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Electric field effect on electron gas spins in two-dimensional magnets with strong spin-orbit coupling
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The recent rise of material platforms combining magnetism and two-dimensionality of mobile carriers reveals
a diverse spectrum of spin-orbit phenomena and stimulates its ongoing theoretical discussions. In this paper,
we use the density matrix approach to provide a unified description of subtle microscopic effects governing the
electron gas spin behavior in the clean limit upon electric perturbations in two-dimensional magnets with strong
spin-orbit coupling. We discuss that an inhomogeneity of electrostatic potential generally leads to the electron gas
spin tilting with the subsequent formation of equilibrium skyrmionlike spin textures and demonstrate that several
microscopic mechanisms of two-dimensional electron gas (2DEG) spin response are equally important for this
effect. We analyze the dynamics of 2DEG spin upon an oscillating electric field with a specific focus on the
emergent electric dipole spin resonance. We address the resonant enhancement of magneto-optical phenomena
from the spin precession equation perspective and discuss it in terms of the resonant spin generation. We also
clarify the connection of both static and dynamic spin phenomena arising in response to a scalar perturbation
with the electronic band Berry curvature.
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I. INTRODUCTION

The recent advances in the development of spintronics
devices extensively use relativistic spin-orbit properties of
free carriers interacting with magnetic layers. The spin-orbit
coupling (SOC) of charge carriers generally opens up the
possibility to deal with the magnetization purely by electrical
means; the magnetization orientation can be detected elec-
trically by virtue of the anisotropic magnetoresistance effect
[1–3], while electric current-induced spin-orbit torque occurs
to be a highly effective tool for switching its direction [4–7].
Nonstationary dynamics of carriers in the presence of SOC
can result in stimulated photon emission, as in the case of
terahertz spintronic light emitters [8–11] and spin Hall nano-
oscillators [12,13]. Apart from kinetic phenomena, spin-orbit
effects can modify equilibrium spin configurations via indirect
exchange interaction [14–16] and lead to the formation of
magnetic skyrmions [17,18] due to Dzyaloshinskii-Moriya
terms [19,20].

An efficient charge-to-spin conversion wanted for mod-
ern spintronics needs is often realized when turning to a
two-dimensional electron gas (2DEG) [21], as the reduc-
tion of the dimensionality tends to be accompanied by the
lowering of symmetry and by the subsequent increase in
SOC [19,22]. There are an increasing number of different
material platforms that allow one to combine systematically
stronger SOC magnitudes of 2D electrons directly with a
magnetic component; the examples include van der Waals
heterostructures [23] either proximitized by magnetic layer
[24–28] or being intrinsic ferromagnets [29–32], semicon-
ductor nanostructures doped by magnetic dopants [33–35],
surface states of magnetic topological insulators [36,37], and
layered magnetic heterostructures [19,38]. Moreover, com-
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bining magnetism with 2D conductive channels additionally
offers functionalities such as spin tunnel field-effect transis-
tors [39], spin inversion effect [25], and unique classes of
spinterfaces [40].

To fully benefit from two-dimensional magnetic systems, it
is of key importance to have a comprehensive understanding
of how the spin density of electron gas in a 2D channel
responds to an applied electric field, that is, the understanding
of free electron gas magnetoelectric properties. However, a
complete microscopic treatment of the related phenomena ap-
pears to be extremely challenging, even despite there being a
few theoretical approaches effectively dealing with multiband
systems (e.g., wave-packet dynamics theory [41–45] and dia-
grammatic and ab initio calculations [46–50]). The difficulty
lies in the fact that in spin-orbital systems, multiple micro-
scopic mechanisms of quite a subtle character often contribute
on the equal footing, which hinders a simplified consideration.

For instance, to restore a complete microscopic picture
behind the spin accumulation and the associated spin-orbit
torques in a bilayered magnetic system, one has to account
for the nonequilibrium [51,52], intrinsic [50,53], and disorder-
induced scenarios [54,55] of the inverse spin galvanic effect
(iSGE) at the interface, as well as for the overall spin Hall cur-
rent [56–58] induced in the neighbor nonmagnetic layer. Also,
an exchange interaction induced spin splitting in combination
with strong spin-orbit coupling generally leads to a geomet-
rical structure of electronic band states featured by nonzero
Berry curvature in k space. Treating different spin-related
phenomena with account for the electronic band geome-
try remains an ongoing discussion. It covers, for instance,
the issues of the Liouville’s theorem with account for the
Berry phase [59–61], the Hall conductivity modifications in
presence of real-space magnetic textures [62], or, concerning
the anomalous and spin Hall effects, the interplay between
Karplus-Luttinger anomalous velocity and disorder-induced
mechanisms [63–66]; the latter have recently been enriched
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by the electron scattering on a pair of impurities [66,67].
Moreover, when calculating spin-related quantities a specific
class of coarse graining effects should be taken into account,
as clearly demonstrated in Refs. [42,44].

In this paper, we respond to an ever-growing role that
two-dimensional magnetic systems play for spintronics and
consider in detail a complex pattern of microscopic ef-
fects relevant for the magnetoelectric behavior of 2DEG
in the clean limit. Based on the density matrix approach,
we describe the most significant spin-response mechanisms
of two-dimensional spin-orbital systems within the unified
framework, reveal the interconnection between different mi-
croscopic effects and clarify its relation to an electronic band
geometry.

The theoretical model and the density matrix description
are formulated in Sec. II. In Sec. III, we analyze a magne-
toelectric effect in thermal equilibrium, namely, we consider
the formation of equilibrium spin textures arising due to an
inhomogeneous electrostatic potential. We discuss in detail
semiclassical electron dynamics with account for a spin-to-
momentum locking and identify microscopic mechanisms
responsible for the magnetoelectric response. Namely, we at-
tribute the generation of an extra-spin density directed within
a 2DEG plane both to the nonadiabatic correction due to the
electron spin precession and to the correlated change in charge
and spin electron densities; the latter scenario is sometimes
referred to as spin-dipole effect [42]. We provide a unified
treatment of these mechanisms using the density matrix, de-
rive general equations governing the contribution due to each
mechanism independently, and reveal the role that the Berry
curvature plays for the emergent phenomena. Numerical es-
timates demonstrate that the direction of equilibrium spin
density of 2DEG in the presence of smooth scalar disorder
can significantly alter from the host magnetization direction
for a wide group of material platforms with quite different
strengths of spin-orbit and exchange interactions.

In Sec. IV, we turn to the dynamical regime and investigate
the 2DEG spin dynamics upon an oscillating electric field. We
focus specifically on spin resonance phenomena due to elec-
tric dipole transitions, also referred to as the electric dipole
spin resonance (EDSR). We derive the precession equation
for 2DEG spin density capturing the spin resonance scenario,
and clarify the relation of the band states’ Berry curvature
with the spin response susceptibility. We also discuss the spin
resonance in terms of optical conductivity and describe the
associated magneto-optical properties of 2DEG. In particular,
we describe how the EDSR-induced generation of the in-plane
spin density is accompanied by the resonant enhancement of
the Hall conductivity; the latter is responsible for magneto-
optical Kerr and Faraday effects. We classify different spin
polarizations emerging in the dynamical regime and present
analytic expressions for the spin resonance related optical
conductivity.

