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Based on first-principles calculations and symmetry analysis, we predict atomically thin (1 − N layers) 2H
group-VIB transition metal dichalcogenides (TMDs) MX2 (M = Mo, W; X = S, Se, Te) are large-gap higher-
order topological crystalline insulators (HOTCIs) protected by C3 rotation symmetry. We explicitly demonstrate
the nontrivial topological indices and the existence of hallmark corner states with quantized fractional charge
for these familiar TMDs with a large bulk optical band gap (1.64–1.95 eV for the monolayers), which would
facilitate the experimental verification and exploration of the HOTCI states. Furthermore, we find that the well-
defined corner states exist in the triangular finite-size flakes with armchair edges of the atomically thin (1 − N
layers) 2H group-VIB TMDs, and the corresponding quantized fractional charge is the number of layers N
modulo three. The fractional corner charge will double when spin degree of freedom is taken into account.
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I. INTRODUCTION

Atomically thin two-dimensional (2D) transition metal
dichalcogenide (TMD) semiconductors have attracted great
scientific and technological interest because of their ex-
traordinary properties, such as the direct band gap in the
visible frequency range, remarkable optical properties, and
rich valley-related physics [1–7]. Among various TMDs, the
group-VIB ones MX2 (M = Mo, W; X = S, Se, Te) have
been most extensively studied in 2D forms, where both the
monolayers and few-layers are proved to be stable in air at
room temperature except MTe2.

Exploring new topological quantum states, especially
high-order topological crystal insulator (HOTCI) states, and
discovering good candidate materials are among the most
active studies in condensed matter physics and materials
science [8–27]. Different from a conventional TCI having
protected gapless states on its symmetric boundaries with one
dimension lower than the bulk, HOTCIs feature the lower-
dimensional protected boundary states. For instance, three
dimensional (3D) second-order TCIs host one-dimensional
(1D) gapless states along their hinges, and 2D HOTCIs dis-
play in-gap corner modes. A few theoretical materials for
3D and 2D HOTCIs were proposed in the literature [28–41].
However, second-order TCIs have only been experimentally
observed in 3D single crystal bismuth [42] and some artificial
systems [43–54]. Therefore, proposing and discovering ideal
and real material candidates of 2D HOTCIs are still urgent and
important.

*ccliu@bit.edu.cn

We put forward guidelines for designing the 2D HOTCI
state in hexagonal lattices with s and p orbitals, and predicted
abundant material candidates [40], recently. In this work we
generalize to the systems of d orbitals, among which the
atomically thin group-VIB TMDs (monolayers, bilayers, few-
layers, etc.) are most representative. The band topology of the
2H bilayer group-VIB TMDs MX2 (M = Mo, W; X = S, Se,
Te) with inversion symmetry (P) and time-reversal symmetry
(T) could be characterized by the second Stiefel-Whitney in-
variant w2 [55]. Although w2 is zero for the bilayers, there
are still nonzero topological index and corner states with
quantized fractional charge protected by C3 rotation sym-
metry localized at the corners of the 2H bilayer group-VIB
TMDs, indicating a HOTCI, by combined density function

FIG. 1. (a) Top view of transition metal dichalcogenides MX2 (M
= Mo, W; X = S, Se, Te) monolayer. The blue and orange spheres
represent M and X atoms, respectively. The light gray diamond
region is the unit cell of MX2. The gray lines mark the zigzag and
armchair edges. (b) Trigonal prismatic coordination geometry of
MX2. (c) The first Brillouin zone with high-symmetric points. b1

