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Fluxoid-induced pairing suppression and near-zero modes in quantum
dots coupled to full-shell nanowires
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We analyze the subgap excitations and phase diagram of a quantum dot (QD) coupled to a semiconducting
nanowire fully wrapped by a superconducting (S) shell. We take into account how a Little-Parks (LP) pairing
fluxoid (a winding in the S phase around the shell) influences the proximity effect on the dot. We find that under
axially symmetric QD-S coupling, shell fluxoids cause the induced pairing to vanish, producing instead a level
renormalization that pushes subgap levels closer to zero energy and flattens fermionic parity crossings as the
coupling strength increases. This fluxoid-induced stabilization mechanism has analoges in symmetric S-QD-S
Josephson junctions at phase 7, and can naturally lead to patterns of near-zero modes weakly dispersing with

parameters in all but the zeroth lobe of the LP spectrum.
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I. INTRODUCTION

In the quest to create the necessary conditions for
topological superconductivity and Majorana bound states
(MBSs) [1-8] in hybrid semiconducting nanowires [9-11],
researchers have explored new architectures that aim to
overcome various limitations in the original nanowire
designs. These include shallow two-dimensional quan-
tum wells [12,13], nanowires with ferromagnetic cover-
ings [14-21], and full-shell nanowires [22-29]. The latter,
which are the focus of this work, consist of a semiconducting
nanowire with epitaxial [30] superconducting (S) covering on
all its facets, instead of only on a few. This apparently simple
modification presents some advantages with respect to partial-
shell wires and introduces rich new physics. Most notably is
the emergence of the Little-Parks (LP) effect under an axial
applied magnetic flux [31,32]. The flux creates a quantized
winding in the phase of the S order-parameter around the
shell, also known as fluxoid. This leads to a repeated sup-
pression and re-emergence of the S gap, forming so-called
n=0,%£1,+2... LP “lobes” as a function of magnetic field,
wherein the fluxoid winding number equals 7.

Seminal experiments have already demonstrated LP
physics in InAs/Al full-shell nanowires [23]. Concurrently,
tantalizing zero-bias anomalies in the tunneling conductance
have been observed across n # 0 LP lobes [22]. Explanations
in terms of MBSs were put forward [22,25]. Subsequent ex-
periments reproduced zero bias anomalies in similar devices
that were instead explained in terms of quantum dot (QD)
Yu-Shiba-Rusinov states [33—-35] localized at the end of the
full-shell nanowires [26], which are by nature nontopologi-
cal. The approximate pinning to zero energy of these states,
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however, was found to require a specific window of QD-S
couplings and a sufficient Zeeman splitting to suppress pairing
effects in n # 0 lobes relative to lobe n = 0.

In this work, we revisit the problem of a QD coupled to
a full-shell nanowire. We study it in the spirit of the super-
conducting impurity Anderson (SIA) model [36], extended
to explicitly include the cylindrical geometry of the S shell
and its pairing winding within n # 0 lobes, see Fig. 1, an
aspect of these devices not yet analyzed. This generalized STA
model allows a previously overlooked mechanism whereby
axial fluxoids in the shell suppress pairing effects and stabilize
fermionic parity crossings that become increasingly flat versus
magnetic field or gates as the QD-S coupling grows. A spon-
taneous attraction of Andreev bound states (ABSs) towards
zero energy develops within all but the n = 0 LP lobe, where
pairing pushes the ABS away from zero instead.

The mechanism behind the flattening, or stabilization, of
near-zero modes is the cancellation of the proximity-induced
pairing potential on the dot states as a result of the pairing
phase winding on the shell, combined with a renormaliza-
tion of the ABS energy due to the strong QD-S coupling.
The cancellation requires a sufficient axial symmetry of the
dot-nanowire coupling, which is expected owing to the elec-
trostatic screening of the nanowire core by its full-shell Al
covering.

II. MODEL

We are interested in tunneling spectroscopy geometries
designed to measure the local density of states (LDOS) at one
end of the hybrid wire, see Figs. 1(a) and 1(b). Between the
full-shell nanowire and the N contact, there is typically an
uncovered segment of finite length, required to separate the
N tunnel probe from the S shell. The electrostatic potential
in the covered semiconductor region is screened from outside

©2022 American Physical Society
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FIG. 1. QD/full-shell nanowire model. (a) Schematic lateral cut
of a semiconducting nanowire (green) under a longitudinal magnetic
field B. The wire is coupled to a normal (N) metal (yellow) to the
left and fully wrapped by a superconducting (S) thin shell (red)
to the right, with an uncovered segment in between. The junction
traps quantum dot (QD) states that can be tuned with a back gate.
A schematic wave function of the lowest energy QD state is shown
in blue. It is mostly localized in the junction but penetrates into the
covered region (dashed blue), where band-bending pushes it towards
the superconductor-semiconductor interface. (b) Cross-sectional cut
of the same wire inside the full-shell region. ro = ((y), (z)) repre-
sents the deviation of the wave-function mean position with respect
to wire’s axis, informing of its degree of axial symmetry. (c), (d)
Generalized superconducting impurity Anderson (SIA) model intro-
duced in this work to describe the above hybrid system. A spinful
single impurity with energy €, and charging energy U is coupled to
N with coupling strength I'y and to a hollow S cylinder of radius R
with a hopping amplitude 7(6) that depends on the polar angle 6. A
flux @ threads the full-shell wire inducing a winding in the phase
of the S order parameter Ae™, where the integer n represents the
fluxoid quantization and A is the flux-dependent S gap.

electrodes by the shell, and has a domelike profile in the
traverse direction, with a maximum at the nanowire axis, and a
minimum at the Al interface due to the band bending induced
by the ohmic epitaxial contact [20,30]. On the uncovered
region, the potential can instead be controlled by an external
back gate. Microscopic simulations show (see Appendix A)
that this geometry naturally leads to the formation of dis-
crete QD-like states, visible in tunneling spectroscopy, that
are largely localized in the uncovered segment (see schematic
wave function in blue). Their wave function also exhibits a
long tail seeping into the covered region along the Al inter-
faces (dashed blue), which allows a strong coupling between
the QD state and the epitaxial S shell.

This system can be naturally analyzed within an SIA
model [26]. Its main parameters are the QD charging energy
U, level energy € (tuned by the back-gate voltage V;,,) and
coupling I's to the S contact. This model, however, cannot
account for the effect of fluxoids on the shell, since it models
the S reservoir as a simply connected one-dimensional super-
conductor. Here we extend this approach by using instead a
hollow, cylindrical superconductor of radius R and negligible

thickness, threaded by an axial flux ® = 7 R%B, where B is the
magnetic field applied along the axis, see Figs. 1(c) and 1(d).
This introduces two fundamental differences respect to the
conventional SIA model, the emergence of pairing fluxoids
in the shell and, consequently, a nontrivial proximity effect on
the QD due to the nature of the QD-shell coupling, which now
involves an integral around the shell perimeter. We discuss
their implications below.

