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Relativistic energy-momentum transfer and electromagnetic conservation laws in the interaction of
moving charged particles with two-dimensional materials
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We explore the conservation of energy and momentum by solving Maxwell’s equations for a charged particle
passing through a single conductive sheet. By using a fully relativistic formulation of the problem, we evaluate
the energy and momentum transfer from charged particle to electronic excitations localized in the sheet and to
electromagnetic radiation emitted from the sheet in the far-field region. Using a suitable conductivity model for
the sheet that can represent graphene or other two-dimensional (2D) material, our theory can elucidate the energy
and momentum transfer involving the incident particle, plasmon polariton mode(s) in the 2D material, and the
induced transition radiation from it.
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I. INTRODUCTION

Studying interactions of graphene and other two-
dimensional (2D) materials with fast charged particles is
currently of particular interest for electron energy loss
spectroscopy (EELS) in scanning transmission electron mi-
croscopy (STEM), which is a powerful technique for probing
plasmon excitations in nanostructures for nanophotonic ap-
plications in a broad range of frequencies [1,2]. Operating
the microscope in the scanning electron microscopy mode
enables angle-resolved measurements of the electromagnetic
(EM) radiation from the target, giving rise to cathodolu-
minescence [3,4] or transition radiation (TR) [5,6]. Besides
EELS, interactions of fast electrons with 2D materials were
also studied in other contexts [7–13], the most notable be-
ing the quest for a stable and tunable source of terahertz
radiation [14–20].

Studying radiation forces and momenta of light in di-
electric media [21] has been a topic of both fundamental
interest [22,23] and increasing appeal for applications in
nano-optics [24–26] and plasmonics [27,28]. In particular,
the concept of the energy velocity [29] was recently used
to study electromagnetic energy-momentum flow [30] and
angular momentum [27] of light at a boundary between two
media supporting surface plasmon polaritons (PPs). On the

*zmiskovi@uwaterloo.ca; also at Waterloo Institute for Nanotech-
nology, University of Waterloo, Waterloo, Ontario, Canada N2L
3G1.

†kakbari@uwaterloo.ca
‡segui@cab.cnea.gov.ar; also at Consejo Nacional de Investiga-

ciones Científicas y Técnicas of Argentina (CONICET).
§Also at Consejo Nacional de Investigaciones Científicas

y Técnicas of Argentina (CONICET).

other hand, there were significant developments in both theo-
retical modeling and experimental observation of the transfer
of electromagnetic energy and momentum in a STEM setting
[31,32], with a line of research focusing on forces exerted
on plasmonic nanoparticles by a passage of a fast electron
beam [33–40]. We have recently developed a fully relativistic
theory of the energy loss channels for a fast charged particle
interacting with single and multiple layers of graphene under
various configurations [41–47]. Our calculations were based
on solving Maxwell’s equations, where graphene was treated
as a planar conductive sheet of zero thickness, containing
a 2D electron gas with its dynamic polarization described
by an in-plane conductivity σ . Such an approach enabled
us to derive analytical expressions for quantities of interest
in STEM-EELS experiments, taking the conductivity σ of a
general 2D material as an input function [41,47,48], which
may be available from empirical models [49] or ab initio
calculations [47,50–52] covering a broad range frequencies.

While our previous work was mostly concerned with
the energy loss channels for particle interactions with 2D
materials, there is also an interest in studying the momen-
tum transfer between fast electrons and nanosized targets
[33–40]. Having in mind recent achievements in using elec-
tron diffraction-based techniques to probe suspended van der
Waals heterostructures in STEM [53], it is interesting to
explore the mechanisms of momentum transfer from a fast
charged particle to a 2D material via a purely EM interaction
[54]. In that respect, we study in this work the conserva-
tion equations for both energy and momentum in a system,
consisting of three subsystems: an external moving charge,
electronic excitations in a 2D material, and the EM fields
radiated in the far-field region. In doing so, we appeal to a
probabilistic interpretation of the processes involved [55–57]
and obtain analytical expressions for three functions of the
parallel wavevector k and angular frequency ω, which we
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call Fext, Fohm, and Frad and interpret as joint (probability)
densities, making it possible to evaluate the first and higher
(marginal) moments of changes in the parallel and perpendic-
ular momenta, as well as the energy, that occur within each
subsystem during the passage of the charged particle.

Our formalism also opens access to evaluating the forces
that act on both the incident particle and the target as a
whole, which could be observed in STEM. An important
difference from the previous work on plasmonic nanoparticles
[33,34,39,40] and the planar boundary of a solid target [37,38]
is that in our case the incident particle passes through a 2D
target. Representing a 2D (or atomically thin) material as
an infinitesimally thin, continuous sheet enables its efficient
inclusion in the framework of classical Maxwell equations via
standard boundary conditions, augmented by a constitutive
relation in the form of an in-plane Ohm law [58,59]. While
this is certainly advantageous for modeling of the quantities
that are accessible in STEM-EELS experiments [49], the use
of a Dirac delta “function” to represent a 2D material can
be problematic when attempting to calculate the energy and
momentum that are associated with electron excitations local-
ized in such a material. We tackle this problem with special
care in this work, and provide a solution that is consistent
with the conservation equations for the entire system. The
resulting expressions for the momentum exchange between
its subsystems can shed light not only on the forces acting on
the external particle and the target, but also on the possibility
to use the energy and direction of that particle to achieve
directionality in launching PPs in 2D materials [12,13,45,60].
Moreover, our results may be of interest for recent advances in
electron detection techniques, which allow performing rapid
scanning-diffraction experiments with high sensitivity and
high dynamic range, giving rise to a form of four-dimensional
momentum-resolved imaging of nanomaterials [61].

