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Nonlinear magnetoresistivity in two-dimensional systems induced by Berry curvature
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We investigate the effect of band geometric quantities on nonlinear magnetoresistivity, which dictates the
quadratic dependence of the nonlinear voltage generated by the applied current. We propose that the interplay
of the Berry curvature, the orbital magnetic moment, and the Lorentz force can induce a finite nonlinear
resistivity in two-dimensional systems in the presence of a perpendicular magnetic field. The induced nonlinear
magnetoresistivity scales linearly with the magnetic field and is purely quantum mechanical in origin. Our
proposed transport signature can be used as an additional experimental probe for the geometric quantities in
intrinsically time reversal symmetric systems.
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I. INTRODUCTION

The band geometric properties of quantum materials, such
as the Berry curvature and the orbital magnetic moment
(OMM), play a fundamental role in the linear and nonlinear
(NL) transport and optical properties [1,2]. Some prominent
examples within the linear response include phenomena like
the anomalous Hall effect (AHE) [3–5], valley Hall effect [6],
magnetic field induced AHE [7], intrinsic Hall effect [8–10],
and magnetoresistance [11,12]. Several very exciting NL Hall
effects and other NL transport phenomena are also being
actively explored [13–22]. However, the exploration of NL
transport induced by geometric quantities in the presence of
a magnetic field is still at a nascent stage.

In the presence of a magnetic field, the spin-orbit coupling
has been shown to induce a unidirectional magnetoresistance
in two-dimensional (2D) magnetic systems [23–25]. More
recently, bilinear magnetoresistance [26,27] and NL planar
Hall effect [28] were demonstrated in nonmagnetic spin-orbit
coupled 2D systems based on the conversion of spin current
to charge current. This was facilitated by including the mag-
netic field via Zeeman coupling. In this paper, we propose an
alternative origin for NL magnetoresistance in 2D systems,
which is purely quantum mechanical in nature. We show that
band geometric quantities, such as the Berry curvature and
the OMM, induce second-order NL magnetoresistance in the
presence of a perpendicular magnetic field in 2D systems.
This is more significant in a time reversal symmetric system,
where the entire contribution to the NL resistance arises from
the band geometric properties. The predicted NL resistivity is
a different transport signature of band geometric properties,
and it can be used as an experimental tool to probe the Berry
curvature and the OMM.

To obtain the NL resistivity, we use the semiclassical
electron dynamics and the Boltzmann transport equation. We
calculate all the NL conductivity contributions that arise from
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the Berry curvature, the OMM, and the Lorentz force in 2D
systems. We find that in addition to broken space inversion
symmetry (SIS), the anisotropy of the band dispersion is
also a necessary criterion for the NL conductivities to be
finite. Intriguingly, in contrast to the quadratic magnetic field
dependence of the magnetoresistivity in the linear response
regime [11], the predicted NL magnetoresistivity varies lin-
early with the magnetic field. Furthermore, it also persists in
systems with broken time reversal symmetry (TRS), although
there are additional contributions arising from the Drude con-
ductivity. We explicitly calculate all the NL conductivities and
the NL resistivities for 2D systems which host tilted massive
Dirac fermions.

This paper is organized as follows: In Sec. II we de-
scribe the experimentally relevant NL resistivity matrix in
terms of the theoretically calculated NL conductivities. This is
followed by a detailed calculation of all the different contribu-
tions to the NL magnetoconductivities in Sec. III. Section IV
presents a specific example of the predicted NL magneto-
conductivity and magnetoresistivity in a tilted massive Dirac
Hamiltonian. This is followed by a discussion in Sec. V, and
finally, we summarize our findings in Sec. VI.

II. NONLINEAR RESISTIVITY

In this section, we will define the second-order NL resis-
tivity matrix and obtain its general expression in terms of
the NL conductivities and the linear resistivities. Before we
proceed, it is useful to understand the commonly followed
experimental setup of the NL transport, shown in Fig. 1. In
NL transport experiments [17,27,28], typically, an ac current
(or current density) of frequency ω is sent through the device,
and as a response, the induced longitudinal [27] (parallel to the
current) and transverse [17,28] (perpendicular to the current)
voltage drops (or electric fields) are measured. The induced
NL voltages or electric fields E (2) are distinguished from their
linear counterparts by specifically measuring them at 2ω or
zero frequency, using a lock-in amplifier.

Specifically, for an input current density jω, the induced
linear response electric field Eω, the induced NL responses in
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FIG. 1. Schematic of the experimental setup for the measurement
of the NL magnetoresistivity. The magnetic field is applied perpen-
dicular to the x-y plane. The current (at frequency ω) flows along the
x axis, and the voltage drops along the direction of the current, V 2ω

‖ ,
and perpendicular to it, V 2ω

⊥ , are measured.

the form of the dc electric field Enldc, and the second harmonic
electric field E2ω are usually measured. This measurement
scheme introduces the general concept of second-order NL
resistivity ρ̃

(2)
abc via the relation E (2)

a = ρ̃
(2)
abc jb jc, where jb is

the applied current density. Here, the subscripts a and b de-
note the coordinate axes, and summation over the repeated
indices is implied. Particularly, we can define the NL dc
(zero frequency) resistivity, Enldc

a = ρ̃nldc
abb ( jωb )2, and the sec-

ond harmonic resistivity, E (2ω)
a = ρ̃

(2ω)
abb ( jωb )2. In addition to

these, there will also be an induced electric field in the linear
response, which defines the linear resistivity ρab, Eω

a = ρab jωb .
To connect the experimentally measured NL resistivity to

the theoretically calculated NL conductivity, it is essential to
establish a well-defined relation between the two. Theoreti-
cally, we calculate the second harmonic current via j (2ω)

a =
σ

(2ω)
abc EbEc and the NL dc current as jnldc

a = σ nldc
abc EbE∗

c , where
Eb and Ec denote the complex components of the applied
electric field. One simple way to connect the NL conductivity
with the NL resistivity is to calculate jnldc

a or j (2ω)
a in terms

of the components of jωb , making use of the linear response
resistivity. This yields j2ω

a = [σ 2ω
ab′c′ × ρbb′ × ρcc′] jωb jωc . Now,

using this and defining the total resistivity ρ total in terms of the
measured electric field and current, we obtain the expression
of NL resistivity. The details of the calculations are summa-
rized in Appendix A.

