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Controllable nonreciprocal optical response and handedness-switching in
magnetized spin-orbit coupled graphene
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Starting from a low-energy effective Hamiltonian model, we theoretically calculate the dynamical optical
conductivity and permittivity tensor of a magnetized graphene layer with Rashba spin-orbit coupling (SOC).
Our results reveal a transverse Hall conductivity correlated with nonreciprocal longitudinal conductivity. Further
analysis illustrates that for intermediate magnetization strengths, the relative magnitudes of the magnetization
and SOC can be identified experimentally by two well-separated peaks in the dynamical optical response
(both the longitudinal and transverse components) as a function of photon frequency. Moreover, the frequency-
dependent permittivity tensor is obtained for a wide range of chemical potentials and magnetization strengths.
Employing experimentally realistic parameter values, we calculate the circular dichroism of a representative
device consisting of magnetized spin-orbit coupled graphene and a dielectric insulator layer, backed by a
metallic plate. The results reveal that this device has different relative absorptivities for right-handed and
left-handed circularly polarized electromagnetic waves. It is found that the magnetized spin-orbit coupled
graphene supports strong handedness-switchings, effectively controlled by varying the chemical potential and
magnetization strength with respect to the SOC strength.
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I. INTRODUCTION

Graphene is a two-dimensional (2D) planar honeycomb
arrangement of carbon atoms with one-atom thickness. The
isolation of a graphene sheet was first officially reported in
2004 [1]. This ground-breaking feat has inspired the isolation
and creation of several novel single-layer materials that are
one-atom thick, such as silicene and phosphorene, and has
fueled the growth of a larger family of 2D materials [2,3].
The most interesting electronics characteristics of graphene
are accessible within a narrow energy window close to the
Fermi level [4]. The dispersion of quasiparticles near the
Fermi level follows a linear relation as a function of mo-
mentum. This property facilitates the study of relativistic
Dirac fermions within a practical platform [5]. Addition-
ally, graphene can withstand relatively high strains without
rupturing, and supports a tunable chemical potential. These
intriguing discoveries and advancements have made graphene
attractive for both fundamental science and next-generation
devices and technologies [4,6,7].

On its own, graphene has a negligible band gap and lim-
ited spin-related features such as magnetization and spin-orbit
coupling (SOC) [8]. Due to this, the use of freestand-
ing graphene in practical devices is still limited. To make
graphene more suitable for technology-oriented applications
and explore interesting fundamental phenomena, it is impor-
tant to capitalize on additional effects such as the interplay
of Dirac fermions with superconductivity, magnetization, and
SOC. Along these lines, experimentally feasible approaches
[9–11] involve the exploitation of proximity effects, whereby

the magnetism and SOC can be extrinsically [12] induced into
graphene by close contact with other materials [13–17]. The
proximity-induced magnetism and SOC in graphene is more
appropriate than chemical doping as the former approach pre-
serves the chemical properties of graphene and the quality
of the graphene lattice remains nearly intact [13–17]. This
idea has driven numerous efforts both theoretically and exper-
imentally to shed light on various aspects of superconducting
[18,19], magnetized [20–22], or spin-orbit coupled graphene
[15,20,23–25].

On both the experimental and theoretical fronts, transport
measurements have found excellent agreement with the low-
energy effective models [4–6]. Indeed, there have been several
experiments carried out in this direction so far, reporting
successful proximity-induced phenomena in graphene [9–11].
Nonetheless, there is no clear-cut evidence and estimation
of the type and strength of the induced SOC in graphene.
For example, in Refs. [9–11], ferromagnetism was induced
in graphene by placing it in close contact with yttrium iron
garnet (YIG), which is a magnetic insulator with SOC. The
corresponding signatures of the induced SOC and magneti-
zation into graphene were observed through transverse Hall
current measurements; however, a clear-cut picture of the type
and strength of the SOC remains elusive.

When a plane circularly polarized electromagnetic (EM)
wave interacts with some materials, there can be differ-
ences in the absorption of left-handed (LH) and right-handed
(RH) circularly polarized light. When the absorptance of the
incident circularly polarized beam depends on the handed-
ness, the material possesses optical circular dichroism (CD)
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[26]. Moreover, when tailor-made material platforms support
“handedness-switching” under external controls, the system
can change whether it predominately absorbs RH or LH
polarized waves. The corresponding absorptance signatures
can reveal valuable spin information and, possibly, intrinsic
quantum details of the system [27–29]. Such material plat-
forms with nonzero intrinsic CD can be used in nanodevices
as a circular polarization filter with atomic-scale control,
and programmable optoelectronic devices with high-speed
switching.

Having a low-power atomistic-scale mechanism to control
electric-field rotation and absorption of EM waves is a de-
sirable capability for modern integrated and compact optical
nanodevices, sensors, and detectors [30,31]. Control of the
polarization, phase, and magnitude of reflected and transmit-
ted EM waves has been explored using metamaterials [32–42]
and patterned metasurfaces [43–52]. Nevertheless, fabrication
challenges in creating metasurfaces, in addition to the low
efficiency and limited compactness of the final structure, limit
the effectiveness of this approach. Moreover, precise control
over the dynamical and widely modulating system parameters
is needed [43–52], thus making atomic-scale optoelectronic
elements with controllable material properties a more favor-
able alternative [53].