In the theoretical section, we first use the Poynting theorem
to rederive the relations pertaining to the energy conservation
invoked in our previous work, which is followed by the use of
a momentum conservation equation employing the Maxwell
stress tensor to derive expressions for the momentum transfer
between different subsystems. While the main body of the
article deals explicitly with normal incidence of a charged
particle on a 2D material described by a scalar longitudinal
conductivity, we outline in the Appendix all the neces-
sary generalizations to the case of oblique incidence and a
2D material described by tensorial in-plane conductivity.

We use the Gaussian units of electrodynamics [62].

II. THEORETICAL MODEL

For the sake of self-containment and consistency with
conservation equations that are studied later in this section,
several prior results will be rederived using a more direct
formulation than in, e.g., Ref. [41]. We consider an infinitely
large and infinitesimally thin planar conductive sheet, placed
in vacuum and lying in the z = 0 plane of a Cartesian coor-
dinate system with R = {r, z}, where r = {x, y} (see Fig. 1).
We assume that a fast pointlike particle with charge Ze (where
Z = −1 for an incident electron and Z > 0 for an incident
ion) moves along the z axis with constant velocity v and
passes through the sheet at time t = 0, so that its charge

FIG. 1. Schematic diagram shows a particle of charge Ze moving
with the velocity v and passing through a single layer of graphene,
which occupies the (x, y) plane. The case of normal incidence is
discussed in the main text, while the more general case of oblique
incidence is discussed in the Appendix.

density is ρext (R, t ) = Ze δ(r) δ(z − vt ) and current density
is Jext (R, t ) = ẑ vρext (R, t ), where v = ‖v‖ is its speed and
ẑ is the unit vector in the direction of the z axis. Maxwell’s
equations are easily tackled for this problem by assuming a
translational invariance of the sheet and performing Fourier
transform (FT) with respect to the in-plane coordinates (r →
k = {kx, ky}) and a FT with respect to time (t → ω). We use
a tilde to indicate a Fourier-transformed function, so that, for
example, the charge current density of the external particle is
written as

Jext (R, t ) =
¨

d2k
(2π )2

ˆ ∞

−∞

dω

2π
eik·r−iωt J̃ext (k, z, ω). (1)

If we decompose the electric and magnetic fields generated
by the external charged particle into their parallel and perpen-
dicular components, Eext = E‖

ext + ẑ E⊥
ext and Bext = B‖

ext +
ẑ B⊥

ext, we obtain in the FT domain [41]

Ẽ‖
ext (k, z, ω) = −ik

Ze

v
A eiz ω

v ,

Ẽ⊥
ext (k, z, ω) = −iZeAω

(
1

v2
− 1

c2

)
eiz ω

v , (2)

B̃‖
ext (k, z, ω) = −i(ẑ × k)

Ze

c
A eiz ω

v ,

and B̃⊥
ext (k, z, ω) = 0, with A being an auxiliary amplitude,

defined by

A(k, ω) = 4π

ω2

v2 − ω2

c2 + k2
, (3)

where k = ‖k‖ =
√

k2
x + k2

y .

We describe dynamic polarization of the sheet by using a
continuous model for its in-plane conductivity σ . Assuming
that the sheet is isotropic in the (x, y) plane, it suffices to
use a scalar conductivity function σ (k, ω) to describe lon-
gitudinal fields because no transverse fields are induced in
the case of normal incidence of the external charged particle,
as shown in Ref. [45]. A crucial step in solving Maxwell’s
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equations for the electric and magnetic fields, Eind and Bind,
which are generated by the charge current density induced in
the sheet, J̃ind(k, z, ω) = δ(z) J̃2D(k, ω), is the use of an in-
plane Ohm law to express the in-plane current density in that
sheet as J̃2D(k, ω) = σ (k, ω) Ẽ‖(k, 0, ω). Here, Ẽ‖(k, 0, ω) is
the FT of the parallel component of the total electric field,
E = Eext + Eind, evaluated at z = 0, which we may simply
call the in-plane electric field [41]. By expressing the standard
boundary condition [62] for the parallel component of the total
magnetic field, H̃‖ = B̃‖ = B̃‖

ext + B̃‖
ind at z = 0 in terms of

J̃2D(k, ω) [or, equivalently, expressing the boundary condition
for normal component of the total electric field Ẽ⊥ = Ẽ⊥

ext +
Ẽ⊥

ind at z = 0 in terms of the associated induced 2D charge
density per unit area in the sheet, ρ̃2D(k, ω) = 1

ω
k · J̃2D(k, ω),

which follows from the in-plane continuity equation], we find
a self-consistent solution for the in-plane electric field as [41]

Ẽ‖(k, 0, ω) = −ik
Ze

v

A(k, ω)

ε(k, ω)
. (4)

Here, we introduced ε(k, ω) = 1 + 2π
ω

q(k, ω) σ (k, ω) as
an effective 2D longitudinal dielectric permittivity of the
sheet, with

q(k, ω) =
⎧⎨
⎩sign(ω)