Assuming that the current is applied only along the x di-
rection, for the case of 2D systems, the NL resistivity matrix
elements are calculated to be

(
ρ̃ (2)

xxx

ρ̃ (2)
yxx

)
= −[ρ]

(
σxxx σxxy σxyx σxyy

σyxx σyxy σyyx σyyy

)⎛
⎜⎜⎝

ρ2
xx

ρxxρyx

ρxxρyx

ρ2
yx

⎞
⎟⎟⎠. (1)

Here, ρ̃ (2)
xxx stands for the NL resistivity, and ρ̃ (2)

yxx stands for
NL Hall resistivity. In Eq. (1), the first term on the right-hand
side denotes the 2 × 2 linear response resistivity matrix for 2D
systems. Equation (1) calculates the NL resistivity differently
than earlier studies [17,26]. Note that Eq. (1) holds for both
the NL dc resistivity as well as the second harmonic resistivity,
depending on which NL conductivity is used on the right-hand
side. However, in the transport limit, ωτ � 1, both the NL
conductivities are identical [σ nldc(ω → 0) = σ 2ω(ω → 0)],

and this is also reflected in the NL resistivity. For the rest of
the paper, we work in this limit, and thus, we have ρ̃

(2)
abc =

ρ̃
(2ω)
abc = ρ̃nldc

abc . Simplifying the notation further, we use ρ̃ (2)
xx

for ρ̃ (2)
xxx and ρ̃ (2)

yx for ρ̃ (2)
yxx in the rest of the paper.

To explore the NL magnetoresistivity in 2D systems in-
duced by the Berry curvature and the OMM, we first calculate
the different contributions to the NL conductivity. We will
specifically consider the case of a magnetic field perpendic-
ular to the 2D plane, i.e., device geometry in the normal Hall
configuration, as shown in Fig. 1.

III. NONLINEAR CONDUCTIVITIES

In this section, we calculate the general expressions of all
the components of the NL conductivity tensor in the presence
of a magnetic field. As discussed in the last section, the NL
conductivities are related to the NL current via the relation
j (2ω)
a = σ

(2ω)
abc EbEc. In the semiclassical Boltzmann transport

formalism, the charge current can be expressed as j(t ) =
−e

∫
[dk]D−1ṙg(t ). Here, g(t ) denotes the nonequilibrium dis-

tribution function (NDF), and [dk] stands for gsdk/(2π )2,
with gs denoting the spin degeneracy. In a 2D system, in the
presence of perpendicular magnetic field, the band geometric
quantities modify (i) the dynamics of the charge carriers in
the phase space (ṙ, k̇), (ii) the phase-space volume D−1, and
(iii) the band dispersion. These impact the NDF of the charge
carriers in the presence of applied electric field, which in turn
gives rise to additional band geometry induced contributions
to the NL conductivities.

For the Hall configuration (E ⊥ B) that we consider for
this paper, the equation of motion is given by [8,29,30]

ṙ = D
[
ṽ + e

h̄
E(t ) × �

]
, (2)

h̄k̇ = D[−eE(t ) − e(ṽ × B)]. (3)

Here, −e (with e > 0) is the electronic charge, and the phase-
space modifying factor is given by 1/D = [1 + e

h̄ (B · �)],
with � being the Berry curvature. In the above equations, ṽ =
v − vm is the OMM modified velocity, where h̄v = ∂ε/∂k and
h̄vm = ∂εm/∂k, with εm = m · B. This is due to the fact that in
the presence of a magnetic field, the Zeeman-like coupling of
the OMM with the magnetic field modifies the electronic band
energy via the relation ε̃ = ε − m · B. The Berry curvature
and the OMM for the nth band can be computed using the
relation [1,6]

	n
a = −2εabc

∑
n �=n′

Im 〈n| ∂H/∂kb |n′〉 〈n′| ∂H/∂kc |n〉
(εn − εn′ )2

, (4)

mn
a = − e

h̄
εabc

∑
n �=n′

Im 〈n| ∂H/∂kb |n′〉 〈n′| ∂H/∂kc |n〉
εn − εn′ . (5)

Here, εabc is the Levi-Civita symbol, and the band energies
and eigenstates are for an unperturbed system, H |n〉 = εn |n〉.
For 2D systems, both the Berry curvature and the OMM have
only one finite component: the component pointing out of
the plane. In our case, we consider the 2D system to be in
the x-y plane; thus, only the z components of these quantities
are defined.
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In the presence of an ac electric field, of the form E(t ) =
Eeiωt + E∗e−iωt , and a static magnetic field [31,32] the NDF
can be calculated using the Boltzmann kinetic equation with
the relaxation time approximation [33], which reads

∂g(t )

∂t
+ k̇ · ∇kg(t ) = −g(t ) − f̃

τ
. (6)

Here, f̃ is the Fermi-Dirac distribution function given by
f̃ = 1/[1 + eβ(ε̃−μ)] at chemical potential μ and inverse tem-
perature β = 1/(kBT ), with kB being the Boltzmann constant
and T being the temperature. In Eq. (6), τ is the relaxation
time, and for simplicity we ignore its energy dependence.
The NDF can be expressed as a sum of the equilibrium
and nonequilibrium parts, g(t ) = f̃ + δg(t ). Furthermore, the
nonequilibrium part δg(t ) can be expressed as a power series
of the applied electric field as δg = ∑