The flux into the cylindrical superconductor gives rise to
the LP effect, whereby the S gap A becomes modulated by the
normalized flux ne = ®/®¢ (Py = h/2e is the S flux quan-
tum), and has maxima at the center of each LP lobe (integer
ng). A Ginzburg-Landau treatment can be used to compute
the precise A(ng) dependence [37-40]. Depending on the
coherence length &, this includes a destructive LP regime
(R/& < 0.6) where A vanishes between lobes, or a weak LP
regime where A remains finite (R/§ 2 1). The complex S
pairing A furthermore develops a winding n within the nth
lobe except n =0, A(B) = A(ng)exp(inf), where 0 is the
polar angle around the shell and n = |n4].

In the spirit of the SIA model, the QD is modeled as
a point at position ry. The QD is coupled to points ry =
(0, Rcos@, Rsin6) on the inside! of the shell by a hopping
amplitude 7(0), see Figs. 1(b) and 1(c). In an axially symmet-
ric situation (on-axis QD, ry = 0), the hopping #(0) = is a
constant. The axial symmetry may be broken by considering
a displacement of ry away from the nanowire axis, micro-
scopically representing a deviation from axial symmetry of
the dashed region of the QD state wave function of Fig. 1(b),
and thus a nonconstant 7(0) (see the Appendix B for further
details on QD modeling).

The extended SIA model Hamiltonian takes the form

H = Hp + Hs + Vsp,
Hp = Y (eo + oVp)didy + Unyny,

2
HS = /dZdQ Z [W;QX%wa
+ A(ng)e™yl, w4 Hc:|

Vsp = /d@ > O lgods + He. 1)

In the above equations, QD operators of spin ¢ are denoted by
d, and shell operators by V¥4, Where x is the coordinate along
the shell (x = 0 denotes its rim). The QD occupation operators
are n, = d, d,, U is the charging energy, and V; = %g,uBB is
a Zeeman field (with Landé g-factor g and Bohr magneton
wp). The 6 dependence of the pairing phase and #(6) is the
key difference between our model and the conventional SIA
model used in Ref. [26].

'Note that the QD-S coupling in the system of Figs. 1(a) and 1(b)
is given by the overlap between the wave function inside the shell
(shaded region) and the superconductor. The wave function in the
uncovered region will instead mainly influence the level position .
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FIG. 2. QD spectral density. (Left half) Mean-field local density of states (LDOS) at the QD for a symmetric wave function distribution
inside the covered region of the full-shell wire [ry = 0, see Fig. 1(b)]. The first, second and third columns correspond, respectively, to the
regimes of weak (I's /U = 0.08), intermediate (I's /U = 0.6), and strong (I's/U = 2) coupling between the QD and the superconductor. (Right
half) The same but for an asymmetric wave function distribution (|ro| = R/2, where R is the shell inner radius). In the first row [(a)—(f)], the
LDOS is plotted vs the magnetic field B in the weak Little-Parks (LP) regime at half occupation (¢p/U = —0.5), whereas the destructive LP
regime is displayed in the second row [(g)—(1)]. The energy w is measured with respect to the superconductor Fermi energy. In the third row
[(m)—(r)], we show the LDOS vs €,/U at finite magnetic field (B = 115 mT), corresponding to the center of the n = 1 LP lobe of (g)—(1).
Other parameters: R = 65 nm, shell thickness d = 25 nm, InAs g-factor g = 14, Al gap at zero field Ay = 0.2 meV, temperature 7 = 10 mK,
charging energy U = 1 meV, and I'y = 1073 meV. The S coherence length is & = 185 nm (¢ = 80 nm) in the destructive (weak) LP regime.

The proximity effect on the QD is apparent upon integrat-
ing out the shell, which yields a Green’s function GP(w) =
[w — HD:(0)]7" in terms of an effective Hamiltonian HY;(w)
that includes self-energies from the S and also from QD inter-
actions U. For an axially symmetric QD at ryp = 0, we obtain

He]?f(w) He]?f ¢(a)) O H ff L(w)
€ +oVy 0
He o (@) = ( 0 —€0 + O'VZ> +Eg+ 2

(1)
U~
E“Ny<uu*>

o —0

d,d_,
<—<n>>>’ @

FS w A(Sn,()
LY/ A? — @? ASn,() w ’

where I's = mg,os and ps is the density of state of nor-
mal Al at the Fermi energy. An additional, small self-energy
YN = —iI'y from the N tunnel probe is also present, but
is omitted above for simplicity. £V includes interactions at
a self-consistent mean-field level (Kondo correlation effects
are discussed in the Appendix C). Crucially, the off-diagonal
pairing term in £ depends on the lobe index n through the
Kronecker delta 6, o, which results in a suppressed S pairing
on the QD in all lobes except n = 0. This has to be contrasted
with the standard SIA model as discussed in Ref. [26], where
the Kronecker delta is absent, and a strong Zeeman field was
instead invoked within n # 0 lobes to reduce pairing effects.
The suppression of pairing in our model is robust even with
interactions, since a positive U will not introduce pairing
corrections unless (d,d_.) # 0 to start with. Breaking axial

>SS~

symmetry (rg 7% 0) gradually restores pairing at all lobes (see
the Appendix B for the general form of %5.)

To understand the observable consequences of Eq. (2),
it is worthwhile to take a moment to discuss its physical
origin. Hoppings from the QD to a point around ry in the
shell and back produce a contribution to X% = [d6x5(9)
of the form £5(0) = [d61(0 +0)g5(0 + 0,0 — 0)(6 — D),
where g5(6,6’) is the Green’s function of the decoupled
superconductor between two points ry, ry around the rim.
For a symmetrically coupled QD, this £5(8) can be easily
shown to have an off-diagonal pairing term proportional to
A(B) = Ae™ itself, which is zero when integrated over 6,
unless n = 0. In other words, the off-diagonal £5(#) inherits
the phase of the fluxoid at ry, and thus cancels out for a
constant () =ty upon integrating 6. The diagonal part of
>3 however, does not suffer this cancellation, and is always
present. Its effect, in the absence of an off-diagonal pairing
term, is to renormalize the state energy, pushing it closer to
zero. Indeed, assume that the electron part of the QD Green’s
function G () ~ (0 — Q0)~! has a pole at v =  repre-
senting a dot level at € = Re(£2p) when decoupled from the
superconductor (i.e. for £5 = 0 but finite I'y and U). The
coupling to the S shell induces a purely diagonal £ (w) within
any n # 0 lobe that modifies the pole following:

IsQ

Q—QO—ZISI(Q):Q—QO—}—ﬂ:O, (3)
which, for € « A, yields a renormalized level position
€ =Re(Q) = (1+Tg/A) e. 4)
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Any QD state deep inside the gap will thus see its energy
scaled down by a factor (1 4+ I's/A)~, shifting it ever closer
to zero as we increase the coupling I's. This is exactly the
opposite of the effect of 5 for n = 0, which tends to push
the state towards the gap edge by virtue of the off-diagonal
pairing term.”

II1. RESULTS

We now present numerical simulations of the LDOS in the
QD, p(w) = —%Im Tr GP(w), as a function of magnetic field
B, bare QD level €, coupling I's and coupling asymmetry
|ro|/R. Figure 2 summarizes the results, see caption for de-
tails.