√(
ω
c

)2 − k2, |ω| > ck

i
√

k2 − (
ω
c

)2
, |ω| < ck,

(5)

where EM is the wavenumber in the direction perpendicular
to the sheet. The expression in Eq. (4) enables us to obtain
the induced electric and magnetic fields in the regions outside
the sheet, which, when decomposed into the parallel and per-
pendicular components according to Eind = E‖

ind + ẑ E⊥
ind and

Bind = B‖
ind + ẑ B⊥

ind, may be written in the FT domain as [41]

Ẽ‖
ind(k, z, ω) = i2πk

Ze

v
A

q

ω

σ

ε
eiq|z|,

Ẽ⊥
ind(k, z, ω) = −i2π

Ze

v
A

k2

ω

σ

ε
eiq|z| sign(z), (6)

B̃‖
ind(k, z, ω) = i2π (ẑ × k)

Ze

c

A

v

σ

ε
eiq|z| sign(z),

and B̃⊥
ind(k, z, ω) = 0, where sign(·) is the signum func-

tion, defined as sign(z) = ±1 for z ≷ 0. To keep displayed
equations compact, the functions A(k, ω), q(k, ω), σ (k, ω),
and ε(k, ω) are hereafter written without showing their ex-
plicit dependencies on the variables k and ω.

A. Energy conservation

In Ref. [41], we showed that the total energy lost by
the external charged particle upon passing through the sheet
goes into the energy deposited in that sheet in the form of
electronic excitations, including any PP modes, which we
call summarily the Ohmic loss, and the energy that is emit-
ted in the far-field region in the form of TR. Here, we use
the Poynting theorem to show that those energy loss chan-
nels are balanced by integrating the conservation of energy

equation [62,63],

dW

dt
+ dUEM

dt
+
‹

∂V

S · n̂ dA = 0, (7)

where dW
dt = ˝

V E · J dV is the rate at which work is done
on all charges in some volume V by the EM fields, UEM =

1
8π

˝
V (E2 + B2) dV is the total energy stored in the EM

fields in that volume, and the third term is the flux of the
Poynting vector S = c

4π
E × B through the boundary ∂V of

that volume, with n̂ being its outward-pointing unit normal
vector. We take V to be the region between two planes, z =
±d , which are parallel to the sheet and are placed a distance
d → ∞ from it, so that n̂ = ±ẑ when z ≷ 0.

Upon integrating each term in Eq. (7) over time t ∈
(−∞,∞), we can switch to the FT domain by invok-
ing the pertinent symmetry properties, e.g., Ẽ(−k, z,−ω) =
Ẽ∗(k, z, ω), where the symbol ∗ indicates a complex conju-
gate. Accordingly, we obtain from the first term in Eq. (7)

W = 1

4π3

ˆ ∞

0
dω

¨
d2k

ˆ d

−d
dz

× Re[Ẽ(k, z, ω) · J̃∗(k, z, ω)], (8)

with Re used hereafter to indicate the “real part” of an ex-
pression written in the FT domain. By decomposing the total
current density into external and induced parts, J̃ = J̃ext +
J̃ind, we can write W = Wext + Wohm, where the total energy
lost by the external charged particle may be evaluated as the
first moment with respect to frequency,

Wext = −
ˆ ∞

0
dω ω

¨
d2k Fext (k, ω) < 0, (9)

with the joint density for transferring the momentum h̄k and
energy h̄ω to the sheet given by [41]

Fext (k, ω) = 1

4π3ω

ˆ ∞

−∞
dz Re[Ẽind(k, z, ω) · J̃∗

ext (k, z, ω)]

= (Ze)2

v2

A2

4π3

k2

ω
Re

[σ

ε

]
. (10)

The energy that remains localized in the sheet in the form of
electronic excitations is obtained from Eq. (8) as

Wohm =
ˆ ∞

0
dω ω

¨
d2k Fohm(k, ω) > 0, (11)

with the corresponding joint density given by

Fohm(k, ω) = 1

4π3ω

ˆ ∞

−∞
dz Re[Ẽ(k, z, ω) · J̃∗

ind(k, z, ω)]

= Re[σ ]

4π3ω
Ẽ‖(k, 0, ω) · Ẽ∗

‖(k, 0, ω). (12)

Using Eq. (4) for the in-plane electric field, we confirm that
Eq. (12) gives the result quoted in Eq. (34) of Ref. [41].

Upon integrating the second term in Eq. (7) over time,
we obtain UEM(∞) − UEM(−∞), which is zero because the
fraction of the EM energy UEM associated with the external
charged particle is constant in time, whereas the fraction of
UEM pertaining to the induced EM fields may be assumed
to be zero for t → −∞ and to vanish when t → ∞ if we
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allow for small losses in the sheet that may be described
by adding damping terms in its conductivity that give finite
Re[σ (k, ω)] > 0. On the other hand, by integrating the third
term in Eq. (7) over time, we can express the energy carried
away in the far field in the form of TR as

Wrad =
ˆ ∞

−∞
dt

‹

∂V

S · n̂ dA

= c

(2π )4

ˆ ∞

0
dω

¨
d2kRe{ẑ ·[Ẽ(k, d, ω)

× B̃∗(k, d, ω) − Ẽ(k,−d, ω) × B̃∗(k,−d, ω)]}, (13)

where the total electric and magnetic fields should be de-
composed into their external and induced components. The
resulting interference terms between those two field compo-
nents vanish because they contain factors exp[±id ( ω

v
± q)],

which rapidly oscillate when d → ∞. Moreover, the con-
tribution to the integral in Eq. (13) from the external fields
vanishes because the associated Poynting vector is constant
along the z axis. Thus, the only contribution to Eq. (13) comes
from the Poynting vector associated with the induced EM
fields, which may be written in the FT domain as

