched with cyan, and is determined by the spatial profile of the edge mode wave functions. (d) Alternatively
to (¢), MZMs can be also trapped in domain walls of the superconducting phase difference §¢p. We note that for reasons of clarity, the spatial
profile of the inhomogeneous magnetic field is not shown in (c) and (d).

chiral Majorana edge modes, this general direction of research
remains promising also for its potential impact on topological
quantum computing. First of all, it has been theoretically
demonstrated [47] that although Majorana chiral edge modes
do not adhere to non-Abelian exchange statistics, they can be
still harnessed to perform braiding [48,49]. The latter is the
quantum operation effected by exchanging two Majorana zero
modes (MZMs) in coordinate space [49]. Moreover, it has
been also theoretically predicted [38] that coupling two coun-
terpropagating Majorana chiral edge modes engineers systems
which can trap MZMs at terminations or domain walls, hence
paving the way for versatile Majorana platforms. Therefore,
identifying alternative Chern insulators harboring chiral edge
modes appears vital for pursuing the above promising research
directions.

Given the above hurdles, the possible discovery of CI
phases in the AV3Sbs family of kagome materials may present
a unique opportunity to circumvent drawbacks encountered in
QAHIs. Notably, the compatibility of these kagome materials
with both a chiral charge order and superconductivity may ei-
ther allow for devices free from the requirement of a proximity
effect, or open the door for an improved proximity effect by
considering building blocks which originate from the same
kagome material but reside in different phases. Therefore, it is
natural to ask what is the mechanism that allows converting a
charge CI in coexistence with conventional superconductivity
into a TSC. This appears to be a pressing issue since the
nontrivial topology for both the QAHI and its descendant TSC
crucially relies on the presence of odd-under-inversion SOC
which, however, is not assumed to be present in the charge CI
phases of interest.

In this paper, we answer the above urgent question in
the case of the proximity scenario by uncovering a generic
mechanism for engineering a TSC in hybrid devices of Cls
and conventional SCs. Specifically, we demonstrate that a
TSC becomes accessible by depositing a charge CI on top
of two conventional SCs kept at a superconducting phase
difference. Notably, it is crucial to choose the width of the
CI segment in such a manner, so that two counterpropagat-
ing electronic chiral edge modes emerge and become weakly
hybridized. The CI further needs to be under the influence of

Rashba-type SOC, which is here assumed to be synthetically
generated. In the presence of the net current appearing due
to the combination of the edge modes and the superconduct-
ing phase difference, it is possible to engineer a synthetic
Rashba-type SOC by subjecting the CI to an inhomoge-
neous magnetic field [S0-53], which consists of an in-plane
ferromagnetic component and a transversely spin-oriented
magnetic stripe. The latter is required to feature a suitable pe-
riodicity which ensures that the magnetic moment induced by
the stripe is predominantly antiparallel near the edges of the
system. Noteworthy, creating such a magnetic configuration
appears feasible by means of existing experimental techniques
[54,55]. Blueprints for the hybrid device are presented in
Fig. 1.

Under the influence of these magnetic fields and the phase-
biased superconducting proximity effect, the chiral edge
modes transform into a massive Majorana particle [38,56],
which leads to MZMs at the edges of the system or at mass
domain walls. Our analysis identifies the parameter regime
in which such a pyramidal SC/CI/SC structure behaves as a
MZM track. For this purpose, we adopt an analytical low-
energy model based on the chiral edge modes of the CI,
and further back our findings by means of exact numerical
studies on the lattice. Even more, we demonstrate that a
SC/CI/SC/CI/SC hybrid gives rise to a two-track MZM race-
track which provides a tunable platform for MZM braiding.
MZMs can toggle between the two tracks by controlling the
intertrack electron tunneling, while they can propagate along
each track by spatially varying the superconducting phase
differences. Since in these racetracks braiding relies on the
MZM track exchange, we put forward spectroscopic methods
to experimentally detect the successful implementation of this
process. Specifically, by taking into account the particular
geometric characteristics of the system, we propose to employ
the measurement of the quadrupolar differential conductance
which can be defined for a MZM pair. As we show, after
time averaging, this quantity presents certain characteristic
scaling and quantization features which are in principle ex-
perimentally observable. Finally, we identify the experimental
knobs that allow fusing two MZMs, while we also bring to the
fore an approach for the topological detection of the twofold
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ground-state degeneracy of the system for two uncoupled
MZMs.

Before proceeding with our main discussion, we wish to
stress that this paper examines the experimentally most de-
manding scenario where Rashba-type SOC is fully absent and
the microscopic coexistence of chiral charge order and su-
perconductivity is not feasible. In more convenient situations
where the candidate system further exhibits such a SOC or
a coexistence, a number of experimental requirements dis-
cussed throughout this work are expected to be relaxed. For
instance, a magnetic stripe is no longer required when the
system is dictated by Rashba SOC, under the condition that
this is not key for the topological properties of the CI as it
happens for a QAHI. Rashba SOC is typically non-negligible
in hybrid devices due to the presence of the interface and the
concomitant structural inversion asymmetry this incurs. On
the other hand, odd-under-inversion SOC is also accessible in
bulk systems, either due to the presence of a substrate (Rashba
effect) or due to bulk inversion asymmetry (Dresselhaus ef-
fect). Even more, in the case of a bulk system exhibiting the
microscopic coexistence of chiral charge order and supercon-
ductivity, the requirement for two phase-biased SCs in the
device shown in Fig. 1 can be correspondingly satisfied by
experimentally imposing a gradient on the superconducting
phase of the sample.

The remainder is organized as follows. In Sec. II we
discuss the model Hamiltonian for a single MZM track aris-
ing in a SC/CI/SC hybrid structure. Section III contains a
low-energy analysis of the model and provides analytical
predictions for the topological phase diagram. Section IV
continues with the discussion of two coupled MZM tracks
in a SC/CI/SC/CI/SC hybrid. As we show in Sec. V, a pair
of MZMs can be trapped at a mass domain wall, and can be
employed for braiding as detailed in Sec. VI. Sections VII and
VIII discuss experimental routes to detect the track exchange
and fusion of MZM pairs. We summarize our results and
provide an outlook in Sec. IX. Finally, supporting technical
details and information, as well as numerical verifications of
our analytical results, are given in Appendixes A-D.

II. SINGLE-TRACK MODEL HAMILTONIAN

In the remainder, we consider a representative model
for the charge CI, which in the formalism of second
quantization is expressed in terms of the operator Hcp =
f dk WT (k)Hci(k)¥ (k), with the matrix Hamiltonian:

Hei(k) = [akepy + Bhypr + m(k)ps] ® 1, (1)

where we introduced the wave vector k = (ky, k,) and its
modulus k = |k|. We consider for convenience that «, 8 > 0,
while we set m(k) = k* — mg and 7 = 1. The above Hamilto-
nian is defined in the basis of the spinor:

Vi) =l (), vl (o, vl )yl k). (2

In the above, =+ distinguishes between two quantum numbers,
such as those of two atomic orbitals of different parity, e.g., s
and p type. To represent the Hamiltonian, we used the Pauli
matrices p (o) and the related unit matrix 1, (1), which act
in orbital &£ (spin 1, | ) space.

When mg > 0, the CI is in the topologically nontrivial
phase. As a consequence, when the CI extends infinitely along
the x/y axis it harbors two chiral edge modes which propagate
along the x/y axis with one of these residing on the left (L)
and the other on the right (R) edge. With no loss of gener-
ality, in the remainder we consider a CI in a strip geometry
with a finite width W in the y direction, as shown in Fig. 1.
Given the chosen geometry, the edge modes feature an energy
spectrum which assumes a linear form Ej r(k,) = foak, for
k. € (—k¢, k.). k. is a cutoff wave number that controls the
validity of the linear dispersion. Under the above setup as-
sumption, the chiral edge mode eigenvectors are eigenstates
of p;. The protected crossing point at k, = 0 appears only
for W — oo. In contrast, for a finite-sized system the chiral
modes on opposite edges hybridize. In the remainder, we
demonstrate how to harness the chiral edge mode mixing in
order to engineer a TSC.

