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In this paper, we present a theoretical perspective concerning the scattering of electrons on a twisted light (TL)
driven graphene quantum dot (GQD). Relatively recently discovered, TL is a novel type of electromagnetic field
which carries a finite orbital angular momentum oriented on the propagation direction, besides its spin. This
striking property of TL is due to its spatial structure. It is well known that the localization of electrons in a GQD
is forbidden by the Klein tunneling, an effect that manifests by the perfect transmission of electrons through a
potential barrier, regardless of its magnitude. Here we demonstrate that, for a suitable choice of the scattering
regimes, there emerge scattering resonances characterized by trapping states of the incident electron inside the
GQD for finite periods of time. The most interesting result is the prediction regarding the possibility to control
the trapping times using a TL irradiation. Also, we mention that the investigation was performed for a frequency
of the TL within the infrared spectrum.
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I. INTRODUCTION

Interaction of graphene with external fields such as electro-
magnetic [1–7], magnetic [8–12], or combinations of different
types of fields [13–15] has been the subject of some wide
studies concluding very promising results with potential appli-
cations in the nanoscale technology development. Moreover,
much attention was payed to the problem of transport through
different devices based on graphene such as field effect tran-
sistors, phototransistors, light detection devices, graphene
based optoelectronic devices, and so on [16–19].

In the recent years, twisted light (TL), a novel type of
spatially structured electromagnetic field, was the subject of
a new branch of Optics, as well as its interaction with atoms
[20–22] and also with graphene [23]. The peculiar character-
istic of TL consists in its intrinsic property to carry a nonzero
orbital angular momentum, determined by its spatial distri-
bution and being independent of the polarization. During the
propagation of TL, the wavefront resembles a corkscrewlike
pattern and the wave vector rotates around the propagation
direction describing a cone with a well defined opening angle.
From a corpuscular point of view, the photons propagate rotat-
ing around the center of the beam and this motion specific to
a nonzero orbital angular momentum gives the name twisted
light. In the center of the beam one sees a singularity, called
optical vortex, where the intensity of the optical field vanishes
and, as the radial coordinate increases, a sequence of zeros
and local maxima occurs.

Due to the peculiar properties of low energy electrons in
graphene, of behaving like massless Dirac fermions [24,25],
the localization of an electron in a graphene quantum dot
(GQD) is forbidden by the Klein tunneling. This striking
effect specific to graphene is the solid-state counterpart of
the relativistic Klein paradox which manifests by perfect

transmission of relativistic energies electrons through an elec-
trostatic potential barrier, regardless of its magnitude.

Even though, it was reported that in circular graphene
p-n junctions defined GQDs [26] or in GQDs produced by
substrate engineering [27] a weakly trapping of electrons may
be achieved. As well, an other method to enhance the trapping
time of electrons in GQDs was by applying an external mag-
netic field [28,29]. Because it is not a really bound state (e.g.,
as in an atom), in the case of a trapped electron, its state is
called quasibound state and the localization is substituted by
quasilocalization.

Besides the interest shown in solid-state graphene based
devices, the unique properties of graphene discussed above
create a perfect playground to study also the fundamental
problem of field-matter interaction. We can take advantage
of a very elegant and somehow straightforward method to
study the problem in question, namely manipulate the Dirac
equation in order to describe the way the Dirac fermions
dynamics is affected by the TL driving.

In this paper, we are proposing an analytical model for
the interaction of Dirac fermions in a GQD with TL and,
based on this model, we investigate the scattering problem
of electrons on TL driven GQDs. To this end, we make use
of the Floquet theory in order to deal with an easier, associ-
ated stationary problem. Furthermore, we perform numerical
calculations which reveal important results, related to the trap-
ping of electrons inside the GQDs. The investigation is largely
based on the quasilocalization of the electrons and the lifetime
of their quasibound states (trapping time).

The present paper is organized as follows. In Sec. II,
we elaborate a model for interaction of Dirac fermions in
graphene with TL, namely, we present a perturbation method
for solving the Dirac equation in the case of mesoscopic sys-
tems. In Sec. III, we make use of the solutions derived in the
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FIG. 1. Schematic description of the studied system. The GQD
is placed on the horizontal xy plane and the TL is propagating on z
axis, at normal incidence on the GQD.

previous section in order to model the scattering of electrons
on a TL driven GQD and present the main numerical results.
Finally, we summarize the results and discuss their importance
from both the fundamental and applicability points of view.

II. ANALYTICAL MODEL FOR INTERACTION OF DIRAC
FERMIONS IN A GQD WITH TL

The energy dispersion in graphene, in the vicinity of high
symmetry Dirac K points in the Brillouin zone, is known
to be linear with the small displacement wave vector κ

around the wave vector K corresponding to each K point,
Ek = ±h̄vF |κ − K|. Here, h̄ is the reduced Planck constant
and vF ≈ c/300 is the Fermi velocity with c the speed of
light in vacuum. Consequently, in this low-excitations regime
around K points, the charged particles in graphene behave
like massless Dirac fermions [30], moving freely with Fermi
velocity vF .

In this section, we present a model which describes the
interaction of Dirac fermions in a circular GQD with TL,
considering single particle states and assuming no intervalley
scattering. We consider a GQD lying in xy plane supposed
to a TL beam irradiation propagating on z direction, at normal
incidence on the dot. The studied system is displayed in Fig. 1.

In order to describe the state of these quasiparticles
supposed to a TL beam driving, one can formulate a time-
dependent Dirac equation, considering minimal coupling
of electromagnetic radiation (real spin degree of freedom
neglected):

H (r, t )ψ (r, t ) = ih̄∂tψ (r, t ); (1)

H (r, t ) = H0(r, t ) − evF σ · A(r, t ). (2)

Given the geometry of the studied system, here and in the
following, we adopt a polar coordinates reference system with
r = (r, ϕ) and set the origin in the center of the GQD. Here,
H (r, t ) [Eq. (2)] is the full Hamiltonian which describes the
dynamics of Dirac fermions in graphene under TL irradia-
tion. The first term in Eq. (2) H0(r, t ) = −ivF h̄σ · ∇, with
∇ ≡ (∂r,

1
r ∂ϕ ), is the free Hamiltonian for a massless Dirac

fermion and the second term, which contains the vector poten-
tial of TL [A(r, t )], introduces the interaction in our problem.

FIG. 2. The geometry of TL propagation. During the propaga-
tion, the wave vector k = q + kz is rotating about the propagation
direction (z axis), describing a cone with a well defined opening an-
gle θk . The transversal wave vector is denoted by q and, respectively,
the longitudinal wave vector by kz.