In this paper, we have considered a graphene layer with
extrinsically induced Rashba SOC and magnetization. Start-
ing from a microscopic Hamiltonian and employing a Green’s
function approach, we derive expressions for the components
of the dynamical optical conductivity tensor, and thereby ob-
tain the associated frequency-dependent permittivity tensor.
Our results illustrate that the optical conductivity acquires
a strong peak associated with SOC at frequencies close to
the corresponding SOC energy. A nonzero magnetization
of moderate strength perpendicular to the graphene plane
results in a clear second peak in the frequency-dependent
optical conductivity, well separated from the SOC peak.
To confirm our findings, we analyze their origins through
visualizing various possible interband and intraband opti-
cal transitions in the band structure. Therefore, we find
that the optical conductivity and dielectric response can
be practical tools for identifying the presence of SOC in-
duced in graphene, and estimating its strength unambiguously.
Moreover, upon calculating the CD, we demonstrate that a
nanoscale device of the type schematically shown in Fig. 1
can efficiently control handedness-switching by tuning the
chemical potential and magnetization strength. Our results
and findings may serve as a possible scenario for the physical
origins of a nonzero CD observed in a recent experiment
involving a graphene system deposited on a SiC substrate
[54]. This would suggest that the interaction of graphene
and a substrate can result in SOC and a nonzero mag-
netism.

The paper is organized as follows. In Sec. II, the theoret-
ical model is outlined, including the model Hamiltonian. In
Sec. III A, the analytical and numerical evaluations of the dy-
namical optical conductivity are performed. In Sec. III B, the
finite-frequency dielectric tensor is discussed and the response
of the magnetized spin-orbit coupled graphene to polarized
EM waves is analyzed. Finally, we summarize the results with
concluding remarks in Sec. IV.

FIG. 1. The representative setup for revealing handedness-
switching predicted in this paper. The graphene layer is deposited
on top of an insulator layer with strong SOC and a thickness of
d . A perfectly conducting back plate accompanies the system to
generate strong reflection of the electromagnetic wave, which is
incident upon the graphene side of the structure. The reflected wave
is then collected by a detector. We assume that the graphene sheet
is located in the xy plane. The small arrows show the orientation of
magnetization on the carbon sites. The blue and red regions indicate
the A and B sublattices of graphene, respectively. The carrier density
and chemical potential can be controlled by a gate voltage, V .

II. FORMULATION AND FRAMEWORK

Graphene atoms are bonded through the p-orbital elec-
trons. The electronics consequences of these interactions for
low energies close to the Fermi level can be properly described
by a tight-binding model [4]. The tight-binding model can
be further simplified into an effective Hamiltonian model
around the Fermi level without missing any important physics
[4]. Unlike the more complicated computational methods, the
effective Hamiltonian model provides more clarity into the
fundamental physics of systems. Also, it has long been proven
that by contrasting results to experimental observations, the
effective Hamiltonian captures the most interesting physics
in graphene at low energies [4–6]. Both magnetization and
SOC can be extrinsically induced into graphene by virtue
of the proximity effect involving the appropriate materials
[9–11]. The effective Hamiltonian of graphene with SOC and
magnetization can be expressed as [55,56]

H =
∫

dk�†(k)H (k)�(k), (1a)

H (k) = h̄vFk · τ + α(σ × τ )z + h · σ − μ. (1b)

The particles moving within the plane of graphene have
momentum k = (kx, ky). The particles’ velocity at the Fermi
level is approximately given by vF ∼ 106 m/s. In this nota-
tion, σ and τ are vectors composed of 2 × 2 Pauli matrices
and refer to spin space and sublattice space, respectively.
The honeycomb lattice of graphene is composed of A and B
sublattices, as illustrated in Fig. 1. The strength of Rashba
SOC, magnetization, and chemical potential are labeled by
α, h, and μ, respectively. In our calculations that follow, we
have considered an arbitrary direction for the magnetization
orientation so that h = (hx, hy, hz ). The magnetization might
be induced into the graphene layer by a magnetized substrate
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such as YIG or the application of an external magnetic field
[9–11]. The intrinsic staggered SOC is negligibly small in a
typical graphene layer, where the ratio of extrinsic to intrin-
sic SOC is on the order of 100 [8,57]. However, since the
magnetization hz can play the same role as this type of SOC
[4,6], its presence can be revealed by subtle features in the
response of graphene to RH and LH polarized waves. Thus,
the overall effect on the results is similar to having hz present,
even in situations where the intrinsic SOC is considerably
large. The key features due to the presence of magnetization
are described below in detail. Hence, the associated field op-
erators have four components, carrying the spin and sublattice
degrees of freedom, i.e., �†(r) = (ψ†

A↑, ψ
†
B↑, ψ

†
A↓, ψ

†
B↓) and

�(r) = (ψA↑, ψB↑, ψA↓, ψB↓)T .
The components of the frequency-dependent permittivity

tensor εab(ω) are related to the components of the conductivity
tensor σab(ω) through the standard relations,

εab(ω) = δab + i
σab(ω)

ε0ω
, (2a)

σab(ω) = i

ω
lim
q→0

{	ab(ω, q) − 	ab(0, q)}. (2b)

Here δab is the Kronecker delta, the indices a, b run over
x, y, and ε0 is the permittivity of free space. The current-
current correlation function is given by

	ab(ω, q) = e2

h̄

∫
dk

(2π )2

∑
n

∑
τ=A,B

∑
s=↑↓

F (εn, ω, μ)

× Tr{Ja,τ,sGτ,s(εn + iω, k + q)Jb,τ,sGτ,s(εn, k)}. (3)

Here τ, s are sublattice and spin degrees of freedom, respec-
tively, and the components of the current operator are Ja,ρ,s.
The Fermi-Dirac function f (X ) determines the temperature
dependency (T ) of optical conductivity and permittivity

F (εn, ω, μ) = f (εn − μ) − f (εn + ω − μ), (4a)

f (x) = 1

eβx + 1
, β = 1

kBT
, (4b)

in which kB is the Boltzmann constant.