Starting from a topologically nontrivial CI, MZMs become
accessible after spin-rotational symmetry is broken, all degen-
eracies are lifted, and a superconducting gap is induced by
means of proximity [57,58]. For further details underlying the
above symmetry requirements we urge the reader to consult
Refs. [59,60]. To achieve the first two, we consider the pres-
ence of an inhomogeneous magnetic or exchange field. As it
was first shown in Ref. [51], the presence of a supercurrent
in conjunction with canted antiferromagnetism, i.e., coexist-
ing ferromagnetic and transversely oriented antiferromagnetic
fields, engineers a synthetic Rashba-type SOC, thus enabling
the emergence of MZMs. Motivated by the above, we here
assume the presence of an orbital-unselective inhomogeneous
field which is described by the Hamiltonian

+k, W R
Hinag = / dk, f dy ¥ (es Y)AmagUees Y)W ers ¥) (3)
—ke 0

with the matrix Hamiltonian describing the simultaneous cou-
pling to the magnetization and magnetic fields:

ﬁmag(kxs y) = ]lp Q {M COS[Q(Y _yO)] - B} - 0. (4)

In the above, [Y¥(ky,y)] ¥(r) is obtained from ¥(k) by
means of a (partial) continuous Fourier transform, with r =
(x,y) being the real-space position vector. The CI is here
under the influence of a ferromagnetic component B, and
a magnetic stripe oM with a modulation wave number Q and
offset yo € R. After the mechanism of Ref. [51], we deduce
that MZMs can become accessible only when B and M are
primarily mutually orthogonal and the value of QW/x is very
close to an odd integer, so that cos[Q(y — yo)] changes signs
on opposite edges.

Our theoretical proposal becomes complete by further ac-
counting for a proximity-induced pairing gap on the CI. For a
given (k,, y) through the most general pairing Hamiltonian is
defined as

) e DA (ks U, | (—hesy) + Heeoo (5)
p.p'==%
The effective pairing gap A, (k,y) is considered here to
be of the spin-singlet type and thus satisfies A, (k.,y) =
Ay p(—kg,y). Such a pairing gap is assumed here to origi-
nate from the proximity of the CI to two superconducting
segments, as shown in Fig. 1.
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In the remainder, we consider the simplest scenario where
the information regarding the orbital character of the CI “av-
erages out,” thus resulting in an orbital unselective pairing
term. In addition, since we restrict to the vicinity of k, ~ 0,
we further drop the k, dependence of A, (k,,y) and write
it as A, (y). Under the above conditions, we find A, _(y) =
O0and Ay (y) = A__() = |AD)|€?D. |A(y)| > 0 denotes
the modulus, whose exact y dependence is determined by the
properties of the interfaces [57,58]. In addition, the spatial
profile of the superconducting phase ¢(y) is assumed to be
such, so that the superconducting phase changes sign on oppo-
site edges. As we show below, keeping the two SCs at a phase
difference is crucial for creating and manipulating MZMs.

III. SINGLE-TRACK LOW-ENERGY CHIRAL
EDGE-MODE HAMILTONIAN

We commence our analysis by exposing the key ingredients
required for engineering MZMs. For this purpose, we employ
an effective model building upon the chiral edge modes of
the CI. The effective low-energy Hamiltonian operator which
describes such a single pair of spinful chiral edge modes takes
the form

+ke
Ho = %f dk X (k) Ho (k) X (ky), (6)
—ke

where we introduced the respective Bogoliubov—de Gennes
(BdG) Hamiltonian Hg(k,) which is given by

Holky) = (b1, @ 3 + 1130 — ui3 ® 1,) @ L. (7)

The Hamiltonian 7:[,0 (ky) acts on the multicomponent cre-
ation operator X" (k,) = (x"(k:), xT(—k,)) with

X (ko) = (W (ko), W (k) g 2 (o), Yy (), (B)

with T denoting matrix transposition. In the above, r > 0
denotes the energy scale for the hybridization of the coun-
terpropagating chiral edge modes due to the finite width W
of the CI. To represent the Hamiltonian, we made use of the
additional Pauli matrices T and 5 along with their related unit
matrices 1, and 1,, which correspondingly act in Nambu
(particle-hole) and edge (L-R) spaces. For convenience, in the
remainder we omit writing all unit matrices and the Kronecker
product symbol “®.”

Equation (7) leads to the eight (including spin degeneracy)
eigenergies ./ (ak,)? + 2 & u, which resemble the ones ob-
tained for a massive relativistic spin-% particle or hole in the
presence of a chemical potential p. Here, 1 depends on the
details of the proximity effect of the CI to the two SCs since
the latter two act as particle reservoirs. The value of w is
controlled by the band alignment of the materials employed
for the hybrid structure, and the electrostatic environment that
the CI is exposed to [61-65]. Notably, for a charge CI with
a sufficiently large dielectric constant, gate electrodes can be
employed to experimentally control its electron density.

To obtain the complete low-energy Hamiltonian, we
project the magnetic and pairing matrix terms onto the basis of
the two counterpropagating chiral edge modes. With no loss
of generality we assume the following spin-space profiles for

the magnetic field and magnetization:
B=(B,0,0) and M =M ,M, cosw, M, sinw), (9)

with B > 0. M > 0 and M, > O denote the moduli for the
two magnetic stripe components which are parallel and or-
thogonal to the direction set by the field B.

The projection of the magnetic part of the Hamiltonian
onto the chiral edge-mode sector results into the following
low-energy edge-mode BAG Hamiltonian for a single MZM
track:

Hirack (ke 0, ¢) = O(@, ) Hirack (k:)O' (@, $).  (10)

The above has been parametrized using the “center-of-mass”
and difference phases:

W)+ ¢(0)

¢=——>" and 3¢ =op(W)—¢0), 1D
along with the matrix
O(w, ¢) = explitz(¢p — wo1)/2], (12)

which effects the unitary transformation appearing in Eq. (10).
In addition, we have introduced the (w, ¢)-independent
spectrum-generating matrix Hamiltonian:

Hirack (k) = athynz +1T3m1 — 13 + i3(Myns — B)oy
+Mﬂ)302 — A cos(8¢/2)1r09
— Asin(8¢/2)71n307. (13)

In the above, M denotes the effective magnetization felt by
the chiral edge modes, and its modulus depends on the value
of the stripe offset parameter yy. Moreover, two proximity-
induced superconducting gaps A, A > 0 appear, as a result
of the nonzero overlap of the wave functions of the two edge
modes.

The Hamiltonian in Eq. (13) belongs to class D [59,60]
with a charge-conjugation symmetry generated by E = 7, ,
where /C denotes complex conjugation. Hence, to infer the
topological phase diagram we employ the Z, topological
invariant first introduced by Kitaev [66]. We define the
so-called Majorana number M using the Pfaffian of the
skew-symmetric matrix: B = 11 Hyack (ke = 0). Specifically,
by setting M = sgn[Pf (B)), we find the expression

M =sgn[cic_ + (a — b)* — b —d?], (14)
where we made use of the shorthand notations

a = A*cos’(8¢/2), d =2BM,, (15)

b=M?*+B*—1*—? — A%sin®(8¢/2), (16)

cr =M?*+ B+E1)? —p?— A%sin?8¢/2). (17)

Topological phase transitions occur when M changes sign.
For a strip of a length L,, MZMs appear at the two termina-
tion edges, as sketched in Fig. 1(c). In contrast, as shown in
Fig. 1(d), in the case of an infinite strip, MZMs can get trapped
at domain walls across which M changes sign. In Fig. 2,
we depict the sign-changing behavior of M in the (B, §¢)
parameter plane, when the remaining parameters are fixed.
We observe that both external fields need to reach a threshold
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FIG. 2. Topological phase diagram with respect to the applied
magnetic field B and the superconducting phase difference §¢. The
blue (white) region denotes the topologically nontrivial (trivial) re-
gion. The above was extracted using the approximate analytical
Majorana-number expression in Eq. (14), that we obtained based on
the low-energy model of Eq. (13). Notably, for ¢ = 7 a symmetry
class transition occurs which renders the system topologically trivial.
The red dashed lines indicate the window for which the system is in
the topologically nontrivial phase for B/t = 0.72, which is a value
used for the numerical simulations presented in Fig. 7. We used the
parameter values u = M; = 0, A/t = 0.72,and M, /t = 1.4.

value so that a transition to the topologically nontrivial phase
emerges.