The symmetric ryp = O case is displayed in the first three
columns for increasing coupling I's/U For strong coupling,
Figs. 2(c) and 2(i), an ABS near the gap edge at n = 0 trans-
forms into a stable, nontopological, near-zero-energy anomaly
across all n ## 0 lobes. This resonance is composed of four
near-zero peaks, instead of the two peaks expected from a
(split) Majorana zero-bias anomaly.

In the third row, the LDOS is calculated against €3/U at
the center of the n =1 destructive LP lobe. Unlike in the
standard SIA model, the zero-energy parity crossings of the
lowest excitation in the symmetric case are not destroyed by
a strong coupling, nor is the crossing at €g/U = 0.5 with the
second excited state. Instead, the excitations evolve into an
increasingly flat double-X pattern, Fig. 2(0). As discussed
above, this is a result of the vanishing pairing, Eq. (2). The
asymmetric case in the last three columns recovers a more
standard SIA behavior, with no flattened zero modes at strong
coupling.

The above phenomenology can be collected into a phase
diagram in a I's, €y phase space, in terms of the ground-state
spin-polarization P = (n;) — (n,) (zero for singlet, finite for
doublet ground states) or in terms of the energy En, of the
lowest excitation. This is shown in Fig. 3 for the symmet-
ric and asymmetric cases. The latter [(b) and (d)] shows a
domelike doublet phase as in the standard STA model. In con-
trast, the symmetric case [(a) and (c)] shows a “chimney”like
doublet phase extending all the way to I's — oo, with an
Emin ~ SE./(14+T's/A) at € = —U/2 according to Eq. (4),
where E. «« U + 2V7 is the asymptotic width of the chimney
region at large I's /U .

The symmetric ry = 0 phase diagram and LDOS are rem-
iniscent of the one in symmetric S-QD-S junctions at fixed
phase difference ¢ = m [41-45]. Interestingly, such a system
exhibits the same structure of £5 in the QD, with a can-
cellation of the induced pairing from the two symmetrically
coupled S terminals due to their  phase difference, and hence
a similar chimneylike singlet-doublet phase boundary.

IV. CONCLUSIONS

We have introduced a generalized SIA model to under-
stand the phase diagram of a QD coupled to a cylindrical

This simple argument assumes no I's-dependent corrections to
Yy, but it is qualitatively confirmed by our mean field calculations.
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FIG. 3. QD phase diagram. [(a) and (b)] Spin polarization P =
(ny) — (n,) of the QD level vs I's /U and €,/U at the center of the
n = 1 destructive LP lobe. In the case (a) of a symmetric coupling
(ro = 0), the singlet-doublet phase transition boundary displays a
chimneylike shape where the doublet ground state phase (P # 0)
extends to arbitrarily large values of I's/U. In the asymmetric case
(b) (Iro] = R/2 here), we recover a domelike shape for the singlet-
doublet boundary, typical of the standard SIA, above which the
ground state is a singlet (P = 0). [(c) and (d)] Minimum excitation
energy E.;, normalized to the zero-field Al gap Ay = A(0). The
singlet-doublet boundary is associated to E,,;, = 0 fermionic parity
crossings (black). Rest of parameters as in Fig. 2.

S shell. The combination of axial LP fluxoids in the shell
and a highly symmetric QD-S coupling produces an anoma-
lous type of proximity effect, similar to that of m-phase
QD-Josephson junctions. Microscopic simulations show that
a symmetric QD-S coupling is in fact the natural physical
situation in these devices that requires no particular tuning,
since it is controlled by the part of the QD wave function in
contact with the shell, which is screened from the external
electrostatic environment (see Appendix A). Only defective
or disordered full-shell wires, or wires with a noticeably
asymmetric cross-section would produce a non-negligible
QD-S coupling asymmetry. At strong and symmetric QD-
S coupling, the anomalous, fluxoid-induced proximity effect
stabilizes near-zero states within n # 0 LP lobes, while con-
ventional proximity pushes them away from zero at the n = 0
lobe. This kind of “antipairing” effect for n # 0 is a strong
departure from the phenomenology of conventional SIA mod-
els, and predicts a subgap LP spectral pattern that would result
in near-zero bias peaks in local spectroscopy measurements
in full-shell nanowires. The effect of this mechanism on the
length dependence of Coulomb blockade period modulation,
which was reported to be exponentially decaying with island
length in Ref. [22], remains an important open question.
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APPENDIX A: MICROSCOPIC MODEL

In this section, we analyze the electronic structure and the
three-dimensional (3D) electrostatic screening (including the
surrounding media) of an InAs nanowire of length L, with
a right portion of length Lg covered all around by a thin
superconducting (S) Al shell, contacted on the left to a normal
(N) electrode, and with an uncovered junction region of length
L — Lg in between, see Figs. 1(a) and 1(b) of the main text. A
back gate extends below the whole wire, but is only effective
to tune the electrostatic potential in the uncovered region. This
particular geometry has been explored experimentally in the
context of Majorana bound states [22,26].

The purpose of this section is to show that this structure
develops low-energy states, which we call quantum-dot (QD)
states, that are mostly localized in the uncovered region but
that extend well into the full-shell nanowire, where they tend
to be close to the superconductor-semiconductor interface.
We will show that the wave function profile inside the cov-
ered region is essentially axially symmetric independently
of the backgate voltage, which is screened inside the shell
portion.

—0.5

204 0 04 038
Vig (V)

The Hamiltonian of the system, sketched in Fig. 4(d), is
defined as

k>
Hip = <2m* - €¢("))Uofz + A(r)oy Ty

1
+ E[oz(r) (o xk)+ (o xk)-ar)], (Al

where —e is the electron charge, m* is the semiconductor
effective mass, ¢ (r) the electrostatic potential inside the wire,
A(r) is the induced superconducting pairing, and a(r) the
spin-orbit coupling (SOC). We perform this study at zero
magnetic field B = 0 as a finite field of a few hundred mT
does not significantly influence the wave function profile.
Notice that this Hamiltonian only applies to the semiconduct-
ing nanowire across the two areas of interest: the uncovered
and covered regions. For numerical efficiency reasons, we
do not include in the Hamiltonian a microscopic descrip-
tion of the superconductor, only its proximity effect inside
the covered nanowire core. This is done through the sim-
plistic model A(r) = Ag®(x), where O(x) is the Heaviside
function.

To solve the above Hamiltonian, we calculate the elec-
trostatic potential ¢(r) taking into account all the dif-
ferent materials surrounding the wire and their dimen-
sions. The computation implies solving self-consistently the
Schrodinger eigenproblem with the Poisson equation, which

y=0 x =50 (nm)

o

[()I? [%]

()P %]

-
0.1 =
=
<

0
—200 0 200 400 =50 0 50

x (nm) y (nm)

FIG. 4. Microscopic simulations. (a) Energy spectrum at zero applied magnetic field of a finite-length device like the one in Fig. 1 of
the main text, as a function of back-gate voltage V4, (which is effective only in the uncovered segment of the wire). The level quantization is
produced by lateral and longitudinal confinement. The presence of the electrostatic environment is taken into account at a self-consistent mean-
field level. (b) Wave-function weight Wy inside the shell-covered region of the wire vs Vy, for the lowest-energy eigenstate. (c) Expectation
value of the z position of the wave function inside the full-shell region (z) (red curve) and standard deviation 012 (blue curve) normalized to the
wire’s radius R as a function of Vj, for the lowest-energy eigenstate. [(d) and (e)] Wave-function profiles (probability density) inside the wire
for the lowest energy level marked with a red/blue circle in (a). (f) Electrostatic profile inside the wire at V;; = 0.4 V. Parameters are provided

in Table L.
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TABLE I. Parameters used for the microscopic model.

