
PHYSICAL REVIEW B 105, 045404 (2022)
Editors’ Suggestion

Ratchet effect in spatially modulated bilayer graphene: Signature of hydrodynamic transport

E. Mönch,1 S. O. Potashin,2 K. Lindner,1 I. Yahniuk,3 L. E. Golub ,2 V. Yu. Kachorovskii ,2,3 V. V. Bel’kov,2 R. Huber,1

K. Watanabe,4 T. Taniguchi,5 J. Eroms,1 D. Weiss,1 and S. D. Ganichev 1,3

1Terahertz Center, University of Regensburg, 93040 Regensburg, Germany
2Ioffe Institute, 194021 St. Petersburg, Russia

3CENTERA, Institute of High Pressure Physics PAS, 01142 Warsaw, Poland
4Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan

5International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan

(Received 17 August 2021; revised 17 November 2021; accepted 24 November 2021; published 7 January 2022)

We report on the observation of the ratchet effect—generation of direct electric current in response to external
terahertz radiation—in bilayer graphene, where inversion symmetry is broken by an asymmetric dual-grating
gate potential. As a central result, we demonstrate that at high temperature, T = 150 K, the ratchet current
decreases at high frequencies as ∝ 1/ω2, while at low temperature, T = 4.2 K, the frequency dependence
becomes much stronger ∝ 1/ω6. The developed theory shows that the frequency dependence of the ratchet
current is very sensitive to the ratio of the electron-impurity and electron-electron scattering rates. The theory
predicts that the dependence 1/ω6 is realized in the hydrodynamic regime, when electron-electron scattering
dominates, while 1/ω2 is specific for the drift-diffusion approximation. Therefore, our experimental observation
of a very strong frequency dependence reveals the emergence of the hydrodynamic regime.

DOI: 10.1103/PhysRevB.105.045404

I. INTRODUCTION

Electronic fluid dynamics is one of the extremely active
developing areas of condensed matter physics (for review, see,
e.g., Refs. [1–4]). Although the pioneering works [5–8] on
hydrodynamic (HD) electron and phonon transport were done
a very long time ago, the topic did not generate much interest
until recently. The interest in HD transport was triggered
by the fabrication of ultraclean ballistic structures, primar-
ily based on one-dimensional and two-dimensional carbon
materials. Convincing manifestations of HD behavior in dif-
ferent transport regimes have been demonstrated in a number
of recent experiments [9–31]. Moreover, literally in recent
years, it has been possible to experimentally visualize HD
flow in ballistic 2D systems by using various nanoimaging
techniques [15,20–22,27].

The purpose of the current paper is to demonstrate the tran-
sition from the drift-diffusion (DD) regime, where scattering
by disorder dominates, to the HD regime, where electron-
electron (ee) scattering prevails, in a single system, on one
and the same experimental sample, with a smooth change in
some external control parameter. While direct current trans-
port measurements have been the focus so far, we show here
that photovoltaic measurements offer additional opportuni-
ties for exploring this transition. In particular, as we will
show in this paper, the obtained frequency dependence of the
photoresponse allows one to extract important information
about the type of transport in the system. We will demon-
strate that the radiation frequency dependencies of the DD
and HD responses are strikingly different. We also find that
the transition between these two regimes can be realized by

changing the carrier density of the electronic system via gate
voltage.

To demonstrate DD-HD transition experimentally in pho-
tovoltaics, we choose one of the most general and fascinating
phenomena in optoelectronics, which is the ratchet effect—
the generation of a dc electric current in response to an ac
electric field in systems with broken inversion symmetry, for
reviews see, e.g., Refs. [32–41]. This general definition can
be used for long periodic grating gate structures with an
asymmetric configuration of gate electrodes, e.g., dual-grating
top-gate (DGG) structures [42–46]. In this case, the direction
of the current is controlled by the lateral asymmetry parame-
ter [39,47],

� = |E(x, t )|2 dU (x)

dx
, (1)

where x is the coordinate in the direction perpendicular to the
grating, the overline stands for the average over the ratchet
period and time, dU (x)/dx is the derivative of the electrostatic
potential of the grating U (x) with respect to the coordinate
x and E(x, t ) is the radiation electric field being coordinate
dependent due to the near-field diffraction.