S̃ind(k, z, ω) = c

4π
Ẽind(k, z, ω) × B̃∗

ind(k, z, ω)

= [k + ẑ q sign(z)]
π

ω

(Ze

v
Ak

)2∣∣∣σ
ε

∣∣∣2
. (14)

Given that S̃ind(k, z, ω) exhibits a finite jump at z = 0 and is
otherwise constant in the regions above and below the sheet,
we may finally express the radiation energy loss as

Wrad =
ˆ ∞

0
dω ω

¨
d2k Frad(k, ω) > 0, (15)

where the corresponding joint density is obtained from the
fluxes of the induced Poynting vector through the planes
z = 0±, which envelop the sheet tightly, as

Frad(k, ω) = 1

4π3ω
Re{ẑ · [̃Sind(k, 0+, ω) − S̃ind(k, 0−, ω)]}.

(16)

Using here S̃ind from Eq. (14) yields an expression for Frad,
which reproduces Eq. (35) of Ref. [41].

Finally, referring to Eqs. (9), (11), and (15), along with the
corresponding definitions of the joint densities in Eqs. (10),
(12), and (16), we have confirmed that the Poynting theorem,
Eq. (7), upholds the energy conservation as Wext + Wohm +
Wrad = 0 or, equivalently, as Fext = Fohm + Frad. We note that
expressions for Fohm and Frad are readily derived from the
expression for Fext by expanding the factor Re[ σ

ε
] in Eq. (10)

according to

Re
[σ

ε

]
= Re[σ ]

|ε|2 + 2π
q

ω

∣∣∣σ
ε

∣∣∣2
H (|ω| − ck), (17)

where H (·) is a Heaviside unit step function, which re-
sults from the definition of q in Eq. (5). As a consequence,
the radiative probability density, Frad, which results from the
second term in the above equation, is only nonzero above the
light cone, |ω| > ck. On the other hand, when the 2D material
supports a collective mode, such as a PP with negligible damp-
ing, Re[σ ] → 0+, then the first term in the above equation
gives rise to Ohmic probability density Fohm featuring a Dirac
delta peaked at its dispersion relation, say, ω = ωp(k), which
is located below the light cone, |ω| < ck, and it addition-
ally enforces an energy-momentum relation pertaining to that
mode. In that case, our designation “Ohmic” for the function
Fohm should be more appropriately replaced by a designation
“plasmonic” [44].

B. Momentum conservation

While the expressions obtained in the preceding section for
energy conservation are not new, we now explore conservation
of momentum by considering the equation [63]

dp
dt

+ 1

c2

d

dt

˚
V

S dV −
‹

∂V

←→
T · n̂ dA = 0, (18)

where the first term is the time-dependent Lorentz force on all
charges in the system,

dp
dt

=
˚

V

[
ρ(R, t )E(R, t ) + 1

c
J(R, t ) × B(R, t )

]
dV,

(19)

with ρ = ρext + ρind being the total charge density, the second
term the rate of change of the total momentum of the EM
fields in the volume V , and the third term the flux of the
Maxwell stress tensor [62],

←→
T (R, t ) = 1

4π

[
EE + BB − 1

2
(E · E + B · B)

←→
I

]
, (20)

through the boundary ∂V of that volume with n̂ being its
outward-pointing unit normal vector.

As in the preceding section, we use the same volume V ,
integrate Eq. (18) over time t ∈ (−∞,∞), and switch to
the FT domain. Accordingly, the first term gives us the total
momentum imparted on all charges in V by the EM fields,
which can be expressed upon decomposing ρ, J, E, and B
into their respective external and induced parts as p = pext

+ pohm, where

pext = 1

4π3

ˆ ∞

0
dω

¨
d2k

ˆ d

−d
dz Re

[
ρ̃ext (k, z, ω)Ẽ∗

ind(k, z, ω) + 1

c
J̃ext (k, z, ω) × B̃∗

ind(k, z, ω)

]
(21)

is the total change of momentum of the external charged particle, and

pohm = 1

4π3

ˆ ∞

0
dω

¨
d2k

ˆ d

−d
dz Re

[
ρ̃ind(k, z, ω)Ẽ∗(k, z, ω) + 1

c
J̃ind(k, z, ω) × B̃∗(k, z, ω)

]
(22)
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is the total momentum transferred to the conductive sheet.
Taking the limit d → ∞ in Eq. (21), calculations show that
the momentum change of the external charged particle may
be expressed as the first moment as

pext = −
ˆ ∞

0
dω

¨
d2k

(
k + ẑ

ω

v

)
Fext (k, ω), (23)

where Fext is given in Eq. (10) and is consistently interpreted
as the joint density that the external particle changes its mo-
mentum by h̄k in the parallel direction and by the amount
h̄ω
v

in the perpendicular direction with respect to the sheet.
Clearly, referring to Eq. (9), we may conclude from Eq. (23)
that Wext = v · pext, as expected in our approximation of neg-
ligible recoil for the external particle’s trajectory.