Moreover, in Eq. (2), σ = (σr, σϕ ) is the Pauli vector whose
components are the Pauli matrices, which in polar coordinates
read [31]

σr =
(

0 e−iϕ

eiϕ 0

)
; σϕ =

(
0 −ie−iϕ

ieiϕ 0

)
. (3)

There are many possibilities to introduce the interaction
with TL and in the present work we choose the Bessel rep-
resentation, more detailed introduced in Refs. [21,22]. Let us
shortly discuss the geometry of TL propagation, see Fig. 2. We
choose z axis as the propagation direction. As the wave front
goes by, the wave vector k rotates around the propagation
direction defining a cone with a well defined opening angle
θk = arctan(q/kz ), where q is the magnitude of the transversal
wave vector q and kz is the magnitude of the longitudinal wave
vector kz.

The vector potential of TL reads with the following for-
mula [23,32]:

A(r, t ) = A0

(
Jm(qr)eimϕε� − �i

q

kz
Jm+�(qr)ei(m+�)ϕ ẑ

)
× ei(kzz−ωt ). (4)

Here, A0 is a real constant amplitude, m is the topological
charge, ω is the frequency of the electromagnetic field and
ε� = x̂ + �iŷ is the polarization vector in xy plane with � =
±1 the helicity quantum number. Given the 2D geometry of
the studied system, the longitudinal component of the vector
potential does not participate to the interaction and, of course,
without losing the generality, the ”physical” vector potential
introduced in Eq. (2) reads with the following expression:

A(r, t ) = �{A(r, t )}|z=0

= A0Jm(qr)[cos(mϕ − ωt )x̂ + � sin(mϕ − ωt )ŷ].
(5)

Since the Hamiltonian (2) is periodic in time with the pe-
riod T = 2π/ω, in order to model the interaction, we employ
the Floquet theorem which guarantees that the eigenvalue
equation associated to a time-periodic Hamiltonian [H (r, t ) =
H (r, t + T )] admits particular solutions which have the
following structure [33,34]:

ψ (r) = e−iW t/h̄φ(r, t ). (6)
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The states described by Floquet solutions (6) are called Flo-
quet states and W is called quasienergy, which is defined up to
an integer multiple of h̄ω, W̃ = W + Nh̄ω. Note that φ(r, t )
has the same periodic feature as the Hamiltonian, φ(r, t ) =
φ(r, t + T ).

By introducin g the Floquet solution (6) into the time-
dependent Dirac Eq. (1), we obtain the following eigenvalue
equation for the quasienergy:

HF (r, t )ψ (r, t ) = W ψ (r, t ); (7)

HF (r, t ) = H (r, t ) − ih̄∂t . (8)

Here, HF (r, t ) is called Floquet Hamiltonian. The problem
we address now is the eigenvalue equation associated to the
Floquet Hamiltonian (8) and it is still time-dependent. In what
follows, we present the derivation of an associated stationary
problem in the approximation of an effective Hamiltonian.

Taking into account the time-periodicity of both the Hamil-
tonian (2) and the Floquet solution (6), one can express them
in terms of Fourier series:

H (r, t ) =
∞∑

n=−∞
e−inωt Hn(r); (9)

φ(r, t ) =
∞∑

n=−∞
e−inωtφn(r). (10)

The following corresponding inverse transformations:

Hn(r) = 1

T

∫ T

0
einωt H (r, t )dt ; (11)

φn(r) = 1

T

∫ T

0
einωtφ(r, t )dt, (12)

may be performed using the orthonormalization relation of
Fourier functions, 1

T

∫ T
0 ei(n−m)ωt dt = δnm, where δnm is the

Kronecker symbol.
Manipulating Eqs. (7)–(12), we end with the follow-

ing infinite system of coupled equations for the Fourier
components φn(r):( ∞∑

m=−∞
Hm−n + mh̄ωδmn

)
φm(r) = W φn(r);

n = −∞, . . . , 1, 0, 1, . . . ,∞,

(13)

called Floquet system of equations.
Analyzing the Floquet system of equations one should ob-

serve that the energy spectrum consists in an infinite sequence
of copies of H0(r) spectrum (Floquet bands), separated by an
amount of energy equal to h̄ω. The Floquet bands are mixed
by the terms Hm−n with m �= n. Depending on the magnitude
of h̄ω with respect to the bandwidth of the eigenvalues of
H0(r), which in our case corresponds to the typical energies
around Dirac points, we can establish how much the mixing
of two adjacent Floquet bands affects the problem. Therefore
the problem of Floquet system of equations should be firstly
analyzed in terms of specific energy scales. In what follows,
we drop the notation r and introduce the explicit notation
(r, ϕ).

In the case of a nonresonant regime [35], characterized
by high energy h̄ω, the Floquet system of equations can be
truncated and the problem reduces to the following eigenvalue
equation [36,37] :

(Heff − W )φκ (r, ϕ) = 0; (14)

H eff
F = H0 + 1

h̄ω
[H−1, H1]. (15)

Here, H eff
F is the first nontrivial order effective Floquet Hamil-

tonian. The first term in Eq. (15) is the time averaged
Hamiltonian over a cycle of oscillation of the TL electromag-
netic field, which corresponds to the zero-photon states. The
second term expresses the second order of perturbation, due
to virtual processes of absorption/emission of a photon [38].

Taking into account the form of the “physical” vector po-
tential (5) and the inverse Fourier transformation (11), we
compute

H−1 = −evF A0

2
Jm(qr)e−imϕ (σx + i�σy); (16)

H1 = −evF A0

2
Jm(qr)eimϕ (σx − i�σy). (17)

Finally, the commutator involved in the expression of the
effective Hamiltonian (15) reads

[H−1, H1] = �(evF A0)2J2
m(qr)σz. (18)

Gathering all the results above we derive the following equa-
tion for φκ (r, ϕ):

(−iσ · ∇ − κ + �λ−1�(r)σz )φκ (r, ϕ) = 0, (19)

where we have introduced the following notations:

κ = W/vF h̄; (20)

λ−1 = vF (eA0)2/h̄2ω; (21)

�(r) = J2
m(qr). (22)

Here κ stands for the associated wave number of the Dirac
fermion in the TL driven GQD. Eq. (19) is a first order ma-
trix differential equation for the unknown spinor φκ (r, ϕ) =
(φA

κ , φB
κ )T and can be decomposed in a system of two coupled,

second-order differential equations for the unknown functions
φA

κ and φB
κ . Even though, the system of differential equations

can not be solved exactly.
Equation (19) seems similar to free Dirac equation upon

the term proportional to λ−1, thus at the first glance, one
could be tempted to apply a perturbation method to solve the
equation for the case of λ−1 � κ . Leaving behind this con-
dition which is very coercive and unnecessary, we anticipate
that even for high values of λ−1, its corresponding term acts
like a perturbation, introducing only a small correction in the
solution φκ (r, ϕ) with respect to the solution of free Dirac
equation, in the case of a suitable choice of the parameters
(i.e., Dirac fermion wave number, radius of the dot, ampli-
tude of the vector potential, frequency, and so on). Therefore,
making this assumption, we seek the solution in the following
form:

φκ (r, ϕ) ≈ φ0(r, ϕ) + λ−1ζ (r, ϕ). (23)
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Here we have introduced the spinor

φ0(r, ϕ) =
(

Jl (κr)eilϕ

αiJl+1(κr)ei(l+1)ϕ

)
, (24)

which satisfies the unperturbed (free) Dirac equation (−iσ ·
∇ − α|κ|)φ0(r, ϕ) = 0 [39]. Here, α = ±1, called band in-
dex, stands for positive energy (conduction band, CB) and,
respectively, for negative energy (valence band, VB) states,
E = αvF h̄κ . In what follows, our aim is to pursue the deriva-
tion of the correction spinor ζ (r, ϕ) = (ζA, ζB)T .