νδgν , with δgν ∝ |E|ν .
In this paper we are interested in current ∝ |E|2, and thus, we
calculate the NDF up to quadratic order in electric field. To
this end, we use the ansatz

δg2(t ) = f 0
2 + f 0∗

2 + f 2ω
2 ei2ωt + f 2ω∗

2 e−i2ωt . (7)

Here, f 0
2 or f 0∗

2 is the rectification (or dc) part, and f 2ω
2 or

f 2ω∗
2 is the second harmonic (2ω) part of the NDF. Using this

ansatz in Eq. (6), we calculate the second harmonic part to
be [34,35],

f 2ω
2 =

∞∑
ν=0

(Dτ2ωL̂B)νD
eτ2ω

h̄
E · ∇k f ω

1 . (8)

Here, f ω
1 is the linear order correction to the distribution

function [see Appendix B for details], and we have defined

L̂B = e

h̄
(ṽ × B) · ∇k, τ2ω = τ

1 + i2ωτ
. (9)

The rectification counterpart can be obtained from Eq. (8)
simply by replacing τ2ω → τ and E → E∗. Using Eq. (8),
it is straightforward to calculate the NDF as a power series
of the magnetic field [2,9,36–38]. The explicit form of the
distribution function is presented in Appendix C.

Using the obtained NL distribution function, one can cal-
culate the rectification current j0(t ), the second harmonic
current j2ω(t ), and the corresponding conductivities. In this
paper, we restrict ourselves to the lowest-order magnetic field
corrections to the NL conductivities. The details of the cal-
culations and the general expressions for all the different
conductivity terms are presented in Appendix C. Here, we list
the second harmonic contributions and focus only on those
contributions, which are nonzero in systems which intrinsi-
cally preserve TRS (nonmagnetic systems).

Before doing explicit calculations, we note that the scatter-
ing time dependence of the NL conductivities can be inferred
from very general symmetry arguments. For example, if a
current component j ∝ (B)a(τ )b, then under time reversal we
have − j ∝ (−B)a(−τ )b ∝ j × (−1)a+b, and consequently,
a + b should be an odd integer. Thus, terms with odd (even)
powers of B in the magnetoconductivity will always have even
(odd) powers of τ . This symmetry argument is also applicable
for magnetic field independent NL conductivities, and in that
case we consider a = 0.

In intrinsically time reversal symmetric systems in two
dimensions, we find that only the NL Hall conductiv-
ity [15,16,39–41] survives in the absence of a magnetic field.
Since this contribution originates from the anomalous veloc-
ity, it is called NL anomalous Hall (NAH) conductivity and it
is given by

σ NAH
abc = −e3τω

2h̄
εabd

∫
[dk]	dvc f ′ + (b ↔ c). (10)

Here, f ′ ≡ ∂ε f is the derivative of the Fermi function with
respect to energy, and we have defined τω ≡ τ/(1 + iωτ ).
As the name suggests, this term contributes only to the Hall
current, and the diagonal components σ NAH

aaa vanish. In the
presence of a magnetic field, we find that in addition to
Eq. (10) there are three other contributions to the NL conduc-
tivities: (i) a contribution arising solely from the OMM σ OMM

abc ,
(ii) a contribution arising from the interplay of the anomalous
velocity and the Lorentz force σ AL

abc , and (iii) a Berry curvature
dependent contribution arising from the phase-space factor
σ B

abc.
The OMM induced NL conductivity is given by

σ OMM
abc = e3τωτ2ω

2h̄

∫
[dk][vma∂kbvc f ′

+ va∂kb (vmc f ′ + εmvc f ′′)] + (b ↔ c). (11)

Here, we have defined f ′′ ≡ ∂2
ε f and note that the derivative

operator acts on all the terms appearing on its right side. The
anomalous velocity and the Lorentz force combine to give

σ AL
abc = −e3τ 2

ω

2h̄
εabd

∫
[dk]	d

eB

h̄

(
vy∂kx vc

− vx∂kyvc
)

f ′ + (b ↔ c). (12)

This conductivity also contributes only to the Hall current.
The NL conductivity contribution induced by the phase-space
factor is given by

σ B
abc = e3τωτ2ω

2h̄

∫
[dk]va

(
	B∂kb + ∂kb	B

)
vc f ′ + (b ↔ c).

(13)
Here, we have defined 	B ≡ e

h̄� · B. It is clear from
Eqs. (10)–(13) that all these NL conductivities depend on
either the Berry curvature or the OMM. Based on this, we
conclude that in intrinsically TRS preserving systems, the
second-order NL responses are induced only by the geometric
properties of the electron wave function. In other words, in
intrinsically TRS preserving systems, the Lorentz force by
itself, without the Berry curvature or the OMM, cannot induce
the second-order NL response in 2D systems.

To calculate the NL resistivity, we also need the linear
response conductivity matrix. The general expression of the
linear response current jω(t ) is calculated in Appendix B.
The Drude conductivity is given by σ D

i j = −e2τω

∫
[dk]viv j f ′.

In an intrinsically TRS preserving system, the nonzero con-
ductivity up to linear order in the magnetic field is given
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by [9,42,43]

σ L
ab = −e2τ 2

ω

eB

h̄

∫
[dk]va

(
vy∂kx vb − vx∂kyvb

)
f ′, (14)

σ O
ab = e2

h̄
εabd

∫
[dk]εm	d f ′. (15)

The superscript L implies the Lorentz force contribution (the
normal Hall effect), and the superscript O denotes the OMM
contribution (OMM induced Hall effect).

This summarizes the general framework for calculating the
second-order responses. We now explicitly calculate the NL
magnetoconductivity in quantum systems which can be de-
scribed via pair of valleys hosting tilted massive Dirac cones.
This is one of the simplest systems which has an anisotropic
band dispersion along with finite band geometric quantities
and can be treated analytically. We show explicitly in the
next section that the anisotropy of the band dispersion is a
necessary condition to obtain nonzero NL conductivities.