Hamiltonian
m* = 0.023my Ay = 0.2 meV Py = 1252 meV-nm
Ag =417 meV Asoft = 390 meV
Electrostatics
€mas = 15.5¢0 €nro = 25¢¢ Pace =2+ 1073(ﬁ)
VSC:0.2eV VN=0 T =10 mK
Geometrical
R = 60 nm d = 10 nm L = 800 nm
LS = 600 nm WHfO =20 nm
reads

V- (e(r)Vo() = —psurs (r) — pre(r). (A2)
Here, €(r) is the inhomogeneous dielectric permittivity, which
takes a different constant value inside each material. The
charge density pq,¢(r) models the charge accumulation layer
that is typically present at the bare facets of this kind of
semiconducting nanowires. We model it as a positive charge
layer of 1 nm thickness at the uncovered nanowire facets.
pre(r) corresponds to the mobile charge inside the wire, that
we compute in the Thomas-Fermi approximation

e

p1r(r) = ——|:

32

2m*|e¢(r)|f(—e¢(r))r’ A3

h2

where f(w) = [1 + exp(w/kzT )]~ is the Fermi-Dirac distri-
bution for a given energy w and temperature 7. We solve
Eq. (A2) together with Eq. (A3) in a self-consistent manner
(see Refs. [46,47] for a detailed explanation of the self-
consistent method in this precise context). We impose as
boundary conditions a voltage V4, at the back gate, a voltage
Va1 at the boundary of the superconductor to simulate the
band-bending between the wire and the superconductor, and a
voltage Vy at the normal contact. We include a HfO, substrate
of thickness Wyso between the device and the back gate that
is typically present in the experiments. Finally, we obtain
the SOC in Eq. (Al) from the electrostatic potential for a
(111) zinc-blende InAs nanowire, following the approach of
Ref. [47],

=
B =3 (A + e ()2
_ 1
(Ag + Asoff + e¢(r))2

} Vo).  (Ad)

Here, A, and Ay are the semiconductor and split-off band
gaps of the semiconducting wire, and Py, is the Kane parame-
ter provided in Ref. [47] that includes in a phenomenological
way the intravalence band couplings. All the parameters used
in our simulations can be found in Table I.

Once ¢(r) and «(r) are obtained for a particular back-gate
potential Vi, we discretize the space inside the semicon-
ducting nanowire into a rectangular grid with a 2 nm lattice
spacing, and then we transform the continuum Hamiltonian

of Eq. (Al) into a tight-binding one. We diagonalize it to
obtain the eigenenergies and eigenstates using the routines
implemented in Ref. [48].

In Fig. 4(a), we show the energy spectrum E versus
the back-gate potential V.. For Ve < —0.3 V the energy
spectrum exhibits a hard gap of 2A( = 0.4 meV, while
for Vyg > —0.3 V several subgap states appear. The spa-
tial probability density of the typical subgap states for two
Vbg, marked with circles in (a), are plotted in Figs. 4(d)
and 4(e). The associated electrostatic potential is shown in
Fig. 4(f). The weight W5 of the lowest-energy wave func-
tions inside the covered region as a function of V;, is shown
in Fig. 4(b). Similarly, the expectation value (z) and its

quadratic dispersion o2 in units of R of the lowest state inside

the covered region is shown is shown in Fig. 4(c). These
quantities allow us to give quantitative estimations to the
parameters of the generalized single impurity Anderson (SIA)
model, presented in the main text and discussed in detail in
Appendix B.

The first aspect to analyze is the spatial location of states.
The potential —e¢(r) is negative inside the full-shell region,
particularly at the ohmic S interfaces (due to band bending),
while it is closer to zero (Fermi energy) in the uncovered
region. Hence, a QD state with energy below the gap will
be located mostly in the uncovered region, with a part of its
wave function of weight Ws inside the covered region (x > 0).
We see in Fig. 4(b) that when the state energy is small in
Fig. 4(a), the associated weight Ws decreases but remains
sizable (around 25%). This is confirmed by the spatial wave
function profiles [Figs. 4(d) and 4(e)], which exhibit a large
weight in the uncovered region, with a tail leaking along the S
contact. This tail allows for a significant coupling of the state
to the superconductor.

The axial symmetry of the coupling is a second aspect that
is crucial in the presence of fluxoid vortices, as discussed in
the main text. It is microscopically determined by the symme-
try of the state’s wave function itself inside the covered x > 0
region (the QD-S coupling can be expressed as an overlap of
the QD and S wave functions at the interface between both
materials). The symmetry of the wave function is estimated by
the average position ry = (r) of its x > 0 tail, so that ry =0
corresponds to a QD symmetrically coupled to the supercon-
ductor in the generalized STA model. Since our device has
y — —y symmetry, we have (y) =0, and |ry| = ro = |(2)].
Figure 4(c) shows that (z) remains very close to zero regard-
less of back gate voltage, particularly ro < 0.1R. The ultimate
reason for this strong axial-symmetry of the QD’s tail inside
the covered region is that the metallic shell completely screens
the electrostatic potential created by the back-gate inside the
covered region of the wire, as illustrated in Fig. 4(f). Hence,
the QD’s tail retains the symmetry of the full-shell region
regardless of the fact that the back-gate potential is located
asymmetrically (only covering the bottom of the wire), and
the fact that it may create a strongly asymmetric potential
profile in the uncovered region. As a result, the QD-S coupling
naturally tends to be axially symmetric in realistic situations.
Notice that these conclusions are essentially independent of
(reasonable) parameter variation as those in Table I and are
simply a direct consequence of the electrostatic screening
inside the superconducting shell.
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APPENDIX B: GENERALIZED SIA MODEL
1. Hamiltonian

In the previous section, we described a 3D full-shell
nanowire device microscopically (at B = 0). In this section,
we simplify the description, reducing it to its basic low-energy
ingredients: a pointlike interacting QD state coupled on the
right to a cylindrical S shell of finite radius R and negligible
thickness, and on the left to a one-dimensional normal lead.