and b2 are the reciprocal lattice vectors. (d)–(f) Side view of bilayer,
trilayer, and multilayer MX2 of 2H stacking.
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FIG. 2. (a) Bulk band of monolayer MoS2. (b)–(d) The edge states of three semi-infinite planes with respective armchair, zigzag_Mo, and
zigzag_S edges, calculated by the Wannier interpolation method. (e) The energy spectra of a triangular nanoflake (f) with armchair edges
calculated by the Wannier interpolation method. The gray, red, and blue dots in (e) stand for the respective bulk, edge, and corner states. The
arrow in the zoomed rectangle marks the position of the Fermi level by electron counting. The real-space distribution of the corner states framed
by a rectangle is plotted in (f). (g) The energy spectra of a triangular nanoflake with zigzag_Mo edges calculated by the Wannier interpolation
method. Although there are still corner states in blue located at the corners, the Fermi level marked by an arrow and determined by electron
counting is in the edge states in red, indicating an intrinsic metallic edge state. (h) The energy spectra of a triangular nanoflake with zigzag_S
edges calculated by the Wannier interpolation method. There are no in-gap corner states, and the Fermi level labeled by an arrow is located
in the bulk states, signing an intrinsic metallic bulk state. (i) The energy spectrum of a triangular nanoflake at armchair edges with hydrogen
passivation consisting of 108 Mo atoms, 216 S atoms, and 96 H atoms calculated by VASP. (j) The real-space distribution of the corner states in
(i). (k) The energy spectrum of a triangular nanoflake at zigzag_Mo edges with hydrogen passivation consisting of 78 Mo atoms, 132 S atoms,
and 72 H atoms calculated by VASP. The inset shows the real-space distribution of the corner states. (l) The energy spectrum of a triangular
nanoflake at zigzag_S edges with hydrogen passivation consisting of 66 Mo atoms, 156 S atoms, and 72 H atoms calculated by VASP. The
arrows in (i), (k), and (l) label the Fermi level.

theory (DFT) simulation and symmetry analysis. Actually,
this HOTCI state protected by rotation symmetry does not
need P but C3, which is owned by all other 2H few-layer
group-VIB TMDs (monolayers, trilayers, quadlayers, etc.).
We find such few-layer TMDs are also large-gap HOTCIs
protected by C3 symmetry. These atomically thin group-VIB
TMDs MX2 (M = Mo, W; X = S, Se, Te) have a large
bulk optical band gap (e.g., 1.64–1.95 eV for the monolayers),
which would facilitate the experimental detection by scanning
tunneling microscopy (STM).

II. TOPOLOGICAL CLASSIFICATION

The bulk of group-VIB TMDs with 2H stacking crys-
talizes in space group D4

6h with inversion symmetry. For

the atomically thin counterparts, the symmetry is reduced to
D3h (monolayers), D3d (bilayers), D3h (trilayers), and D3d

(quadlayers), as shown in Fig. 1. The inversion symmetry
is preserved in the even-layer films (D3d ), but broken in
the odd-layer ones (D3h). First, we take into account the
centrosymmetric spinless bilayer, with spin-orbital coupling
(SOC) discussed later. The higher-order band topology of
spinless systems with PT symmetry can be characterized by
the so-called second Stiefel-Whitney number w2 (see details
in the Supplemental Material [55]). We take bilayer MoS2 as
an example, and calculate the second Stiefel-Whitney number
w2, and find w2 = 0 [Fig. 3(b)], which is also checked by
using the parity criterion and nested Wilson loop (see Sup-
plemental Material [55]), seeming to indicate a trivial state.
However, we still found the nontrivial topological indices and
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FIG. 3. (a,c) Bulk band and armchair edge states of bilayer
MoS2. (b) Wilson loop of bilayer MoS2. The number of crossings
on θ = π is zero, indicating the w2 = 0. (d) Energy spectrum of
a triangular finite-size flake of bilayer MoS2 calculated from the
Wannier interpolation method. The gray, red, and blue dots mark the
respective bulk, edge, and corner states. The corner states are split in
two groups labeled by I and II in different energy regions. The arrow
denotes the Fermi level by valence electron counting. (e,f) The top
view and side view of the real-space distribution of the two groups
of the corner states.

the hallmark corner states with fractional charge protected
only by C3 symmetry in the bilayer.