II. THEORETICAL FRAMEWORK

A. Model band structure

We consider a 2DEG with parabolic bands affected both
by the Rashba effect and by an exchange interaction with a
magnetic host. We assume that the magnetization responsible
for the spin splitting is directed along the z axis perpendicular

to the electron motion plane. The so-called Rashba ferromag-
net model covers all the physics relevant for our consideration
and allows one to address the related spin phenomena in the
most transparent way. The effective Hamiltonian describing
this model is given by

H(k) = k2

2m
+ �k · Ŝ. (1)

Here the first term describes the parabolic dispersion with an
effective mass m, and �k is an effective k-space magnetic field
acting on the electron spin Ŝ = σ̂/2; σ̂ is the vector of Pauli
matrices. The field �k leads to a spin splitting of the electronic
subbands; in our model �k consists of two parts,

�k = �so(k) − �0ez, �so(k) = 2λso[ez × k], (2)

where �so(k) describes the spin-orbit Rashba interaction with
the coupling constant λso and the second term is due to an ex-
change interaction with a magnetic background; the parameter
�0 describes the corresponding splitting of spin subbands at
zero momentum. The eigenstates of the Eq. (1) Hamiltonian
can be written in the following form: ψ±

k = eikr|u±
k 〉, where

|u+
k 〉 = 1√

2

(
bk

−ieiϕak

)
, |u−

k 〉 = 1√
2

(−ie−iϕak

bk

)
, (3)

and (ak, bk ) = (1 ± �0/�k )1/2. We use the notation η = (±)
for two-electron spin subbands. The states ψ

η

k are charac-
terized by the electron spin sη

k = 〈uη

k |Ŝ|uη

k 〉 directed either
parallel or antiparallel to �k ,

s±
k = ±1

2
nk, nk = �k

�k
, �k =

√
�2

0 + (2λsok)2, (4)

where the unit vector nk points along �k .
The energy dispersion corresponding to η subband is ε

η

k =
k2/2m + η�k/2. The presence of k-dependent spin split-
ting leads to the renormalization of effective masses near
k ≈ 0, namely, m± = m/(1 ± ξ ), where the parameter ξ ≡
2mλ2

so/�0. We focus on systems with sufficiently strong ex-
change interaction, when �0 greatly exceeds the spin-orbital
coupling. We thus take the parameter ξ < 1, at which the
effective mass m− > 0 is positive and the lower energy branch
is a monotonic function of the momentum.

Let us discuss the role of the spin splitting terms. The pres-
ence of the Rashba effect induced spin-momentum locking
directly manifests itself in the velocity operator

v̂ = ∂Ĥ(k)

∂k
= k

m
+ λso[σ̂ × ez], (5)

where the second term is sensitive to the instantaneous di-
rection of the electron spin. While the average velocity for
the eigenspin states is determined by the unperturbed spin
vector sη

k ,

v
η

k ≡ 〈
uη

k

∣∣v̂∣∣uη

k

〉 = k
m

+ 2λso
[
sη

k × ez
]
, (6)

the changes in the direction of an electron spin caused by
external fields can directly affect the average of the velocity
operator and, correspondingly, influence the orbital motion.

The presence of a magnetic gap due to the magnetization
directed perpendicular to the 2DEG plane leads addition-
ally to the fact that electron band states acquire a geometric

045413-2



ELECTRIC FIELD EFFECT ON ELECTRON GAS SPINS … PHYSICAL REVIEW B 105, 045413 (2022)

structure. Indeed, the electron spin direction in k space
forms a hedgehog pattern which underlies the appearance of
the Berry curvature Fη

k = i〈∇kuη

k | × |∇kuη

k 〉. For a spin-1/2
Hamiltonian, the Abelian Berry curvature in η = (±) subband
can be expressed as follows:

Fη

k = η
1

4π
nk ·

[
∂nk

∂kx
× ∂nk

∂ky

]
= η 2λ2

so
�0

�3
k

, (7)

and we keep the notation Fk = |Fη

k | for its absolute value.
The total Berry flux Qη

F accumulated by electrons from the η

subband up to the Fermi energy μ is given by

Qη
F =

∫
k<kη

F

dkFη

k = η
1

4π

(
1 − �0

�
η
F

)
, (8)

where �
η
F = [�2

0 + (2λsokη
F )2]1/2 is the spin splitting energy

for η = (±) subbands at the Fermi energy.

B. Density matrix approach

Let us first discuss the structure of the density matrix f 0 for
2DEG in thermal equilibrium without external perturbations.
The general form is f 0 = [eβ(Ĥ−μ) + 1]−1, where Ĥ is given
by Eq. (1), β is the inverse temperature, and μ is the Fermi
energy. In this paper, we focus on zero-temperature limit β →
∞. The density matrix f̂ 0

k in the momentum representation is
a 2 × 2 matrix which can be presented as follows (we keep
hats for spin indices only):

f̂ 0
k = 1

2
n0

k + S0
k · σ̂. (9)

We note that f̂ 0
k is diagonal in the basis of eigenstates ψ±

k , so
we can present it as a sum of η = (±) spin subband contribu-
tions f̂ η

k ,

f̂ 0
k = f̂ +

k + f̂ −
k , f̂ η

k = nη

k

(
1

2
+ sη

k · σ̂

)
, (10)

where nη

k = [eβ(εη

k −μ) + 1]−1 is the Fermi-Dirac distribution
function of electrons in the spin subband with energy ε

η

k . The
terms in Eq. (9) are given n0

k = n+
k + n−

k and S0
k = n+

k s+
k +

n−
k s−

k ; here sη

k corresponds to the eigenspin states from Eq. (4).
The equilibrium spin density S0 is directed perpendicular to
the 2DEG plane:

S0 = 1

2

∑
k

Sp
(

f̂ 0
k · σ̂

) = ez�0
�−

F − �+
F

16πλ2
so

. (11)

We note that when both spin subbands are populated (μ >

�0/2), the equilibrium spin density S0 = m�0/4π is indepen-
dent of the Fermi energy; this is specific for the Hamiltonian
from Eq. (1).

The application of a scalar potential U (r, t ) deviates the
electron distribution from Eq. (10). In this paper, we focus on
spatially smooth perturbations (kF · ∇k 	 1 and λF · ∇r 	
1) and study the electron gas response in the semiclassi-
cal limit. For this purpose, we introduce the Wigner density
matrix f̂k (r, t ) in the following form:

f̂k (r, t ) = 1

2
nk (r, t ) + Sk (r, t ) · σ̂, (12)

δ �S(r)

U(r)

�j(r)

FIG. 1. Skyrmionlike distribution of the linear response spin-
density perturbation and the distribution of the persistent electric
currents’ nearby electrostatic defects.

where nk (r, t ), Sk (r, t ) can be treated as particle and spin
distribution functions locally in real space. In particular, the
2DEG spin density perturbation emerging in the real space at
point r can be found from

δS(r, t ) =
∑

k

Sp( f̂k (r, t ) · Ŝ) − S0 =
∑

k

Sk (r, t ) − S0.

(13)

The procedure to obtain the semiclassical Boltzmann equa-
tion for f̂k (r, t ) is described in a number of papers [68–70] and
it consists of the Wigner transformation of the von Neumann
equation for the density matrix with the subsequent applica-
tion of the gradient expansions. Here we omit the details and
present the resulting semiclassical kinetic equation for f̂k (r, t )
in the clean limit following [71]:

∂ f̂k

∂t
+ 1

2
{(v̂ · ∇r); f̂k} − [�k × Sk] · σ̂ + (F · ∇k) f̂k = 0,

(14)

where {; } stands for the anticommutator, ∇r,k are the
nabla operators, F(r, t ) = −∇rU (r, t ) describes the dynam-
ical force acting on electrons, and the third term takes into
account the precession of the electron spin in the effective
magnetic field �k . It is worth noting that the semiclassical
Boltzmann equation for the spin-1/2 electron can be also
presented in a form directly involving SU(2) gauge fields, see
the details in Ref. [69]. The latter approach has an advantage
that it deals with the whole class of geometrical spin effects on
equal footing, including non-Abelian phenomena in the strong
spin-orbital interaction limit.