We remind the reader that, as first discussed by Kitaev
[66], M is meaningful as long as the bulk energy spectrum
of the system is fully gapped. Hence, in the remainder we
restrict to suitably small values of M which lead to a full gap.
Notably, for M; = 0 the system belongs to the BDI symmetry
class which allows for multiple MZMs per termination edge
protected by a chiral symmetry. Nevertheless, as we prove
in Appendix A, even in the BDI case gap closings can only
occur at k., = 0. Hence, M is sufficient for inferring the
topological phase diagram also in this case. We also note that
the spectrum of Eq. (13) appears to be gapless for §¢ = 7
for arbitrary values of M. Even more, when we simulta-
neously consider §¢p = and p = 0, the emergence of an
extra time-reversal symmetry mediates the symmetry class
transition BDI — AI @ Al. Notably, the latter class is trivial
in 1D [60], and thus prohibits the appearance of MZMs, as
we further explain in Appendix A. Indeed, the above is also
corroborated by the results shown in Fig. 2. To substantiate
the emergence of MZMs more transparently, we provide in
Appendix B complementary numerical verifications of the
results in Fig. 2.

To facilitate the upcoming discussion of braiding, we here
demonstrate that an effective spinless p-wave SC model be-
comes engineered in a single track. Specifically, we find that
when ¢ is the largest energy scale, B the second largest, and
u > 0, we can project the Hamiltonian in Eq. (13) onto the
n = o; = 1 eigenstate, which is responsible for the nontrivial
topology in the given regime of parameter values. As we detail
in Appendix C, this projection yields the following spinless
p-wave SC model for a single infinitely long track:

Hirack (k) = Jky + vk @51, + m1s, (18)

(b) |- -
B Lrf - Cl
— 7
Tunnel N[ TrrN_\
Junction - TRR\ Ig CI2

Josephson Junction Josephson Junction

FIG. 3. (a) Side view of a double MZM track (MZM racetrack)
constructed by a double-pyramidal SC/CI/SC/CI/SC hybrid struc-
ture. In the most symmetric situation the two Cls are considered to
be identical. In order to engineer two effective p-wave SCs, the two
phase differences defined for the three SCs, i.e., ¢y = ¢(W) — ¢(0)
and 8¢, = ¢(0) — ¢p(—W), must take suitable values so that two
effective p-wave SCs are simultaneously induced. By controlling
the electron tunnel coupling among the four chiral edge modes of
the two CIs, one can couple the two effective p-wave SCs in a
tunable fashion. (b) Top view of the MZM racetrack with a focus
on the tunnel junction bringing the two CIs in electronic contact.
The various double arrows depict the tunneling processes appearing
between pairs of chiral edge modes of the two ClIs.

where we set M = |M| and defined the coefficients

7= (x_M” o= (leAcos(&;&/Z)
t tB ’
Mot By AEBR ey R A
4Bt 4t 4B

Notably, the vanishing of v for §¢ = 7 provides an alternative
route to transparently understand the trivial character of the
system for this phase difference value that was emphasized
earlier. Further, we find that the parallel component M, of
M leads to the induction of net momentum o</ along the
SC/CI/SC strip [67]. Finally, in accordance with the Hamilto-
nian in Eq. (10), the orientation of the orthogonal component
defined by w effects a unitary transformation, and after the
projection solely modifies the “center-of-mass” phase ¢.

IV. RACETRACK-MODEL HAMILTONIAN

Coupling two hybrid structures of the type proposed above
opens perspectives for braiding MZMs using racetracks. The
minimal setup to implement a racetrack requires three SCs
and is sketched in Fig. 3. The middle SC segment cou-
ples to two identical Cls, while each one of the two ClIs is
deposited on top of three conventional SCs. Thus, the result-
ing SC/CI/SC/CI/SC racetrack features the two independent
phase differences

81 =9W)—¢(0) and 8hy =¢(0)—(=W), (19)

which are defined for the CI denoted with 1,2. Notably, the
arising reference phase ¢(0) of the middle SC can be for
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convenience set to zero for racetracks in which there exists
only a single domain wall harboring a MZM pair.

The racetrack Hamiltonian is obtained by coupling the two
effective p-wave SCs which arise from each track. We restrict
to couplings originating from low-energy intertrack tunneling
processes between the two pairs of chiral edge modes, which
are expressed through the term

+ke
Hinlertrack = / dkx[XI(kA)HTXZ(kx) + H~C']’ (20)
—ke

where we introduced

+n3 03

+ TRRei(ﬁR"’ —1 _

N ]
Hr = Tppe™

T + Tree

m+in
% 1)

iore T — in

—

In the above, the moduli Tyz gr.rrre > 0 control the
strengths of the various intertrack tunneling processes, while
the phases @1 rr Lk gL are only nonzero when flux @, pierces
the cross section of the two CIs. Since we restrict to the
low-energy regime, the various tunnel couplings have been
assumed to be independent of the wave number k.. In this
work, we predominantly consider the case of a zero out-of-
plane flux, and set the above phases to zero throughout. The
only exception is Sec. VIII, where we briefly discuss the
implications of a nonzero flux in connection to the fusion of
MZM pairs. Even more, in the remainder we also assume that
the tunnel matrix elements between modes of the same type,
i.e., LL and RR, are equal and hence set Tgg = T, = T from
now on.

We now proceed by extending the spinor X7 (k,) to the
two-component superspinor (X’ }L(kx), X ; (ky)) in order to take
into account the upper and lower track degrees of freedom.
Putting together the intertrack tunnel coupling Hamiltonian
of Eq. (21) and the two single-track Hamiltonians which are
expressed following Eq. (10), yields the BdG Hamiltonian
below:

,}qracelrack(km w12, ¢1,2) = O(Qa q))ﬁracetrack(kx)OT(Q» q))v
(22)

where we introduced the racetrack “center-of-mass” variables

Q= $7 (23)

i +é ¢(0) n dW) + p(—=W)
o2 2 4

as well as the associated matrix Hamiltonian in the extended
Hilbert space:

P

(24)

7:zracetrack (kx )
= Pl ko)
A=t
—l—exp{ikgu[wl - 6020l W) — ¢(—W)]}
2 4
x [Tsht3 + (Trr + Trr)A 1311 /2
+ (Tre — Ter)A21312/2], (25)

where we made use of the projectors Pr=(1+2x3) /2 onto
the track labeled by 1 and 2. In addition, we made a convenient
gauge choice, so that the arising difference in the phase factors
explit3(¢12 — w1,201)/2] of the Hamiltonians for each track
enters in the intertrack couplings.

We remark that the phases 2 and ® do not influence the
energy spectrum and, thus, can be set to zero for our upcom-
ing analysis. However, these center-of-mass phases become
important when considering double domain walls harboring
four MZMs in total [68-70]. In such situations, 2 and ®
can vary in space and, thus, give rise to Josephson junctions
which enable the observation of a number of unusual current
responses stemming from the two underlying pairs of MZMs
[68-70]. These include the emergence of chiral anomaly and
the emergence of Weyl points in a synthetic space [69,70].
In fact, the search for Weyl points has recently attracted sig-
nificant attention in the context of multiterminal conventional
[71-79] and topological [69,70,80-83] Josephson junctions
[84-86].

Along the lines of the process that led to Eq. (18), we pro-
ceed by here projecting the racetrack Hamiltonian in Eq. (25)
onto the n; = o) = 1 eigenstate, we obtain a low-energy
model which describes two coupled single-track effective
spinless p-wave SCs. While a detailed analysis of this pro-
cedure is presented in Appendix C, in the present section we
restrict to the most symmetric scenario, in which the two
coupled p-wave SCs feature different mass terms m;, but
are otherwise identical. Under such a condition, the BdG
Hamiltonian for an infinitely long MZM racetrack becomes

A

Hracetrack (ky) = vk, To + (my +m_A3 + T Ay)13, (26)
where we employed the compact notation

Tir + Tre

+
=M and T=Ts+ QD)

m4iy =

Moreover, we considered for simplicity that M) | = M, =0,
which in turn resulted in J; = J, = 0.