IV. TILTED MASSIVE DIRAC SYSTEMS

In this section, we calculate the NL resistivity for 2D sys-
tems with a pair of tilted massive Dirac fermions. Each one of
the “Dirac valleys” is specified by the Hamiltonian [15,44]

Hs = vF (kxσy − skyσx ) + svt kx + �σz. (16)

Here, s = ± is the valley index, σi’s are the Pauli matrices
representing the sublattice degree of freedom, � is the band
gap, vF denotes the Fermi velocity, and the vt term intro-
duces tilt in the band dispersion along the kx axis. The model
Hamiltonian in Eq. (16) lacks SIS, and the two valleys are
related by the TRS. Furthermore, the mirror symmetry is
broken along the kx line and preserved along the ky line [39].
This model acts as a building block of realistic band structures
in systems like the surface states of topological crystalline
insulators such as SnTe and transition metal dichalcogenides
such as WTe2 [15,44].

The energy dispersion for this two-band model is given
by ε± = svt kx ± ε0, where ε0 = (v2

F k2 + �2)1/2, with k =
(k2

x + k2
y )1/2. Here, the + (−) sign stands for the conduction

(valence) band. The band dispersions for both valleys are
shown in Figs. 2(a) and 2(b). The tilt-modified band velocity
along the x direction is given by v±

x = svt ± v2
F kx/ε0, and

v±
y = ±v2

F ky/ε0. For the model Hamiltonian in Eq. (16), the
Berry curvature and OMM have been calculated from Eqs. (4)
and (5), respectively, and are given by [15,44]

	z = ∓s
v2

F �

2
(
v2

F k2 + �2
)3/2 , (17)

mz = −s
ev2

F �

2h̄
(
v2

F k2 + �2
) . (18)

As expected, the band edges are rich in both the Berry cur-
vature and the OMM and act as hot spots. The distributions
of the Berry curvature with constant-energy contours (in the
conduction band) are shown for both valleys in Figs. 2(c)
and 2(d). We note that both the OMM and the Berry curvature
are independent of the tilt.

(a) (b)

(d)(c)

FIG. 2. The band dispersion of the tilted massive Dirac Hamilto-
nian along the kx axis for nodes with (a) s = 1 and (b) s = −1. (c) and
(d) show the Berry curvature distribution in the momentum space for
the conduction band for nodes s = 1 and s = −1, respectively. The
different energy contours are indicated by the green (μ = 0.1 eV),
yellow (μ = 0.2 eV), and magenta (μ = 0.4 eV) lines. The vari-
ous parameters associated with the Hamiltonian are vF = 1 eV Å,
vt = 0.1vF , and � = 0.1 eV.

A. Nonlinear conductivities

Next, we calculate the NL conductivities for the tilted
massive Dirac Hamiltonian in Eq. (16), using the general
equations (10)–(13) for the NL conductivities. For analytical
insights, we calculate the NL conductivities up to leading
order (linear order) in the tilt, and the results are summarized
in Table I in terms of the parameter r ≡ �/μ for μ > �. We
find that the NL conductivities are valley degenerate; thus,
we simply multiply the results for one valley with a valley
degeneracy factor gv . As a double check of our calculations,
we have also done numerical computations of the NL conduc-
tivities, including the tilt to all orders, and we find reasonable
agreement between the analytical and numerical results (see
Fig. 3).

From the NL conductivities summarized in Table I, it is
evident that the tilt in the dispersion plays an important role.
More specifically, the tilt manifests in the anisotropy of the
Fermi surface and the x component of the band velocity.
Among the different components of the NL Hall conductivity,
we find σ NAH

xyx (= σ NAH
xxy ) and σ NAH

yxx to be nonzero. This can
be attributed to the nonzero Berry curvature dipole [15] of the
system which arises due to the broken mirror symmetry along
the x axis. The chemical potential dependence of σ NAH

xyx (=
σ NAH

xxy ) and σ NAH
yxx is shown in Fig. 3(a). Similarly, for the other

Hall component which originates from the combined effect of
anomalous velocity and Lorentz force, we find σ AL

yyx (= σ AL
yxy )

and σ AL
xyy to be nonzero. The chemical potential dependence of

these terms is shown in Fig. 3(b). Unlike the above-mentioned
conductivity components, the NL conductivities induced by
the phase-space contribution, shown in Fig. 3(c), and the
OMM contribution, shown in Fig. 3(d), contribute to both the
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O
M
M

(eV)(eV)

(a) (b)

(c) (d)

FIG. 3. Variation of the four different contributions to the NL
conductivity with the chemical potential μ. The open circles are the
results of numerical calculations at temperature T = 50 K, while
the solid lines are the results of analytical calculations at zero
temperature, up to linear order in vt . (a) The nonlinear anomalous
Hall conductivity. (b) The anomalous velocity and Lorentz force
induced conductivity. (c) The Berry curvature of the phase-space
factor induced conductivity. (d) Orbital magnetic moment induced
nonlinear conductivity. The conductivities are plotted in units of 10−3

nA m/V2. The Hamiltonian parameters are the same as in Fig. 2.
Additionally, we have considered τ = 1 ps.

diagonal and Hall components. Both of these contributions
induce a nonzero σxxx and the Hall conductivities σyyx = σyxy

and σxyy. We emphasize that the magnetic field dependence
of the NL resistivity (discussed below) originates primarily
from the diagonal component of the NL conductivity σxxx.
This particular NL conductivity component is generally finite
in a system where mirror symmetry is broken along the x axis.