III. STATIC SPIN TEXTURES

We start our analysis by inspecting the redistribution of the
2DEG charge and spin densities’ nearby smooth electrostatic
defects, such as Coulomb centers or gating potential pertur-
bations. The geometric character of electronic band states
and the associated nonzero Berry curvature underline the ap-
pearance of chiral spin textures and adjoint persistent electric
currents that surround electrostatic potential inhomogeneity,
see Fig. 1. In Ref. [72], we used the Kubo formalism to
address the nonlocal regime of the spin-density response due
to short-range impurities. In this section, instead, we provide
a detailed semiclassical description of this phenomenon and
accompany it by comprehensive physical analysis.
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A. General mechanisms of the intrinsic spin generation

Let us qualitatively discuss the effect of the electron spin
nonadiabatic rotation upon the precession in a slowly vary-
ing magnetic field [50,73–75]. We start by considering the
precession equation for an electron spin s rotating upon a
time-dependent frequency �(t ):

ds
dt

= [�(t ) × s]. (15)

Assuming the adiabatically slow rotation of �(t ), i.e., that
the characteristic time τ of its variation satisfies �τ 
 1,
the zero-order solution of the precession equation simply
describes the electron spin s0(t ) = �(t )/2|�(t )| remaining
coaligned with the instant direction of �(t ). However, the
adiabatic rotation of s0(t ) can be maintained only due to the
appearance of the nonadiabatic correction δs(t ) directed per-
pendicular to the instant vector �(t ). Naturally, this correction
exists in the first order in (�τ )−1 and it can be found from
the precession equation, keeping only the leading term due to
s0(t ) in the time derivative:

ds0

dt
= [�(t ) × δs(t )] → δs(t ) = 1

2�3

[
� × d�

dt

]
.

(16)

The appearance of δs ∝ (�τ )−1s0 is a general property of
the precession equation. Naturally, this is also valid when a
Larmor frequency stems from an effective magnetic field in
k space due to a spin-orbit coupling. In this case, however,
the vector �k that governs the spin dynamics of an electron
with momentum k varies in time only provided that the elec-
tron momentum does not remain constant along its trajectory
k̇ �= 0, which is the case if F �= 0. The nonadiabatic spin
component acquired by an electron can be estimated from
Eq. (16) by replacing the time derivative by d/dt → k̇ · ∇k:

δsk = 1

2�3
k

[�k × (k̇ · ∇k)�k]. (17)

We conclude that an electron moving along its classical trajec-
tory with finite acceleration has its spin always slightly tilted
compared to the instantaneous direction of �k . Moreover, in
view of the spin-momentum locking, such an intrinsically
generated extra spin leads to the change in the electron ve-
locity δvk = 2λso(δsk × ez ).

The second spin-related phenomenon important for the
collective response of 2DEG concerns the spin-dipole effect
[42]. This mechanism is relevant when the single electron
density |ψ (r)|2 deviates from the homogeneous distribution
and acquires some finite r dependence near an inhomogeneity.
Let us consider an electron at the unperturbed plane-wave
state ψ±

k from Eq. (3) with momentum k; its spin s±
k is

determined by �k . The corresponding density |ψ±
k |2 is spa-

tially homogeneous. In fact, the smooth spatial variation of
the density for such an electron is possible only provided
that its wave function gets an admixture of other plane-wave
band states ψ±

k′ with momenta k′ slightly differing from k.
Essentially, the added states have different spin orientations
s±

k′ �= s±
k , so the resulting average spin density appears to be

slightly tilted. In terms of the wave-packet dynamics [42,76],
the mixing of spin-orbital states leads to the fact that the

charge and spin centers of the electron wave packet do not
coincide, which creates an additional spin polarization. This
scenario is specifically important for localized electron states
[77,78]. We emphasize that the spin-dipole effect is essentially
connected with the spatial variation of the electron density. In
particular, if a given external field keeps an electron gas in
the homogeneous state, the spin-dipole contribution will be
absent. The appearance of the nonadiabatic correction from
Eq. (17), on the contrary, is not connected with the change
of an electron density, it simply tracks the exact electron spin
dynamics along quasiclassical trajectories.

We note that in systems with strong spin-orbital coupling,
the electron dynamics in the clean limit exhibit a rich pattern
of different effects, see Refs. [79–81]. In this paper, we focus
on the microscopic phenomena described above, which are
specifically important for 2D magnets.

B. Density matrix in a static inhomogeneous setting

We proceed with giving a rigorous description of the
outlined phenomena based on the kinetic equation for the
density matrix. Let us consider an electron gas subjected to
an electrostatic potential U (r) smoothly varying in space.
Since the unperturbed density matrix f̂ 0

k = f̂ +
k + f̂ −

k given
by Eq. (10) has two parts corresponding to η = (±) subband
states, the linear response correction δ f̂k (r) = f̂k (r) − f̂ 0

k will
be determined independently by two subband terms δ f̂k (r) =
δ f̂ +

k (r) + δ f̂ −
k (r). We present the corresponding correction

δ f̂ η

k as follows:

δ f̂ η

k (r) = 1

2
δnη

k (r) + δSη

k (r) · σ̂, (18)

where δnη

k (r), δSη

k (r) are the perturbations of the electron den-
sity and spin distribution functions, respectively.

The key suggestion implemented in this paper is to use the
following ansatz for the linear response spin density:

δSη

k (r) = δnη

k (r)sη

k + nη

kδsη

k (r) + δSη

k (r), (19)

where we took into account all possible types of δSη

k (r) varia-
tion. Indeed, the first term describes the change of the electron
spin distribution due to the change in the density δnη

k . The
second term corresponds to the change of the spin vector
δsη

k for each individual electron independently of the electron
number distribution. The third term is the remaining linear-
order variation, which is essentially neither due to δnη

k (r) nor
δsη

k (r) separately; thus δSη

k describes the correlated change
of both the electron spin and charge densities. Naturally, the
second and third terms in this expansion turn out to describe
the nonadiabatic spin tilting and the spin-dipole effects, re-
spectively.

We proceed with calculating δSη

k (r) from the kinetic
Eq. (14). Taking the trace over Eq. (14) and keeping only the
terms linear in spatial gradient ∇rU , we get(

v
η

k · ∇r
)
δnη

k + (F(r) · ∇k )nη

k = 0. (20)

Here v
η

k is the electron group velocity given by Eq. (6). The
correction δnη

k appears in zeroth order with respect to the spa-
tial gradients and is given by δnη

k (r) = U (r)(∂nη

k/∂ε), where ε

is the electron energy. The change in the overall 2DEG density
is δn(r) = δn+(r) + δn−(r), where δnη(r) = −ν

η
F U (r) and
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ν
η
F is the density of states in η subbands taken at the Fermi

energy. Correspondingly, the perturbation of the spin density
Eq. (13) due to the first term in Eq. (19) is given by

δS(1)(r) =
∑
k,η

sη

kδnη

k (r) = ez�0

(
ν+

F

�+
F

− ν−
F

�−
F

)
U (r). (21)

The term δS(1)(r) is responsible for the change in the out-of-
plane spin density component and it appears even if there is
no spin-orbit interaction.

A complex spin-orbital electron dynamics is responsible
for an extra spin response described by δsη

k and δSη

k . We notice
that these terms are absent in a homogeneous setting; thus the
expansion of δsη

k , δS
η

k starts with the linear term ∇rU . Taking
the trace over Eq. (14) multiplied by σ̂ and keeping only terms
linear in ∇r, we get[

�k × δsη

k (r)
] − (F(r) · ∇k )sη

k = 0, (22)[
�k × δSη

k (r)
] + [

sη

k × (
sη

k × �so(∇rn
η

k

))] = 0, (23)

where �so(∇rnη

k ) is obtained from Eq. (2) by replacing
k → ∇rn

η

k (r).
Let us comment on the relation between δsη

k , δS
η

k and the
previously described kinematic effects. The first equation,
Eq. (22), can be satisfied by changing the electron spin vector
δsη

k independently of a particular density distribution nη

k ; it
thus indeed describes the spin rotation of individual elec-
trons due to the precession in the effective magnetic field �k .
Naturally, the nonzero term δsη

k is exactly the nonadiabatic
correction to the instant spin vector sη

k , which follows adia-
batically the local direction of �k . The solution of Eq. (22)
replicates the result from Eq. (17):

δsη

k (r) = η
1

2�3
k

[�k × (F(r) · ∇k)�k]. (24)

The second equation, Eq. (23), describes the appearance of
δSη

k ; the general form of the solution is given by

δSη

k (r) = − 1

4�2
k

[
�k × �so(∇rnη

k )
]
. (25)

Importantly, the additional spin density δSη

k responds directly
to the spatial gradient of the electron density ∇rnη

k (r) entering
in �so. In fact, this allows us to refer to δSη

k as the correla-
tional term: it is neither due to the independent change in the
number of electrons nor due to the individual electron spin
rotation. Instead, δSη

k describes the simultaneous change in
the electron spin due to the variation in its spatial density; it is
indeed relevant to the spin-dipole effect.