V. MZM PAIR AT A MASS DOMAIN WALL

Given the above low-energy Hamiltonian, we proceed by
considering the presence of a domain wall which stabilizes
a MZM pair per racetrack (cf. Fig. 4), whose braiding we
examine later on. To engineer a pair of MZMs, the masses
my are required to be spatially varying. For convenience and
with no loss of generality, we consider a domain wall centered
at x = 0, which has the following spatial profile:

X+ Xxo X — Xo

and my(x) = my , (28)
dw de

my(x) = my

where &4, defines the spatial extent of the domain wall. The
above expressions imply that when the two tracks are decou-
pled, i.e., for T = 0, track 1 (2) harbors a MZM at position
x = —xy (x =xp). This is straightforward to obtain by ac-
cordingly extending the model Hamiltonian of Eq. (26) to its
coordinate space counterpart given by

y ~ ~ X+ XoA3 + X7A
Hg;zetrack(px’ X) =UpxT2 + m()%_—f& (29)
dw
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FIG. 4. Numerical simulation of instants of the MZM track exchange process. Initially [see (a)], the two tracks are decoupled and each one
harbors a single MZM (yx p) at a domain wall controlled by the arising two superconducting phase differences 8¢, . (b) The configuration
shown in this panel is obtained by switching on electron tunneling across the two tracks (7 # 0). Each MZM has now spatial support on both
tracks. The superconducting phases and tunnel coupling strength need to be continuously varied to carry out the complete track exchange
depicted in (c). For the above we employed the parameters L, = 2400, W =8, M| =0.02, [M)| = =0,my =1, = = 1. For M(R,)

and ¢(R, ), we adopted the spatial profiles defined in Appendix B.

where we defined the length scale x; = T &4y /my which quan-
tifies the strength of the intertrack tunnel coupling.

In the above, the term xpAz 4+ x7A; can be readily diago-
nalized by introducing its eigenstates in track A space

cos(8/2) sin(6/2)

with respective eigenvalues xyzm, Where xyzv = Vg +x7.
The angle 0 is defined through the relation tan 6 = x7 /x,. We
note that the solution |un(0)) [|up(6))] always describes the
MZM which is located on the negative [positive] side of the x
axis at position Fxyzm. For 6 = 0 the MZM on the negative
(positive) side appears on track 1 (2), as depicted in Fig. 4(a).
Instead, for 8 = w the MZM exchange tracks compared to
6 = 0. See as depicted in Fig. 4(c) for a sketch. Remarkably,
processes that adiabatically modify 6 in the interval 6 € [0, 7]
perform a track exchange for the MZM on a given negative
or positive side on the x axis. As we discuss in the next
paragraphs, this exchange presented in Fig. 4(b) is crucial for
the braiding of a pair of MZM in a two-track racetrack.

We proceed with obtaining the eigenvectors of the MZMs.
After introducing the eigenstates in Eq. (30), the Hamilto-
nian for the MZM at Fxyzym is proportional to the operator
EaqwU P To + mo(x & xpmzm ) T3. Therefore, the pair of MZMs
appears as the zeroth Landau level solution of each massless
Dirac Hamiltonian in the presence of an effective magnetic
field [87]. Each MZM eigenvector is required to be normal-
izable, which is the condition that enforces that the MZM
eigenvectors are eigenstates of the chiral symmetry operator
1) of a specific chirality 7; = %1. For v, my > 0 we find that
both MZMs have chirality 7; = —1 for the given properties of
the domain wall. Finally, after accounting for the spatial parts
of the MZM eigenvectors we find that these assume the form

Iynp(x, 0)) = fuyp(0)|unp(9)) @ |11 = —1), 3D
with the respective spatial wave-function distribution
(x £ xvzm)’
o - 32
Inyp(x) CXP[ YohEgs /o (32)

Here, each one of the spatial profiles shown above needs to
be normalized in such a way so that the following defining

relations for the Majorana operators hold:

e} ={re.ve} =1 and {mw. yp} =0. (33)
We conclude the section with commenting on the protec-
tion of the MZM pair trapped at such a domain wall. First of
all, the emergence of the two MZMs is straightforward to un-
derstand when the two racetracks are completely decoupled.
As long as intertrack tunneling is prohibited, the two MZMs
remain uncoupled even if they have spatial support at the
same region. However, switching on the intertrack tunneling
in a region where the wave functions of both MZMs have a
nonzero spatial support generally degrades the robustness of
the MZM pair. The fate of the MZM pair depends on whether
the Hamiltonian in Eq. (25) possesses a chiral symmetry or
not since the former scenario allows for multiple uncoupled
MZMs per domain wall. When the tunnel matrix elements are
real, the MZM pair is preserved due to the emergence of a
chiral symmetry with matrix I1 = 7;. However, terms which
violate this symmetry hybridize the MZM pair into nonzero
energy Andreev modes. This is in fact what happens when a
nonzero out-of-plane flux @, threads the tunnel junction and
renders the intertrack tunnel matrix elements complex. In this
case a term oA, is added to Eq. (29) which violates IT and
mixes the MZMs of the pair. In Sec. VIII we demonstrate
how one can actually exploit this property for fusing MZMs
and inferring information regarding the twofold ground-state
degeneracy of a domain wall which harbors a MZM pair.

VI. MZM BRAIDING IN A RACETRACK

In this section, we proceed with putting forward a protocol
that allows for the spatial exchange of two MZMs in the
racetrack. The basic principle is illustrated in Fig. 5.

At first, a single MZM is created in each track as shown
in Fig. 5(a). In the vicinity of the MZMs, we impose 7 = 0
which implies & = 0. At the same time, the intertrack coupling
is required to be nonzero far away from the two MZMs, in
order to guarantee that the two tracks remain electronically
connected during the braiding process. This is a crucial re-
quirement for keeping a common gauge for the two tracks,
even though the two MZMs may belong to two different
tracks.
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FIG. 5. MZM braiding in a racetrack. (a) Initially, two MZMs
ynp are trapped by a mass domain wall, as described in Eq. (29).
(b) Afterwards, one adiabatically switches on and further varies
the transparency of the junction which mediates intertrack electron
tunneling. Simultaneously, the superconducting phase differences
are spatially adjusted so that MZM track exchange is implemented.
(c) After the track exchange, intertrack tunneling is switched off,
and the two MZMs get shuttled by spatially varying the phases
differences in an adiabatic manner, in order for yy p to be exchanged.

Next, one ramps up 7 at the positions txyzy S0 to allow
the MZMs to tunnel through the interface of the two tracks
and begin the exchange process. See Figs. 4(b) and 5(b). In
order to describe the track-exchange process it is instructive
to monitor the evolution of the MZM eigenvectors in Eq. (31).
In the minimal protocol one needs to suitably adjust xy and
xr during the track exchange, so that xyzy remains unaltered.
Equivalently, this implies that one is required to adiabatically
vary 6 in the interval [0, 7]. Indeed, as we verify from our
numerical results in Fig. 4(b) for a value of 6 in this interval,
the MZM are now in a superposition state with weight in
both tracks. When 6 becomes 7, each MZM finds itself in
a track different than the one that it was located for 8 = 0.
Remarkably, an adiabatic process that leads to 6 +— 0 + 7
implies the following transformation property for the MZM
eigenvectors:

lun(0 4+ 1)) = —lup(0)) and |up(6 + 7)) = +|un(0)).

(34)

Interestingly, the above transformation behavior is identi-
cal to the one that we expect to obtain for the MZM operators
ynyp at the end of the braiding process, i.e., yn = —yp and
¥p > +yn. In fact, as we argue below and further prove in
Appendix D, given the chosen gauge, it is exactly the track-
exchange part that leads to the desired braiding transformation
properties for the MZMs.

The third and final step that is needed to complete the
braiding operation is to exchange the two MZM positions,
as depicted in Fig. 5(c). Keeping 6 fixed at m, which es-
sentially implies that the two tracks should be decoupled in
the region where the MZMs are located, one needs to adia-
batically change the sign of xyzym. Hence, at the end of this
position exchange, the spatial parts of the MZM eigenvectors
get swapped. As we show in Appendix D, this final stage of
the braiding process does not introduce any further relative
sign changes for the MZM operators. Within the framework
chosen here, the sign changes that appear during braiding
solely stem from the track exchange. In part, this should be
anticipated since the Hamiltonian is real and the appearance
of Berry phases should be attributed to the mismatch arising in
the MZM eigenvectors at the beginning and end of the process
[88]. This is indeed reflected in the transformation result of
Eq. (34). Nonetheless, to concretely support this argument,
we prove the above in Appendix D using a topologically
equivalent two-track spinless Kitaev chain model [66].