Substituting the free Dirac spinor (24) into the full solu-
tion (23) and plugging it into Eq. (19) we find the following
equation for the sought spinor ζ (r, ϕ), for the first order of
perturbation:

(−iσ · ∇ − α|κ|)ζ (r, ϕ) + ��(r)σzφ0(r, ϕ) = 0. (25)

The special form of the above equation suggests to make the
following ansatz:

ζ (r, ϕ) = S(r, ϕ)χ (r). (26)

Here, χ (r) = (χA(r), χB(r))
T

is a spinor whose compo-
nents depend only on the radial coordinate and the newly
introduced factor S(r, ϕ) is the fundamental matrix of
the system of coupled differential equations (−iσ · ∇ −
α|κ|)(s1(r, ϕ), s2(r, ϕ))

T
= 0:

S(r, ϕ) =
(

Jl (κr)eilϕ Yl (κr)eilϕ

αiJl+1(κr)ei(l+1)ϕ αiYl+1(κr)ei(l+1)ϕ

)
. (27)

Here, Yl (x) is the Bessel function of the second kind of l
th order and all possible constant factors were chosen by
convention equal to unity. Note that each column contains
linearly independent terms, thus the matrix is nonsingular and
consequently we are assured that the inverse matrix exists:

S−1(r, ϕ) = πkr

2

(−Yl+1(κr)e−ilϕ −αiYl (κr)e−i(l+1)ϕ

Jl+1(κr)e−ilϕ αiJl (κr)e−i(l+1)ϕ

)
.

(28)

If we introduce ansatz (26) into Eq. (25), the differential
equations which compose the system are still coupled, but
we can decouple them by factorizing Eq. (25) at the left-hand
side with S−1(r, ϕ)σr , and performing the calculations we end
with the following differential equations for χA(r) and χB(r),
respectively:

∂rχA(r) + �πκr

2
[αYl (κr)Jl (κr)

−Yl+1(κr)Jl+1(κr)]�(r) = 0; (29)

∂rχB(r) − �πκr

2

[
αJ2

l (κr) − J2
l+1(κr)

]
�(r) = 0. (30)

For �(r) as it was defined in Eq. (22), Eqs. (29) and (30)
can not be integrated analytically, but one more trick can
be employed. If we are dealing with mesoscopic systems
where the radius of the GQD is of order of 102 nm and the
typical frequencies of the TL are ω < 1015 s−1, then we can
make use of the following approximation for Bessel functions
for small arguments, Jm(x) ≈ (x/2)m/�(m + 1), thus �(r) ≈
1/�2(m + 1)(qr/2)2m. With this assumption, using the fol-
lowing identities [40,41]:

Jl (x)Yl (x) = − 1√
π

G20
13

(
x2

∣∣∣∣∣ 1
2

0, l,−l

)
; (31)

J2
l (x) = x2l

22l�2(l + 1)
1F2

(
−x2

∣∣∣∣∣ l + 1
2

l + 1, 2l + 1

)
, (32)

where the notation Gpq
mn(x) refers to the Meijer G function and,

respectively, pFq(x) to generalized hypergeometric function,
Eqs. (29) and (30) can be forwardly integrated using the
integration relations provided by Refs. [42,43]. Thus we end
with the following solutions:

χA(r) = �
√

πr(κr)(qr)2m

22(m+1)�2(m + 1)

[
αG2,1

2,4

(
κ2r2

∣∣∣∣∣ −m, 1
2

0, l,−l,−m − 1

)
− G2,1

2,4

(
κ2r2

∣∣∣∣∣ −m, 1
2

0, l + 1,−l − 1,−m − 1

)]
; (33)

χB(r) = �πr(qr)2m(κr)2l+1

22(l+m+2)�2(m + 1)

⎡⎢⎢⎣α

42F3

(
−κ2r2

∣∣ l + m + 1, l + 1
2

l + m + 2, l + 1, 2l + 1

)
(l + m + 1)�2(l + 1)

−
(κr)2

2F3

(
−κ2r2

∣∣ l + m + 2, l + 3
2

l + m + 3, l + 2, 2l + 3

)
(l + m + 2)�2(l + 2)

⎤⎥⎥⎦.

(34)

To summarize, the perturbatively derived spinor solution of the stationary Dirac Eq. (19), which defines the state of a Dirac
fermion in a TL driven GQD, reads

φκ (r, ϕ) =
(

φA
κ (r)eilϕ

αiφB
κ (r)ei(l+1)ϕ

)
; (35)

φA
κ (r) = Jl (κr) + λ−1[Jl (κr)χA(r) + Yl (κr)χB(r)]; (36)

φB
κ (r) = Jl+1(κr) + λ−1[Jl+1(κr)χA(r) + Yl+1(κr)χB(r)]. (37)

Note that the spinor (35) is an eigenfunction of the total
angular momentum operator Jz = Lz + Sz for the eigenvalue

l + 1/2. Here, Lz = −ih̄∂ϕ is the orbital angular momentum
operator and, respectively, Sz = h̄/2σz is the spin operator
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where

σz =
(

1 0
0 −1

)
. (38)

Therefore the spinor (35) describes a state of well defined
orbital angular momentum, as a consequence of the azimuthal
symmetry of the effective Floquet Hamiltonian (15).

III. SCATTERING ANALYSIS OF ELECTRONS ON A TL
DRIVEN GQD

A. Theory

In this section, we investigate the elastic scattering process
of electrons on a circular TL driven GQD. Let us firstly de-
scribe the physical process and introduce the main equations.
We keep the reference system centered on the GQD. The in-
cident electron travels freely towards the GQD on x direction
with energy E = vF h̄k with k the associated wave number,
therefore its corresponding wave function is a plane wave:

ψ i
k (r, ϕ)= 1√

2
eikr cos ϕ

(
1
1

)
= 1√

2

∞∑
n=−∞

in

(
Jn(kr)einϕ

iJn+1(kr)ei(n+1)ϕ

)
.