C. Interplay between microscopic mechanisms and the role of
Berry curvature

The explicit evaluation of extra-spin density terms from
Eqs. (24) and (25) for the Rashba ferromagnet model gives
the following expressions:

δsη

k = η
eFk

2λso
E(r) − η

2eλ2
so

�3
k

[k × E(r)], (26)

δSη

k = −Fk
�k

4λso
∇rn

η

k (r) + η
λso

2�2
k

ez(�k · ∇r)nη

k (r), (27)

where Fk is the magnitude of the Berry curvature from Eq. (7),
and the density gradient ∇rnη

k (r) = −eE(r)(∂nη

k/∂ε) is due to
the redistribution of electrons in the vicinity of an electrostatic
inhomogeneity.

We note that various terms from Eqs. (26) and (27) give rise
to quite different spin phenomena. For instance, the second
terms in δsη

k , δS
η

k depend on the electron momentum direction
and they are particularly important for the generation of spin
currents in nonmagnetic systems (they survive at �0 → 0);
the second term in δsη

k is responsible for the universal spin
Hall conductivity mechanism [75]. Below we focus on the
local magnetoelectric effect, that is, the appearance of an equi-
librium spin density in response to the local electric field. This
phenomenon stems from the first terms in δsη

k , δS
η

k ; they can
directly generate an additional spin density at a given point in
a space as they survive averaging over the electron momentum
direction. Moreover, these terms can be explicitly expressed
in terms of the Berry curvature; thus they are specific for
topological systems.

The equilibrium spin density perturbations coupled with
the Berry curvature of electronic states have only in-plane
components; substituting Eqs. (26) and (27) to the spin density
perturbation from Eq. (13), we get

δS‖(r) =
∑
k,η

nη

kδsη

k (r) + δSη

k (r) ≡ (χt + χd )E(r), (28)

where the magnetoelectric susceptibilities χt,d correspond to
the nonadiabatic spin tilting and spin-dipole effects, respec-
tively. The evaluated expressions for χt , χd are given by

χt = e

2λso
(Q+

F + Q−
F ), (29)

χd = − e

2
λso�0

(
ν+

F

�2
F+

+ ν−
F

�2
F−

)
, (30)

where Q±
F is the total Berry flux from Eq. (8).

In Fig. 2, we plot the dependence of the overall spin-
response coefficient χ ≡ χt + χd (solid lines) along with the
partial contributions from χt and χd (dotted lines) on the
electron gas Fermi energy μ. We note that the terms χt and
χd are generally of the same order of magnitude; thus they
are equally important to describe correctly the emergent spin
patterns in 2DEG. Moreover, in the case when the electron gas
populates both spin subbands μ > �0/2, the overall response
entirely disappears χt + χd = 0 (this feature was previously
noted by Refs. [72,82]). In the opposite case when electrons
fill only the lowest spin-subband μ < �0/2, the terms χt , χd

have opposite signs, which results in the sign-altering depen-
dence of χ on the Fermi energy. We finally note that when
either the spin-orbit coupling or the exchange interaction is
absent, the coefficients χt = χd = 0 turn to zero and the cor-
responding equilibrium spin patterns disappear.

D. Discussion

Let us discuss the physical significance of the described
phenomena. We first comment on the role that the intrinsic
mechanisms described by Eqs. (26) and (27) play for a 2DEG
behavior upon an electric field applied to a macroscopic
volume. In this setting, the nonadiabatic spin precession sce-
nario lies in the basis of the Karplus-Luttinger mechanism of
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FIG. 2. The dependence of the susceptibility χ = χt + χd on
the Fermi energy for two values of ξ parameter: (a) ξ = 0.6 and
(b) ξ = 0.2

the anomalous Hall effect (AHE) [83–85], of the so-called
intrinsic mechanisms of the spin Hall [75] and iSGE [6].
However, to correctly estimate the overall electron gas re-
sponse on distances that greatly exceed the mean-free path,
one has to additionally examine the role of disorder effects
and various vertex corrections. In particular, the intrinsic con-
tribution to AHE due to the anomalous velocity term δv

η

k ∝
eFη

k · [ez × E] tends to be canceled out by the contributions
due to side-jump scattering processes [64,67,71,86]. Alter-
natively, the account for vertex corrections in nonmagnetic
spin-orbital systems tends to eliminate the spin-orbital term
from the velocity operator [87–89]. Moreover, for an accu-
rate description of the spin accumulation phenomena, it is
crucial to carefully account for the whole pattern of emer-
gent nonequilibrium spin effects [89–93], including both the
appearance of nonequilibrium spin currents near the sam-
ple boundaries [68,94,95] and dissipative iSGE mechanisms
[6,21,51,58,87].

The contributions δsη

k , δS
η

k , however, might preserve the
importance in the nondissipative regime, for instance, when
the underlying electrostatic perturbation varies at distances
much shorter than the mean-free path. In particular, the de-
scribed equilibrium magnetoelectricity matters for 2DEG spin
distribution around an ionized impurity, when the typical spa-
tial scale under consideration is the Thomas-Fermi screening
length. The distribution of an excessive 2DEG spin density
emerging around an axially symmetric perturbation forms a
skyrmionlike vortex pattern which is schematically shown in
Fig. 1. One concludes that a smooth electrostatic potential
disorder in topological spin-polarized 2DEG inevitably gener-
ates chiral spin textures, which can be particularly important
for the transport properties of the corresponding system; the

formation of noncollinear spin order generally leads to the
topological Hall effect [96–98].

Let us give some numerical estimations for the strength of
the magnetoelectric response. Since χt,d are of the same order
of magnitude, we consider only the relative change in the spin
density δSt

‖ due to the spin-tilting mechanism. For the lower
spin subband, it can be estimated as

δSt
‖

S0
= 2λso

�0�
−
F

eE . (31)

One domain of material systems relevant for our analysis is
semiconductor thin layers with Rashba spin-orbit interaction;
the magnetism here can result from magnetic dopants (e.g.,
dilute semiconductors GaMnAs, CdMnTe) or be due to the
proximity with a magnetic layer [24]. Keeping these systems
in mind, we take common magnitudes of spin-orbit interaction
λso = 0.65 × 10−11 eVm [57,99–101] and the exchange spin
splitting constant �0 = 5 meV. We let the electron gas fill
only the lower spin subband and consider the concentration
n2D = 7.9 × 1012 cm−2 with the corresponding Fermi wave
vector k−

F = √
4πn2D = 0.1 Å−1 and set ξ = 1/2, which im-

plies the Fermi energy μ = 1.4 meV (computed according to
μ = k2

F−/2m − �−
F /2). For this setting and typical impurity

electric field E = 104 V/cm, we get a quite noticeable relative
tilt of the 2DEG spin density δSt

‖/S0 ∼ 0.2. Another relevant
system is a polar semiconductor BiTeI tailored by vanadium
dopands [35]; the latter are responsible for magnetism. We
take the parameters from Ref. [35], λso = 3.8 × 10−10 eVm,
�0 = 90 meV, and put the Fermi wave vector in the lower en-
ergy branch with k−

F = 0.1 Å−1. We note that the lower energy
branch in BiTeI is a nonmonotonic function of momentum
[35] due to a larger value of λso. However, for μ > −�0/2,
the expression for δSt

‖/S0 from Eq. (31) remains valid as
it is just the total Berry flux accumulated up to the Fermi
level. The similar magnitude of the effect δSt

‖/S0 ∼ 0.1 is now
obtained for electric fields E = 105 V/cm larger by an order
of magnitude. We see that the relative change in 2DEG spin
density keeps significance for quite different band parameters,
so one could expect that the considered effect will also be sim-
ilarly relevant for magnetic two-dimensional van der Waals
materials, such as CrI3 or MnSe2 [29–32], though the real
band structures in this new class of magnets can significantly
alter from the Rashba ferromagnet [102,103].