VII. MZM TRACK EXCHANGE:
EXPERIMENTAL SIGNATURES

As mentioned in the previous paragraph, the most crucial
part of braiding is the track exchange that the MZMs un-
dergo. Hence, in order to gain a high level of control over
the MZM braiding, it appears imperative to be in a position
to experimentally verify the proper completion of the MZM
track-exchange process. Since during braiding the two MZMs
are considered to be separated infinitely apart, one can reside
on the commonly used MZM spectroscopic probes. However,
as we bring forward here, the present MZM platform opens
perspectives for new types of spectroscopic measurement
approaches.

As depicted in Fig. 6(a), we consider that the platform
is attached to four metallic leads. These contact the system
exactly at the four points of coordinate space where the two
MZMs appear at the beginning and at the end of the track ex-
change. As it is well established, the differential conductance
dl/dV measured at zero bias voltage (V = 0) by a single
lead coupled to a single MZM exhibits a characteristic peak
[89] which is quantized and equal to 2¢2/h [90,91]. Here,
by restricting to the MZM pair subspace, we find that we
can define four distinct differential conductance values which,
when the leads are identical and kept at the same potential,
become spatially inter-related in a specific fashion. Motivated
by this observation, we introduce the quadrupolar differential
conductance for the domain wall region, defined as

dl 1/dl dI dl dl
alg ( LN _ 4hN  dhe 2,P>’ (35)

av — 4\ av v dv ' dv

where the indices N and P and 1 and 2 denote the negative and
positive sides of the domain wall of tracks 1 and 2. Each one
of the four partial conductances is defined as [90,91]

dl, 2 r2 36
dV — h T2+4(eV)?’ (36)
with the index a = {1/2, N/P}.

To determine the various I',, we make use of the results
of Ref. [92] regarding the spin-resolved scanning tunneling
spectroscopy of MZMs. After mapping the track to the spin
degree of freedom, and given the structure of the eigenvec-
tors in Eq. (30), we find that the broadening parameters I',
take the form ')y = p = FCOSZ(G/Z) and ) =Tp =
I"sin?(6/2), with " the broadening obtained when the respec-
tive MZM fully belongs to a single track. Hence, we end up
with the following expression for the quadrupolar differential

conductance:
dlp 2 V2 cos

av b [Vt cost (D)2 +sin* (9)]

37)

where we set V = ¢V/I". During the track exchange, 0 is
varied adiabatically in the interval & = [0, 7r]. In order to mea-
sure the above quantity, it is strategic to convolute the currents
with a sinusoidal reference signal of the form cos 6, and carry
out the measurement for a number of N, cycles in order to
cancel out any possible noise contributions. The coefficient
of the cos® component of the time-averaged quadrupolar
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FIG. 6. (a) Experimental setup to verify the MZM track exchange. Four normal leads are attached to the two ClIs of the racetrack. The
leads’ tips are placed near the four locations where the two MZMs are expected to appear during the MZM track exchange. We depict the
initial positions of the two MZMs. After the MZM track exchange is completed, the two MZMs are expected to appear at the positions of leads
1P and 2N. (b) Single-lead differential conductance d1/dV, and the cos 8 component dl_g’s" /dV of the time-averaged quadrupolar differential
conductance. After dividing by v/2eV/T, the latter becomes equal to 2¢?/h at V = 0, similar to dI/dV .

conductance is given by

dIgs? /Z”NC 2 cos6d dly
dv o 2N, dv

cos ¢ ﬁsin{)
—v 2v'1 2 38
( Y 1/v/2 V1402 %)

where ¢ = (m/2 +tan"' V)/2. As shown in Fig. 6(b) the
above component of the averaged quadrupolar differential
conductance features a characteristic scaling relation. In
fact, the normalized quantity (dl_g’se /dV')//2eV /T becomes

quantized and equal to 2¢%/h at V = 0, similar to the single-
lead differential conductance dI/dV .

Concluding this paragraph, we point out that the above
conclusions hold for a generic two-track system, including
double-nanowire hybrids [93-95], as long as one can control-
lably transfer the spectral weight of each MZM from one track
or nanowire to the other.

VIII. MZM FUSION: EXPERIMENTAL KNOBS
AND SIGNATURES

The above conclusions rely on the fact that the MZMs
of the pair remain decoupled while carrying out the spectro-
scopic measurements. Nonetheless, signatures of the presence
of the MZM pair can be detected by means of their fusion
which is achieved by controllably coupling them. Since for
the domain wall assumed in Sec. IV both MZM eigenvectors
constitute eigenstates of t, the most general coupling Hamil-
tonian takes the form

fusu)n

MZM (Prx, x) = (39)

A V(P + V' (Pl

and violates the chiral symmetry IT = 1| of Eq. (29) We intro-
duced V (py) = (Vi px, V2, V3pu) and V' (py) = (V| px, Vs, V3 po).
For the spatial structure of the two vector couphng functions,
we considered only the lowest-order contributions in terms of
Px, which are at the same time compatible with the charge
conjugation E that dictates the BAG Hamiltonian. From the
above, we find that the matrix elements of the coupling Hamil-
tonian restricted to the MZM pair subspace are given by the
general form

ﬁ;ﬁ/‘;(g)— —F - (cosf, 1, sin6)iynyp, (40)

where F; o« V;, V/ with s = 1, 2, 3. The above structure of the
MZM coupling Hamiltonian implies that one can infer crucial
information regarding the MZM pair by experimentally mea-
suring the conjugate (in the statistical mechanics sense) vector
of F, which is here denoted P(6), and is defined as

fusnon fusion
(0) dEy\ (0)
o) = (PO L SO )

where E[%1o0(0) defines the contribution of the MZM pair to
the energy of the system.

First of all, we observe that obtaining the conjugate field
of P, yields information regarding the fermion parity of the
domain wall and subsequently of the racetrack, since we find
that

Py = (iynye) = (djdo — dod])/2, (42)

which takes the values £1/2, depending on whether the
fermionic state, which is formed by the MZM pair and gets
annihilated by the operator dy = (yx + iyp)/~/2, is occupied
or not.

The remaining two fields F; and F; behave as a two-
component vector in track space since they couple in a dipolar
fashion to the MZM pair. One can harness the vectorial nature
of these fields to define the topological invariant quantity

2 %)
v:/ de[ (e)dPl(e) ﬁl(e)d%e)]
0

2 “43)

in terms of the unit conjugate vector

(P, Py) = (P, Py)// P} + P}

As described by the above formula, by varying 6 € [0, 27),
i.e., by performing a double MZM track exchange, one ex-
pects to experimentally observe the vorticity value v = 1. The
exact quantization of v reflects the presence of the MZM, and
is only accessible as long as fermion parity is preserved during
the entire process. Hence, any deviations from the quantized
value may indicate possible fermion-parity switchings and
quasiparticle poisoning of the system.

So far, we have not made any specific mentioning regarding
the nature of the physical quantities which can couple the
MZMs at the domain wall. To identify suitable coupling quan-
tities, we start from the most general Hamiltonian described
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TABLE I. Physical quantities contributing to the fusion terms
appearing in the MZM coupling Hamiltonian of Eq. (40).

Field Physical quantities

F My sin[(¢1 — ¢2)/2], My sin [(w1 — @,)/2]
F, @, sin[(¢ — ¢2)/2]sin [(w) — @2)/2]
F’%

Ji —Jp, visin(¢ —wi) — vasin (¢ — @)

in Eq. (25), and project onto the eigenstates n; = o7 = 1. This
process is described in more detail in Appendix C. We identify
various terms which contribute to the vector F, that we present
in Table I.

As we confirm from Table I, there exist various knobs that
can be employed to fuse the MZM pair. For example, the
fermion parity of the pair can be probed by subjecting the
MZM pair to the presence of an out-of-plane flux ®,. Notably,
a recent work [96] discussed the possibility of inferring the
topological properties of planar Rashba-Josephson junctions
[97-101] by studying the in-plane spin susceptibility. While
also in our work the magnetic and magnetization fields lie in
the plane, we instead propose that signatures of MZMs can
be tracked by measuring the out-of-plane orbital component
of the magnetization. In fact, while it is well established that
the orbital magnetization encodes information regarding the
topological properties of a generic CI [102], it is of a particular
importance in the present case since there are no out-of-plane
magnetic fields applied to the system. Hence, the MZM race-
tracks proposed here provide a fertile ground for mapping
out the fermion parity through disentangling the MZM pair
contribution to the response to out-of-plane fluxes.