(39)
Note that the wave function of the incident electron was
decomposed in an infinite sum of well defined orbital angu-
lar momentum states making use of Jacobi-Anger expansion
eiz cos ϕ = ∑∞

n=−∞ inJn(z)einϕ . The transmitted electron inside
the GQD is represented by a wave function based on the
solutions of Dirac equation derived in the previous section:

ψ t
κ (r, ϕ) =

∞∑
n=−∞

ct
n

(
φA

κ einϕ

αiφB
κ ei(n+1)ϕ

)
. (40)

The reflected particle can be described in terms of partial
waves as follows:

ψ r
k (r, ϕ) = 1√

2

∞∑
n=−∞

incr
n

(
Hn(kr)einϕ

iHn+1(kr)ei(n+1)ϕ

)
. (41)

Here, Hn refers to nth-order Hankel functions of the first
kind, which are also solutions of free Dirac equation for well
defined orbital angular momentum and, moreover, represent
outgoing waves satisfying the infinite boundary condition re-
quested by the physics of the scattering process [44], Hn(z) ∝√

2
πz ei(z− lπ

2 − π
4 ) for z 
 1. The process is schematically de-

scribed in Fig. 3. The reflection and transmission coefficients,
cr

n and ct
n, are to be derived by imposing the appropriate

boundary conditions for the wave functions. For instance, in
Ref. [45], the different scattering mechanisms are presented
for the case without light irradiation. Since at limit for A0 →
0, Eq. (35) reduces to the free spinor and a finite A0 (irradia-
tion switched on) modifies perturbatively the wave functions
(36) and (37), we are intended to impose the following bound-
ary condition, suggested in Ref. [45]:

ψ i
k (R, ϕ) + ψ r

k (R, ϕ) = ψ t
κ (R, ϕ). (42)

FIG. 3. Schematic description of the scattering process. The inci-
dent electron described by the wave function ψ i

k travels towards the
GQD of radius R with a well defined energy, E = vF h̄k. After the
interaction with the TL driven GQD, the electron either is reflected
in the outer side of the dot (obeying the energy conservation laws
specific to an elastic scattering) and its state is described by ψ r

k , or it
resides inside the dot and its state is described by ψ t

κ .

Performing the calculations, we end with the following scat-
tering coefficients:

ct
n =

√
2ei (n+1)π

2

πkr
[
Hn(kr)φB

κ (r) − Hn+1(kr)φA
κ (r)

] ; (43)

cr
n = Jn(kr)φB

κ (r) − Jn+1(kr)φA
κ (r)

Hn+1(kr)φA
κ (r) − Hn(kr)φB

κ (r)
. (44)

In what follows, we introduce the definitions for the most
important quantities which characterize the scattering pro-
cess. The probability density is given by ρ = ψ†ψ and,
respectively, the current by j = ψ†σψ . Here ψ = ψ t

κ (r, ϕ)
corresponds to transmitted electron inside the GQD and, re-
spectively, ψ = ψ i

k (r, ϕ) + ψ r
k (r, ϕ) to an electron originating

from outside GQD region. For the case of only the reflected
electron, we substitute ψ = ψ r

k (r, ϕ). Based on the property
of Bessel functions Z−n(z) = (−1)nZn(z) with Z = J or Y , we
find that χA(B) are invariant under the change of sign of l [see
Eqs. (29) and (30)] and ct (r)

−l = ct (r)
l−1. This property allows us to

rearrange the terms in Eqs. (40) and (41) and use the following
expressions for the wave functions:

ψ t
κ (r, ϕ) = 1√

2

∞∑
n=0

inct
n

[
φA

κ

(
einϕ

e−inϕ

)
+ αiφB

κ

(
e−i(n+1)ϕ

ei(n+1)ϕ

)]
;

(45)

ψ r
k (r, ϕ) = 1√

2

∞∑
n=0

incr
n

[
Hn(kr)

(
einϕ

e−inϕ

)

+ iHn+1(kr)

(
e−i(n+1)ϕ

ei(n+1)ϕ

)]
. (46)

Using the wave function (46) and the asymptotic behavior
of Hankel functions of the first kind recalled above, the radial
component of the far field reflected current is given by

jrad(r, ϕ) = 4

πkr

∞∑
n=0

∣∣cr
n

∣∣2
[cos((2n + 1)ϕ + 1)]

+ 8

πkr

∑
n′<n

Re
(
cr

ncr
n′
)
[cos((n + n′ + 1)ϕ)

+ cos((n − n′)ϕ)]. (47)
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Taking into account that the scattering analysis implies also
the investigation of the way that the scattering effects are
affected by the radius of the GQD, we introduce the scattering
efficiency which is defined as the scattering cross section
divided by the geometric cross section [46,47]:

Q = 4

kR

∞∑
n=0

∣∣cr
n

∣∣2
. (48)

B. Main numerical results

In this section, we present the main numerical results based
on the theory shortly introduced in the previous section and
respecting the limitations we have discussed about in Sec. II.
For the characterization of the process, we will describe the
behavior of scattering efficiency (Q), probability density (ρ)
and current (j) with respect to the modification of the GQD
radius (R) and the amplitude of the vector potential (A0). Since
TL exhibits a nonuniform spatial distribution of its intensity,
the scattering analysis may be performed with respect to A0,
which is a constant or otherwise, in order to keep the inves-
tigation consistent and use conventional units, we introduce
PGQD, a quantity which represents the averaged total power
of TL which irradiates the GQD over a period of oscillation.
The definition and derivation are presented in Appendix. The
newly introduced quantity is related to A0 by

PGQD(mW) = βA2
0(μV s m−1). (49)

We notice that in the following we refer to PGQD simply as
“TL power.”

Preliminary we mention that the scattering process is more
conveniently analyzed in terms of scattering modes which are
indexed by n ranging from 0 to ∞ [see Eqs. (45)–(48)]. We
consider in our analysis that only normal scattering modes are
excited. In the whole work, we limit ourselves to the case of
topological charge m = 1, angular frequency ω = 1014 s−1,
and opening angle θk = 30◦.

Taking into account that TL is a special type of electro-
magnetic field which possess both spin and orbital angular
momentum we concentrate at the very beginning on this ex-
traordinary feature. Let us firstly investigate the scattering
efficiency as a function of R and A0 for the scattering modes
n = 0 and n = 1, which are the only excited scattering modes.
This first investigation serves us as a starting point for a further
analysis using values of interest for R and A0. The studied
system consists in an incident electron that scatters on a TL
driven GQD on which an electrostatic bias V > 0 is applied
[48]. The band structure of the system is displayed in Fig. 4.
Firstly, let us briefly describe the process. The incident elec-
tron with energy E = vF h̄k, lies in the CB (at Fermi level, in
the upper Dirac cone) until it enters the dot. Once it penetrates
the barrier, in the biased region where the applied potential
shifts the Fermi level towards lower values, its energy lies
either in CB (α = +1) or in VB (α = −1), depending on the
strength of the potential. In this case, its corresponding wave
number will be κ = |E − V |/(vF h̄).