III. RESULTS AND DISCUSSION

We first present results for the optical conductivity and ana-
lyze the physical origins of its various features in Sec. III A. In
Sec. III B, the components of the dispersive permittivity tensor
are studied as a function of chemical potential. Next, the
effects of frequency, chemical potential, and magnetization
on the circular dichroism of the device shown in Fig. 1 will
be presented.

A. Finite-frequency optical conductivity and physical analysis

To obtain the permittivity tensor with frequency dispersion,
the components of the Green’s function used in Eq. (3) need to
be derived. For concreteness, and to simplify the expressions,
we set h = (0, 0, hz ) in what follows. Nonetheless, we have
obtained expressions for generic cases with h �= 0. Using the
low-energy Hamiltonian (1), the components of the Green’s

function in the presence of an exchange field hz and SOC are
expressed by

�G11 = −4(hz + iω)α2

−(hz − iω)(hz − k + iω)(hz + k + iω), (5a)

�G12 = +2i(kx − iky)(hz + iω)α, (5b)

�G13 = +(kx − iky)(hz − k + iω)(hz + k + iω), (5c)

�G14 = +2i(kx − iky)2α, (5d)

�G22 = +(hz − k − iω)(hz + k − iω)(hz + iω), (5e)

�G23 = −2i(hz − iω)(hz + iω)α, (5f)

�G24 = +(kx − iky)(hz + k − iω)(hz − k − iω), (5g)

�G33 = +(hz − k + iω)(hz + k + iω)(hz − iω), (5h)

�G34 = 2i(kx − iky)(hz − iω)α, (5i)

�G44 = +4(hz − iω)α2

+ (hz + iω)(hz − k − iω)(hz + k − iω), (5j)

� = (
iω + [C − D]

1
2
)(

iω − [C − D]
1
2
)

×(
iω + [C + D]

1
2
)(

iω − [C + D]
1
2
)
, (5k)

C = h2
z + k2 + 2α2, (5l)

D = 2
√

h2
z k2 + k2α2 + α4. (5m)

The other components of the Green’s function can be in-
ferred from symmetry arguments. Substituting the Green’s
function components into Eq. (2b), we find the following
expression for the σxx(ω) and σxy(ω) components of the dy-
namical optical conductivity:

σxx(xy)(ω,μ) = 2π2e2

h̄

∫
dk

(2π )2

∫
dεn

2π
F (εn, ω, μ)

× {±A11(ε+
n )A33(εn) ± A22(ε+

n )A44(εn)

+ A33(ε+
n )A11(εn) + A44(ε+

n )A22(εn)

+ A34(ε+
n )A21(εn) + A43(ε+

n )A12(εn)

± A12(ε+
n )A43(εn) ± A21(ε+

n )A34(εn)}, (6)

where ε+
n = εn + ω, and the definitions of Ai j are given in

Appendix A. Here the symbol ± refers to the xx (xy) indices
[+ (−)], respectively. It is evident that owing to the com-
plexities of these expressions, solutions can only be obtained
numerically.

In Fig. 2, the real part of the longitudinal optical con-
ductivity σxx(ω) and imaginary part of the transverse optical
conductivity σyx(ω) are plotted as a function of the incident
photon frequency ω. To this end, we have evaluated Eqs. (6),
considering a situation where the magnetization is oriented
along the z axis, perpendicular to the plane of the graphene
sheet, shown in Fig. 1. For this particular system, the follow-
ing relations hold: σyy(ω) = σxx(ω) and σxy(ω) = −σyx(ω).
The imaginary and real parts of σxx(ω) and σyx(ω) can be ob-
tained by the Kramers-Kronig relationship. The components
of the conductivity are normalized by the conductance unit
e2/2h̄. To facilitate the analysis of the optical conductivity,
the chemical potential is set to zero, μ = 0. Nevertheless,
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FIG. 2. The components of the optical conductivity as a function
of frequency. (a) and (b) are the real part of σxx (ω) and imaginary
part of σyx (ω), respectively. The magnetization is oriented along the z
axis, i.e., h = (0, 0, hz ). The chemical potential is set to zero, μ = 0,
and various values of magnetization strength are considered: hz =
0, 8, 40, 80 meV. The strength of the SOC is set to α = 20 meV.

later the chemical potential shall be nonzero for illustrating its
influence on the relevant material parameters. The strength of
the SOC is set to α = 20 meV, consistent with inferred values
from experiments [14], although our conclusions depend on
the chemical potential and magnetization strength relative to
α. To perform numerically stable calculations, we have used
the Lorentz model for the Dirac delta functions with narrow
width, η = 0.01 meV. We have also set the temperature to
T = 0.01 K in all subsequent calculations.

When hz = 0 meV in Fig. 2, the transverse conductivity
σyx(ω) vanishes. The longitudinal conductivity σxx(ω) shows
a weak Drude response at very low frequencies, ω → 0. It
is evident that σxx(ω) peaks at ω ≈ 40 meV and reaches the
universal background conductivity, σ0 ≡ e2/2h̄, at higher fre-
quencies. When the magnetization is increased to a nonzero
value, hz = 8 meV, two peaks in σyx(ω) emerge at ω ≈
20 meV and ω ≈ 50 meV, then decay at higher frequencies.
The peaks observed in σyx(ω) appear at the same frequencies
for the longitudinal σxx(ω), and the conductivity approaches
its background value for ω � 80 meV. Also, as seen, both the
longitudinal and transverse conductivities are zero for small
frequencies, 0 � ω � 8 meV. Increasing the magnetization to
larger values, e.g., hz = 40 meV and hz = 80 meV, both the

transverse and longitudinal components show that the mag-
nitude of the first peak increases considerably whereas the
second peak dampens out. The σxx(ω) component shows a
steep decline from ω ≈ 40 meV for both hz = 40 meV and
hz = 80 meV, before increasing again at ω ≈ 90 meV and
ω ≈ 170 meV, respectively. Increasing the frequency higher
results again in the longitudinal conductance leveling off at
e2/2h̄. Another important effect of the magnetization that
can play a role in practical device applications is that within
the low-frequency regime, the width of the zero-conductance
region can increase by increasing the magnetization strength
to a threshold value.