Another option to detect the fermion parity is to in-
duce a superconducting difference «¢; — ¢, in the two
tracks, accompanied by a magnetic stripe spin-orientation
misalignment xw; — w. As a consequence, one can either
experimentally measure the 47 -periodic Josephson current

Je o cos[(d1 — ¢2)/2] sin[(w1 — @2)/2]

generated under the presence of the above-mentioned spin-
orientation misalignment [67,103—-105] or detect a spin
current

Jy ocsin[(¢) — ¢2)/2] cos[(w) — w2)/2]

flowing from one CI to the other with spin orientation in the x
axis, by imposing a phase difference ¢; — ¢, [103-106].

We now discuss dipolar bias fields which allow experimen-
tally probing the underlying twofold ground-state degeneracy
induced by a MZM pair. From Table I, we observe that either a
superconducting phase difference ¢; — ¢, or magnetic stripe
spin-orientation misalignment xw; — w; is sufficient to gen-
erate a Fy field, as long as M is nonzero. On the other hand,
the F; field can be either engineered by inducing a difference
between the net momenta J;, that can flow through each
MZM track or by introducing a mismatch between the mixed
phase differences ¢; — w; and ¢, — w,. In fact, the latter can
be alternatively achieved by imposing w; = wy # ¢ = ¢»
as long as the velocities satisfy v; # v,. By means of the
experimental measurement of the conjugate vector (P}, P3) of

(F1, F3) during a double MZM track-exchange process one
infers the emergence of topological order through the possi-
ble observation of the topological invariant quantity v which
constitutes a winding number reflecting the two-component
vectorial nature of (F, F3).

IX. SUMMARY AND CONCLUSIONS

In this work we expose the first route to employ a
charge Chern insulator (CI) for the engineering of a topo-
logical superconductor (TSC). Specifically, we demonstrate
that pyramidal heterostructures of superconductors (SC) and
CIs enable the induction of effective 1D p-wave supercon-
ductivity and hence the realization of Majorana-zero-mode
(MZM) tracks. A SC/CI/SC where the two SCs are kept at a
superconducting phase difference constitutes the fundamental
building block of such an architecture.

MZM braiding becomes accessible in racetracks con-
structed by SC/CI/SC/CI/SC hybrids where the three SCs are
kept at different phases. Up to date, TSCs induced by super-
conducting phase differences have been mainly discussed in
connection to systems dictated by Rashba-type spin-orbit cou-
pling (SOC), such as topological insulators [107,108], planar
Josephson junctions [97,98], and semiconducting nanowires
[50,109-111]. Remarkably, the MZM racetracks proposed in
this work do not rely on the presence of Rashba SOC. Instead,
the charge CI is assumed to be spin degenerate and the re-
quirement of antisymmetric SOC is provided by externally
imposing a homogeneous magnetic field in conjunction with
a transversely oriented magnetic stripe. The magnetization in-
duced by the stripe is required to have an opposite orientation
near the two edges. Based on recent theoretical predictions
[112-117], we conclude that engineering such an inhomo-
geneous magnetization profile is feasible with the currently
existing technologies in nanomagnetics [54,55]. The above as-
pects highlight the enhanced tunability of the MZM racetrack
proposed since the topological properties can be controlled
and induced by a variety of external knobs.

We remark that the mechanism underlying the conversion
of the charge CI into a TSC crucially relies on a local An-
dreev reflection mechanism. In more detail, superconductivity
is induced on a given edge by virtue of the spin-degenerate
nature of the chiral edge modes. Therefore, our proposal is not
applicable to the quantum anomalous Hall insulator (QAHI)
[37,38] since there the presence of Rashba SOC leads to
spin-polarized chiral edge modes. We also note that in contrast
to Ref. [38], here the nontrivial topology relies solely on the
chiral edge modes of the CI, and the emergence of a 2D TSC
is not a prerequisite. Even more, our mechanism appears more
general and less restrictive than the one discussed in Ref. [52]
for engineering MZMs on a graphene edge in proximity to a
conventional SC. There, it is the presence of the two valleys
that mediates the local Andreev mechanism and the supercon-
ducting proximity effect. In stark contrast, our proposal does
not require a multiband structure for the chiral edge modes
since we reside on coupling two opposite edges. Hence, we
expect our results to be applicable beyond the charge Cls dis-
cussed here and thus to hold for generic quantum Hall systems
with (near) spin-degenerate chiral edge modes. Going back
to our original motivation, the possible discovery of chiral
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edge modes in kagome SCs in the insulating regime promises
to open perspectives for realizing such SC/CI/SC based on
only kagome materials residing in the CI and SC phases or on
kagome CIs interfaced with other conventional SCs.

We further elaborate on the manipulation and experimental
probes of MZM pairs. We show that MZM braiding can take
place in racetracks construed by SC/CI/SC/CI/SC structures,
and relies on the adiabatic control of the intertrack electron
tunneling and the spatial profile of the various supercon-
ducting phase differences. Our braiding protocol in MZM
racetracks relies on the MZM track exchange, which is a
process that allows pairs of MZMs to simultaneously swap
track. In contrast to prior works which have discussed the
spatial exchange of a MZM pair by means of T junctions
[88], Y junctions [118], or skyrmion-based racetracks [119],
here the braiding transformation stems solely from the MZM
track exchange. As we show in this work, additional processes
which shuttle the MZMs in the racetrack in order to complete
the MZM exchange do not contribute to the non-Abelian
part of the Berry phase picked up by the twofold-degenerate
ground state of the system.

Motivated by the particular geometric features of the MZM
platforms discussed here, we further propose suitable routes
to experimentally probe the MZM track exchange. For de-
tecting the former, we propose to measure the time-averaged
quadrupolar differential conductance dlp/dV which is de-
tectable using four normal leads contacting the Cls at the
four positions where MZM are located during the MZM track
exchange. The purpose of time averaging is dual. First of
all, it is strategic to average over a number of MZM track-
exchange cycles in order to suppress the impact of the various
noise sources that may influence the experimental measure-
ment process. But, most importantly, we find that in the
clean case, the time-averaged and suitably rescaled dly/dV
becomes quantized and equal to a single unit of conductance
for V. = 0. Therefore, the present MZM platform allows for
an additional quantized spectroscopic quantity apart from the
standard single-lead differential conductance. In fact, these
two quantities satisfy a scaling relation which can provide a
clearer signature of the underlying MZMs. We note that our
results have a generic character and may find application in
other racetrack type of platforms, these including the double-
nanowire setups experimentally realized recently [93-95].

The last component of this work focuses on the experi-
mental control and detection of the fusion of MZM pairs in
racetracks. We unveil that a MZM pair can couple to various
external fields which can be employed to probe the fermion
parity of the pair and in turn the racetrack, as well as to pin
down the twofold degeneracy of the ground state. The former
becomes possible by experimentally studying the response to
flux piercing the cross sections of the two Cls of the racetrack
or by monitoring a Josephson or spin current flowing from be-
tween the two tracks as a result of imposing combined phase
differences and magnetic stripe orientation misalignments. On
the other hand, the emergence of non-Abelian topological
order can be probed by a two-component vector external field
which couples in a dipolar fashion to the MZM pair, due to the
2D spatial distribution of the latter. By extracting the vectorial
response to this external vector field, one can construct a
winding number which is a topological invariant and when

it becomes equal to 1 reflects the presence of the twofold-
degenerate ground state and the underlying topological order.