Evaluation of the integrals in Eq. (22) for the momen-
tum transferred to the sheet requires more care because both
the induced current density J̃ind(k, z, ω) = δ(z) J̃2D(k, ω) =
δ(z) σ (k, ω) Ẽ‖(k, 0, ω) and the corresponding induced
charge density, ρ̃ind(k, z, ω) = δ(z) ρ̃2D(k, ω) = δ(z) σ (k,ω)

ω
k·

Ẽ‖(k, 0, ω) include a Dirac delta δ(z). Namely, while the
parallel components of vector fields in the integrand in
Eq. (22) are continuous functions of z, a problem arises with
their perpendicular components, because both Ẽ⊥(k, z, ω) and
B̃‖(k, z, ω) exhibit jump discontinuities at z = 0. Postponing
the definition of the values of those fields at z = 0 until the
next paragraph, we invoke a formal sifting property of δ(z)
and obtain from Eq. (22)

pohm = 1

4π3

ˆ ∞

0
dω

¨
d2k

× Re

[
σ

ω

(
k · Ẽ‖(k, 0, ω)

)
Ẽ∗(k, 0, ω)

+ σ

c
Ẽ‖(k, 0, ω) × B̃∗

‖(k, 0, ω)

]
, (24)

where we recalled that B̃⊥(k, z, ω) = 0 for all z, including
z = 0. It is therefore convenient to decompose the momen-
tum transferred to the sheet into parallel and perpendicular
components, pohm = p‖

ohm + ẑ p⊥
ohm. With Ẽ‖(k, 0, ω) given in

Eq. (4), the parallel component is obtained from the first term
inside the brackets in Eq. (24) as

p‖
ohm = 1

4π3

ˆ ∞

0
dω

¨
d2k

× Re

[
σ

ω

(
k · Ẽ‖(k, 0, ω)

)
Ẽ∗

‖(k, 0, ω)

]

=
ˆ ∞

0
dω

¨
d2k k Fohm(k, ω), (25)

where Fohm(k, ω) is the joint density for Ohmic energy loss
discussed in Eq. (12).

For the perpendicular component of the momentum trans-
ferred to the sheet, we need to define the value of the
perpendicular component of the total electric field Ẽ⊥ at z = 0
and the value of the tangential component of the total mag-
netic field B̃‖ at z = 0. To do so, we invoke an argument
made elsewhere [64–66] that those values should be defined

as arithmetic means of the values of the respective fields at
z = 0+ and z = 0−,

Ẽ⊥(k, 0, ω) = 1

2
[Ẽ⊥(k, 0+, ω) + Ẽ⊥(k, 0−, ω)], (26)

B̃‖(k, 0, ω) = 1

2
[B̃‖(k, 0+, ω) + B̃‖(k, 0−, ω)]. (27)

Therefore, we obtain Ẽ⊥(k, 0, ω) = Ẽ⊥
ext (k, 0, ω) and

B̃‖(k, 0, ω) = B̃‖
ext (k, 0, ω), which could be incorporated

in the expressions for induced fields in Eq. (6) by extending
the definition of the signum function to z = 0, so that
sign(0) = 0. Incorporating this result in Eq. (24) gives for the
perpendicular component of the momentum transferred to the
sheet

p⊥
ohm = 1

4π3

ˆ ∞

0
dω

¨
d2k

× Re

[
σ

ω

(
k · Ẽ‖(k, 0, ω)

)
Ẽ⊥∗

ext (k, 0, ω)

+ σ

c
ẑ ·(Ẽ‖(k, 0, ω) × B̃‖∗

ext (k, 0, ω)
)]

=
ˆ ∞

0
dω

¨
d2k

ω

v
Fext (k, ω), (28)

where Fext (k, ω) is the joint density given in Eq. (10).
Invoking the relation Fext = Fohm + Frad deduced in the

preceding section and using Eqs. (23), (25), and (28), it is
remarkable that the total momentum imparted on all charges
in the system by the EM fields adds up to the negative of the
first moment of parallel momentum carried away by radiation
in the far field,

p = pext + (p‖
ohm + ẑ p⊥

ohm )

= −
ˆ ∞

0
dω

¨
d2k k Frad(k, ω), (29)

where Frad(k, ω) is the joint density for TR discussed in
Eq. (16).

To verify the conservation of momentum, we remark that
integration over time of the second term in Eq. (18) gives zero
using the same arguments as for the second term in Eq. (7).
Thus, we focus on the third term in Eq. (18) and define the
momentum prad carried by the EM fields in the far-field region
as the negative of the time integral of the flux of the Maxwell

stress tensor
←→
T through the planes z = ±d with d → ∞.

Letting prad, j be the jth Cartesian component of that momen-
tum, so that p‖

rad = x̂ prad,x + ŷ prad,y in the parallel direction
and p⊥

rad ≡ prad,z in the perpendicular direction, we can write
for j = x, y, z

prad, j = −
ˆ ∞

−∞
dt
‹

∂V

ĵ ·←→T ·n̂ dA

= − 1

4π3

ˆ ∞

0
dω

¨
d2k

× Re[T̃jz(k, d, ω) − T̃jz(k,−d, ω)], (30)

where ĵ is the unit vector along the jth axis, while the

Cartesian components of the tensor
←→
T are defined in the FT
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domain as

T̃j	(k, z, ω) = 1

4π

[
Ẽ j Ẽ

∗
	 + B̃ j B̃

∗
	 − 1

2
(Ẽ · Ẽ∗ + B̃ · B̃∗)δ j	

]
.