In order to gain further insight into the physical origins of
the optical conductivity results above, we plot the associated
band structures as a function of momentum k in Fig. 3. For
consistency, the values for the chemical potential and SOC
strength are the same as those in Fig. 2. In Figs. 3(a)–3(d),
the magnetization increases as hz = 0, 8, 40, 80 meV, respec-
tively. As seen in Fig. 3(a), in the presence of SOC, the bands
associated with different spins are split by the amount 2α =
40 meV at k = 0. Also, the valence band and conduction band
just touch at k = 0 and E = 0. The latter results in weak
intraband transitions and a Drude response at ω = 0 meV,
as observed in Fig. 2(a). The interband transitions occur at
energies ω � 40 meV [shown by the arrow in Fig. 3(a)] and
show up in the conductivity [Fig. 2(a)] as a peak at around ω ≈
40 meV. At high enough energies, the transition rate slows
until finally reaching a constant rate equivalent to the universal
conductivity e2/2h̄. When the magnetization is increased to
hz = 8 meV [Fig. 3(b)], a small energy gap (≈8 meV) opens
up in the band structure at the Fermi level, E = 0. There is
also a slight shift upward of the second valence band. The
interband transitions shown by the small and large arrows are
the origins of the two peaks in the optical conductivity at
approximately 16 meV and 50 meV, as seen in Fig. 2. The
small gap (≈16 meV) between the bottom of the conduction
band and the top of the valence band prevents any transitions,
and hence results in zero conductivity for frequencies less than
ω � 16 meV (see Fig. 2).

Upon increasing the magnetization further to hz = 40 meV
[Fig. 3(c)], the band gap widens to approximately 35 meV,
and the conduction band around k = 0 acquires a domelike
segment with its top at 40 meV from E = 0 meV. The same
feature occurs, but inverted, in the valence band. As shown
by the small and large arrows, two types of interband tran-
sitions can be expected at ω ≈ 35 meV and ω ≈ 100 meV,
respectively. These band structure transitions correlate with
discernible features in the optical conductivity shown in
Fig. 2. Finally, increasing the magnetization to hz = 80 meV
[Fig. 3(d)] results in a band structure with similar features to
those of hz = 40 meV shown in Fig. 3(c). Therefore, the as-
sociated optical conductivities are also similar. Another main
feature found in both components of the optical conductivity
is that when increasing hz, there is a considerable enhance-
ment of the first peak. This can be understood by considering
the corresponding band structures in Figs. 3(c) and 3(d), and
comparing to Figs. 3(a) and 3(b), respectively. The bottoms
of the valence and conduction bands become flattened and
extended in Figs. 3(c) and 3(d), thus providing many more
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FIG. 3. The band structure of graphene in the presence of SOC and magnetization plotted as a function of the normalized momentum
kÅ/π . The chemical potential is set to zero, μ = 0, and the strength of the SOC is fixed at α = 20 meV. The magnetization is oriented
along the z axis and its magnitude increases (from left to right) with the following values (in meV): (a) hz = 0, (b) hz = 8, (c) hz = 40, and
(d) hz = 80.

available states for interband transitions (as indicated by the
small arrows).

B. Handedness-switching and dielectric response

As seen in Fig. 2, the interplay of Rashba SOC and a
magnetization perpendicular to the graphene film results in a
strongly modified longitudinal optical conductivity, and gen-
eration of a finite transverse conductivity. The corresponding
components of the permittivity tensor for graphene, ε1(ω), can
thus be expressed as

ε1(ω) =
⎛
⎝εxx(ω) εxy(ω) 0

εyx(ω) εyy(ω) 0
0 0 1

⎞
⎠. (7)

In Fig. 4, the behavior of the diagonal and off-diagonal com-
ponents of ε1(ω) are shown as a function of frequency. A
representative set of parameter values are considered with
the magnetization strength set at 20 meV, and μ varies from
0–24 meV. The chemical potential is controllable via a gate
voltage, as shown in Fig. 1. As discussed earlier and illustrated
in, e.g., Fig. 4(c), for cases with μ = 0 and μ = 8 meV, the
Fermi energy resides inside the gap of the band structure, and
therefore only the interband transitions are allowed. For larger
values of the chemical potential, i.e., μ = 16, 20, 24 meV, the
intraband transitions are additionally allowed. The interband
transitions are responsible for the Drude-like response at low
frequencies in the longitudinal components of the dielectric
response, i.e., εxx,yy(ω). The Drude-like response to an elec-
tromagnetic wave can be clearly seen in Figs. 4(a) and 4(b) as
ω → 0. Considering the previous analysis of the components
of the optical conductivity, which showed a strong frequency
dependence for finite values of hz, it is evident that the large
variations in the permittivity components are also strongly
influenced by the presence of magnetization. Moreover, the
frequency of the first peaks in Fig. 2 is directly related to

the magnitude of the magnetization induced into graphene.
As shown below, the strong transverse dielectric response
seen in Figs. 4(c) and 4(d), which reveals the presence of
an extrinsically induced SOC in the graphene sheet (with no
extrinsic SOC, the components εxy(yx) vanish), is crucial for
circular dichroism and polarization control.