All in all, our work provides a holistic approach to MZM
racetracks using previously not-discussed approaches and
material components. We hope that our mechanism and ex-
perimental considerations will motivate further experiments
in intrinsic kagome SCs as well as artificial TSCs, and in-
spire new theoretical concepts concerning the manipulation
of MZMs.
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APPENDIX A: TOPOLOGICAL CLASSIFICATION
DETAILS FOR THE SINGLE-TRACK MODEL

In this Appendix, we perform the topological classifica-
tion of the Hamiltonian in Eq. (13). When all parameters
are nonzero and 8¢ # m, the Hamiltonian lies in class D
where only the charge-conjugation symmetry effected by the
operator E = ;K is preserved. For M =0 and 8¢ # m,
Eq. (13) belongs to class BDI since it additionally possesses
time-reversal and chiral symmetries, correspondingly effected
by the operators ® = 1,/ and IT = 7,7,. The topological in-
variant of a BDI class Hamiltonian in 1D is characterized by a
winding number here termed w. Nevertheless, if gap closings
only occur at high-symmetry points, class BDI can be also
characterized by the Majorana number M which classifies
class D Hamiltonians. As we prove below, M is indeed here
sufficient to map out the topological phase diagram in both
BDI and D classes. To show this, we infer w for the case
M, = 0. We employ the unitary transformation generated by
the matrix I = (1,7, + 13)/~+/2 to block off-diagonalize the
Hamiltonian of Eq. (13) as follows:

U Aok k) = —akytony + 171 + ptin; + Mo to100,
— Btinioy + Acos(8¢/2)120%

+ A sin(8¢/2)tim302, (AD)

where t4+ = (1] £ it2)/2. From the above we find that the
upper off-diagonal block reads as Alky) = ik +t —
iM |05 — Byiop — iAcos(8¢/2)or + A sin(8¢/2)n305 +
uni. The winding number is defined as the winding
number of det[A(k,)]. Hence, topological phase transitions
take place when det[A(k,)] =0. Since Imdet[A(k,)] =
8ak M t A cos(8¢/2), we conclude that within the interval
(—k¢, k.) considered here, the bulk gap closes only at k, = 0.
Therefore, in order to infer the topological phase diagram it
suffices to examine when Re det[A(kx = 0)] = 0. Notably,
the sign of Redet[A(k, = 0)] = 0 coincides with M, thus
proving that the latter can characterize the topological
character of the system in both D and BDI cases.

We additionally note that for My =pu =0 and §¢ =
m, an additional time-reversal symmetry emerges with
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TABLE II. Symmetry classification table for the Hamiltonian of
Eq. (13) for particular parameter values. The symbol v (x) implies
that the statement of the top row is true (false).

M =0 wu=0 édp=m Class Fully-gapped spectrum
X X X D x (v" only for small 1\71”)
X v X D x (v only for small M, 0
X X v D X
X v v ADA X
v X X BDI v
v v X BDI v
v X v BDI v
v v v AI® Al  x

®' = 11120, K. Its presence alters the symmetry class to Al &
Al which is trivial in 1D and cannot protect MZMs. We also
remark that M is here considered suitably small, in order
for the bulk energy spectrum of Eq (13) to be fully gapped.
However, when §¢ = 7, the Hamiltonian of Eq. (13) leads
to gapless trivial phases which cannot support MZMs. We
summarize our results in Table II.

APPENDIX B: SINGLE-TRACK NUMERICAL
SIMULATIONS ON THE LATTICE

The predictions of our low-energy model are verified by
considering the full model in the corresponding parameter
regime. For our numerics, we employ a lattice extension of
our continuum model in Sec. II, which is obtained by perform-
ing the mappings k., > sink,, and k* — 2 — 2(cosk, +
cos k). Hence, the respective lattice extension for the Cl reads
in k space as

Attt 1 . .
Alatice. — 3 Z Yila sink,p; + B sink,30
k

+(2 —2 cosk, — 2 cosk, —mo)t3p3]¥;. (B1)

To obtain the energy spectrum of the system under open
boundary conditions in the x axis, we employ the plane-wave
basis operators ¥ p =1/vw ), ey, with R, € Z the
site index in the y axis. We further take into account the
Hamiltonian terms in Egs. (4) and (5), but with the coordinates
properly extended to the lattice. To describe the above terms
we additionally extend our formalism to the respective Nambu
space in analogy to the formalism adopted in Sec. III.

In our numerics, we investigate a CI strip with a finite
length and width, of L, = 1000 and W =4 sites, respec-
tively. With no loss of generality we assume for simplicity
that |A(R,)| = A = 0.1 and replace the cos[Q(y — yo)] de-
pendence of the magnetic stripe by a stepwise spatial profile
MR,) =M [1 -20(R, — W/2)]p, with M| = 0.02. A sim-
ilar stepwise profile is considered for the superconducting
phase ¢(R,) = §¢[1 — 20(R, — W/2)]/2. We also set a =
B=my=1,B=0.72, and u = 0. For the above parameter
values, the topological phase diagram shown in Fig. 2 that we
obtained using the low-energy Hamiltonian of Eq. (13) im-
plies that the hybrid system enters the topologically nontrivial
phase for é¢p/27 € (0.26,0.5) U (0.5, 0.74) and two MZMs
are expected to appear at the termination edges of the strip.

(a) 1.5
(@)
£
= 0
o
S
—
—-1.5 .
0.26 0.50 0.74
d¢/2m
x1072
(®) 1 7 (0)0.12
0.75 6 -
5 £ 008
050 2 g
3 S 0.04
0.25 > S 0
o 0zodocos 1 ! 200 600 1000 1400
x/Ly L,

FIG. 7. (a) Numerically obtained low-energy spectrum for the
lattice version of the model defined by Egs. (4), (5), and (B1)
as a function of the superconducting phase difference §¢. Based
on the results of Eq. (14) for the parameter values B = A = 0.1,
M, =0.02, M; = pn=0,and W = 4 (leading to ¢ ~ 0.139, M, ~
0.020, and A =~ 0.097), MZMs are expected to appear for 8¢p/2m €
(0.26,0.5) U (0.5, 0.74). Indeed, this is verified for most of the §¢
interval. (b) Spatial weight (squared absolute value of the wave
function) of each MZM for §¢ /2w = 0.35. The MZMs appear on
opposite termination edges of the strip. (c) Depicts the length de-
pendence of the lowest-energy eigenstate of the system for §¢ /2w =
0.45. We find that the nonzero-energy Andreev modes observed in
(a) near 8¢ = m are a result of finite-size effects since their energy
decreases upon increasing L,. Even more, the low-energy states for
8¢ = m are not genuine MZMs due to a symmetry class transition
taking place for this phase difference value.

Indeed, this is verified from our numerical investigations.
The energy spectrum resulting from a particular numeri-
cal simulation as a function of §¢ is shown in Fig. 7(a).
MZMs appear to be stabilized in an extended region which is
mainly in accordance with our earlier theoretical predictions.
In Fig. 7(b), we depict the spatial weights of the respective
MZM wave functions for §¢ /2w = 0.35. In agreement with
the result of Fig. 2, the MZMs evolve into nonzero-energy
Andreev edge modes for §¢ = . As explained earlier, this
is attributable to the BDI — AI @ Al symmetry class tran-
sition which takes place at this special value, and renders
the system trivial. Remarkably, we find that MZMs hybridize
into nonzero-energy Andreev modes for an extended region
centered at 6¢p = w. However, this superficial discrepancy
compared to the analytical low-energy predictions is due to
the reduction of resolution in our numerics. Indeed, by repeat-
ing our numerical investigations for values near §¢ = w with
strip lengths much larger than L, = 1000, we have verified
that the energy of the Andreev modes tends to zero and that
MZMs are present also in this window. See, for instance,
Fig. 7(c) which was obtained for §¢ /27 = 0.45.
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APPENDIX C: MAPPINGS TO p-WAVE
SUPERCONDUCTORS

We here detail the procedure that allows us to map the
single-track and coupled double-track low-energy Hamil-
tonians to single-track and coupled double-track p-wave
superconductor models. In the upcoming derivation we as-
sume that #;, > B;» > 0 and ;> > 0. Under the above
hierarchy and sign conventions, the mapping is performed

by projecting the original model Hamiltonians onto the n; =
o1 = 1 sector. Our analysis follows Ref. [88] closely.

1. Mapping for the single-track model

Our starting point is the Hamiltonian of Eq. (13). We pro-
ceed by reexpressing this Hamiltonian in the basis of the n; =
+1 eigenstates. By explicitly writing the matrix elements in
this two-state Hilbert subspace we find

|
73(t — u — Boy) — A cos(6¢/2)10,
ak, + MH‘C3O'1 +M o, — A sin(8¢/2)t10%

ok, +M||‘L'30’1 +MJ_UQ —-A Sin(5¢/2)‘[10’2> 1

/Hm bas1s(kx) — <
track —13(t + 4 + Boy) — A cos(8¢/2)1205

By assuming that 73(f — 4 — Boy) — A cos (8¢ /2)1,0, &~ 0 we find tllat —73(f + u + Boy) — A cos (8¢ /2)1200 = =21 75.