From Fig. 3 it is evident that all of the NL conductivities
broadly follow two features: (i) all the NL conductivity con-
tributions are peaked near the band edge, and they decrease as
we move away from the band edge after the initial rise, and
(ii) the peaks are not located exactly at the band edge. The
appearance of the peaks near the band edge can be understood
from the fact that all these conductivity contributions originate
from the Berry curvature or the OMM, which are primarily
concentrated near the band edge. As we move away from these
hot spots, the strength of the Berry curvature and the OMM

decreases. The fact that the peaks are not exactly at the band
edges is related to the reason that NL conductivities originate
from the combined effect of tilt and geometric quantities. The
position of the peaks of the conductivities in the μ axis can
be explicitly calculated from the analytical expressions pro-
vided in Table I. If we consider σabc ∝ (a + br2 + cr4)/μν ,
then the peak position is found to be μ0 = �[{−(ν + 2)b ±√

[(ν + 2)2b2 − 4ν(ν + 4)ac]}/(2νa)]1/2. Another interest-
ing finding from the analytical results for σ OMM (see the last
column of Table I) is that unlike the other three contributions
(NAH, AL, and B), the OMM contribution does not vanish
exactly at � = μ. We note that unlike σ NAH and σ AL, the NL
conductivities σ B and σ OMM change sign as a function of μ.
This can be anticipated from analytical results which have two
roots in the μ axis.

B. Nonlinear resistivity

Having calculated the NL conductivities, we now turn our
focus to the NL magnetoresistivity. For the tilted massive
Dirac model in Eq. (16), the Drude conductivity is calculated
to be σxx = gsgv

e2τω

h̄2
μ

4π
(1 − r2). The linear classical Hall con-

ductivity is calculated to be σ L
xy = −σ L

yx = −gsgv
e3τ 2

ωB
h̄4

v2
F

4π
(1 −

r2), and the OMM induced intrinsic Hall conductivity is found

to be σ O
xy = −σ O

yx = −gsgv
e3B
h̄2

v2
F

8πμ2 r2. Note that the linear con-
ductivities presented above are calculated up to zeroth order
in the tilt for simplicity, and this does not change our results
qualitatively.

To understand the dependence of the NL resistivity on the
magnetic field to the lowest order, we use the magnetic field
dependence of the different linear and NL conductivities in
Eq. (1) to obtain

(
ρ̃ (2)

xx

ρ̃ (2)
yx

)
∼

(
B0 B1

B1 B0

)(
B1 B0 B0 B1

B0 B1 B1 0

)⎛
⎜⎜⎝

B0

B1

B1

0

⎞
⎟⎟⎠. (19)

Since we are interested in only the lowest-order magnetic
field dependence of the NL resistivity, we have neglected the
quadratic B dependence and have thus put ρ2

xy = 0. Focus-
ing on the lowest-order magnetic field dependence, we find
ρ̃ (2)

xx ∝ B + O(B3) + · · · , and ρ̃ (2)
yx ∝ B0 + O(B2) + · · · . Inter-

estingly, this magnetic field dependence of the second-order

TABLE I. Analytical results of the different contributions to the NL conductivities. For conciseness we have defined r = �/μ. The Berry
curvature dipole, Lorentz force and anomalous velocity, phase-space factor, and OMM induced NL conductivities are written in units of

{σ̃ NAH, σ̃ AL, σ̃ B = σ̃ OMM} = gsgv
e3τω

h̄2
�vt

4πμ2 {1,
ev2

F τω

h̄2μ
B,

ev2
F τ2ω

h̄2μ
B}.

NL Anomalous Hall Lorentz force and Berry curvature Phase-space factor Orbital magnetic moment
conductivities NAH [Eq. (10)] AL [Eq. (12)] B [Eq. (13)] OMM [Eq. (11)]

σxxx 0 0 σ̃ B
(

15
4 − 15r2 + 45

4 r4
) −σ̃ OMM

(
27
4 − 21r2 + 45

4 r4
)

σyyx = σyxy 0 −σ̃ AL 3
4 (1 − r2) σ̃ B

(
1
2 − 17

4 r2 + 15
4 r4

) −σ̃ OMM
(

9
4 − 7r2 + 15

4 r4
)

σxyy 0 σ̃ AL 3
2 (1 − r2) σ̃ B

(
11
4 − 13

2 r2 + 15
4 r4

) −σ̃ OMM
(

9
4 − 7r2 + 15

4 r4
)

σxyx = σxxy −σ̃ NAH 3
4 (1 − r2) 0 0 0

σyxx σ̃ NAH 3
2 (1 − r2) 0 0 0
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resistivity is in contrast to the linear order resistivity, for which
we have ρ (1)

xx ∝ B0, while ρ (1)
xy ∝ B.

In a more general form valid for all 2D materials, we obtain

ρ̃ (2)
xx = −ρ2

xx[ρxxσxxx + 2ρyxσxyx + ρxyσyxx], (20)

ρ̃ (2)
yx = −ρ2

xxρyyσyxx. (21)

Equation (20) for the NL resistivity is main result of this
paper, while Eq. (21) is the NL (anomalous) Hall resistivity, an
experimental manifestation of the NL Hall conductivity pre-
dicted by Sodemann and Fu [15]. From Eq. (20) it can be
clearly seen that the magnetic field dependence of the NL
resistivity comes from both the linear and NL conductivities.
However, all the NL conductivities arise from the presence
of a finite OMM and the Berry curvature. Thus, we conclude
that the NL resistivities are induced by the quantum geometric
properties of the electron wave function, and they are of purely
quantum mechanical origin.