Employing the computed frequency-dependent permittiv-
ity and conductivity tensors for various parameter sets, one

FIG. 4. Permittivity tensor components for the graphene sheet
with finite SOC and magnetization. Both the real and imaginary com-
ponents are shown for several different chemical potentials μ. The
Zeeman field is set to hz = 20 meV. From symmetry considerations,
εxy(ω) = −εyx (ω), the other off-diagonal permittivity components
can be deduced.
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now can easily study the absorption of EM waves from
a hybrid device containing magnetized spin-orbit coupled
graphene, such as the layered configuration shown in Fig. 1.
This simple device consists of graphene sheet adjacent to a di-
electric spacer layer with SOC (and possibly magnetization).
The substrate consists of a reflective ground plate, which can
be served by a metal, which will eventually be assumed to
have perfect conductivity. The electric field component of the
normally incident EM wave in the vacuum region is polarized
in the xy plane, and we consider a circular polarization, so
that the incident EM field components E0i are out of phase,
i.e., E0i = (1,±i), for right-handed (−), or left-handed (+)
circular polarization. When determining how much of the
incident EM energy is absorbed by the structure in Fig. 1,
we invoke Maxwell’s equations. The equations, specific fields,
and boundary conditions used for the results presented in the
following can be found in Appendix B.

The fraction of energy that is absorbed by the system
is determined by the absorptance A(ω): A(ω) = 1 − T (ω) −
R(ω), where T (ω) is the transmittance and R(ω) is the re-
flectance, consistent with energy conservation. In determining
the absorptance of the graphene system, we consider the time-
averaged Poynting vector in the direction perpendicular to the
interfaces (the z direction), S(ω)=Re{E(ω) × H∗(ω)}/2. We
now take the limit of a metallic substrate, so there is no trans-
mission of EM fields, and T = 0, and the tangential electric
field at the spacer/metal boundary vanishes. Upon inserting
the electric and magnetic fields for the vacuum region, we find

A(ω) = 1 − |E0r (ω)|2
|E0i(ω)|2 . (8)

Here we have normalized energy relative to the incident plane
wave energy S0, where S0 = (1/η0)|E0i|2. The reflection co-
efficients E0r are found upon using conditions (B9)–(B11).
To quantify the effect that graphene has on the handedness of
circularly polarized light, the quantity �(ω) is introduced:

�(ω) = A−(ω) − A+(ω)

A+(ω) + A−(ω)
, (9)

which describes the amount of circular dichroism through the
difference in absorption of LH (+) and RH (−) circularly
polarized EM waves. Therefore, �(ω) > 0 indicates domi-
nant right-handed absorption, while �(ω) < 0 indicates that
left-handed polarization tends to be absorbed more.

To evaluate the circular dichroism and handedness charac-
teristics of the device shown in Fig. 1, the thickness of the
spin-orbit coupled insulator layer (the yellow layer in Fig. 1)
is set to a representative value of 5 μm, and the medium is
assumed nondispersive. The latter assumption can be easily
achieved with a large band gap semiconductor alloy, involving
heavy elements to support SOC as well. The CD factor, �(ω),
is shown in Fig. 5 as a function of the frequency of the
incident EM wave. The legend shows the chemical potentials
that are considered, with μ ranging from 0 to 32 meV, en-
suring the most pertinent cases are shown. Additionally, each
panel in Figs. 5(a)–5(c) considers a different finite value of
the longitudinal magnetization hz, with hz = 8, 20, 40 meV,
respectively. Beginning with Fig. 5(a), the results illustrate
that at the charge neutrality point, μ = 0, and moderate mag-
netization strength, there is strong circular dichroism, with the

FIG. 5. The circular dichroism �(ω) as a function of frequency.
Several out-of-plane Zeeman fields hz are considered (as shown).
Through variations in the gate voltage, the reflected EM energy
can exhibit dominant right-handed (positive curves) or left-handed
(negative curves) behavior.

relative absorption favoring left-handed EM waves for a broad
range of frequencies [�(ω) < 0]. Increasing the chemical po-
tential to μ = 8 meV yields larger variations in �(ω) and a
narrower frequency window for strong left-handed absorption.
When the chemical potential is set to μ = 16 meV, �(ω)
gets shifted upward and oscillates about zero for frequencies
lower than ω � 50 meV, resulting in left and right handed-
ness switching as a function of frequency. Further increasing
μ � 20 meV results in �(ω) > 0 for ω � 45 meV. At higher
frequencies, �(ω) < 0, and levels off toward unity as εxy(ω)
vanishes (see Fig. 4), with both left-handed and right-handed
polarizations absorbed equally. In Figs. 5(b) and 5(c), increas-
ing the magnetization is shown to have a profound effect
on the gate-controlled handedness-switching. This is seen
in Fig. 5(b), where hz = 20 meV, and the optical response
demonstrates an effectively larger circular dichroism over a
wider frequency range. The results show that the relative
absorption of left-handed and right-handed circularly polar-
ized waves with these parameters can be manipulated through
variations in frequency and chemical potential. Doubling the
magnetization to hz = 40 meV [Fig. 5(c)] has a severe impact
on the effectiveness of the device for handedness-switching
of EM waves. Although at this larger magnetization the
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FIG. 6. The circular dichroism factor �(ω) against the frequency
of the incident circularly polarized EM wave. A broad range of
magnetizations hz at two different values of chemical potential are
considered: μ = 0, 20 meV.

structure now exhibits circular dichrosim over a broader range
of frequencies, �(ω) is always negative or zero, except for
the largest chemical potential, μ = 32 meV, where �(ω) is
positive (RH dominant) for 0 � ω � 60 meV. For all other
values of μ shown, the LH polarization state always domi-
nates [�(ω) < 0].