Therefore, by restricting to energy values E & 0 and by considering ak,, M, and A compared to the 2¢ energy splitting between

the 7, = =1 states, we find that the effective Hamiltonian dictating the 1, = 1 level reads as

A= (k) ~

track

3(f — u — Boy) — A cos(8¢/2)tr00 + akx(MHal + M, T300)/t, (C2)

where we introduced the renormalized hybridization energy scale 7 =t + M?/(2t) — A?sin® (8¢/2)/(2t) to facilitate the
notation. We now proceed by reexpressing the above in the basis of the o) = %1 eigenstates. We have

—i[A cos(8¢p/2)Ty — aMlkxm/t])

f—p— Bt + aMk,/t
me =lo1= :tlbasm(kx) — < ( ® )T+ o I / 5 - (C3)
[ (t—pL+B)T3—(XM“kX/I

rack i[A cos(8¢/2)ts — aM ket /t]

Following the lines of the earlier projection, we assume that (f — u — B)13 + on”kx /t ~ 0 which implies that (7 — u +
B)ts — aM k. /t ~ 2Bt; + 2aMk,/t ~ 2Bt3. Assuming that M, and A cos (3¢/2) are smaller than the splitting for k, = 0
which is relevant here, we find that the effective Hamiltonian for the n; = o7 = 1 eigenstate:

Mukx
Htraek(k ) ~ (t — M= B)T +—

—[A cos(8¢/2)T, — aMkaQ/t]ZT—;[A cos(8¢/2)1) — aM k.13 /t]. (C4)
Straightforward manipulations provide the expression in Eq. (18), after first having projected the unitary matrix in Eq. (12) onto
the o1 = 1 eigenstate.

2. Mapping for the double-track model

We now repeat the procedure of the paragraph above for two coupled tracks. Our starting point is now the Hamiltonian in
Eq. (25). In the following, we consider that the two tracks are characterized by generally different phases ¢, > and w; » but are
otherwise identical. Following closely the approach for projecting the Hamiltonian onto the n; = 1 eigenstate discussed above,
we once again assume that 73(t — u — Boj) — A cos (8¢ /2)10o, = 0 we find that —73(t + i + Bop) — A cos (8¢ /2)1r00 =
—2t13. This procedure yields the effective Hamiltonian for n; = 1:

fHﬂl 1

- ak, - P
racetrack(kX) ~ i3t + T_2/(2t) —u—Bol—A COS(8¢/2)T20’2 + TX(MHO'] + M, 1307) + Te’ﬁ(ffl))ﬂﬁ)\‘lf?)

T_ | -~ w; — . -
- |:MJ_ sin (%)e"’\ﬂ3<¢‘_¢2)/2)~1r303 + Asin(d¢/2) sin <¢1 ¢2> ’““”‘(‘”‘_“’2)/2)»1r202],

(€5)

where 19(01) =o1(w; — w2)/2 — (¢1 — ¢2)/2. The above gxpression is now projected onto the o; = 1 eigenstate under the
assumption that 73[f + T2/(2t) — u + B] — Myak,/t + Te??©@==D%%) 13 &~ 2Bt3. We now project the Hamiltonian onto the
o) = 1 eigenstate and conclude with the following expression:

. N T_AA sin(8 .
Hracetrack (kx) = Jky + vk, +m73 + Telﬁ(mil))qr})\lf,? + —((b) sin[(¢

B — §2)/2]e" 1 TNTE2), 1y

+[T-M . /(Br)]sin[(¢1 — ¢z)/2]{A cos(8¢/2) sin[(w; — @2)/2]A2 71

+ A sin(8¢/2) cos[(w; — a)z)/Z]aTkx)»lrz } (C6)
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FIG. 8. MZM braiding using a racetrack consisting of two coupled Kitaev chains supporting unpaired MZMs. (a) Shows the configuration
before the braiding protocols is initiated. (b) Shows the evolved MZMs after the track exchange. Here, the track-exchange process swaps the
two chains in a rigid manner. The MZMs of one of the two chains pick up a minus sign. (c) Obtained from (b) after removing the braiding

unrelated signs. (d) Braiding is complete after shuttling the two MZMs.

Finally, we briefly note that under the following assump-
tion, 3[f +T2/(2t) — i+ B] — Myaky/t +, Te?@=—Dhsm
ATy & 2Bty — 2M ikx/t, we also obtain contributions
accompanied by the matrices A and XA;7y, which
become nonzero when either M sin[(¢ —¢»)/2] or
M” sin [(w; — wy)/2] are nonzero.

APPENDIX D: MZM BRAIDING IMPLEMENTATION

In the main text, we discussed how MZM braiding takes
place and we emphasized the crucial role of the here-termed
MZM track-exchange process. In this Appendix, we use the
above mapping of the MZM racetrack to a racetrack of
two coupled p-wave SCs to further elaborate on the details
underlying the braiding process. To render the discussion
transparent and facilitate an analytical treatment, we specif-
ically demonstrate how the braiding protocol proposed here
is implemented for a topologically equivalent MZM racetrack
consisting of two Kitaev chain models [66]. Even more, we
restrict to the sweet spot with unpaired MZMs. The first
advantage of examining this special case is that it still al-
lows to generalize results concerning topological properties
to more complex Hamiltonian configurations. This is under
the condition that the gap of the system remains open when
deforming the Kitaev chain model to address other Hamilto-
nian configurations. The second advantage is that since each
MZM has spatial support only on a single lattice site, one
can consider chains of arbitrarily short lengths to study the
braiding process. In the remainder we study chains of four
lattice sites. See also Fig. 8.

Under the above conditions, a single Kitaev chain con-
sists of two types of MZMs, ie., y, and 9, which
satisfy  {¥y, Y} = {Pn, P} = 6um and {y, P} =0 VY, m,
where n, m label the lattice cites. Pairs of y,, and 7, MZMs cre-
ate an electron ¥, = (¥, + i7,,)/+/2. Assuming the sweet spot
case, the topologically trivial segments of a Kitaev chain are
dictated by the local coupling of MZMs. See, for instance, the
first sites of either chain a or b in Fig. 8(a). The red arrows rep-
resent Hamiltonian terms of the form iy, ,,., and iy Vb0,
and the direction of the arrow is employed to define the sign
of the coupling matrix element. In topologically nontrivial

segments MZMs couple in a nonlocal fashion according to
the Hamiltonian terms i¥, ,Va.n+1 and i¥p nVp.nt1. We remark
that during the braiding process the two tracks need to remain
electronically connected, and here this is achieved by coupling
the two unpaired MZMs on the right edge of the two tracks
through the term iy, 47.4.

In Fig. 8 we present the necessary steps to implement
braiding in a four-site Kitaev chain racetrack. The MZMs
shown in each panel should be understood within the Heisen-
berg picture of evolution, and each MZM depicted at a given
site in Figs. 8(b)-8(d) is expressed in terms of the MZMs
defined at the beginning of the protocol, i.e., in Fig. 8(a). The
first necessary step for braiding is the MZM track exchange.
Here, we assume that all the sites of the chains a and b become
rigidly exchanged. See Fig. 8(b). Importantly, the MZM wave
functions of one of the two chains pick up a minus sign due
to the structure of the MZM eigenvectors in Eq. (30) and the
transformation property in Eq. (34). We remark that the sign
changes of MZMs which are coupled and belong to the same
chain do not affect the braiding outcome. This is because
the Hamiltonian remains invariant under such simultaneous
sign changes and the extra minus sign can be absorbed by a
redefinition of the Fock space states. Changing the sign of one
of two MZMs that belong to different chains also does not
affect the braiding outcome since iy, 47p.4 > iPp.a(—Va4) =
iVa,4Vp.4-

Figure 8(c) is obtained from 8(b) after removing the extra
signs of coupled MZMs in the lower chain. The removal of the
extra sign in —J, 4 is accompanied by the reversal of the cou-
pling arrow. Hence, from Fig. 8(c) we find that the two MZMs
that need to be braided (depicted with black disks) already
carry the extra relative sign. Braiding becomes complete by
moving each MZM to the original location of the other MZM.
In order to shuttle a MZM, one couples the MZM in question
with one nearby already paired-up MZM. For example, in
order to shuttle y; 3 in Fig. 8(c) to the left by one site, we need
to couple it to 5 so that y;, 3 and 7, » become exchanged. At
the end of the process, one of the MZMs y;, 3 or 2 picks up
an extra minus sign [118]. By employing the same convention
for the shuttling process in the two chains, we find that the
MZM which we desire to shuttle is the one that picks up the
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extra sign. Hence, since the two MZMs that we wish to braid
move by an equal amount of sites, their shuttling does not

change the relative sign that was picked up at the end of the
track exchange.
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