(31)

As with the flux of the Poynting vector in the preceding
section, we note that the total electric and magnetic fields in

this equation should be decomposed into their external and
induced parts and that the resulting interference terms vanish
because of the fast oscillations in the factors exp[±id ( ω

v
± q)]

when d → ∞. Moreover, because the tensor components as-
sociated with the external particle do not depend on z, it is only
the jump at z = 0 in the stress tensor components associated
with the induced fields that ultimately gives rise to a nonzero
net flux through the planes z = ±d . For the parallel direction,
we obtain from Eqs. (30) and (31), along with Eq. (6),

p‖
rad = − 1

16π4

ˆ ∞

0
dω

¨
d2k Re

[
Ẽ‖

ind(k, d, ω)Ẽ⊥∗
ind (k, d, ω) − Ẽ‖

ind(k,−d, ω)Ẽ⊥∗
ind (k,−d, ω)

]

=
ˆ ∞

0
dω

¨
d2k k Frad(k, ω), (32)

whereas for the perpendicular direction, we note that the resulting expression for the emitted radiation in the far field,

p⊥
rad = − 1

32π4

ˆ ∞

0
dω

¨
d2k Re[|Ẽ⊥

ind(k, d, ω)|2 − B̃‖
ind(k, d, ω) · B̃‖∗

ind(k, d, ω)

− ∣∣Ẽ⊥
ind(k,−d, ω)

∣∣2 + B̃‖
ind(k,−d, ω) · B̃‖∗

ind(k,−d, ω)], (33)

vanishes identically because the terms with z = d are equal to
the corresponding terms with z = −d , which appear with the
opposite sign.

Referring to Eq. (30) for j = x and y and to Eq. (32),
we see that it is the Maxwell “shear stress” that gives rise
to a momentum carried by the induced EM radiation in the
far-field region, which compensates the “missing” momentum
on all charges that was found in Eq. (29) to occur in the
parallel direction. Therefore, the conservation of momentum
in the parallel direction may be expressed as p‖

ext + p‖
ohm +

p‖
rad = 0, whereas conservation of momentum in the perpen-

dicular direction only includes charges in the system, giving
p⊥

ext + p⊥
ohm = 0. Clearly, the overall momentum is conserved:

pext + pohm + prad = 0.
Finally, the somewhat unexpected difference in the joint

densities for parallel and perpendicular momentum transfers
to the sheet, appearing in Eqs. (25) and (28), may be verified
by implementing a similar procedure, which involves integra-
tion of Eq. (18) over time, but for a volume V0 defined by
d → 0+, which envelops the conducting sheet tightly. In that
case pext = 0, so the total momentum imparted on charged
particles is reduced to just those in the sheet, p = pohm, with
its parallel and perpendicular components still given by the
expressions in Eqs. (25) and (28), respectively. Let us next de-
note the momentum resulting from integrating the third term
in Eq. (18) over time by pstr to indicate that it results from the
flux of the Maxwell stress tensor through the planes z = 0±.
Decomposing it into parallel and perpendicular components,
pstr = p‖

str + ẑ p⊥
str , we find

p‖
str = −

ˆ ∞

0
dω

¨
d2k k Fohm(k, ω), (34)

and

p⊥
str = −

ˆ ∞

0
dω

¨
d2k

ω

v
Fext (k, ω), (35)

so that, indeed, p‖
ohm + p‖

str = 0 and p⊥
ohm + p⊥

str = 0. By writ-
ing the conservation relation in the case of volume V0 for
all three components as pohm + pstr = 0, we generalize the
well-known equivalence of using the distributed Lorentz force
and the Maxwell stress tensor in calculations of radiation
pressure on dielectric boundaries [67] to the case of incident
charged particles upon 2D materials. In particular, the equal-
ity p⊥

ohm + p⊥
str = 0 demonstrates that using the definitions in

Eqs. (26) and (27) to integrate the density of the Lorentz force
“inside” a 2D material represented by a Dirac delta [66,68] is
consistent with the flux of the Maxwell stress tensor through
the adjacent planes, which is determined by the EM fields
outside the 2D material.

III. CONCLUDING REMARKS

We have performed a detailed analysis of conservation re-
lations for the electromagnetic energy and momentum during
inelastic scattering of a fast charged particle, which passes
through an isotropic conductive sheet under normal incidence
without recoil. While verifying the energy conservation, we
have shown that each subsystem, namely, the external charged
particle, electrons in the sheet, and EM radiation in the far-
field region, is characterized by a unique function of the
in-plane wavevector and angular frequency, FL(k, ω) with
L = ext, ohm, rad, respectively. Treating ω and k as “ran-
dom” variables and the functions FL(k, ω) as joint probability
densities [55–57], the energy change in each subsystem, WL,
is evaluated as the first moment of ω. When discussing
the conservation of momentum, we have demonstrated that
those same functions define the change in the momentum,
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pL, in each subsystem as the first moment of the vector
(k, ω/v). It should be stressed that both the conservation
of energy, Wext + Wohm + Wrad = 0, and conservation of mo-
mentum, pext + pohm + prad = 0, are facilitated by a general
relation between the joint densities, Fext = Fohm + Frad for all
ω and k.