To explicitly show the influence of magnetization on CD,
the �(ω) factor against frequency for various values of hz is
plotted in Fig. 6. Two values of the chemical potential are
considered: (a) μ = 0 and (b) μ = 20 meV. As is clearly seen
in Fig. 6(a), increasing the magnetization does not induce
a sign change in �(ω), and hence there is no handedness-
switching at the charge neutrality point, μ = 0. Nonetheless,
there are strong variations in �(ω) and a dominant LH re-
sponse over a frequency window that widens with increasing
hz. Once the chemical potential is shifted away from the
neutrality point, e.g., μ = 20 meV, Fig. 6(b) illustrates that
now hz can induce handedness-switching. This switching
is accessible for frequencies where ω � 50 meV and mag-
netizations hz = 8, 16 meV. This trend has been found to
continue for larger chemical potentials, whereby manipulating
hz can increase the impact in calibrating and controlling the
handedness-switching (not shown). Another feature that can
be seen in Figs. 5 and 6 is the vanishing �(ω) factor at
specific frequencies. This follows from Eq. (C1) and Eq. (C3),
where the reflectivity coefficients |E±

0rx|2 = |E±
0ry|2 = 1 when

k2d = nπ (for n = 1, 2, . . .). This is equivalent to having the
spacer layer at the resonance width nλ/2, where destructive
interference occurs from reflected waves at both edges of the
insulator layer (λ is the wavelength of light in the insulator).
This perfect reflectivity is most pronounced in Figs. 5(b) and

5(c) and Fig. 6. From the resonance condition above, �(ω)
vanishes at ω (meV) ≈ 1240n/(2d

√
ε2) ≈ 60, 120, . . . (d is

given in microns). Therefore, these specific frequencies de-
pend solely on the material and geometrical characteristics
of the spacer layer, and are independent of the dielectric
response of the magnetized spin-orbit coupled graphene. Con-
trolling the handedness of circularly polarized light with an
external field offers several interesting possibilities for device
applications. Through extensive parameter sweeps, general
relationships between the magnetization, chemical potential,
and frequency can be found at the crossover point, which can
be beneficial for device fabrication. Although such an effort is
outside the scope of this paper, we defer this interesting topic
as a project for future works.

Note that there is no circular dichroism when the trans-
verse components of the dielectric response are absent,
i.e., εxy,yx(ω) = 0. Therefore, a nonzero CD factor reveals
important signatures involving the interplay of SOC and
magnetization. Since the chemical potential of graphene is
easily tunable by a gate voltage, the explored handedness-
switching also demonstrates the extrinsically induced SOC
and magnetization in graphene. On the technological side,
this handedness-switching can be exploited for devising op-
toelectronic applications including chemical and biological
sensors, where the corresponding polarization- and frequency-
dependent absorption signatures can be controlled externally,
e.g., by application of a gate voltage or magnetic field. The
well-defined peaks in the absorption signatures were shown
to provide a way to characterize the extrinsic SOC without
ambiguity, as evidenced in the handedness-switching phe-
nomenon and anomalous conductivity. Indeed, the magnitude
of the extrinsic SOC can be estimated by the peaks in Fig. 2,
as discussed above. If there is no magnetization, hz = 0, the
externally induced anomalous conductivity and handedness-
switching disappears. Since the intrinsic SOC plays the same
role as hz, its magnitude can be revealed using the same char-
acterization techniques used above when the magnetization
was present.

IV. CONCLUSIONS

In summary, we have studied the frequency-dispersive
optical conductivity and associated dielectric response of
magnetized graphene with Rashba spin-orbit coupling (SOC).
Our results revealed that the strength and type of SOC
can be unambiguously concluded and estimated through
measurements of the frequency dependence of the optical
conductivity. The band structure analysis illustrated that SOC
and magnetization can generate two well-separated peaks in
the conductivity, thus determining the strength of the SOC
and magnetization. The transverse Hall conductivity, due to
the interplay of magnetization and SOC, results in a nonzero
circular dichroism. Exploring the permittivity tensor and con-
ductivity, we studied the absorptance of a simple device,
consisting of magnetized spin-orbit coupled graphene on top
of an insulator layer and perfectly conducting metal sub-
strate. Our findings showed that both the magnetization and
chemical potential offer practical control mechanisms for
handedness-switching and circular dichroism effects, where
there is tunable absorption of left-handed and right-handed
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circularly polarized light. In addition, these findings offer
a possible physical mechanism for recent experiments [54].
Accordingly, the interaction of graphene and a SiC substrate
can be the source of SOC and magnetism in these platforms.
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APPENDIX A: GREEN’S FUNCTIONS AND DEFINITION
OF PARAMETERS

In this Appendix, we present the variables defined in the
main text. Specifically, the variables Ai j , i, j ≡ 1, 2, 3, 4, in
Eq. (6) are given by

A11(ω) = 1

4
[δ(ω + K) + δ(ω − K) + δ(ω + L) + δ(ω − L)]

− α2

4
√

h2
z k2 + k2α2 + α4

[δ(ω + K) + δ(ω − K) − δ(ω + L) − δ(ω − L)]