The estimations given above demonstrate that an electro-
static disorder with E lying in the range E ∼ 104 − 106 V/cm
can noticeably alter the 2DEG spin density orientation from
the local magnetization direction. The magnitude of this effect
(up to tens of percent) is such that these perturbations should
be visible via spin-polarized scanning tunneling microscopy,
where the change of electron spin polarization up to several
percent is experimentally accessible [104]. Alternatively, the
considered magnetoelectric susceptibility of free electrons
can be relevant for the magnetization control at nanoscales,
namely, the generated 2DEG spin density lies in the 2D
channel plane and is perpendicular to the orientation of host
magnetization; thus it can contribute to torquelike effects [6].
It is worth noting a possible percolation effect emerging in
a delocalized smooth electrostatic potential; namely, increas-
ing the concentration of smooth defects each surrounded by
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localized spin perturbation, one eventually reaches the perco-
lation in terms of the appearance of a delocalized spin texture.
This resembles the percolation phenomena that take place in
the integer quantum Hall effect regime [105], specifically if
one examines the spin-texture adjoint equilibrium currents
j(r) = 2eλso[δS(r) × ez]. The presence of local equilibrium
currents can maintain the orbital magnetization; this effect has
been considered in Ref. [82].

The microscopic mechanisms under consideration are gen-
eral for multiband systems. In Appendix A, we present the
connection of our method with the wave-packet quasiclassical
technique used in Refs. [41–43]. In Appendix B, we relate
δsη

k , δS
η

k to the Kubo formula method for the charge-spin cor-
relation functions used in Ref. [72]. In particular, we show that
the nonadiabatic spin precession is described by the interband
correlation functions, while the spin-dipole effect stems from
the intraband ones.

IV. SPIN DYNAMICS AND MAGNETO-OPTICAL EFFECTS

A. Electric dipole spin resonance

In this section, we focus on the electron gas spin dy-
namics in the presence of an oscillating electric field and
describe the corresponding optical properties of a mag-
netic two-dimensional system. The optical response of a
2D conductive channel is generally encoded in the optical
conductivity σ (ω). In particular, the absorption coefficient
α(ω) = (4π/c)Re[σxx(ω)] is connected with the longitudi-
nal part of conductivity σxx. Also, since the time-reversal
symmetry is broken in the presence of magnetism, different
magneto-optical effects are possible, e.g., the magneto-optical
Kerr effect (MOKE), that is, the rotation of the reflected light
polarization by the complex Kerr angle φK . MOKE generally
appears in a conductive media due to nonzero optical Hall
conductivity σH (ω); for a 2D layer and normal incidence
[106] one can express φK = σH/σxx

√
1 + (4π i/ω)σxx. Impor-

tantly, the considered geometry opens up the possibility to
realize the resonant enhancement of the Hall conductivity and,
thus, of the related magneto-optical effects.

Commonly, MOKE is seen to acquire a resonance structure
due to interband transitions affected by the combined effect of
the spin-orbit coupling and the electron spin polarization; the
corresponding intrinsic contributions to the Hall conductivity
at finite frequencies have been investigated in a number of
papers [46,107–109]. The general idea that we are going to
explore in this paper and which stands in the basis for the en-
hancement of magneto-optical phenomena is that the optical
properties of magnetic 2D systems can be understood in terms
of the EDSR. Correspondingly, the part of the optical con-
ductivity responsible for the resonant features can be directly
related to the resonantly generated spin density of 2DEG.

Let us illustrate this process in more detail; see Fig. 3.
The exchange interaction field gives rise to a momentum-
independent Zeeman splitting of the electron spin subbands;
for the considered geometry it is directed perpendicular to
the 2DEG plane. In fact, the spin-orbit interaction can be
viewed as k-dependent effective magnetic field �so(k) act-
ing on electron spins. The applied in-plane ac-electric field
Eωe−iωt causes the electron’s momentum oscillations δk ∝

FIG. 3. The electric dipole spin resonance scheme and the ap-
pearance of MOKE due to the resonant Hall current generation
δ jω = 2eλso[δSω × ez].

Eωe−iωt , so the associated spin-orbital field also oscillates
with frequency ω. We note that �so(k) is perpendicular to the
out-of-plane exchange interaction component �0. Naturally,
this makes it possible to induce spin transitions when the
electric field frequency coincides with the magnitude of the
Zeeman spin splitting h̄ω = �0, which is exactly the EDSR
scheme [110]. This spin resonance causes the equilibrium
electron spin density S0 ‖ ez from Eq. (11) to rotate onto the
2DEG plane, thus resonantly generating an excessive in-plane
spin density δSω. In view of the spin-orbit coupling Eq. (5)
between the velocity and spin operators, the accumulation
of δSω immediately leads to a resonant enhancement of the
associated electric current density δ jω = 2eλso[δSω × ez] and
of the corresponding contribution to the optical conductivity.
Importantly, the in-plane spin density appears in tilted polar-
ization with respect to the vector of the electric field, see Fig 3.
In particular, the manifestation of the nonzero Berry curvature
lies in the fact that there exists the perpendicular polarization
of the spin density, which gives rise to the anomalous ve-
locity δv

η

k ∝ eFη

k · [ez × E] directed perpendicular to Eω and
responsible for the the magneto-optical effects. The resonant
generation of the spin density in this polarization leads to the
enhancement of σH (ω).

B. Density matrix in the dynamical regime

Let us consider an oscillating electric field Eωe−iωt applied
in plane of the electron gas. We assume that the system re-
mains homogeneous and present f̂k in the following form:

f̂k (t ) = 1

2
nk (t ) + Sk (t ) · σ̂. (32)

We keep to the high-frequency regime when ω greatly exceeds
the typical inverse relaxation time τ−1

sc due to the scattering
processes. The distribution function nk (t ) = nk + δnk (ω)e−iωt

satisfies the scalar part of the kinetic Eq. (14),

∂nk (t )

∂t
− e(E(t ) · ∇k )nk (t ) = 0. (33)

Since the equilibrium part contains terms from both spin
subbands nk = n+

k + n−
k , the linear response perturbation

δnk (ω) = δn+
k (ω) + δn−

k (ω) generally contains two contribu-
tions:

δnη

k (ω) = −eE · v
η

k

iω

(
−∂nη

k

∂ε

)
. (34)

The equation governing 2DEG spin dynamics is obtained
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similarly to Eq. (14) and reads as
∂Sk (t )

∂t
− [�k × Sk (t )] + e(E(t ) · ∇k )Sk (t ) = 0. (35)

At zero electric field, this equation describes the electron
spin precession around �k . The static regime solution in this
case corresponds to the equilibrium spin distribution S±

k ‖ �k

directed parallel or antiparallel to the spin splitting field, while
the nonstationary solution describes the electron spin preces-
sion around �k with an eigenfrequency �k . The nonzero E,
in turn, drives the spin dynamics due to the spin transfer in
the momentum space. Naturally, when the frequency of an
external field ω coincides with the precession frequency of
the k electrons, the EDSR conditions are fulfilled leading
to the resonant rotation. This rotation occurs with the Rabi
frequency ωR ∝ λsoE , which goes to zero at small electric
fields. Naturally, in the case of vanishing ωR, we can consider
the linear response regime with Sk (t ) = S0

k + δSk (ω)e−iωt

differing from the equilibrium value S0
k = n+

k s+
k + n−

k s−
k by

the linear-order correction δSk (ω). This is justified when the
ongoing evolution of Sk (t ) due to the Rabi oscillations is
interrupted by the spin-relaxation processes. We thus intro-
duce the phenomenological spin relaxation rate � and assume
ωR 	 � 	 �0.