The presence of an axial external magnetic field, or alter-
natively a magnetic flux penetrating a thin-walled S cylinder,

J

& = 7R?B, leads to three effects that need to be considered
in the S-shell Hamiltonian: orbital effects, that are taking into
account with a standard Peierls substitution, a winding of the
superconducting pairing phase 6 of the S order parameter A =
Ae~™  where n is the quantized fluxoid or fluxon [32], i.e.,
n=|®/Pq], with &y = h/2e the S magnetic flux quantum,
and a modulation of the S gap with the flux A(®), explained
in the next section. All these ingredients lead to a general-
ized superconducting impurity Anderson (SIA) model of the
form

H = Hp + Hs + Hsp + Hy + Hyp, Hp = Z(Eo +oVp)dld, + Unyny,

o

- Z _ T 7 (o g o —if gy —inf F %
Hs = [(eks M9)Ca.9,kscff~0,ks lo (e "N Co 41 ksCobks T €M Oca,e,kscvﬂﬂ,ks) + A(@)e " cy g€ ks T HC]

O',Q,ks
Hsp = Z t(e)cj;_é),ksdﬁ +H.c.,, Hy= ZGkNCZ,kNCkaN’ Hxp = Zth;,kNd‘f + H.c. (B1)
0,0,ks o.ky o.ky

In this expression, D, S, and N denote the QD, the super-
conductor and the normal leads, correspondingly; and SD
and ND the couplings between them. Spin-orbit coupling is
neglected. The operator d,, corresponds to a single state in the
QD, ¢4 .0,k to plane waves in the hollow cylinder localized at
polar angle 6 and with longitudinal momentum kg, and ¢, k,
to states in the one-dimensional normal lead with longitudinal
momentum ky. The index o stands for the spin quantum
number. The remaining parameters are introduced below with
an explanation of each Hamiltonian.

The spinful QD state is assumed to be pointlike. The pa-
rameter €y in Hp is the unperturbed energy of the state, while
V= % gupB is its Zeeman splitting, being g the g-factor of the
nanowire and g the Bohr magneton. This Zeeman field is due
to the external magnetic field B applied along the wire’s direc-
tion x [see sketch of Fig. 1(a) of the main text]. In addition to
this, we model the electron-electron interactions inside the QD
with a charging energy U. We treat the interaction term at a
mean-field level in the so-called Hartree-Fock-Bogoliubov ap-
proximation (more details on this approximation are explained
in Appendix B 6).

The normal lead is simply described as a semi-infinite
one-dimensional chain with an energy dispersion relation e,
(we neglect the Zeeman splitting in both the S and N leads),
which is coupled at its end to the QD through hopping am-
plitude #y. In contrast, we describe the superconductor as
a semi-infinite hollow cylinder of radius R. We discretize
the cylinder into Ny = %—” one-dimensional semifinite chains,
where &y is the discretization spacing along the angular di-
rection. Each chain ends at the cylinder rim, at position ry, =
(0, Rcos6;, Rsin6;), where 6;/8p = 1,..., Ny, and is only
coupled to its two neighboring chains. We consider the in-
terchain coupling 7y = ﬁ to be independent of the angle

(mg is the effective S mass). This hopping between chains
shifts the (normal) energy dispersion relation of each chain
€k by a quantity g = —2% in the above Hamiltonian. Note
that €_jg = €gg-

2. Ginzburg-Landau solution of the Little-Parks effect

The applied magnetic flux ® = 7R?B leads to a mod-
ulation of the superconducting gap A(®) according to the
well-known Little-Parks (LP) effect [31,32]. The LP phe-
nomenon can be described phenomenologically using the
Ginzburg-Landau formalism for a superconductor in the
presence of a magnetic field. Assuming a ballistic supercon-
ductor whose size is much smaller than the superconducting
coherence length, the solution to the Ginzburg-Landau equa-
tions gives rise to the following equations [26,37,49]:

A®) _ (Te(®)\?
Ao )’
Te (P I AP 1

1nL0) (24 2@ 5 (L)
T: 2 2nTcd 2

where A(®) is the S gap modulated by the magnetic flux

[being Ag = A(0) the S gap at zero magnetic field], Tc(P)

the flux-dependent critical temperature (being T at zero

magnetic field), and D(x) and A, (D) the standard digamma

function and the pair-breaking term of a hollow supercon-

ducting cylinder, respectively. The latter is also derived in the
Ginzburg-Landau formalism in the presence of impurities [50]

70 &2 P\
o Z2[i-3)

er2 il (L @\, (B3)
—| = = n .
RP\ @} " \3  20R?

Here, &y = h/2e is the S magnetic flux quantum, & is the
superconducting coherence length (at zero magnetic field) and
R and d are the radius and thickness of the hollow cylinder,
respectively. We note that Eq. (B2) does not have an exact
analytical solution in general, and thus it must be solved
numerically. In the limit of d — 0, though, an approximated

(B2)
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solution exists [22]

%-2 1) 2
A(D) ~ Agmax [1 — ﬁ(n — 30) ,0j|. (B4)

3. Continuum limit for the cylinder

The S Hamiltonian Hs can be written in the continuum
limit § — 0, which makes it quadratic in the orbital angular
momentum operator kg = —idy. Since the superconductor is a
cylinder, we must impose periodic boundary conditions, and
therefore the orbital angular momentum can only take integer

J

values m. The S Hamiltonian becomes

1) 2
Hs = Z |:(€ks + 1y <m + o ) )c;m,ksca,m,kg
0

o,m.ks

+A@)!

o,mks~ —o,—n—m,—kg

+ Hc} (B5)

~ 2 . . .
where we define ty = tg(lzv—’;)2 = 2rr}ZSR2’ which is also inde-

pendent of the angle. Notice that the Hamiltonian is not
block-diagonal in the (m, —m) Nambu sectors, but in the
(m, —m — n) ones, i.e., one can write

1 ~ c ,
— T S o,m,ks
HS - E Z (Crr,m,ks C_Us—m—”f—kS)Ha,m,kg <CT ’

o,m,ks

d \2
g5 _ 6k5+19(m+m)
A(D)

This means that time-reversal partners m and —m are not
coupled anymore, except for the zeroth LP lobe n = 0, which
is actually a special case in this work.

4. Modeling the QD-S coupling

Finally, we describe the coupling between the QD and the
superconductor through the following hopping parameter

_ ( lro —ro |)

10) =tsexp | =p——7— ). (B7)
where ry = (0, (y), (z)) is the (pointlike QD position, micro-
scopically representing the wave function mean position in
the region inside the shell), ry = R(0, cos 6, sin ) is the end
of each O-chain along the rim of the S cylinder, and 8 is a
dimensionless parameter that quantifies the degree of overlap
between the QD and the S states. Since we are describing the
complex QD wave function as a single site, in the spirit of
the tight-binding model, we may assume that 8 is roughly
inversely proportional to the QD wave function width given
by the wave function standard deviation.

5. QD self-energies

We are interested in the spectral observables of the QD.
These can be obtained from the QD retarded Green’s function
for each spin o, given by

G2 (0, ®) = [P0, ®) ' = T, (0, ®)]',  (BY)
where
— €y — O'VZ 0
2w, @) = B9
o (@) 0 w+e—oVy (BS)

is the inverse of the bare QD Green’s function for spin o (note

the Zeeman field V; on the dot) and
o (w, @) = 2V (0, @) + 25(w, @) + =N (B10)

is the total self-energy. It includes the effect of Coulomb
interactions in the QD, 2}3(@, @), the coupling to the su-

—o,—m—n,—ks

A(®
(®) 4,)2)- (B6)

— € —l‘g(m—i-l’l—m

(

perconductor >3(w, @), and the coupling to the normal
lead, ©N. The later is merely given by the tunneling rate
Yn=—ily = —irrltN|2,oN, being pn the density of states
of the normal lead at the Fermi energy. On the other
hand, we treat the Coulomb interactions in the QD in the
Hartree-Fock-Bogoliubov approximation, which constitutes
the lowest U-order diagrammatic expansion of the QD self-
energy

(n_o)
(@idt,)

o —0

(B11)

2V (w, @) ~ U< <d"d‘“>>.