In Fig. 5(a), we present the results for the case of � = 1
(positive helicity), in which case the spin and orbital angular
momentum of TL have the same orientation. The energy of
the incident electron was chosen E = 0.5 meV. In Fig. 5(b),

FIG. 4. The band structure corresponding to biased (V >

0)/nonbiased (V = 0) regions. The GQD is defined in the biased
region (the center Dirac cones). The incident electron with energy
E = vF h̄k enters the CB in nonbiased region. Inside the dot the ap-
plied electrostatic potential reduces the Fermi level and the energy of
the electron is E = vF h̄κ where κ = |E − V |/(vF h̄) is the associated
wave number. Outside the dot the potential is V = 0 then, by virtue
of conservation laws, the energy of the electron is E = vF h̄k.

we considered � = −1 (negative helicity) for the same energy
of the incident electron as in panel (a). In this case, the spin
and orbital angular momentum of the TL are oriented in op-
posite directions. Since the scattering efficiency is a measure
of the interaction strength between the incident electron and
the dot, it can be observed that for both types of helicity, the
TL driving is mandatory for giving rise to relevant scattering
phenomena. As revealed in panels (a) and (b), there is imposed
a value of A0 ≈ 1 μVs/m below which the interaction is very
weak, basically absent. For higher values of A0 the scattering
effect is governed by the helicity of the TL, as we will de-
scribe in what follows. For the case of � = 1, the scattering
efficiency is rising monotonously with A0 for a fixed R and
reaches values much lower than for negative helicity. For the
case of � = −1, the important values of scattering efficiency
lie on a strip of values for A0 and R. This behavior is associ-
ated with so called scattering resonances which generally are
characterized by trapping phenomena of the incident electron
inside the dot [49,50]. As well, each resonance is assigned to
a given scattering mode. In our studied case, the resonance
which occur at lower values of A0 is due to the excitation of
n = 0 scattering mode, while the second which exhibits higher
values of scattering efficiency and a much narrower strip is
due to the excitation of n = 1 mode, as indicated on the plot.

In Fig. 5(c), the scattering efficiency is plotted as a function
of the TL power, for R = 220 (red curve) and 280 nm (blue
curve), as indicated by white vertical dashed lines in panel (b).
In these two cases, the values of PQGD defined in Eq. (49) were
evaluated using β = 0.68 and 1.8 for R = 220 and 280 nm,
respectively, as computed in Appendix. For each curve, the
corresponding axis of PGQD values is indicated by an arrow of
specific color.

In the case of R = 220 nm, the only excited scattering
mode is n = 0. The line shape shows a very asymmetric
specific Lorentz profile with the peak centered on PGQD =
4.95 mW (see label “2”). This asymmetry of the profile occurs
due to the Fano resonance phenomenon, which consists in the
interference of a resonantly excited scattering mode (n = 0
in our case) with the slowly varying background [51]. For
R = 280 nm besides n = 0, there arises also n = 1 scattering
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FIG. 5. Scattering efficiency as a function of R and A0 (PGQD)
for the scattering modes n = 0 and n = 1. (a) corresponds to � = 1
(positive helicity) and, respectively, (b) to � = −1 (negative helic-
ity) for an incident electron with energy E = 0.5 meV. (c) shows
the scattering efficiency as a function of PGQD for R = 220 nm (red
curve) and, respectively, R = 280 nm (blue curve) for the case of
� = −1, as it is indicated by the white dashed vertical lines in (b).
The values of PGQD are to be read on lower (upper) horizontal axis for
red (blue) curve, as it is hinted by the red (blue) vertical arrow. The
most interesting pattern is observed for the case of negative helicity
where the scattering efficiency reveals resonances for specific sets of
R and A0 (PGQD).

mode, resonantly excited. The scattering mode n = 0 peak is
shifted towards a lower power of the TL and the maximum
value of the scattering efficiency diminishes. On the other
hand, the n = 1 scattering mode resonance is centered on a
higher TL power PGQD = 32.36 mW (see label “3”). It has a
typical Lorentz profile, which indicates the absence of Fano
resonances, and a very small width. For the sake of a clear
description, we present in panel (d) the scattering efficiency
curve for R = 280 nm and its corresponding components
associated with scattering modes n = 0 (green curve) and 1
(cyan curve). We anticipate now that the narrower and non-
perturbed from its specific Lorentz shape is the profile of the

scattering efficiency curve, the more prominent are the trap-
ping effects. Therefore we expect to figure out in what follows
enhanced effects for R = 280 nm compared to R = 220 nm
case.

Analyzing Fig. 5, we conclude that the scattering of an
electron on a GQD is resonantly excited in the presence of
a negative helicity TL driving. Otherwise, the positive helicity
TL excites scattering phenomena as well, but the scattering is
nonresonant. Taking into account this observation, in what fol-
lows, we perform an investigation dedicated only to � = −1
case.

We continue our discussion in terms of a real space inquiry.
Now we concentrate our attention to a near field analysis,
picturing the probability density and current around the GQD.
This method of investigation helps in a very intuitive manner
to describe and explain the scattering process. Each column
of panels in Fig. 6 is dedicated to one of the three scattering
regimes indicated by labels “1,” “2,” and “3” in Fig. 5(c).

The first analyzed case is addressed to R = 220 nm and
PGQD = 1.53 mW [see label “1” in Fig. 5(c)]. In this scattering
regime the density has slightly higher values in the inner
region of the dot [see Fig. 6(a)]. The spatial localization of
the dot is indicated with white circle. It is well known that a
permanent trapping of an electron (at normal incidence) inside
a GQD is suppressed by Klein tunneling, but nevertheless, it
was reported in a number of papers that there may exist some
so called quasibound states which describe the transitory trap-
ping of electrons for a finite period of time [49,50,52,53]. In
this case, we say that the electron is quasilocalized. Generally
speaking, the quasibound states in a GQD arise due to the
generation of density current vortices inside the dot, which
trap the electron for a finite period of time and after that,
the electron escapes in the outer region of the dot. Indeed,
analyzing Fig. 6(b), we observe at the top and, respectively,
bottom edges of the GQD how the current tends to follow
a vortexlike trajectory. The spatial extension of the dot is
represented with blue circle. Nevertheless, since the power of
the TL is not high enough, the current does not describe a
closed path. The only noticeable effect takes place close to the
boundary of the dot, where the quasilocalization is obviously
very weak. This behavior could be anticipated, taking into
account that at this TL power the scattering efficiency has a
very low value [see Fig. 5(c)]. As well, we notice that the
backscattering is absent and an important amount of current
is directed forward, as a signature of Klein tunneling.