In the linear response regime, we can consider the spin
response δSk (ω) = δS+

k (ω) + δS−
k (ω) independently for each

spin subband (recall that S0
k = n+

k s+
k + n−

k s−
k ). It is convenient

to present the linearized part as

δSη

k (ω) = δnη

k (ω)sη

k + nη

kδsη

k (ω), (36)

where δnη

k (ω) is determined by Eq. (34) and the equation for
δsη

k (ω) is given by

(−iω + �)δsη

k (ω) − [
�k × δsη

k (ω)
] + e(Eω · ∇k )sη

k = 0.

(37)

Let us introduce the notation δsη

k0 ≡ δsη

k (ω → 0) for the ad-
ditional electron spin density from Eq. (24) emerging in the
static limit, we note that (δsη

k0 · �k ) = 0. The third term in this
equation can be presented as follows: e(Eω · ∇k )sη

k = [�k ×
δsη

k0]. The spin density perturbation δsη

k (ω) lies in the plane
perpendicular to �k , the two independent polarizations for
δsη

k (ω) are given by δsη

k0 and [nk × δsη

k0], where nk = �k/�k

from Eq. (4). The solution of the precession equation can be
written in terms of these two vectors as follows (� → 0):

δsη

k (ω) = −�2
k

δsη

k0 − iω/�k
[
nk × δsη

k0

]
(ω − �k + i�)(ω + �k + i�)

. (38)

The first term is directly due to the finite-frequency evolution
of the nonadiabatic spin tilt mechanism. The second term
exists only at finite frequencies and it arises from the electron
spin retardation in the momentum space. The denominator has
a pole structure which reflects the EDSR with the multiple
resonances determined by ω = �k .

The resulting correction to the density matrix can be pre-
sented as a sum of two terms δ f̂k = e−iωt (δ f̂ den

k + δ f̂ spin
k ),

where δ f̂ den,spin
k take the following form:

δ f̂ den
k = 1

2
δnk (ω) + (δn+

k (ω)s+
k + δn−

k (ω)s−
k ) · σ̂, (39)

δ f̂ spin
k = (n+

k δs+
k (ω) + n−

k δs−
k (ω)) · σ̂. (40)

The optical electric conductivity σαβ (ω) can be obtained by
calculating the electric current density via

jω = e
∑

k

Sp
((

δ f̂ den
k + δ f̂ spin

k

)
v̂
)
. (41)

C. Resonant spin response and optical conductivity

We start the discussion of the optical conductivity. The
contribution δ f̂ den

k is related specifically to the perturbation
of the electron density and it gives rise to the dominant part of
the longitudinal conductivity Eq. (41):

jDrude
ω = e

∑
k,η

δnη

k (ω)vη

k = σ 0
xx(ω)Eω,

σ 0
xx(ω) = ie2

ω

v2
F+ν+

F + v2
F−ν−

F

2
. (42)

This is simply the Drude conductivity at finite frequency and
it describes nondissipative retardation of the 2DEG density in
an ac-electric field. On the contrary, the term δ f̂ spin

k is due to
the spin rotation only. This contribution is responsible for the
spin resonance related phenomena and below we consider its
role in more detail.

The density of an electric current δ jω emerging due to
the spin part of the density matrix δ f̂ spin

k is coupled with an
induced in-plane spin density δSω of 2DEG:

δ jω = 2eλso[δSω × ez], (43)

δSω = 1

2

∑
k

Sp
(
δ f̂ spin

k σ̂
) =

∑
k,η

nη

k δsη

k (ω). (44)

Since δsη

k (ω) generally has two polarizations, see Eq. (38), the
overall spin δSω and, correspondingly, the associated current
δ jω are also featured by two independent polarizations

δSω = χl (ω)[ez × Eω] + χH (ω)Eω, (45)

δ jω = σl (ω)Eω + σH (ω)[ez × Eω], (46)

where σl,H (ω) = −2eλsoχl,H (ω). By this, we identified the
contributions to the optical conductivity related to the dynam-
ical magnetoelectric spin susceptibility.

The correction to the longitudinal conductivity σl (ω) is
related to the retardation term [nk × δsη

k0] in Eq. (38). Using
the formula Eq. (26) for δsη

k0 and averaging over momentum
directions, we get (below we restore the Planck’s constant h̄)

σl (ω)=ie2
∑

k

(n−
k − n+

k )h̄ω
(
λ2

so/�k
)

(h̄ω−�k+i�)(h̄ω + �k + i�)

(
1 + �2

0

�2
k

)
.

(47)

The straightforward calculation of this integral gives

σl (ω) = − ie2

16π h̄

[
2�2

0

h̄ω

(
1

�min
− 1

�−
F

)

+
(

1 + �2
0

(h̄ω)2

)
ln

(
h̄ω + �−

F

h̄ω − �−
F

h̄ω − �min

h̄ω + �min

)]
,

(48)
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FIG. 4. (a) The dependence of optical conductivities σl,H on fre-
quency exhibits a resonant structure due to EDSR. (b) Electron band
structure and the transition energies �±

F at the Fermi level.

where �min = �0 for μ < �0/2 and �min = �+
F for μ >

�0/2. The expression from above remains well-defined at
� → 0, though one has to keep h̄ω + i� in the logarithm term
to chose the branch of the complex function. In fact, the poles
h̄ω = �k in the denominator of δsη

k (ω) lie in the continuum
spectrum and the overall response of closely lying resonances
merges onto the ω-regular curve featured by the Van Hove sin-
gularities at the edges of the spin splittings h̄ω = (�0,�

±
F ).

The real part of the longitudinal conductivity describes
the energy dissipation. The presence of the resonant poles in
Eq. (38) reflects the appearance of a finite absorption. Indeed,
the absorption coefficient is nonzero in the frequency range
�min < h̄ω < �−

F [see Fig. 4(b)] corresponding to EDSR,
where its expression is given by

α(ω) = 4π

c
Re[σl (ω)] = πe2

4h̄c

[
1 +

(
�0

h̄ω

)2]
. (49)

We note that α(ω) repeats the result for the two-dimensional
massive Dirac electrons. In particular, in the limit of strong
spin-orbit coupling, the magnitude of α(ω) does not depend
on the SOC strength and is determined by the fine structure
constant.

The Hall conductivity σH (ω) stems from the Berry cur-
vature related term in δsη

k0. Taking into account Eqs. (26)
and (38) and averaging over the momentum direction, we
express σH (ω):

σH (ω) = e2

h̄

∑
k

(n+
k − n−

k ) �2
k Fk

(h̄ω − �k + i�)(h̄ω + �k + i�)
. (50)

The evaluation of this expression gives the following result:

σH (ω) = − e2

4π h̄

�0

h̄ω
ln

(
h̄ω + �−

F

h̄ω − �−
F

· h̄ω − �min

h̄ω + �min

)
. (51)

Importantly, the Hall conductivity has the same resonance-
aware logarithmic term as σl (ω).

σ
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FIG. 5. The dependence of the optical conductivities σl (ω)
(a) and σH (ω) (b) on the frequency ω, the parameters ξ = 0.5,

μ = 1.3 �0.

Figure 4 demonstrates the resonant enhancement of the
Hall conductivity in the EDSR absorption frequency range,
namely, we plot the dependence of Re[σl (ω)] and the absolute
value |σH (ω)| on the electric field frequency. It is clearly seen
from Fig. 4 that the increase in |σH (ω)| magnitude occurs
exactly in the same frequency range where Re[σl (ω)] �= 0 is
nonzero. In Fig. 5, we plot the dependencies of real and imag-
inary parts of the spin-resonance related optical conductivities
σl,H (ω) on frequency. The parameters are the same as in
Fig. 4. The Van Hove singularities give rise to the pronounced
peaks in |σl,H (ω)| at the boundary of the absorption band
h̄ω = �+

F ,�−
F . For the parameters taken in this plot (μ =

1.3�0), the lower boundary is determined by �+
F , see Fig. 4,

as the electrons populate both spin subbands. We also note
that the behavior of σl,H (ω) when approaching the static limit
ω → 0 is different, see Fig. 5. While the longitudinal part goes
to zero σl → 0, the Hall conductivity has a finite nonzero limit
σH → (e2/h̄)(Q+

F + Q−
F ) determined by the total Berry flux

Q±
F from Eq. (8) which reflects the appearance of persistent

electric currents associated with the magnetoelectric suscepti-
bility. In the static limit, however, the accurate calculation of
σH for a macroscopic sample requires one to take into account
the disorder effect [63].