_<na)

These expectation values can be computed from the QD
Green’s function in the following way:

1
(ng) = —Efdw Im{(G2 (@, ®)),f (@)

+ (G2, (0, @), f (o)}, (B12)

1
(dody) = (djd]) = —— / do Im{(GP(w, ), f(®)}.
(B13)

where f(w) =[1+ exp(cz)//’quT)]’1 is the Fermi-Dirac dis-
tribution for a given energy w and temperature 7. Note that
these equations require a self-consistent solution. We discuss
the self-consistency process further in Appendix B 6. Finally,
the self-energy due to the coupling with the superconductor is
obtained by performing the following integrals:

S (w, ®) = fdks/dede’z(e)gs(w, ®;0,0)(),

(B14)
where

& (w, ;0,0 = Flg* (w, ®;m)} (B15)
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is the Fourier transform of the retarded Green’s function of the decoupled S shell around its rim, which can in turn be written
as

S 1 (o (ks — Ln(®)) — @y + 24/ P, L, A(D)
g(w, ®;m) = , (B16)
Dy A(D) o — (€xg — Ln(P))
where we define
® 2
Lp(®) = —t — ), B17
(@) o (m + 3 CDO) (B17)
2
0]
D, (P) = —1y <n — —> , (B18)
Dy
and
Dy = — (& — L,,,)2 — A(@)* — [@ — (ks — L) |(®, — 2/ @uL) (B19)
is the determinant of the inverse of the Green’s function. Its Fourier transform is
S / e 0= (T + (&g, — Ln(®)) — D, + 24/ B, L, A(®)e™
S, ®:0,0) =) ——— o oy ) (B20)
" m,n A(CD)E [a) — (Gks - Lm(q))]e

Now we perform the integrals in Eq. (B14) to obtain the self-energy. To simplify them, we can expand the coupling #(6) of
Eq. (B7) in a Fourier series. Without loss of generality we assume that the pointlike dot position is vy = (0, ry, 0), which results
in

o0
1(0) = Ztm cos(mb), (B21)
m=0
where m is a positive integer. The Fourier coefficients
1 T
th = — 1(6)do, (B22)
27 J_»
1 T
ty = — t(0) cos(mh)dd < VYm > 0 (B23)
i

-7

can be computed numerically for any R and 8. Performing the integrals on 6 and 6’, we obtain the following Nambu elements
for the self-energy:

[@+ (exs — Lo(P)) — Dy + 2/ D, Lo ]

Eg()(w7 D) = /dks(ZmO)z

DO,n

> + (g — Ln(®)) — @, + 2/, L,

+ mZ::l / dks(mm)z{ [0+ (e ( D),)n,n ]
N [@+ (exs — Lm(q;)) - @, +2/,L_,] } (B24)

23 (w, @) = /dkS(Znto)2 G (6";)_ Ln(@)]
> 2 [0) - (6/(5 - men(cb))] [w - (Ekg - Lfmfn(q)))]
+ ; f dks (7t { D + o : (B25)
2w, @) = 5 (w, D), (B26)
A(DP) < A(D)  AD) t, A(D)
ad tmtm—n A(q)) tmtm+n A(Q)

+ ) (1 =8, Q) 222 + (1 =8, _m)2mry) 2 2 1 (B27)

miz; ’ 2t§ Dy, 0 21‘3 D_p_nn }

Finally, to perform the integral on ks, we assume that the Fermi energy is the largest energy scale of the system (wide band
limit), as is the case for Al, whose Fermi energy is ~10 eV [51]. This allows us to write €;; ~ fivpks around the Fermi energy
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and transform the integral f dks — ps f degg, where pg is the density of states of the S hollow cylinder at the Fermi level. The
integrals under this approximation provide the following expressions [substituting ®,, and L,, by their expressions in Eq. (B18)]:

o+ yn—Z
=5 (@, @) = —I 3t ( <1>0)

_ F(m)

0+ (5 —m)is(n - 5)

= 0+ (5 +mio(n — 57)

S S
JA@2—(o+3um-2)° w= | Ja@r—(o+ G Hmu(— L))

+
\/A(CD)Z — (04 (5 —m)to(n — 5

(@, @) = T

\/A@)z —(0— (2 +mia(n— 2))’
(@, @) = =5, (0, D),

A(D)
25 (@, @) = —8,04 T

Z F(m)

A(D)

F(”)
+ IR NS >
\/A(CD)Z —(@+ (G —m)(n— ) s \/A(cb)z — (@ + Lty (n— 2))

[ (m) ;x (m—n)
l—‘S l—‘S

S
\/A(d>)2 — (04 ta(n— L)) \/A(<D)2 — (04 (2 +m)ig(n — )

) (B28)
>>2}
S I Gl VI ek
VA@F — (0= (5 = mi(n — &)’
(B29)
(B30)

oo

A(D)

2

A(D)

o)

A(D)

+ Z (1 - am,n)z (0)
m=1 1—‘lS

(m) ~(m+n)
,/FS Fs

+ (1 - Sm,—n)z

JA@R = (= (3 —ms(n— 2))’

A(D)

) (B31)

where we have introduced the tunneling rate components Fé’")
as

T

Féo) = 7 ps(2mty)’ = 7 ps </

-
Iy = mps(tn)* = 7 ps </

-7

2
t(@)d@) ,  (B32)

.

2
t(0) cos(m@)d@) . (B33)

For the particular case of Eq. (B7), we can actually write

T _ 2
r® = rs< / exp (—ﬂu>d9> . (B34)
o R
T _ 2
e =T ( / exp (—ﬁ"‘)%{") cos(me)de) ,
-

where I's = 7|ts|?ps is the mean tunneling rate to the su-
perconductor and one of the parameters that we tune in our
simulations.

Equations (B28)—(B31) are the final form of the self-energy
due to the superconductor that we use in our simulations. They
show that the QD is in general coupled to all the different
angular momentum numbers m of the superconductor through
the tunnel rate components Fg”) (or alternatively t,,). For

(B35)

Fgo) \/A(q>)2 — (a) - (g + m)te(” - %))2

(

the coupling #(8) of Eq. (B7) proposed in this work, these
components decay fast with m, what allows us to impose
a cutoff in the summations. Particularly, in our simulations
we only sum the first 20 components. Another aspect that
is worth mentioning is that I5,(w, ®;m) # — X3, (w, ®;m),
except for n = 0 or w — 0. The reason, as mentioned previ-
ously, is the fact that the time-reversal partners for n > 1 lobes
are m and —n — m. Therefore the fluxon number n becomes
mixed with the angular momentum of the superconductor,
giving rise to a generalized angular momentum. Additionally,
the winding of the phase in the superconductor gives rise to
a different anomalous self-energy depending on whether we
drive the system to the zeroth (n = 0) or subsequent (n # 0)
LP lobes. In the later case, these equations also shows that if
the QD is placed on the cylinder axis, and therefore Fé’”) =
0 < Vm > 0, then the pairing induced on the QD is exactly
zero. In this particular case, if we also assume that fy < w, A
or that & = nd, we can write

(0, ®) & S Y UL
' A2 — a)2 A(Sn,O @

), (B36)

which is the canonical self-energy of a singly connected S
lead in the wide band limit, except for the Kronecker delta §, o
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in the off-diagonal elements. As mentioned in the main text,
a similar ¥ arises in S-QD-S Josephson junctions at phase
difference r, where the pairing also vanishes when summing
the contribution of two symmetrically coupled S leads.