It should be noted that, for the special case of a normal
incidence upon an isotropic 2D material, all the net changes
in the parallel momenta should vanish by symmetry, because
all the functions FL depend on k = ‖k‖. However, a prob-
abilistic interpretation of those functions as being related
to a double differential cross section (per atom) for inelas-
tic scattering of the incident charged particle allows us to
calculate the second moment of k from Fext and obtain a
standard deviation in the change of the parallel momentum
of that particle, 
p‖

ext. This can be then used to estimate
the deflection angle (and hence the beam broadening) of that
particle as 
p‖

ext/p0, where p0 = γ mv is its incident mo-
mentum with γ = 1/

√
1 − v2/c2 (see, e.g., Secs. 3.2.3 and

3.3.1.5 in Ref. [69]). Moreover, our theory allows one to
further treat the densities Fohm and Frad as being related to two
distinct channels of the inelastic scattering event and to ex-
press this result in terms of standard deviations in the changes
of the parallel momenta due to Ohmic and radiative losses

as 
p‖
ext =

√
(
p‖

ohm )2 + (
p‖
rad )2, enabling one to assess

relative contributions of the electronic excitations in the sheet
and the emitted radiation to the total beam broadening.

It is interesting that, while all three subsystems participate
in the conservation of momentum in the parallel direction with
their respective joint densities, the net change in the momen-
tum carried by the radiation in the perpendicular direction is
zero identically. In other words, the momentum transfer in the
perpendicular direction only occurs between the incident par-
ticle and the electrons in the sheet. However, the calculation
of the momentum transfer to the sheet in the perpendicular
direction by means of the Lorentz force presents a challenge
because it requires values of the perpendicular electric field
and tangential magnetic field on the sheet, while those fields
experience jump discontinuities across that sheet, as a conse-
quence of the standard electromagnetic boundary conditions.
We have overcome that challenge by applying a prescription,
put forward in the literature pertaining to nano-optics [64–66],
whereby one assigns an average of the values of those fields
on both sides of the sheet to be their respective value on
the sheet. We have confirmed the validity of that prescription
by performing an independent test of the momentum con-
servation relation using an infinitesimally thin volume that
straddles the sheet, thereby making the momentum pertaining
to the external charged particle vanish. We have indeed found
that changes in both the parallel and perpendicular momenta
of electrons in the sheet, evaluated by means of the Lorentz
force, are exactly equal (with the opposite sign) to the cor-
responding momenta derived from the flux of the Maxwell
stress tensor across the adjacent planes on both sides of that
sheet. While we have demonstrated in this way an internal
consistency in our treatment of the EM fields in the presence
of a polarizable 2D material, it would be interesting to further
study this problem in the context of the Abraham-Minkowski
debate [22,23,27].

It should be mentioned that we assumed that a 2D material
can only be polarized in the parallel directions, which may
be conveniently characterized by an in-plane conductivity
function σ (k, ω). An important aspect of the problem at hand
arises when the material can be polarized in the perpendicular
direction, which has been discussed in the literature and was
found to present some conceptual challenges regarding the
stability of a continuous modeling of such a material [70,71]
and it revealed subtle points regarding the very definition of an
out-of-plane dielectric function for a perpendicularly polariz-
able 2D material in the context of its ab initio calculations
[72–74]. It appears that an emerging consensus as to how to
most consistently describe the perpendicular polarizability of
a 2D material is to use an out-of-plane polarizability function
α(k, ω) [72–74]. Accordingly, a future development of the
present theory will include a generalization that will incor-
porate this aspect of the model for a fully polarizable sheet.

Our theory has a potential to shed more light on the mecha-
nisms of plasmon launching in a 2D material by the impact of
a fast charged particle. While we did not specify the form of
the conductivity function describing the electron excitations
in the sheet, the appearance of the (near-)zero values of the
resulting effective in-plane dielectric function ε(k, ω) has a
well-established link with the occurrence of a collective mode
in a 2D material, such as PP [58,75]. In such a situation, the
function Fohm(k, ω) would exhibit a Dirac-delta-like singular-
ity that introduces strong correlation between the variables ω

and k in accord with the underlying PP dispersion relation. It
would be, therefore, interesting to explore in the future how
the concept of the “energy velocity” [27,29,30] fits in the
present theory and how the group velocity of a collective mode
in the sheet affects the overall energy-momentum balance in
the system.

Finally, while our main text deals with normal incidence
of a charged particle upon a sheet described by a scalar lon-
gitudinal conductivity, all the necessary generalizations for a
more realistic setting with oblique incidence on a 2D mate-
rial described by a tensorial, momentum-dependent in-plane
conductivity are outlined in the Appendix. It is also shown
there that, besides the two separate conservation relations for
energy and momentum of the entire system, there exist simple
energy-momentum conservation relations for its subsystems
that may be written as Wext = v · pext and Wohm + Wrad = v ·
(pohm + prad ), which are controlled by the velocity v of an
obliquely incident charged particle in the no-recoil approxi-
mation (see Fig. 1).
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APPENDIX: GENERALIZATION TO OBLIQUE
INCIDENCE AND NON-SCALAR MATERIAL RESPONSE

While the main text outlines our theory for the special
case of normal incidence of an external charged particle upon
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ZORAN L. MIŠKOVIĆ et al. PHYSICAL REVIEW B 105, 045408 (2022)

an isotropic 2D material described by a scalar conductivity
function σ (k, ω), the expressions for joint densities can
be generalized to the case of an oblique incidence of the

particle upon a 2D material described by a momentum-
dependent in-plane conductivity tensor ←→σ (k, ω) as
follows [45]:

Fext (k, ω) = 1

4π3ω
Re[Ẽ∗

ext‖(k, 0, ω) · ←→σ (k, ω) · Ẽ‖(k, 0, ω)], (A1)