D. Discussion

The calculations of the optical conductivity of multi-
band systems is typically performed using the Kubo formula
[46,107–109]. In Appendix C, we relate the spin polariza-
tion and the density contributions from the density matrix
approach with different terms from the Kubo formalism. In
Table I, we summarize the correspondence between these
approaches; naturally, the spin resonance related terms are
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TABLE I. Density matrix and Kubo formula correspondence.

Kubo formula σ intra
xx σ inter

xx σ inter
H

Density matrix δ f̂ den
k nη

k [np × δsη

k0] · σ̂ nη

kδsη

k0 · σ̂

connected with the interband contributions σ inter to the con-
ductivity.

Let us comment on the role of spin relaxation and electron
scattering. The multiple-peak structure of σl,H (ω) visible in
Fig. 4 can be well resolved only provided that the spin-orbit
interaction splitting (|�±

F − �0| 
 τ−1
sc ) exceeds the energy

broadening due to scattering processes. This requires rather
strong spin-orbit coupling. In the opposite case, the resonance
profile of σl,H (ω) will merge onto the single resonant-peak
structure centered at �0 with the line shape sensitive to partic-
ular scattering and spin relaxation processes, in analogy with
EDSR of 2DEG in nonmagnetic semiconductors [111]. Inter-
estingly, this indicates that the Hall conductivity can possess
an additional information on spin relaxation times. We note
that the finite absorption due to the EDSR in 2DEG is not
strictly limited to the case when the Zeeman field has an out-
of-plane component. In fact, most of the EDSR experiments
with 2DEG in nonmagnetic semiconductors [112–114] were
carried out for the in-plane magnetic field geometry. This is
particularly useful when one aims to suppress the orbital quan-
tization effects and to focus on the spin-related response only.
On the contrary, combining spin-orbital electronic channels
with magnetism allows one to orient the Zeeman field per-
pendicular to the 2DEG plane without breaking the spectrum
onto Landau levels. Moreover, in this setting the electron band
states are featured by the appearance of a topological struc-
ture. Experimentally studying the electronic spin resonance
phenomena in these systems seems of high interest as EDSR
has an extra degree of freedom that is the strong enhancement
of the adjoint magneto-optical effects.

Finally, the presented interpretation of the magneto-optical
effect enhancement in terms of spin resonance is equally
relevant for other two-dimensional models beyond Rashba
ferromagnets. For instance, e.g., massive Dirac metals [115],
honeycomb lattices [116], or Haldane models [117] demon-
strate similar resonant features of the Hall conductivity.

V. SUMMARY

In summary, we have considered various spin-orbital phe-
nomena leading to a nontrivial behavior of an electron gas
spin density upon application of the electric field in two-
dimensional magnets. Based on the density matrix formalism,
we identified different microscopic mechanisms responsible
for the 2DEG spin tilting in the presence of an inhomogeneous
electrostatic potential and described microscopic features
of spin resonance upon an oscillating electric field with a
specific focus on optical conductivity and magneto-optical
phenomena. We traced the connection of the considered spin
phenomena with the Berry curvature of electronic band states,
thereby specifying the role of electron band topology. The
presented analysis clarifies the basics of the electron gas
magnetoelectric response in two-dimensional magnets and

contributes to the ongoing discussion of its spintronics appli-
cations.
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APPENDIX A: WAVE-PACKET DYNAMICS
SEMICLASSICAL APPROACH

The semiclassical theory of band electrons moving in a
spatially varying adiabatic perturbation U (r) can be built by
considering the wave-packet dynamics [44]. Let us introduce
the wave packet |W n

k 〉 consisting of the nth band Bloch states
|un

k〉, its center-of-mass coordinates in real and momentum
spaces are located at (rc, k). The average of the physical
quantity Q described by operator Q̂ can be expressed in the
following way [42]:

Q =
∑
k,n

fn(k, r) · 〈W n
k

∣∣Q̂∣∣W n
k

〉|r=rc

− ∇r ·
∑
k,n

fn(k, r) · 〈
W n

k

∣∣Q̂ · (r̂ − r)
∣∣W n

k

〉|r=rc , (A1)

where the first term treats the wave packet as a point particle
with the distribution function fn(k, r) and the second term is
the first-order correction due to the wave-packet finite-size
effects. The great advantage of this consideration is that it
allows one to describe the electron dynamics in terms of
semiclassical equations. For instance, in the nondissipative
regime, fn(k, r) satisfies the Liouville’s equation

dfn

dt
= ∂ fn

∂t
+ { fn;H} = 0, (A2)

where H = εn
k + U (r) is the classical Hamiltonian function

in nth electron band with energy εn
k . The Poisson bracket

{A; B} for A, B physical quantities depending on (r, k) takes
into account the kinematic Berry phase [45,60,61],

{A; B} = ωαβ · (∂αA)(∂βB), ωαβ =
(

εαβγ �n
γ δαβ

−δαβ 0

)
,

(A3)

where (α, β ) = (r, k) and ωαβ is the antisymmetric Poisson
matrix, εαβγ is the Levi-Civita tensor, and �n is the Berry
curvature in nth Bloch band defined as follows: �n = ∇k ×
An

k = i〈∇kun
k | × |∇kun

k〉, where An
k is the Berry connection.

The expression for the Liouville’s equation with account for
the explicit form of ωαβ is given by

∂ fn

∂t
+

(
∂εn

k

∂k
+ [k̇ × �n]

)
∂ fn

∂r
+ k̇

∂ fn

∂k
= 0, (A4)
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where k̇ = −∇rH = −∇rU (r). The second term in brack-
ets describes a full electron velocity v = {H; r} = vn

k −
[∇rU,�n], here vn

k = ∇kε
n
k .

Let us apply this technique to calculate the emerging spin
density near the electrostatic inhomogeneity. We focus on the
linear response regime. Following Eq. (A1), we present the
spin density S(r) as follows:

S(r) =
∑
k,n

fn(k, r) · 〈
W n

k

∣∣Ŝ∣∣W n
k

〉

− ∇r

∑
k,n

fn(k, r)
〈
un

k

∣∣Ŝ(
i∇k − An

k

)∣∣un
k

〉
. (A5)

In the second term, we took into account that the wave packet
|W n

k 〉 is strongly localized near k in the momentum space
and we can approximate it as follows: |W n

k 〉 ≈ eikr|un
k〉, which

leads us directly to the expression in Eq. (A5). The unper-
turbed spin density S0 corresponds to U (r) = 0, at which
fn(k, r) = f 0

n (k) and S0 is given by

S0 =
∑
k,n

f 0
n (k)

〈
un

k

∣∣Ŝ∣∣un
k

〉
. (A6)

The linear order deviations from S0 arise from three differ-
ent origins. First, the distribution function fn(k, r) = f 0

n (k) +
δ fn(k, r) in the presence of U is modified as δ fn(k, r) =
U∂ f 0

n /∂ε according to Eq. (A4):

(vn
k · ∇r)δ fn(k, r) + F(r) · ∂ f 0

n

∂k
= 0. (A7)

Taking into account the redistribution of the electron density
in the first term in Eq. (A5) and approximating 〈W n

k |Ŝ|W n
k 〉 ≈

〈un
k |Ŝ|un

k〉, we obtain the contribution identical with Eq. (21)
in the density matrix approach:

δS(1)(r) =
∑
k,n

δ fn(k, r)
〈
un

k

∣∣Ŝ∣∣un
k

〉
. (A8)

Also, the inhomogeneous structure of fn gives rise to the spin-
dipole contribution, that is, the second term in Eq. (A5):

δS(r) = −F(r)
∑
k,n

(
−∂ f 0

n

∂ε

)〈
un

k

∣∣Ŝ(
i∇k − An

k

)∣∣un
k

〉
. (A9)

The straightforward evaluation of this expression for the
Rashba ferromagnet model leads to the susceptibility χd given
by Eq. (29). Finally, there is also the linear order perturbation
which is not associated with the change in the electron distri-
bution. In fact, the first term in Eq. (A5) is determined by the
average spin of an electron wave packet sn

k (t ) = 〈W n
k |Ŝ|W n

k 〉,
which satisfies the precession equation:

dsn
k

dt
= [

�k × sn
k

]
. (A10)

According to our discussion from Sec. III A, the wave-packet
spin acquires a nonadiabatic correction δsn

k linear in F and
given by Eq. (17). This term gives rise to the spin perturba-
tion δS = ∑

(k,n) f 0
n δsn

k identical to χt contribution to the spin
susceptibility from Eq. (29).