6. Numerical solutions

We want to analyze the local density of states (LDOS) of
our system at the QD, p(w, ®). It can be computed from the
retarded Green’s function of the QD

1
,®)=——) Im{Tr{G°(w, ®)}}. B37
p(w, @) n;m{ r{GP(w, ®)}} (B37)
To this end, we first solve self-consistently Egs. (B2) and (B3)
to obtain the superconducting gap A(®) modulated by the

LP effect, and then we write numerically the QD Green’s
function, which as shown before is

G (w, @) = [GYw, )" — Ty (o, cb)]’l. (B38)

The inverse of the bare QD Green’s function is given by
Eq. (B9). The self-energy due to the N lead is (o) = —il'y,
and the self-energy terms that takes into account the Coulomb
interaction and the coupling to the superconductor are given
by Eq. (B11) and Egs. ((B28)-(B31)), respectively. Note that
one must obtain the QD Green’s function of Eq. (B38) in
a self-consistent manner, since it depends on the occupation
(ns), which in turn depends on GUD(a), ®). To solve this
self-consistency, we use an Anderson mixing iterative solver
with self-adaptive coefficients. Within this approach, we first
compute GGD(a), ®) of Eq. (B38) assuming a seed value for
the occupations (n,) and (d,d_, ). We take as a starting point
(n4) =1 and (n;) =0, being “4” the direction in which the
magnetic field is applied, and (d,d_,) = 0. Then we obtain all
the expectation values (n,) and (d,d_,) from G(,D (w, ®). Next
we compute the self-energy due to the Coulomb interaction,
but instead of simply using the newly computed occupations
(ne) ) and (dyd_s)(;), we mix them with the ones obtained
in the preceding i — 1 step. In other words, we perform the
replacement

o)y — (1 = y)ns)o + v {ns)i-n,
(dod_g)iy = (1 = Y )dod_s) i) + Y {ded_c)i-1),

where y € [0, 1] is the so-called Anderson mixing coefficient.
We repeat this procedure until sufficient convergence between
two consecutive steps is reached. Particularly, in our simu-
lations, we stop the procedure when |(n,)i) — (He)i—1)| <
10° for both spin directions. The mixing shown above en-
sures a stable convergence of the system if y is small enough.
However, a too small y slows the convergence of the system.
To overcome this problem, we use a self-adaptive coefficient
that we allow to vary depending on the convergence speed:

(B39)

[(ns) i) — (Ma) =1l
max{|{n, )i, 1{ne)i-nl}

where here (n,)(; is the occupation before mixing and Yimax
is the maximum value that we allow y to take (Ymax = 0.1 in
most of our simulations).

There are some other observables of interest that can
be computed with GJD(w, ®). The magnetization P = (ny) —

Y = Vmax * €XP (—2 ), (B40)

TABLE II. Parameters used for the extended Anderson model.
We take realistic values extracted from Ref. [26].

Quantum-Dot Hamiltonian

g=14 U =1meV mp = 0.023m
Normal lead Geometrical parameters
'y = 1073 meV R = 65nm d =25nm
Superconducting Hamiltonian
Ag = 0.2 meV ms = my ts = 0.01 meV
Other parameters
£ =185nm T =10 mK B=1

(ny), calculated from Eq. (B12), shows whether the QD is
in a singlet (P = 0) or doublet phase (|P| > 0). In addition,
the zeros of the determinant of the inverse of the QD Green’s
function, det{GP(w)~'} = 0, provide the eigenvalues of the
QD Hamiltonian E.

A summary with all the parameters we use for the gener-
alized SIA model can be found in Table II. Notice that ¢, B,
I's, and ry are not given because they are free parameters in
our work (they can actually be tuned experimentally).

7. Further analysis

To gain more insight into this problem, in this section we
show some plots not included in the main text. We start by
studying the phase diagram for the zeroth-lobe, depicted in
Figs. 5(a)-5(d) (the same figure for the first lobe is plotted
in Fig. 3 of the main text). In Fig. 5(a), we show the spin
polarization P = (n;) — (n,) versus the coupling to the super-
conductor I's and the dot level €, for the case of a symmetric
coupling to the superconductor (ry = 0). Blue regions means
that the system is spin-polarized, and therefore, it is in a dou-
blet phase; while white regions implies that the system is in a
singlet phase. The boundary between both phases exhibits the
usual dome-shape profile, whose maximum is at I's >~ U/m.
Figure 5(b) shows the asymmetric case (rp = R/2), which
in the n =0 lobe exhibits a very similar dome-shape. In
Figs. 5(c) and 5(d), we also show the corresponding minimum
excitation energy En, as in the main text. Black contours
indicate the boundary Ey;, = 0 for which the quantum phase
transition occurs.

For completeness, we show in Figs. 5(e)-5(h) the same
simulations but for the second lobe. The spin-polarization
phase diagrams of (e) and (f) exhibit a similar chimney-
and domelike profiles as for the first lobe (see Fig. 3 of
the main text). The same occurs for the minimum excitation
energy diagram of (g) and (h), although the energy states
are pushed more strongly towards zero energy because the
magnitude of the parent gap decreases as we increase the lobe
number due to the effect of finite-shell thickness in the LP
mechanism.

In Fig. 6, we analyze the behavior of the phase diagram
and LDOS versus the dot level €y, that may be tuned ex-
perimentally through the backgate potential, and the QD-S
coupling asymmetry ry/R. Recall that, microscopically, the
latter represents the wave function mean position inside the
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FIG. 5. QD phase diagrams for n = 0 and 2. [(a) and (b)] Mean-field dot-level spin polarization P = (ny) — (n;) vs I's/U and ¢,/U at
the center of the n = 0 LP lobe (B = 0 mT) in the destructive LP regime: (a) a symmetric coupling (rp = 0) and (b) an asymmetric one
(Jro| = R/2). In both cases, we have the usual dome shape for the singlet-doublet transition boundary, where the system has a singlet ground
state (P ~ 0) in the limit of large coupling (I's/U 2 1). [(c) and (d)] Plot of the minimum excitation energy normalized to the zero-field Al
gap. The singlet-doublet boundary is associated to a zero energy parity crossing (black). [(e)—(h)] Same but at the center of the n = 2 LP lobe
(B = 230 mT), in the destructive LP regime as well. Notice that the phase diagram for n = 2 is very similar to the n = 1 case, shown in Fig. 3
of the main text.

covered region with respect to wire’s axis, informing of its (T's/U < 1), and the third row [Figs. 6(g)-6(i)] for the strong
degree of axial symmetry. The first row [Figs. 6(a)-6(c)] one (I's/U > 1).

shows the results for the weak coupling regime (I's/U < 1), In the weak coupling regime (first row), the parity cross-
the second row [Figs. 6(d)-6(f)] for an intermediate regime  ings [black contours in Fig. 6(b)] are influenced only weakly
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(b) vs /R and €,/U at the center of the n = 1 lobe (B = 115 mT) in the destructive LP regime, for a weak coupling to the superconductor
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respectively.
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7‘0/R.