+ hz

2(K2 − L2)
[K{δ(ω + K) − δ(ω − K)} − L{δ(ω + L) − δ(ω − L)}] − h3

z − hk2 + 4hα2

2KL(K2 − L2)

× [L{δ(ω + K) − δ(ω − K)} − K{δ(ω + L) − δ(ω − L)}], (A1)

A22(ω) = 1

4
[δ(ω + K) + δ(ω − K) + δ(ω + L) + δ(ω − L)]

+ α2

4
√

h2
z k2 + k2α2 + α4

[δ(ω + K) + δ(ω − K) − δ(ω + L) − δ(ω − L)]

− hz

2(K2 − L2)
[K{δ(ω + K) − δ(ω − K)} − L{δ(ω + L) − δ(ω − L)}] + h3

z − hk2

2KL(K2 − L2)

× [L{δ(ω + K) − δ(ω − K)} − K{δ(ω + L) − δ(ω − L)}], (A2)

A33(ω) = 1

4
[δ(ω + K) + δ(ω − K) + δ(ω + L) + δ(ω − L)]

+ α2

4
√

h2
z k2 + k2α2 + α4

[δ(ω + K) + δ(ω − K) − δ(ω + L) − δ(ω − L)]

+ hz

2(K2 − L2)
[K{δ(ω + K) − δ(ω − K)} − L{δ(ω + L) − δ(ω − L)}] − h3

z − hk2

2KL(K2 − L2)

× [L{δ(ω + K) − δ(ω − K)} − K{δ(ω + L) − δ(ω − L)}], (A3)

A44(ω) = 1

4
[δ(ω + K) + δ(ω − K) + δ(ω + L) + δ(ω − L)]

− α2

4
√

h2
z k2 + k2α2 + α4

[δ(ω + K) + δ(ω − K) − δ(ω + L) − δ(ω − L)]

− hz

2(K2 − L2)
[K{δ(ω + K) − δ(ω − K)} − L{δ(ω + L) − δ(ω − L)}] + h3

z − hk2 + 4hα2

2KL(K2 − L2)

× [L{δ(ω + K) − δ(ω − K)} − K{δ(ω + L) − δ(ω − L)}], (A4)

A21(ω) = ihz(kx + iky)

KL(K2 − L2)
[L{δ(ω + K) − δ(ω − K)} − K{δ(ω + L) − δ(ω − L)}]

+ i(kx + iky)

4
√

h2
z k2 + k2α2 + α4

[δ(ω + K) + δ(ω − K) − δ(ω + L) − δ(ω − L)], (A5)
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A34(ω) = ihzα(kx − iky)

KL(K2 − L2)
[L{δ(ω + K) − δ(ω − K)} − K{δ(ω + L) − δ(ω − L)}] − iα(kx − iky)

4
√

h2
z k2 + k2α2 + α4

× [δ(ω + K) + δ(ω − K) − δ(ω + L) − δ(ω − L)], (A6)

A12(ω) = A∗
21(ω), (A7)

A43(ω) = A∗
34(ω), (A8)

K = [
h2

z + k2 + 2α2 + 2
√

h2
z k2 + k2α2 + α4

] 1
2 , (A9)

L = [
h2

z + k2 + 2α2 − 2
√

h2
z k2 + k2α2 + α4

] 1
2 . (A10)

The Dirac delta function is denoted by δ(X ). Here we have considered h = (0, 0, hz ) to simplify the expressions. When all three
components of the magnetization are nonzero and SOC is present, the resultant expressions become very lengthy, and thus they
are not presented here.

If we set spin-orbit coupling to zero, i.e., α = 0, and all three components of the Zeeman field can be nonzero, i.e.,
h = (hx, hy, hz ), the Green’s functions reduce to

G11(ω, k, h) = 1

2

{
1

iω − h + k
+ 1

iω − h − k

}
, (A11a)

G22(ω, k, h) = 1

2

{
1

iω + h − k
+ 1

iω + h + k

}
, (A11b)

G33 = G11, (A11c)

G44 = G22. (A11d)

Substituting these Green’s functions (A11a)–(A11d) into Eq. (3), we find

σxx(ω,μ) = 2π2e2

h̄

∫
dk

(2π )2

∫
dεn

2π
F (εn, ω, μ) × {[δ(ε+

n + k−) + δ(ε+
n − k+)]

× [δ(εn + k−) + δ(εn − k+)] + [δ(ε+
n − k−) + δ(ε+

n + k+)][δ(εn − k−) + δ(εn + k+)]}, (A12)

in which k± = k ± h. Note that in the absence of SOC, the
off-diagonal Green’s functions play no role in the optical con-
ductivity and the transverse Hall components σxy,yx(ω) vanish
altogether.

APPENDIX B: MAXWELL’S EQUATION, EM FIELDS, AND
BOUNDARY CONDITIONS

Assuming a harmonic time dependence exp(−iωt ) for the
EM field, we have

∇ × En = iωμ0 ¯̄μn·Hn, (B1a)

∇ × Hn = −iωε0 ¯̄εn·En, (B1b)

where the integer n = 0, 1, 2, 3 denotes the region (0 for the
vacuum, 1 for graphene, 2 for the insulator layer, and 3 for the
metallic region). Combining Eqs. (B1), we obtain

∇ × (
¯̄μ−1

n · ∇ × En
) = k2

0 (¯̄εn · En), (B2a)

∇ × (
¯̄ε−1

n · ∇ × Hn
) = k2

0 ( ¯̄μn · Hn), (B2b)

where the free-space wave number is k0 = ω/c. For the
nonmagnetic regions, we have ¯̄μn = ¯̄I . For the relative per-
mittivity tensors, ¯̄ε0 = ¯̄I in the upper vacuum region, while
the spacer layer is an isotropic dielectric with ¯̄ε2 = ε2

¯̄I . The
bottom region has ¯̄ε3 = ε3

¯̄I (see Fig. 1).