In the limit ωτ � 1 (generally valid for transport ex-
periments), we can express the magnetoresistivity and Hall
resistivity for the massive tilted Dirac Hamiltonian in a simple
form as

ρ̃ (2)
xx = − 3π2h̄2�vtv

2
F r2

e2τμ6(1 − r2)3
B, (22)

ρ̃ (2)
yx = − 3π2h̄2�vt

2e3τ 2μ5(1 − r2)2
. (23)

Here, we have neglected the contribution of the OMM induced
intrinsic Hall conductivity in the linear response, which is
relatively smaller than the classical Hall conductivity (see Ap-
pendix D for the exact form). Clearly, the magnetoresistivity
and Hall resistivity have different scattering times as well as
chemical potential dependences. The � factor signifies the
broken inversion symmetry, which enables finite values of
the Berry curvature and the OMM. The factor vt highlights
the effect of tilt, or the anisotropy of the Fermi surface or
band velocity, which is pivotal to obtain NL conductivities,
as discussed earlier.

From Eqs. (22) and (23), we define two experimentally
relevant quantities which are independent of the scattering
timescale. For the resistivity we define ρ̃ (2)

xx /ρxx, which is
equivalent to the ratio of the NL longitudinal voltage to the
linear voltage (multiplied by current) V (2)

‖ /(V (1)
‖ Ix ). The vari-

ation of this quantity with the chemical potential is shown
in Fig. 4(a). For the NL Hall resistivity, we define ρ̃ (2)

yx /ρ2
xx,

which is equivalent to the ratio of the NL Hall voltage to the
square of the linear voltage V (2)

⊥ /(V (1)
‖ )2, and the correspond-

ing chemical potential dependence is highlighted in Fig. 4(b).
We find that the ratio of ρ̃ (2)

xx /ρxx is finite in a small region in
the vicinity of the band edge, while the ratio ρ̃ (2)

yx /ρ2
xx is finite

in the vicinity of the band edge over a relatively larger region
of μ.

V. DISCUSSION

In this paper, we have considered time reversal symmetric
systems for two reasons. First, for TRS-preserving systems
the NL Drude conductivity vanishes; hence, the predicted NL
magnetoconductivities make the total NL resistivity finite.

(a) (b)

FIG. 4. The variation of the scattering time independent (a) NL
resistivity ratio ρ̃ (2)

xx /ρxx and (b) NL Hall resistivity ratio ρ̃ (2)
yx /ρ2

xx with
the chemical potential μ. The open circles correspond to the numer-
ical result (T = 50 K), and the solid line represents our analytical
result at zero temperature. The Hamiltonian parameters are the same
as those in Fig. 2, and we have considered τ = 1 ps.

Second, the NL resistivity is caused solely by the geometric
quantities, namely, the Berry curvature and the OMM. These
two observations make the experimental realization of the
predicted NL resistivity and its physical origin very clear. In
contrast, in systems where both SIS and the TRS are broken,
like doped magnetic semiconductors [45], the NL magnetore-
sistivity will be accompanied by an additional contribution
from Drude resistivity and the classical Lorentz force contri-
bution, as shown explicitly in Appendix C. Interestingly, this
novel NL magnetoresistivity of quantum mechanical origin
is not restricted to 2D systems, and it can also be finite for
three-dimensional systems [46–48].

We emphasize that the relaxation time approximation,
which we have used in our paper, while being very insightful,
is a simplified approach. More rigorous approaches, devel-
oped in Refs. [11,12,49,50], among others, can be used to
include the field dependence in the scattering time. This
remains a future direction for us to explore NL magnetore-
sistivity after including the electric field dependence of the
scattering timescale, along with skew scattering. One can also
extend our semiclassical approach to the quantum kinetic
framework [51–53] with a magnetic field, although we believe
that this is likely to produce results similar to what we have
in this paper. Furthermore, going beyond the semiclassical
regime which is valid for small magnetic fields, it will be
interesting to see how our results change for large magnetic
fields which give rise to Landau levels.

VI. CONCLUSION

To summarize, we explored the impact of band geomet-
ric quantities on second-order NL magnetotransport in 2D
anisotropic systems. Specifically, we studied second-order NL
magnetoresistivity, which relates the quadratic NL voltage
generated in response to an applied current in crystalline ma-
terials. We showed that the interplay of the Berry curvature,
the OMM, and the Lorentz force can induce NL resistivity in
2D systems which is purely quantum mechanical in origin. We
found that in the presence of a perpendicular magnetic field
the NL magnetoresistivity has nontrivial linear B dependence.
In intrinsically time reversal symmetric systems, where the
Drude contribution to the longitudinal NL conductivity is
identically zero, the predicted NL magnetoresistivity is the
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only finite NL resistivity contribution. Our findings pave the
way for further understanding of the nontrivial transport sig-
nature of band geometry in quantum materials.
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APPENDIX A: DEFINING THE NONLINEAR
RESISTIVITY MATRIX

In this Appendix, we present a general approach of defining
the NL resistivity matrix from the linear and NL conductiv-
ities. The definition of resistance follows from the familiar
Ohm’s law. If the voltage drop V is measured in the pres-
ence of constant current I , then the resistance R is defined
as the ratio of these two quantities, R = V (I )

I . Within the
linear response theory, voltage is considered to be linearly
proportional to current, and hence, the resistance is current
independent. However, this dependence of voltage on current
can be nonlinear in general, which makes the resistance cur-
rent dependent. Up to second order in current, the voltage can
be expressed as [28]

Va = V (1)
a + V (2)

a = R(1)
ab Ib + R̃(2)

abcIbIc. (A1)

Here, the voltage V (1) (V (2) ) is linear (quadratic) in current,
R(1)

ab is the linear resistance, and R̃(2)
abc represents NL resistance.

Strictly speaking, R̃(2)
abc does not have the dimension of resis-

tance (hence we use the tilde), but we will still call it NL
resistance in spirit. In the linear response regime, one mea-
sures the voltage V = V (1) in response to an applied current
I , and resistance can be obtained using R(1)

ab = Va/Ib. From a
theoretical point of view, instead of resistance we calculate
the conductivity σ from the relation ja = σabEb, where E and
j are the applied electric field and generated current density,
respectively. If we identify the measured voltage V with E
and the current I with j, then the resistance can be easily
connected to the conductivity as R(1) ∼ ρ = [σ ]−1, with ρ

being the linear resistivity. However, the scenario for R̃(2)
abc is

not as simple as for the linear resistivity, and to remedy this
we define the quantity R̃(2)

abc in terms of the NL conductivities
below.