The second investigated scattering regime is for R =
220 nm and PGQD = 4.95 mW [see label “2” in Fig. 5(c)].
Recall that these parameters correspond to the scattering res-
onance peak due to the excitation of n = 0 mode. Also in
this case, the density pattern presents the highest values near
the inner boundary of the GQD, but the values are about
four times higher than in the previous case [see Fig. 6(c)].
The density does not display a very different behavior, but
otherwise the near field current flow is more interesting, as
can be seen in panel (d). In this case, the Klein tunneling still
manifests, but newly, two completely closed counter-rotating
vortices which trap the electron may be observed inside the
dot and this is the reason for the increasing of the density
values. In this regime, the backscattering is also absent, but
the Klein tunneling is depleted because there exist two regions
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FIG. 6. Real space scattering analysis of an electron on a TL driven GQD. In each column the first panel presents the near field probability
density ρ plotted as a function of coordinates and in the second panel is figured the flow in the near field of the probability current density
j: [(a) and (b)] R = 220 nm and PGQD = 1.53 mW, [(c) and (d)] R = 220 nm and PGQD = 4.95 mW, and [(e) and (f)] R = 280 nm and
PGQD = 32.36 mW. Each column of panels is dedicated to one scattering regime from those indicated by labels “1,” “2,” and “3” in Fig. 5(c).
The GQD spatial localization is indicated with a white circle in the density panels and, respectively, with blue circles in the current panels.
(a) The density has slightly higher values in the inner region of the dot. (b) The current tends to follow a vortexlike trajectory. (c) The density
begins to exhibit higher values inside the dot. (d) Two completely closed counter-rotating vortices may be observed inside the dot. (e) The
density pattern shows the higher values inside the dot. (f) Six counter-rotating vortices are generated inside the GQD.

where the impact of the electron takes place at nonnormal
angles.

The third scattering analysis is performed for R = 280 nm
and PGQD = 32.36 mW [see label “3” in Fig. 5(c)]. This pa-
rameters correspond to the peak of the scattering resonance
associated to the excitation of the n = 1 mode. As in the
previous two cases, the density maximum is reached again
close to the inner boundary of the dot [see Fig. 6(e)], which
seems to be a behavior specific to such a system. Even though,
in conformity with the shape and width of the scattering effi-
ciency curve [see Fig. 5, panels (c) and (d)], as we already
anticipated, the values of the density are up to two orders
of magnitude as high compared to the first case and about
four times higher than in the previous case. As in the second
analyzed situation, the rising of the density values may be
understood in terms of current. Assessing the current flow
[Fig. 6(f)], we can observe this time six counter-rotating vor-
tices which are generated inside the GQD up to the center
of the dot unlike the previous case where the vortices were
generated only on the extremities. Also in the present regime,
the quasilocalization of the incident electron may be explained
as a suppression of the Klein tunneling, since this time there

arise six distinct regions where the electron penetrates the dot
from outside.

So far we argued that the negative helicity TL driving may
help to reach quasibound states for appropriate choices of the
GQD radius and TL power. As well, we have described the
trapping effects in a very intuitive manner showing the density
patterns and explained the phenomenon in terms of current. In
what follows, for a more comprehensive analysis, we perform
an evaluation concerning the lifetime of the quasibound states
in those scattering regimes where they occur. This time we
treat the case of unbiased configuration. Let us shortly discuss
the method.

As we have already seen, the quasibound states, not being
real bound states, are characterized by positive valued ener-
gies in the continuum. The hint is to not restrict ourselves only
to real values but analyze the resonances in terms of complex
valued energies E = Er − iEi, where Er is the resonant energy
and Ei is the part related to the lifetime (τ ) of the quasibound
state by τ = h̄/Ei. In order to determine these energies, we
match the transmitted wave inside the dot with the reflected
wave, on the boundary of the GQD, by virtue of continuity
[49]. Considering this boundary condition, we deal with the
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FIG. 7. Real (empty dots) and, respectively, imaginary (filled
dots) parts of the complex energy E = Er − iEi corresponding to
each resonance identified at given values of A0 (PGQD) for (a) R =
220 nm, n = 0 and (b) R = 280 nm, n = 1. The trapping time is
presented in the inset.

following transcendental equation for k = κ:

φA
κ

φB
κ

= Hn(kr)

Hn+1(kr)

∣∣∣∣
r=R

, (50)

for a given mode n = 0, 1, 2,... In our approach, we consider
complex valued wave number k = kr − iki and the lifetime
of the quasibound state characterized by resonant energy
Er = vF h̄kr is given by τ = 1/vF ki. Each solution of Eq. (50)
represents a scattering resonance in the energy space.

We solved numerically Eq. (50) and for each found reso-
nance we present in Fig. 7 sets of values (Er , Ei) with open
and, respectively, filled dots for different values of A0 (PGQD).
The radii of the dots were chosen the same as in the previous
analysis, respectively R = 220 nm and R = 280 nm. The two
values in each set are connected by blue lines in order to
qualitatively evaluate the lifetime of the quasibound state for
its corresponding resonant Er at every given A0 (PGQD). In the
inset of each panel is presented the lifetime of the quasibound
states.

In Fig. 7(a), we analyze the case for R = 220 nm and
n = 0. From the very beginning we observe that the increasing
TL power strongly influences the lifetime of the quasibound
states, reaching values of 20 ns. Even though in this case
we observe the smallest trapping times with respect to the
other case [see panel (b)], compared to the results presented

in Refs. [27,49] (τ ∼ 10−5 ns, respectively, τ ∼ 10−4 ns), in
our case, the lifetime is higher with two orders of magnitude,
which is an outstanding trapping feature of a GQD. For the
n = 1 scattering mode [Fig. 7(b)], the trapping times are a
little bit higher, but of the same order of magnitude.

As well, we can observe performing this investigation that
the trapping effects are excited at different resonant energies,
depending on the scattering mode. For the case of n = 0, the
resonant energy ranges above 0.06 up to 0.3 meV, while for
n = 1, the energy lies in a slightly wider range, from 0.4 to
2.6 meV. Nevertheless, the energy of the incident electron
must be carefully chosen, since as we can see in Fig. 7 ana-
lyzing the imaginary parts of the energy, the noticeable effects
are generated for the low values of resonant energy, for both
scattering modes. Having in mind this finding, we infer that,
besides the radius of the dot and TL power, the energy of the
incident electron plays a crucial role in the controlling of the
trapping characteristics of GQDs.

IV. SUMMARY AND CONCLUSIONS

All the striking trapping effects, in the case of frequency
ω = 1014 s−1, topological charge m = 1 and opening angle
θk = 30◦ for an incident electron with energy E = 0.5 meV,
were observed for negative helicity (� = −1), in which case
the spin and orbital angular momentum of the TL are oriented
in opposite directions. In this configuration, the scattering
effects are governed by resonant excitations of n = 0 and
n = 1 modes, depending on the radius of the dot and, the most
interesting, the power of the driving TL.