For a normally incident EM wave, the electric field is writ-
ten E0 = E i + Er , where the incident and reflected fields are
expressed as E i = E0ieik0z and Er = E0re−ik0z, respectively.
The spin-orbit coupling and static magnetic field generate
off-diagonal components to the permittivity tensor in the
graphene film. The reflected electric field has components
E0r = (E0rx, E0ry ). Similarly, within the dielectric layer, the
electric field is expressed as a superposition of upward and
downward propagating waves: E2 = Eu + Ed , where Eu =
E2ue−ik2z, Ed = E2d eik2z, and k2 = k0

√
ε2. The transmitted

field in the region below the spacer layer is Et = E3t eik3z,
where k3 = k0

√
ε3 (we later take the limit of a perfect metal in

region 3). From Eq. (B1b), the corresponding magnetic field
in the vacuum region can be written H0 = H i + Hr , with

H i = −(Eiy/η0)x̂, (B3a)

Hr = (1/η0)(+Eryx̂ − Erx ŷ), (B3b)

H t = (1/η3)(−Etyx̂ + Etx ŷ), (B3c)

where η0 = √
μ0/ε0 is the impedance of free space. The

magnetic field in the dielectric region can be decomposed as
H2 = Hu + Hd , where

Hu = (1/η2)(+Euyx̂ − Eux ŷ), (B4a)

Hd = (1/η2)(−Edyx̂ + Edx ŷ). (B4b)
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Here η2 = η0/
√

ε2 is the impedance of the dielectric layer,
and η3 = η0/

√
ε3 for the metal region.

The presence of graphene enters in the boundary condition
for the tangential components of the magnetic field by writing

n̂ × [H0(ω) − H2(ω)] = J(ω), (B5)

where n̂ is the normal to the vacuum/graphene interface, and
J is the current density at the interface. Thus, we have

(H0y − H2y)|z=0 = (σxxE0x + σxyE0y)|z=0, (B6)

(H2x − H0x )|z=0 = (σyxE0x + σyyE0y)|z=0, (B7)

where we used Ohm’s law to connect the surface current den-
sity (Jx(ω), Jy(ω)) to the electric field: J(ω)= ¯̄σE(ω). Note
that one can also consider the graphene layer as a finite-
sized slab, like the spacer layer, and using the dielectric
response tensor discussed earlier, solve for the fields within
the graphene layer (for continuity, the calculations are not
shown here). We have found that this approach leads to equiv-
alent results, but treating the graphene layer as a current
sheet with infinitesimal thickness leads to simpler expres-
sions. Hence, we follow the latter approach. We also have for
the electric field at the graphene interface

n̂ × [E0(ω) − E2(ω)] = 0. (B8)

Upon matching the tangential E(ω) fields at the vacuum/

graphene and dielectric/substrate interfaces, we have the fol-
lowing conditions:

E0i + E0r − E2u − E2d = 0, (B9)

E2ue−ik2d + E2d eik2d − E3t e
ik3d = 0, (B10)

while matching the tangential H (ω) fields at the
dielectric/substrate interface gives

E3t eik3d

η3
+ E2ue−ik2d

η2
− E2d eik2d

η2
= 0. (B11)

APPENDIX C: CALCULATION OF ELECTROMAGNETIC
FIELD COEFFICIENTS

In the limit of a perfectly conducting substrate, the elec-
tric field in the spacer region can be written simply as
E2 = (E2x, E2y) sin[k2(z − d )]. The coefficients for the elec-
tromagnetic fields in the spacer and vacuum regions are
found by implementation of the appropriate boundary con-
ditions discussed above. We subsequently find the respective
x components of the reflection coefficient and electric field
component in the spacer layer to be

E±
0rx = [η0(±2iσxy − η0σxyσyx + η0σ

2
‖ ) − 1] sin2(k2d ) + iκ2η0σ‖ sin(2k2d ) − κ2

2 cos2(k2d )

κ2
2 cos2(k2d ) + [η0(η0σxyσyx − 2σ‖ − η0σ

2
‖ ) − 1] sin2(k2d ) − iκ2(1 + η0σ‖) sin(2k2d )

(C1)

and

E±
2x = 2[1 + η0(σ‖ ∓ iσxy) + iκ2 cot(k2d )] csc(k2d )

η0(η0σxyσyx − 2σ‖ − η0σ
2
‖ ) − 1 + κ2 cot(k2d )[κ2 cot(k2d ) − 2i(1 + η0σ‖)]

. (C2)

Here we have defined σ‖ ≡ σxx = σyy. The reflection coefficient for the incident electric field in the y direction is found through
the relationship

E±
0ry

E±
0rx

= ±i − 2η0(σxy + σyx ) sin2(k2d )

κ2
2 cos2(k2d ) + [1 + η0(η0σxyσyx ∓ 2iσxy − η0σ

2
‖ )] sin2(k2d ) − iκ2η0σ‖ sin(2k2d )

. (C3)

Similarly, the electric field coefficients for the spacer region are related via

E±
2x

E±
2y

= ±i − η0(σxy + σyx )

1 + η0(σ‖ ∓ iσxy) + iκ2 cot(k2d )
. (C4)

As the expressions above show, the crucial difference in the coefficients for the RH and LH polarizations is the iσxy term arising
from the SOC and Zeeman field induced in the graphene layer.
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