APPENDIX B: KUBO FORMULA IN THE STATIC LIMIT

In this Appendix, we relate the semiclassical description
of magnetoelectric susceptibility in terms of the density ma-
trix with the Kubo formula for the charge-spin correlation
functions, considered in detail in Ref. [72]. The spin density
induced in 2DEG by the change in the potential energy U (r)
is given in linear response by

δS(r) =
∫

dq
(2π )2

eiqrQ(q)U (q), (B1)

where U (q) is the Fourier component of U (r) and the static
charge-spin correlation function Q(q) can be computed from
the Kubo formula Q(q) = ∑

m,n Qmn(q),

Qmn(q) =
∑

k

f m
k

〈
um

k

∣∣Ŝ∣∣un
k+q

〉〈
un

k+q

∣∣um
k

〉
εm

k − εn
k+q + i0

− f m
k+q

〈
un

k

∣∣Ŝ∣∣um
k+q

〉〈
um

k+q

∣∣un
k

〉
εn

k − εm
k+q + i0

. (B2)

The terms Qnn with m = n describe the intraband contribu-
tions, while Qmn with m �= n correspond to the interband
ones.

The Kubo formula Eq. (B2) has been explicitly evalu-
ated for an arbitrary wave vector q in Ref. [72] for Rashba
ferromagnets and Dirac models. Here we focus on the semi-
classical regime when the potential U changes smoothly on
the Fermi wavelength λF scale, so the following relation is ful-
filled: λF · ∇rU 	 U . In this case, the spin response becomes
local and the correlation function for the Rashba ferromag-
net model takes the following form: Q = iq · χ , where χ

is the q-independent coefficient describing the susceptibility
δS(r) = χE(r).

We now proceed with considering the role of intra- and
interband terms. In the intraband contribution Qnn, we replace
( f n

k − f n
k+q)/(εn

k − εn
k+q + i0) ≈ ∂ f n

k /∂ε and keep only the
q-linear terms in the matrix elements. With that, the expres-
sion takes the following form:

Qnn = −iq
∑

k

(
−∂ f 0

n

∂ε

)〈
un

k

∣∣Ŝ(
i∇k − An

k

)∣∣un
k

〉
, (B3)

where An
k = i〈un

k |∇kun
k〉 is the Berry connection. When tak-

ing the Fourier transform Eq. (B1), Qnn gives exactly the
spin perturbation δS in the form of Eq. (A9) corresponding
to the spin-dipole term within the semiclassical wave-packet
approach. We thus conclude that the spin-dipole effect from
Eq. (29) is related to the intraband terms in the Kubo formula.

In the interband contributions Qmn, we also keep only the
linear terms with respect to q, which brings us to the following
expression:

Qmn(q) = iq
∑

k

f m
k Re

( 〈un
k |σ̂|um

k 〉Amn
k

εm
k − εn

k

)
, (B4)

where Amn
k = i〈um

k |∇kun
k〉. The straightforward calculations

for the Rashba ferromagnet model with n, m = (±) gives

Q±∓(q) = ±iq
∑

k

f ±
k · Fk

2λso
, (B5)
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where Fk is the Berry curvature from Eq. (7). The interband
terms are related exactly to the nonadiabatic spin tilt effect
described by δsη

k in the density matrix formalism and given by
χt susceptibility from Eq. (29).

APPENDIX C: KUBO FORMULA IN THE DYNAMICAL
REGIME

In this Appendix, we relate the Kubo formula calculations
of the optical conductivity with the spin resonance related
terms emerging in the density matrix approach. The Kubo
formula for the conductivity is given by [117,118]

σαβ (ω) = − ie2h̄

S

∑
k,m,n

f m
k − f n

k+q

εm
k − εn

k+q

vα
(k,m),(k+q,n)v

β

(k+q,n),(k,m)

εm
k − εn

k+q + h̄ω + i0
,

(C1)

where q → 0 and v̂ = ∂Ĥ (k)/∂k is the proper matrix element
of the velocity operator between i, j states. We first con-
sider the longitudinal conductivity σxx(ω). The contribution
to σxx(ω) due to intraband terms has the form

σ intra
xx (ω) = ie2

h̄ω

∑
m

∫
dε νm(ε)

(
−∂ f m

k

∂ε

)〈∣∣vx
k,m

∣∣2〉
, (C2)

where νm is the density of states in the corresponding band
m and 〈|vx

k,m|2〉 is the angular averaged square of the matrix
element modulus. This part describes the Drude conductivity
at ωτsc 
 1 due to the perturbation of the electron density and
it corresponds to Eq. (42) from the main text. For the Rashba
ferromagnet model, the evaluation of the integral gives

σ intra
xx (ω) = i

e2

ω

v2
F+ν+

F + v2
F−ν−

F

2
. (C3)

The contribution to σxx(ω) due to interband terms in the
case of the Rashba ferromagnet model has the following form:

σ inter
xx (ω) = ie2

S

∑
k

f −
k − f +

k

−�k

〈∣∣vx
(k,−),(k,+)

∣∣2〉
h̄ω − �k + i0

+ f +
k − f −

k

�k

〈∣∣vx
(k,−),(k,+)

∣∣2〉
h̄ω + �k + i0

. (C4)

The angular averaged velocity element is 〈|vx
(k,−),(k,+)|2〉 =

(λ2
so/2)(1 + �2

0/�
2
k ). Using this formula and combining the

denominators in σ inter
xx we get the following expression:

σ inter
xx =ie2 ·

∑
k

( f +
k − f −

k )h̄ω
(
λ2

so/�k
)

(h̄ω − �k+i0)(h̄ω + �k + i0)

(
1 + �2

0

�2
k

)
,

(C5)

which repeats Eq. (47) for σl (ω). We thus conclude that
σ inter

xx (ω) is related to [nk × δsη

k0] polarization in terms of the
in-plane spin density (see Eqs. (38) and (26) from the main
text).

It is instructive to analyze the energy absorption due to
the spin resonance. For this purpose, we explicitly write the
expression for the real part of the longitudinal conductivity
due to the interband terms:

Re
[
σ inter

xx

] = πe2

h̄ωS

∑
k

( f −
k − f +

k )
∣∣vx

(k,−),(k,+)

∣∣2

δ(ε−
k − ε+

k + h̄ω). (C6)

The expression has the form of Fermi’s golden rule; its
straightforward calculation leads to Eq. (49).

We now turn to the transversal component of the conduc-
tivity. The interband contribution is given by

σ inter
yx (ω) = ie2

S

∑
k

f +
k − f −

k

�k
(C7)

×
(

v
y
(k,−),(k,+)v

x
(k,+),(k,−)

h̄ω − �k + i0
+

(
v

y
(k,−),(k,+)v

x
(k,+),(k,−)

)∗

h̄ω + �k + i0

)
.

The angular averaged combination of matrix elements
〈vy

−+vx
+−〉 = −iλso�0/�k is purely imaginary. Combining

both terms, we obtain

σ inter
yx (ω) = − e2

h̄S

∑
k

( f −
k − f +

k )�2
k Fk

(h̄ω − �k + i0)(h̄ω + �k + i0)
,

(C8)

which is same the expression Eq. (50) that we get via the
density matrix formalism considering sk0 contribution to the
spin density [see Eqs. (38) and (26) from the main text].
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