Fohm(k, ω) = 1

4π3ω
Re[Ẽ∗

‖(k, 0, ω) · ←→σ (k, ω) · Ẽ‖(k, 0, ω)], (A2)

Frad(k, ω) = −1

4π3ω
Re[Ẽ∗

‖(k, 0, ω) · ←→σ H(k, ω) · ←→
G ‖(k, ω) · ←→σ (k, ω) · Ẽ‖(k, 0, ω)]. (A3)

Here, Ẽ‖(k, 0, ω) = ←→ε −1(k, ω) · Ẽext‖(k, 0, ω) replaces the
expression in Eq. (4), with the in-plane dielectric permittivity
being replaced by the in-plane dielectric tensor ←→ε (k, ω) =←→

I ‖ − ←→
G ‖(k, ω) · ←→σ (k, ω), and ←→ε −1 being the inverse of←→ε , while the superscript H in Eq. (A3) represents the con-

jugate transpose (or Hermitian adjoint). Expressions for the
in-plane part of the electric dyadic Green’s function (Green’s
tensor),

←→
G ‖(k, ω), and the in-plane component of the elec-

tric field due to the external charged particle, Ẽext‖(k, 0, ω),
can be readily deduced from Eqs. (3) and (6) of Ref. [45],
respectively. The changes in energy and momentum in each
subsystem for the case of oblique incidence should be calcu-
lated as the first moments of ω and the vector (k, Q), with
the joint densities given in Eqs. (A1), (A2), and (A3). Note
that, for a particle moving with the velocity v = v‖ + ẑ v⊥,
the perpendicular component of the momentum transfer is
generalized to Q = (ω − k · v‖)/v⊥, where v‖ and v⊥ are the
parallel and perpendicular components of the velocity (see
Fig. 1). With the above generalizations, all the conservation
relations that are discussed in the main text are perfectly
satisfied in a general case.

It should be emphasized that the above formulas are
completely general and are applicable to all kinds of 2D
materials and incidence directions of the external charged
particle under the no-recoil approximation. The only consider-
ations that need to be taken into account are that the induced
EM fields should be correctly identified for the problem at
hand, and that calculations are simplified if the bases for the
representation of the EM fields, the conductivity, and the
Green’s tensors are suitably chosen and consistent. For ex-
ample, if the above formulas are applied to graphene using a
nonlocal conductivity model that supports both the longitudi-
nal and transverse responses, then it is convenient to describe
the EM fields, the conductivity, and the Green’s tensors in
the basis of longitudinal, k̂, and transverse, ẑ × k̂, unit vec-
tors. For such a case, those quantities are given by Eqs. (17)
and (18), (8), and (3) in Ref. [45], respectively. Moreover,
as another example, if the above formulas are applied to an
anisotropic 2D material, such as doped phosphorene, then it is
convenient to describe the EM fields, the conductivity, and the
Green’s tensors in a basis of the principal in-plane directions
of that material, e.g., by orienting the unit vectors x̂ and ŷ
along its armchair and zigzag directions. Such considerations
will be explored in future work [76].

Finally, it is interesting to note that, besides the separate
energy and momentum conservation relations for the entire

system, Wext + Wohm + Wrad = 0 and pext + pohm + prad = 0,
there also exist relations connecting changes in energy and
momentum in each subsystem. For example, for the external
particle, we find

Wext − v · pext = −
ˆ ∞

0
dω ω

¨
d2k Fext (k, ω)

+ v ·
ˆ ∞

0
dω

¨
d2k (k + Qẑ) Fext (k, ω)

= −
ˆ ∞

0
dω ω

¨
d2k Fext (k, ω)

× [ω − v · (k + Qẑ)]

= 0, (A4)

on the grounds that v⊥Q = ω − k · v‖. This form of an
energy-momentum conservation, Wext = v · pext, is exactly
what is expected for a change in energy and momentum in the
no-recoil approximation, 
E = v·
p, for an incident particle
with the energy E0 and momentum p0, undergoing an inelastic
scattering, such that |
E | 
 E0 and ‖
p‖ 
 ‖p0‖.

On the other hand, for the Ohmic energy and momentum,
we may use Eqs. (11) and (25), as well as Eq. (28) generalized
to p⊥

ohm = ´∞
0 dω

˜
d2k Q Fext (k, ω), to show that

Wohm − v · pohm =
ˆ ∞

0
dω

¨
d2k (ω − k · v‖)

× [Fohm(k, ω) − Fext (k, ω)], (A5)

which does not vanish. Moreover, taking into account
Eqs. (15) and (32) and noting that Eq. (33) still implies that
p⊥

rad = 0 for oblique incidence, we have

Wrad − v · prad =
ˆ ∞

0
dω

¨
d2k (ω − k · v‖) Frad(k, ω),

(A6)
which is also nonzero. However, recalling the general conser-
vation relation established in this article, namely, Fext (k, ω) =
Fohm(k, ω) + Frad(k, ω), and using it in the right-hand sides
of Eqs. (A5) and (A6), we may conclude that Wohm + Wrad =
v · (pohm + prad ), linking the changes in energy and momen-
tum pertaining to the 2D material and the EM radiation via the
velocity of the incident particle.
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[50] D. Novko, M. Šunjić, and V. Despoja, Phys. Rev. B 93, 125413
(2016).

[51] V. Despoja, D. Novko, K. Dekanić, M. Šunjić, and L. Marušić,
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