The nontrivial topological indices and hallmark corner
states with quantized fractional charge can be described by
the C3-symmetry eigenvalues of the occupied energy bands
at the high-symmetric points of the Brillouin zone (BZ)
[63]. The three-fold rotation symmetry eigenvalues at the
high-symmetric points �(3) in the BZ is denoted as �(3)

m =
e2π i(m−1)/3, for m = 1, 2, 3. The topological invariants can
be defined through the rotation eigenvalues at �(3) compared
to a certain reference point � = (0, 0), i.e., [�(3)

m ] ≡ #�(3)
m −

#�(3)
m , where #�(3)

m (#�(3)
m ) is the number of occupied bands

with eigenvalue �(3)
m (�(3)

m ). The topological indices χ (3) and
fractional corner charge Q(3)

corner for C3-symmetric HOTCIs
read

χ (3) = ([
K (3)

1

]
,
[
K (3)

2

])
,

Q(3)
corner = e

3

[
K (3)

2

]
mod e,

(1)

where the superscript 3 of χ (3) and Q(3)
corner labels the C3

symmetry, and e is the charge of a free electron.

III. HOTCIS IN MONOLAYER GROUP-VIB TMDs
PROTECTED BY C3 SYMMETRY

The above Cn symmetry protected HOTCI mechanism can
directly apply to the monolayer ones. For the monolayer
MoS2, the nonzero topological index χ (3) = (−2, 1) in a√

3 × √
3 supercell and the fractional corner charge Q(3)

corner =
e/3. Figure 2(a) shows the bulk band structure of monolayer
MoS2. As plotted in Fig. 1(a), one usually cuts the group-VIB
TMDs MX2 with armchair and zigzag edges, and the zigzag
edge has two versions differentiated by M or X termination,
labeled by zigzag_M and zigzag_X . As shown in Fig. 2, we
construct three semi-infinite planes and three triangular finite-
size flakes with armchair, zigzag_M, and zigzag_X edges,
respectively. There are two gapped armchair edge states in the
bulk gap, as shown in Fig. 2(b). The edge states for zigzag_Mo
and zigzag_S are plotted in Figs. 2(c) and 2(d).

To explicitly reveal the hallmark corner states, we calcu-
late the energy spectrum of the three triangular nanoflakes
with three different edges based on the Wannier interpolation
method, as shown in Figs. 2(e) to 2(h). For the armchair
nanoflake, in the middle of the edge states exit three degen-
erate states [blue dots in Fig. 2(e)], whose charge real-space
distribution is plotted in Fig. 2(f). Such three states are well
located at the three corners of the flake [Fig. 2(f)], i.e., the
corner states. We consider (Mo:5s14d5) and (S:3p4) as the
valence electron configuration of MoS2 in Wannier functions
construction. In the monolayers, one unit cell has one Mo
atom and two S atoms, so the number of the valence electrons
is (6 + 2 × 4)/2 = 7, where the divisor 2 denotes the spinless
case. The triangular armchair flake consists of 108 unit cells,
and has 108 × 7 = 756 valence electrons. The Fermi level
is determined by the electron counting and indicated by an
arrow [Fig. 2(e)]. The other group-VIB TMDs have the similar
valence electron configuration and valence electron counting.
As for the two zigzag nanoflakes, the Fermi level lies in the
edge or bulk states with the hallmark corner states buried, as
shown in Figs. 2(g) and 2(h). We would like to stress that
only the armchair flakes have appropriate electron filling, i.e.,
with corner states at the Fermi level, while the nanoflakes
with the two kinds of zigzag edges have metallic bulk or
edge states. Therefore, we are mainly interested in the 1D or
zero-dimensional (0D) samples with armchair edges for the
group-VIB TMDs MX2.