FIG. 7. Evolution of the near-zero-energy anomaly with QD-S
coupling asymmetry ry/R. LDOS at strong coupling to the super-
conductor (I's = 2 meV) and within the first lobe (B = 115 mT) vs
QD-S coupling asymmetry ry/R and (a) vs energy w at half-filling
(€o/U = —0.5) or (b) vs the QD energy level ¢)/U at w = 0. These
figures show that the ABSs remain robustly close to zero energy as
long as the degree of QD-S coupling asymmetry is o < 0.1R.

by the QD-S coupling asymmetry. At ry = 0 there are two
crossing, one at €g/U = —1 and another one at ¢y = 0. Be-
tween these two crossings, the system is in a doublet phase,
as illustrated by the spin polarization phase diagram in (a).
As one increases the asymmetry (larger /R value) the phase
diagram shows a slight deviation from this picture, with
the zero-energy crossings slowly converging towards €p/U =
—0.5. This convergence is due to an effective increase of
the coupling to the superconductor as the QD moves closer
to one side of the S cylinder. Panels (c) in Fig. 6 show the
evolution of the LDOS in this regime. Together with the weak
evolution of the zero-energy crossings mentioned previously,
these plots further illustrate the evolution from the “eyebrow”
shape for ro = 0 (left), where the upper and lower Andreev
bound states (ABSs) touch at €y/U = —0.5, to the (almost)
conventional “eye”-shape LDOS at ry/R = 0.5, where the two
ABSs anticross.

In the intermediate coupling regime (second row), the po-
larization phase diagram [Fig. 6(d)] shows a more dramatic
evolution with ry/R, which exhibits a domelike profile. In
fact, this phase diagram shows that one can drive the system
through a singlet-doublet transition by just varying the QD-S
coupling asymmetry. The minimum excitation-energy phase
diagram in (e) also illustrates that the states are closer to zero
energy with respect to the weak coupling case, due to the
stronger coupling with the superconductor, as explained in the
main text.

Finally, in Figs. 6(g) and 6(h), we show the phase diagram
in the strong coupling regime. In this case, the doublet phase
shrinks to a the narrow “chimney” region in the €y, I's plane
(see Fig. 3 in the main text), but only at small enough ry
and temperature. Thus the doublet phase becomes essentially
invisible in the spin polarization phase diagram of (g). The
evolution with r9/R is better appreciated in the LDOS of
Fig. 6(f). When ry/R ~ O there are zero-energy crossings
signaling the singlet-doublet quantum phase transition at the
chimney boundaries. As ry/R grows, the chimney quickly col-
lapses into a dome in the €, I's plane, and the LDOS evolves
into the regular singlet-phase LDOS of the conventional SIA
model at strong coupling.

To better understand the robustness of the near-zero-energy
modes depicted in Fig. 6(i), we show in Fig. 7(a) the LDOS
evolution at half-filling, i.e., at g /U = —0.5, versus the QD-S

coupling asymmetry ry/R. In Fig. 7(b), we show the same
quantity versus the QD energy level €y at @ = 0. For ry <
0.1R, these ABSs remain close to zero energy, in such a
way that if temperature is large enough, they are indistin-
guishable from a single zero-energy peak. As we discussed in
Appendix A, this may be a rather realistic scenario that could
be relevant when interpreting the measurements in experi-
ments [22,26]. Conversely, for ry > 0.1R the near-zero-energy
modes split and disperse linearly with the dot position ry.
As explained in the main text, this phenomenon occurs when
the coupling between the QD and the S is no longer axially
symmetric, and therefore, nonzero superconducting pairing
correlations are induced into the QD. These in turn create an
induced gap in the QD that, as shown here, is noticeable for
ro > 0.1R (at I's = 2 meV).

To complement our study, we analyze in Fig. 8 the behavior
of the phase diagram versus the parameter 8 of Eq. (B7).
This parameter, as introduced in Appendix B4, models the
QD’s inverse width. Assuming a Gaussian-like profile for the
QD wave function, this parameter is proportional to the in-
verse of standard deviation o of the QD’s wave function (i.e.,
B ~ 1/5?), which we actually compute in our microscopic
simulations [see blue curve in Fig. 4(c)]. This means that the
larger B, the more localized the QD wave function is. The
plots in Fig. 8 show the minimum excitation-energy diagram
as a function of the QD-S coupling asymmetry ry/R and its
energy €,/U for different cases: 8 = lin(a), 8 = 2in(b), and
B = 41in (c), in the weak coupling regime. In (d)—(f), we show
the same simulations in the strong coupling one. In the former,
we observe no change in the position of the zero-energy cross-
ing as B is increased. The reason is that the QD is weakly
coupled to the superconductor and therefore a change in the
exponential of Eq. (B7) makes almost no difference. However,
for B =4 in (c), the states disperse more dramatically with
€0, as revealed by a larger dark red region, meaning that the
states are above the gap there. This is because for this large
B the coupling is highly suppressed, and therefore we recover
the atomic limit for the QD states. On the other hand, there
is a remarkable change with B in the strong coupling regime
[Figs. 8(d)-8(f)]. As explained before, a larger 8 implies
a more pointlike QD, and therefore a reduced overlap and
coupling to the superconductor. Hence, the profile for a large
B in the strong coupling case (f) is similar to those in the
weak coupling (a)—(c). We thus conclude that 8 and I's play a
similar role in our model.

APPENDIX C: KONDO CORRELATION EFFECTS

All results in the main text and in this Appendix were
derived within a mean-field treatment of QD interactions. This
approximation is only strictly valid at small I's /U, for which
the Kondo temperature 7k is smaller than A. At stronger cou-
plings, correlation effects have to be included in the treatment
of 2V, see Eq. (2) in the main text. Their effect has been
studied in the literature of S-QD-S junctions using a variety
of nonperturbative techniques [42,43,45,52-56]. It has been
shown in particular that, at junctions with phase ¢ = =, the
chimneylike phase boundary survives correlations, and actu-
ally grows in width relative to the mean field result [43]. The
doublet ground state at strong coupling evolves in this case
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(B = 115 mT) in the destructive LP regime, for a weak coupling to the superconductor (I's = 0.08 meV) [(a)—(c)] and for a strong coupling

(I's = 2 meV) [(d)-(D)].

into an overscreened two-channel-Kondo doublet. We specu-
late that this is also the case in the present problem, although
a rigorous treatment would require a nonperturbative calcula-
tion within a multichannel Kondo context [57-59], where the
channels are the occupied modes in the shell. Further Kondo

correlations can be induced by the N probe [53] on doublet
ground states. Much like in ¢ = 7 S-QD-S junctions [60],
a finite I'y may result in a zero-energy Kondo peak at suf-
ficiently low temperatures, in addition to the near-zero energy
features discussed here.
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