From an experimental point of view, we have the relation
between the electric field and the current,

Ea = ρ total
ab jb. (A2)

Here, ρ total
ab is the general NL resistivity, which may vary with

the current. Below, we will retain only the first-order NL term
in the resistivity [27],

ρ total
ab = ρ

(1)
ab + ρ

(2)
abc jc + O( j2), (A3)

and obtain an expression for ρ
(2)
abc in terms of the linear and

NL conductivities. To this end, we rewrite the left-hand side

of Eq. (A2) invoking the property of the Kronecker delta
function as

δacEc = ρ total
ab jb. (A4)

Now, we decompose the Kronecker delta function into a prod-
uct of σ−1 and σ matrices and add and subtract χlmnEmEn on
the left-hand side. This yields

σ−1
al (σlcEc + χlmnEmEn) − σ−1

al χlmnEmEn = ρ total
ab jb. (A5)

Substituting Eq. (A3) in Eq. (A5) and identifying the total
current as jl = σlcEc + χlmnEmEn, we get

σ−1
al jl − σ−1

al χlmnEmEn = ρ
(1)
ab jb + ρ

(2)
abc jb jc. (A6)

From this, it is straightforward to identify ρ
(1)
ab = σ−1

ab = ρab.
Furthermore, converting the electric field to current via the
relation Em = ρmo jo (within the first-order approximation),
we obtain

ρ
(2)
abc jb jc = −ρalχlmnρmoρnp jo jp. (A7)

Since the repeated indices are summed over in Eq. (A7), we
can substitute p → c and o → b in the right-hand side to
facilitate a direct comparison with the left-hand side. This
yields the following relation for the second-order resistivity:

ρ
(2)
abc = −ρalχlmnρmbρnc. (A8)

We have used this equation to write Eq. (1).

APPENDIX B: LINEAR CONDUCTIVITIES

In this Appendix, we provide the detailed calculation of the
NDF up to linear order in E field and linear order in B field.
For this we consider the ansatz δg1(t ) = f ω

1 eiωt + f ω∗
1 e−iωt .

Putting this in Eq. (6), we get

f ω
1 =

∑
ν

(DτωL̂B)ν
(

D
eτω

h̄
E · ∇k f̃

)
. (B1)

Considering a low magnetic field strength, we expand the
series in Eq. (B1) to get various orders of magnetic field
dependence. Separating the magnetic field dependences, we
write the NDF as f ω

1 = f ω
10 + f ω

11, where the first subscript
denotes the order of the electric field and the second subscript
denotes the order of the magnetic field. This approach of
expansion of the LB operator is very common in textbooks and
is known as the Zener-Jones method [2,42]. The scattering
time independent [2] equilibrium part of the NDF, after the
Taylor expansion, is given by

f̃ = f − εm f ′. (B2)

The NDF proportional to the linear order of scattering time is
given by

f ω
10 = eτωE · v f ′, (B3)

f ω
11(γ , ξ ) = −eτω[γ	Bv f ′ + ξ (vm f ′ + εmv f ′′)] · E. (B4)

Equation (B3) is the magnetic field independent part from
which the linear Drude conductivity originates. To point out
the origin of magnetic field dependences in NDF, we use the
coefficient γ for the phase-space factor and ξ for the OMM.
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The quadratic scattering time dependent part of the NDF is
given by

f ω
11(α) = αeτ 2

ωL̂v · E f ′. (B5)

Here, we have defined L̂ ≡ e
h̄ (v × B) · ∇k, and α denotes the

origin of the magnetic field dependence from the Lorentz
force.

The magnetic field independent current of fundamental
frequency can be written as j10(t ) = jω10eiωt + jω∗

10 e−iωt . From
this we define the magnetic field independent conductivities
as

σab(∝ τ 0) = −e2

h̄
εabd

∫
[dk]	d f , (B6)

σab(∝ τ ) = −e2τω

∫
[dk]vavb f ′. (B7)

Equation (B6) is the anomalous Hall conductivity, which van-
ishes in the presence of TRS. Equation (B7) is the ordinary
Drude conductivity.

Similarly, the magnetic field dependent current in fun-
damental frequency can be written as j11(t ) = jω11eiωt +
jω∗
11 e−iωt . The corresponding conductivities, after separating

various scattering time dependences, can be written as

σab(∝ τ 0) = ξ
e2

h̄
εabd

∫
[dk]	dεm f ′,

σab(∝ τ 2) = −αe2τ 2
ω

eB

h̄

∫
[dk]va

(
vy∂kx vb − vx∂kyvb

)
f ′,

(B8)

and

σab(∝ τ ) = e2τω

∫
[dk][ξvmavb f ′ + γ va	Bvb f ′

+ ξva(vmb f ′ + εmvb f ′′)]. (B10)

In the presence of TRS (broken SIS), (εm,�)(−k) =
−(εm,�)(k), v(−k) = −v(k), and vm(−k) = vm(k); hence,
all the conductivities ∝ τ vanish. The only terms that survive
are (i) the Lorentz force contribution ∝ τ 2, which gives rise
to the classical Hall effect, and (ii) the anomalous velocity
and OMM contribution that is ∝ τ 0. We have written these
nonzero contributions in Eqs. (14) and (15) of the main text.