While these effects from the edge deformation and dan-
gling bonds may result in the overlap of the corner states
with edge states or bulk states, one can eliminate these effects
by surface modification, such as by passivating the edges
with hydrogen atoms. We perform DFT calculation on the
energy spectra of monolayer MoS2 flakes with the three dif-
ferent edges with hydrogen passivation calculated by Vienna
ab init io simulation package (VASP), as shown in Figs. 2(i),
2(j), 2(k), and 2(l). The energy spectra of the other monolayer
TMDs armchair flakes with hydrogen passivation calculated
by VASP are given in Figs. S1 to S5 [55]. The results obtained
by VASP are similar with those by the Wannier interpolation
method. We directly calculate the corner charge of MoS2

armchair nanoflake passivated with hydrogen atoms by VASP,
and find the accumulation charge mod e at each corner is
0.30e, which is close to the theoretical value e/3. The details
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FIG. 4. (a,d) Bulk band structures of trilayer and quadlayer MoS2. (b,e) Armchair edge states of trilayer and quadlayer MoS2. Energy
discrete spectra of the finite-size triangular flakes of (c) trilayer and (f) quadlayer MoS2 calculated from the Wannier interpolation method.
The blue states in (c) and (f), whose charge real-space distribution is plotted in the insets, are well localized at the corners. The gray, red, and
blue dots represent the respective bulk, edge, and corner states. The Fermi level marked by the arrows in (c) and (f) is determined by electron
counting.

are presented in Appendix A. The other monolayer group-VIB
TMDs are also HOTCIs (see details in Supplemental Material
[55]).

IV. HOTCIS IN 2H BILAYER GROUP-VIB TMDS
WITH PT AND C3 SYMMETRIES

The topological index of bilayer MoS2 χ (3) = (−4, 2) and
the fractional corner charge Q(3)

corner = 2e/3. The bulk band
structure and armchair edge states of bilayer MoS2 are plotted
in Figs. 3(a) and 3(c). To explore the hallmark corner states of
bilayer MoS2, we calculate the energy spectrum of a triangular
finite-size flake [Fig. 3(d)]. By similar electron counting as
that of the monolayer, we fix the position of the Fermi level,
just right at the blue corner states, marked by an arrow in the
zoomed rectangle in Fig. 3(d). There are two groups of states
in blue, with one group near zero energy in the spectrum and
the other with higher energy, labeled as I and II. For the group
I, the top view and side view of the real-space distribution of
the six states are shown in Fig. 3(e). From the top view, one
can see these states are well located at the corners of the flake,
corresponding to the corner states. From the side view, these
corner states are evenly distributed on two layers, and mainly
on the Mo atoms. Figure 3(f) shows the top view and side view
of the real-space distribution of the group II, with the similar
distribution as that of the group I. The analogous analysis and
results for the other bilayer group-VIB TMDs are given in the
Supplemental Material [55].

V. HOTCIS IN OTHER FEW-LAYER AND MULTILAYER
GROUP-VIB TMDS PROTECTED BY C3 SYMMETRY

Figures 4(a) and 4(d) show the bulk band structures of
trilayer and quadlayer MoS2. Their armchair edge states are
plotted in Figs. 4(b) and 4(e). The discrete energy spectra of

two triangular finite-size flakes of the trilayer and quadlayer
are shown in Figs. 4(c) and 4(f). One can see the well-defined
corner states are located at the corners of the both flakes.
According to Eq. (1), the fractional corner charge of the
quadlayer nanoflake is Q(3)

corner = e/3. In spite of the clear
corner states for the trilayer nanoflake, the corner charge is
zero. In the trilayer (or six, nine, etc., layers) nanoflake, the
original corner states with e/3 fractional corner charge in
each layer will mix together with an integer corner charge re-
maining, thus without fractional corner charge. The few-layer
TMDs which are the stacking of monolayers by weak van der
Waals-like forces are natural but not trivial promotions of the
monolayer ones. Based on the above analysis, we propose a
simple formula to calculate the fractional corner charge of the
few-layer TMDs, which reads

Qcorner
N = e

N

3
mod e, (2)

where N is the number of layers. The number of the corner
modes at one corner of the flake equals the number of layers.
The similar analysis and results hold for the other trilayer
and quadlayer group-VIB TMDs [55] as well as the other
multilayer group-VIB TMDs (Appendix B).