Analyzing the scattering phenomenon in terms of proba-
bility density and current, we noticed particularities for each
excited scattering mode and for each scattering regime. In the
case of a resonant regime, there arise trapping processes, more
prominent for n = 1 mode than for n = 0, as predicted also
by analyzing the scattering efficiency curve. The quasilocal-
ization of the incident electron revealed by density patterns,
may be understood in terms of current. For n = 0 mode,
we observed two counter-rotating vortices which induce the
quasibound states and for n = 1, six such vortices. Moreover,
the quasilocalization may be explained as a reduction of Klein
tunneling which, however, is always present. For all the stud-
ied cases, the backscattering is completely suppressed and the
Klein tunneling is present.

Regarding the trapping time, we proved that the higher is
the power of the driving TL, the longer lasts the corresponding
quasibound state, for the case of unbiased dot. We observed
important values, much higher than those reported for instance
in the case of electrostatic defined GQDs.

In conclusion, if the trapping of incident electrons at
normal angles on GQDs seems to be impossible or the
calculated/measured trapping times was reported to be very
reduced, in the case of a TL driven GQD, we have proven here
that, for a suitable chosen sets of parameters, the trapping can
be achieved with long lasting periods of time.

The method we chose in order to analyze the scattering
process of electrons on TL driven GQDs, in the case of Dirac
cones approximation, seemed to be quite elegant and easy
to apply, from the mathematical point of view, but with the
price of imposing specific limitations regarding the param-
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eters which govern the process. Nevertheless, our approach
enabled us to reveal remarkable behaviors of the studied sys-
tem, in principal, from the fundamental physical point of view.
Moreover, all the effects we noticed here may be identified
with possible future developments of graphene-based elec-
tronic devices.

APPENDIX: AVERAGED TOTAL POWER OF TL

In this Appendix, we briefly present the derivation of the
averaged total power PGQD of the TL which irradiates the
GQD. We have introduced the subscript “GQD” in order to
highlight that we compute the integration with respect to the
GQD geometry and, as we will show, the final values depend
on the radius of the GQD.

We start from the Poynting vector

S(r, ϕ, t ) = 1

μ0
E(r, ϕ, t ) × B(r, ϕ, t ). (A1)

The vector S(r, ϕ, t ) represents a measure of the electromag-
netic energy flow through a normal unit area per unit time.
In Eq. (A1), the constant factor μ0 = 4π × 10−7 H/m is the
vacuum permeability and

E(r, ϕ, t ) = �[−∂t A(r, ϕ, t )] and B(r, ϕ, t ) = �[∇
× A(r, ϕ, t )] (A2)

are the electric and, respectively, magnetic fields with
A(r, ϕ, t ) being the vector potential.

The total energy per unit time which flows through the
surface of the circular GQD is defined as the flux of the
Poynting vector

Ptot
GQD(t ) =

∮
GQD

S(r, ϕ, t ) · nds =
∫ R

0

∫ 2π

0
Sz(r, ϕ, t )rdrdϕ.

(A3)
We define the averaged total power TL as the averaged

Poynting vector flux over a period of oscillation:

PGQD = 1

2π/ω

∫ 2π/ω

0
Ptot

GQD(t )dt . (A4)

Using the vector potential (4), particularized to our specific
case of topological charge m = 1 and � = −1, we obtain
from Eqs. (A2) the following components of the electric and,
respectively, magnetic field:

Er (r, ϕ, t ) = −A0ωJ1(qr) sin(kzz − ωt ); (A5)

Eϕ (r, ϕ, t ) = A0ωJ1(qr) cos(kzz − ωt ); (A6)

Ez(r, ϕ, t ) = −A0ω tan θkJ0(qr) cos(kzz − tω); (A7)

Br (r, ϕ, t ) = −A0q cot θkJ1(qr) cos(kzz − ωt ); (A8)

Bϕ (r, ϕ, t ) = −A0q(tan θk + cot θk )J1(qr) sin(kzz − ωt );
(A9)

Bz(r, ϕ, t ) = A0qJ0(qr) sin(kzz − ωt ). (A10)

In order to derive Eqs. (A5) and (A10), we have took into
account the following transformations of the unit vectors from
rectangular to cylindrical coordinates:

x̂ = cos ϕr̂ − sin ϕϕ̂, (A11)

ŷ = sin ϕr̂ + cos ϕϕ̂, (A12)

ẑ = ẑ. (A13)

If we insert Eqs. (A5) and (A10) in Eq. (A1), we compute
the following expression for the z component of the Poynting
vector:

Sz(r, ϕ, t ) = A2
0ωq

μ0

[
cot θk + tan θk

2
[1 − cos(2kzz − 2ωt )]

]
× J2

1 (qr). (A14)

We note that for � = +1, even though the expressions of the
electric and magnetic field components are different, the same
result for Sz still holds.

Inserting Eq. (A14) into Eq. (A3) and taking into account
Eq. (A4), we find the following relation:

PGQD = βA2
0, (A15)

were β is defined as

β = ω

μ0R

(
cot θk + tan θk

2

)
× [

qRJ2
0 (qR) − 2J0(qR)J1(qR) + qRJ2

1 (qR)
]
. (A16)

Using SI conventional units [PGQD]=1 W and [A0] =1
V s m−1, in our case, for ω = 1014 s−1 and θk = 30◦, it is
convenient to introduce the following relation between PGQD

and A0:

PGQD(W) = βA2
0(μV s m−1); (A17)

β = 0.68 for R = 220 nm; (A18)

β = 1.8 for R = 280 nm. (A19)
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[14] B. Ostahie, M. Niţă, and A. Aldea, Phys. Rev. B 91, 155409

(2015).
[15] S. H. Kooi, A. Quelle, W. Beugeling, and C. M. Smith, Phys.

Rev. B 98, 115124 (2018).
[16] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat. Photon

4, 611 (2010).
[17] G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M.

Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. L. Koppens,
Nat. Nanotechnol. 7, 363 (2012).

[18] K. M. Dani, J. Lee, R. Sharma, A. D. Mohite, C. M. Galande,
P. M. Ajayan, A. M. Dattelbaum, H. Htoon, A. J. Taylor, and
R. P. Prasankumar, Phys. Rev. B 86, 125403 (2012).

[19] E. Gruber, R. A. Wilhelm, R. Pétuya, V. Smejkal, R. Kozubek,
A. Hierzenberger, B. C. Bayer, I. Aldazabal, A. K. Kazansky,
F. Libisch et al., Nat. Commun. 7, 13948 (2016).

[20] A. Afanasev, C. E. Carlson, and A. Mukherjee, Phys. Rev. A
88, 033841 (2013).

[21] O. Matula, A. G. Hayrapetyan, V. G. Serbo, A. Surzhykov, and
S. Fritzsche, J. Phys. B: At. Mol. Opt. Phys. 46, 205002 (2013).