APPENDIX C: NONLINEAR CONDUCTIVITIES

In this Appendix, we calculate the NDF quadratic in the
E field and linear in the B field. The corresponding master
equation for the rectification part of the NDF is given by

f 0
2 =

∑
ν

(αDτ L̂B)νD
eτ

h̄
E∗ · ∇k f ω

1 . (C1)

It is straightforward to calculate the rectification part of the
NDF from Eq. (C1). However, below we provide the second
harmonic NDF obtained from Eq. (8). We expand Eq. (8) in
orders of magnetic field and separate the NL NDF as f 2ω

2 =
f 2ω
20 + f 2ω

21 . The magnetic field independent NL NDF is given
by

f 2ω
20 = e2τ2ωτω

h̄
E · ∇k(E · v f ′). (C2)

This coupled with band gradient velocity generates the NL
Drude conductivity. The magnetic field dependent NL NDF
proportional to the square of scattering time is given by

f 2ω
21 (γ , ξ ) = −e2τ2ωτω

h̄
E · [γ	B∇k(E · v f ′)

× γ∇k(	BE · v f ′)

+ ξ∇k{E · (vm f ′+ εmv f ′′)}]. (C3)

The NL NDF proportional to the cubic order of scattering time
is calculated to be

f 2ω
21 = e2τ2ωτω

h̄
[τ2ωL̂(E · ∇k(E · v f ′))

+ τωE · ∇k(L̂E · v f ′)]. (C4)

Using these expressions for NDF, we now calculate the gen-
eral expressions for NL conductivities. Note that the NL
responses can be generated either via coupling of anomalous
velocity with linear NDF or through coupling of the band
velocity of the Bloch electrons with the NL NDF.

The magnetic field independent second harmonic NL cur-
rent can be written as j20(t ) = j2ω

20 ei2ωt + j2ω∗
20 e−i2ωt , and the

corresponding NL conductivities are

σabc(∝ τ ) = −e3τω

h̄
εabd

∫
[dk]	dvc f ′, (C5)

σabc(∝ τ 2) = −e3τωτ2ω

h̄

∫
[dk]va∂kbvc f ′. (C6)

In the presence of TRS, the NL conductivity ∝ τ [Eq. (C5)]
survives, while in the presence of SIS both Eqs. (C5) and (C6)
vanish identically. So unlike the linear Drude conductiv-
ity, which is always nonzero, the NL Drude conductivity,
Eq. (C6), vanishes in the presence of any of the symmetries
(among TRS and SIS). In systems where both the symme-
tries are absent, the NL Drude conductivity may give rise
to bilinear magnetoresistance if one considers the Zeeman
coupling [26,54]. This theory was used to explain some recent
experimental observations in the topological insulator surface
states [27,28].

The magnetic field dependent second harmonic NL current
can be expressed as j21(t ) = j2ω

21 ei2ωt + j2ω∗
21 e−i2ωt . The NL

responses are induced by the OMM velocity, anomalous ve-
locity, and the band gradient velocity. Below, we will express
the NL conductivities as σabc = e3

h̄

∫
[dk]σ̃abc for compactness.

The anomalous velocity induced NL conductivity ∝ τ is given
by

σ̃abc(∝ τ ) = τωεabd	d [γ	Bvc f ′ + ξ (vmc f ′ + εmvc f ′′)],
(C7)

and that ∝ τ 2 is given by

σ̃abc(∝ τ 2) = −τ 2
ωεabd	d

eB

h̄
(vy∂kx vc − vx∂kyvc) f ′. (C8)

The OMM velocity induced NL conductivity is given by

σ̃abc(∝ τ 2) = τωτ2ωvma∂kbvc f ′. (C9)
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Finally, the band gradient velocity induced conductivity ∝ τ 2

is given by

σ̃abc(∝ τ 2) = τωτ2ωva[	B∂kbvc f ′ + ∂kb{	Bvc f ′ + (vmc f ′

+ εmvc f ′′)}], (C10)

and that ∝ τ 3 is given by

σ̃abc(∝ τ 3) = −τ2ωτωva
eB

h̄
[τ2ω(vy∂kx − vx∂ky )∂kbvc

+ τω∂kb (vy∂kx − vx∂ky )vc] f ′. (C11)

We find that in the presence of TRS, NL conductivities ∝
τ and ∝ τ 3 vanish identically. Therefore, NL conductivi-
ties that are ∝ τ 2 survive and are highlighted in the main
text in Eqs. (10)–(13). We emphasize that since the in-
dices b and c are dummy indices, the expressions for NL
conductivities have to be symmetrized. To facilitate this sym-
metry we have written the NL conductivities as σabc = σacb =
e3

h̄

∫
[dk][σ̃abc + σ̃acb]/2 in the main text. It is important to

note that in the absence of both the SIS and TRS the NL
conductivities ∝ τ and ∝ τ 3 are expected to be nonzero, and

in that case NL resistivity can originate from the classical
Drude and Lorentz force effects.

APPENDIX D: EXACT ANALYTICAL EXPRESSION
OF NONLINEAR RESISTIVITY

In this Appendix, we provide the exact analytical expres-
sion for the NL resistivity including the effect of OMM
induced intrinsic Hall conductivity. We calculate the lin-
ear resistivities using the expressions ρxx = 1/σxx and ρxy =
−ρyx = −σxy/σ

2
xx. Using these expressions in Eq. (20) and

considering ωτ � 1, we calculate

ρ̃ (2)
xx = − 3π2h̄2�vtv

2
F r2

2e2τμ6(1 − r2)3

[
2 + h̄2

τ 2μ2

]
B. (D1)

Here, the second term in the parentheses originates from the
OMM induced intrinsic Hall effect. It is evident from this
expression that the OMM induced intrinsic Hall effect has a
distinct signature in the NL resistivity. However, since in this
paper we have considered h̄/τ � μ, we neglect it in the main
text. Another interesting feature of Eq. (D1) is that the NL
resistivity diverges as we move towards r → 1. This arises
due to the fact that both the linear and NL conductivities
vanish in this regime.
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