VI. EFFECT OF SPIN-ORBITAL COUPLING

The fractional corner charge in the 2D system with SOC
can also be classified by rotation symmetry [28]. The topo-
logical indices χ

(3)
SOC and fractional corner charge Q(3)

SOC for
C3-symmetry protected HOTCIs with SOC read

χ
(3)
SOC = ([

K̃ (3)
1

]
,
[
K̃ (3)

2

])
,

Q(3)
SOC = 2e

3
(
[
K̃ (3)

1

] + [
K̃ (3)

2

]
) mod 2e,

(3)

where K̃ (3)
i=1,2,3 = {eiπ/3,−1, e−iπ/3}.
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FIG. 5. (a,d) Bulk band structures with SOC of monolayer and bilayer MoS2. (b,e) Armchair edge states with SOC of monolayer and
bilayer MoS2. Energy discrete spectra with SOC of the finite-size triangular flakes of (c) monolayer and (f) bilayer MoS2 calculated from the
Wannier interpolation method. The corresponding charge spatial distribution of blue states in (c) and (f) plotted in their insets are well localized
at the corners. The gray, red, and blue dots stand for the respective bulk, edge, and corner states. The Fermi level marked by the arrows in
(c) and (f) is determined by electron counting.

We take the monolayer and bilayer MoS2 as exam-
ples, whose nonzero topological index χ

(3)
SOC are (−1, 2) and

(−2, 4), respectively, and the fractional corner charge Q(3)
SOC

are 2e/3 and 4e/3, respectively. The band structures and edge
states of monolayer and bilayer MoS2 (Fig. 5) undergo some
changes by the SOC effect, but the topology of these materials
do not change. We calculate the discrete energy spectrum of
triangular finite-size flakes, as shown in Figs. 5(c) and 5(f).
There are also two groups of corner states near zero energy
and with higher energy in the spectrum, similar to the spinless
condition. However, the number of corner states of each group
doubled compared to the spinless case. The corresponding
charge distribution of corner states are plotted in their insets.
Therefore, the HOTCI topology of MX2 is also preserved
in the SOC case since the large bulk band gap dominates
the SOC effect. Compared with the spinless case, the corner
charge will double when the SOC is taken into account (see
the proof in Appendix C).

VII. CONCLUSION AND DISCUSSION

We demonstrated that Cn-symmetric large-gap HOTCIs in
atomically thin group-VIB TMDs MX2 (M = Mo, W; X =
S, Se, Te) whose monolayer and few-layer samples can be
prepared from the bulk counterparts by using a mechanical
exfoliation technique similar to that employed for graphene
[1]. The nontrivial higher-order topology of these TMDs is
revealed by the nonzero topological indices and the exis-
tence of the hallmark corner states with quantized fractional
charge. The Cn-symmetric HOTCIs in atomically thin group-
VIB TMDs with large optical gaps (about 1.8 eV) would
facilitate the experimental detection of the hallmark corner

states as sharp peaks in the scanning tunneling spectroscopy
(STS) measurement, when the scanning tip approaches the
corners. As the atomically thin group-VIB TMDs are easy
to produce with high quality, they are ideal material candi-
dates to explore the HOTCI states and the related remarkable
properties.

When the number of layers N of the group-VIB TMDs
is large, the many-layer systems will approach the 3D bulks,
and we find the corner states could evolves into hinge states
[64]. In addition, the planes of kz = 0 and kz = π have the
same nonzero topological indices protected by C3 symmetry
in the 3D group-VIB TMDs, which suggests that the 3D 2H
group-VIB TMDs are Cn-symmetric higher-order weak topo-
logical crystalline insulators [64]. These contents are beyond
the scope of this work and left for the next work.

Note added. We become aware of an independent work
recently [65]. The work proposes second-order topological
insulators in monolayer group-VIB TMDs, and the results of
the monolayer group-VIB TMDs are consistent with ours.
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FIG. 6. (a) Energy discrete spectra of the finite-size triangular flake of monolayer MoS2 at the edge with hydrogen passivation consisting
of 108 Mo atoms, 216 S atoms and 96 H atoms calculated from VASP. The gray and blue dots represent the respective bulk and corner states.
(b) Charge distribution below the corner states. The numerals in hexagonal cells denote the number of charges. The dark blue, light blue, and
gray represent the corner, edge, and bulk regions, respectively.