[22] H. M. Scholz-Marggraf, S. Fritzsche, V. G. Serbo, A. Afanasev,
and A. Surzhykov, Phys. Rev. A 90, 013425 (2014).

[23] M. B. Farías, G. F. Quinteiro, and P. I. Tamborenea, Eur. Phys.
J. B 86, 432 (2013).

[24] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.
Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Nature (London) 438, 197 (2005).

[25] M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nat. Phys.
2, 620 (2006).

[26] J. Lee, D. Wong, J. Velasco, Jr., J. F. Rodriguez-Nieva, S. Kahn,
H. Z. Tsai, T. Taniguchi, K. Watanabe, A. Zettl, F. Wang et al.,
Nat. Phys. 12, 1032 (2016).

[27] C. Gutiérrez, L. Brown, C. J. Kim, J. Park, and A. N. Pasupathy,
Nat. Phys. 12, 1069 (2016).

[28] A. De Martino, L. Dell’Anna, and R. Egger, Phys. Rev. Lett.
98, 066802 (2007).

[29] Y. Pan, H. Ji, X. Q. Li, and H. Liu, Sci. Rep. 10, 20426 (2020).

[30] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,
and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

[31] M. Loewe, F. Marquez, and R. Zamora, J. Phys. A: Math. Theor.
45, 465303 (2012).

[32] G. F. Quinteiro, C. T. Schmiegelow, D. E. Reiter, and T. Kuhn,
Phys. Rev. A 99, 023845 (2019).

[33] J. H. Shirley, Phys. Rev. 138, B979 (1965).
[34] U. De Giovannini and H. Hübener, J. Phys. Mater. 3, 012001

(2020).
[35] K. Kristinsson, O. V. Kibis, S. Morina, and I. A. Shelykh, Sci.

Rep. 6, 20082 (2016).
[36] M. A. Sentef, M. Claassen, A. F. Kemper, B. Moritz, T. Oka,

J. K. Freericks, and T. P. Devereaux, Nat. Commun. 6, 7047
(2015).

[37] M. Vogl, M. Rodriguez-Vega, and G. A. Fiete, Phys. Rev. B
101, 235411 (2020).

[38] T. Mikami, S. Kitamura, K. Yasuda, N. Tsuji, T. Oka, and H.
Aoki, Phys. Rev. B 93, 144307 (2016).

[39] N. M. R. Peres, J. N. B. Rodrigues, T. Stauber, and J. M. B.
Lopes dos Santos, J. Phys.: Condens. Matter 21, 344202
(2009).

[40] A. M. Mathai, A Handbook of Generalized Special Functions
for Statistical and Physical Sciences (Clarendon Press, Oxford,
1993), p. 129.

[41] Y. L. Luke, The Special Functions and Their Approximations;
Mathematics in Science and Engineering Vol. 53 (Academic
Press: New York, USA; London, 1969), Vol. I, p. 216,
Eq. (41).

[42] http://functions.wolfram.com/07.34.21.0003.01
[43] http://functions.wolfram.com/07.22.21.0002.01
[44] J. Cserti, A. Pályi, and C. Péterfalvi, Phys. Rev. Lett. 99, 246801

(2007).
[45] F. Guinea, J. Low Temp. Phys. 153, 359 (2008).
[46] R. L. Heinisch, F. X. Bronold, and H. Fehske, Phys. Rev. B 87,

155409 (2013).
[47] C. Schulz, R. L. Heinisch, and H. Fehske, Quant. Matt 4, 346

(2015).
[48] H. Yang, Nat. Phys. 12, 994 (2016).
[49] P. Hewageegana and V. Apalkov, Phys. Rev. B 77, 245426

(2008).
[50] H.-Y. Chen, V. Apalkov, and T. Chakraborty, Phys. Rev. Lett.

98, 186803 (2007).
[51] A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Rev. Mod.

Phys. 82, 2257 (2010).
[52] N. Freitag, L. A. Chizhova, P. Nemes-Incze, C. R. Woods, R. V.

Gorbachev, Y. Cao, A. K. Geim, K. S. Novoselov, J. Burgdörfer,
F. Libisch et al., Nano Lett. 16, 5798 (2016).

[53] Z.-Q. Fu, K.-K. Bai, Y.-N. Ren, J.-J. Zhou, and L. He, Phys.
Rev. B 101, 235310 (2020).

045405-11

https://doi.org/10.1103/PhysRevB.81.165433
https://doi.org/10.1103/PhysRevB.73.241403
https://doi.org/10.1103/PhysRevB.78.195427
https://doi.org/10.1103/PhysRevB.79.085407
https://doi.org/10.1103/PhysRevB.89.165412
https://doi.org/10.1103/PhysRevB.94.195431
https://doi.org/10.1103/PhysRevLett.98.116802
https://doi.org/10.1103/PhysRevB.91.155409
https://doi.org/10.1103/PhysRevB.98.115124
https://doi.org/10.1038/nphoton.2010.186
https://doi.org/10.1038/nnano.2012.60
https://doi.org/10.1103/PhysRevB.86.125403
https://doi.org/10.1038/ncomms13948
https://doi.org/10.1103/PhysRevA.88.033841
https://doi.org/10.1088/0953-4075/46/20/205002
https://doi.org/10.1103/PhysRevA.90.013425
https://doi.org/10.1140/epjb/e2013-40621-2
https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nphys384
https://doi.org/10.1038/nphys3805
https://doi.org/10.1038/nphys3806
https://doi.org/10.1103/PhysRevLett.98.066802
https://doi.org/10.1038/s41598-020-77357-8
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1088/1751-8113/45/46/465303
https://doi.org/10.1103/PhysRevA.99.023845
https://doi.org/10.1103/PhysRev.138.B979
https://doi.org/10.1088/2515-7639/ab387b
https://doi.org/10.1038/srep20082
https://doi.org/10.1038/ncomms8047
https://doi.org/10.1103/PhysRevB.101.235411
https://doi.org/10.1103/PhysRevB.93.144307
https://doi.org/10.1088/0953-8984/21/34/344202
http://functions.wolfram.com/07.34.21.0003.01
http://functions.wolfram.com/07.22.21.0002.01
https://doi.org/10.1103/PhysRevLett.99.246801
https://doi.org/10.1007/s10909-008-9835-1
https://doi.org/10.1103/PhysRevB.87.155409
https://doi.org/10.1166/qm.2015.1205
https://doi.org/10.1038/nphys3817
https://doi.org/10.1103/PhysRevB.77.245426
https://doi.org/10.1103/PhysRevLett.98.186803
https://doi.org/10.1103/RevModPhys.82.2257
https://doi.org/10.1021/acs.nanolett.6b02548
https://doi.org/10.1103/PhysRevB.101.235310