2017YFB0701600) and Beijing Natural Science Foundation
(Grant No. Z190006).

APPENDIX A: NUMERICAL CALCULATION OF
CORNER CHARGE BY VASP

The charge accumulation in the corner region is

Qc =
∑

i

∫
corner

dr|ψi(r)|2 mod 1, (A1)

where |ψi(r)|2 is the charge distribution of the occupied eigen-
states below the corner states and the integration is performed
within the corner region. We calculated the charge distribution
of charged monolayer MoS2 at the edge with hydrogen passi-
vation whose Fermi level is located below the corner states
using VASP (Fig. 6). The charge accumulated in the corner
region (the summation of the values in dark blue region in
Fig. 6) mod e is about 0.30 e, which is close to the theoretical
value e/3.

APPENDIX B: HIGHER-ORDER TOPOLOGY OF THE
MULTILAYER SYSTEMS OF 2H TMDS

We take MoS2 as an example to study the higher-order
topology of the multilayer systems. Figure 7(a) shows the
energy spectrum of a finite-size triangular flakes of 20-layer
MoS2 without SOC. The triangular flake consists of 45 unit
cells and each unit cell has 20 layers MoS2. Therefore it has
6300 valence electrons. The fractional corner charge is 2e/3,
the number of layers N modulo three, which is consistent with
Eq. (2) of the main text. The other multilayer systems have
similar results.

APPENDIX C: PROOF OF THE CORNER CHARGE
DOUBLING IN ATOMICALLY THIN (1 − N LAYERS) 2H

TMDS WITH SOC

Since the SOC effect is not enough strong to induce a band
inversion in TMDs, there is a mapping between spinless and

spinful C3 eigenvalues [28], which is

[
K̃ (3)

1

] = [
K (3)

1

] + [
K (3)

2

]
,[

K̃ (3)
2

] = [
K (3)

2

] + [
K (3)

3

]
,[

K̃ (3)
3

] = [
K (3)

3

] + [
K (3)

1

]
,

(C1)

where [K̃ (3)
i ]i=1,2,3 ([K (3)

i ]i=1,2,3) are the spinful (spinless)
topological indices for the TMDs. From this, we obtain the
relations

[
K̃ (3)

1

] + [
K̃ (3)

2

] = [
K (3)

1

] + 2
[
K (3)

2

] + [
K (3)

3

]
. (C2)

Because the numbers of occupied bands at the reference point
� and K are equal, [K (3)

1 ] + [K (3)
2 ] + [K (3)

3 ] = 0. As a result,
the relation between the spinless and spinful C3 topological
indices is

[
K̃ (3)

1

] + [
K̃ (3)

2

] = [
K (3)

2

]
. (C3)

The fractional corner charges for C3-symmetry protected
TMDs with SOC and without SOC are written sepa-
rately as Q(3)

SOC = 2e
3 ([K̃ (3)

1 ] + [K̃ (3)
2 ]) mod 2e = 2e

3 [K (3)
2 ] mod

FIG. 7. (a) Energy discrete spectra of the finite-size triangular
flakes of 20-layer MoS2 without SOC. (b) The charge spatial distri-
bution of corner states in (a). The gray, red, and blue dots represent
the respective bulk, edge, and corner states.
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2e, and Q(3)
corner = e

3 [K (3)
2 ] mod e [see Eqs. (3) and (1) of the

main text]. Therefore, the corner charge in atomically thin
2H TMDs with SOC is only a doubling of the spinless
condition.
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[24] D. Călugăru, V. Juričić, and B. Roy, Phys. Rev. B 99, 041301(R)

(2019).
[25] G. van Miert and C. Ortix, Phys. Rev. B 98, 081110(R) (2018).
[26] F. Liu, H.-Y. Deng, and K. Wakabayashi, Phys. Rev. Lett. 122,

086804 (2019).
[27] F. Liu and K. Wakabayashi, Phys. Rev. Research 3, 023121

(2021).
[28] F. Schindler, M. Brzezińska, W. A. Benalcazar, M.
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