The ratchet effect was treated theoretically and ob-
served experimentally in various low-dimensional struc-
tures [42–62], so the ratchet current measurements can already
be considered a standard tool. Despite a large number of
publications on the ratchet effect, the role of ee collisions,
which can drive the system into the HD regime, has not been
studied thoroughly. This is the central question on which we
focus in this paper.
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Here we demonstrate, both theoretically and experimen-
tally, that the dc response of a DGG, based on bilayer
graphene (BLG), has very different frequency dependencies:
1/ω6 in the HD regime and 1/ω2 within the DD approx-
imation. We derive an analytical formula which describes
the transition between both regimes and demonstrate that at
low carrier densities the experimental results follow the HD
approach. However, after increasing the sample’s electron
concentration via the back gate voltage, the obtained data are
in accordance with the description in the DD picture. This
suggests that we can tune between both regimes. We further
find that a temperature increase at sufficiently low tempera-
tures, where the contribution of phonons is negligible, shifts
the system closer to the HD regime.

II. SAMPLES AND METHODS

A. Samples

Bilayer graphene samples were encapsulated between
hexagonal boron nitride (hBN) flakes to ensure a high sam-
ple quality and protect the active layer from influences of
the environment. The heterostructures were fabricated by a
van der Waals stacking technique [63] on top of a Si wafer,
serving as a uniform back gate, covered with 285 nm thermal
SiO2. The interdigitated DGG structures were fabricated on
top of encapsulated BLG by electron beam lithography (EBL),
evaporation of 5 nm Cr and 30 nm Au, and liftoff. Afterward,
source and drain contacts were prepared by EBL, reactive ion
etching to expose the graphene layer, and evaporation of Cr
and Au. These contacts allow us to study the ratchet current
generated in the direction perpendicular to the DGG stripes.

A cross-section sketch and an optical micrograph are
shown in Figs. 1(a) and 1(b), respectively. The lateral super-
lattice consists of two top gates which comprise six cells. Both
top gates, TG1 (wide stripes) and TG2 (narrow stripes), have
different width and spacing parameters with a characteristic
cell period L, listed in Table I. In addition, they are electrically
isolated from each other, which allows the application of
unequal top gate voltages UTG1 and UTG2 providing a tunable
asymmetric electrostatic potential and, consequently, control-
lable variation of the lateral asymmetry parameter �.

B. Methods

The ratchet current in the BLG samples was driven by
in-plane alternating electric fields E(t ) of the terahertz (THz)
radiation provided by a continuous wave optically pumped
molecular gas laser [64,65]. In the experiments described
below, we used radiation with frequencies f = 2.54, 1.63, and
0.69 THz (corresponding photon energies h̄ω = 10.5, 6.7, and
2.9 meV, respectively). The incident power, P, lying in the
range from 15 to 80 mW, was modulated at a frequency of
60 Hz by a mechanical chopper. To control the laser power sta-
bility during the measurements, it was monitored by reference
pyroelectric detectors. The beam cross section was controlled
by a pyroelectric camera revealing a nearly Gaussian profile
with a spot diameter which, depending on the frequency,
ranges from 1.5 to 3 mm at the sample’s position. Conse-
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FIG. 1. Cross section (a) and optical micrograph (b) of bilayer
graphene encapsulated by hBN layers with an interdigitated lateral
superlattice on top. (a) The cross section shows the layer sequence
and indicates the width of the gold stripes (d1,2) and the spacing in
between (a1,2). The length of unstructured parts of the BLG flake
between the source (drain) and the first (last) superlattice stripe is
labeled as s1 (s2).The asymmetric supercell is repeated six times to
create a superlattice with a period L = d1 + d2 + a1 + a2. (b) The
interconnected thick and thin stripes form top gates TG1 and TG2,
respectively. The white dashed tetragon shows the border of the BLG
flake. Red arrow illustrates the radiation electric field vector E for
normal incident linearly polarized radiation tilted from the x axis by
the azimuth angle α.

quently, the radiation intensity was reaching I ≈ 3 Wcm−2

and the THz electric field E ≈ 50 V/cm.
To extract and study different ratchet effects, such as

the Seebeck, linear, and circular ratchets, we make use of
their different polarization dependencies, see Refs. [35,46]
and discussion below. A controllable variation of the radia-
tion’s polarization state was obtained rotating lambda-half or
lambda-quarter crystal quartz wave plates. In the former case,
the orientation of the linearly polarized radiation is described
by the azimuth angle α between the electric field vector E
of the radiation and the x axis. The change of the radiation
helicity is defined by the angle ϕ between the initial polar-
ization plane El and the optical axis of the lambda-quarter
plate. Note that for α = 0 and ϕ = 0, the electric field is

TABLE I. Geometric parameters of samples #A, #B, and #C. For
the structure cross section and top view, see Fig. 1.

Parameter Sample #A Sample #B Sample #C

Flake length/width ( µm) 25/13 30/11.5 17/6.5
Top/bottom thickness ( nm) 30/60 40/80 55/70
of hBN
a1/a2 ( µm) 2/0.5 2/0.5 1/0.25
d1/d2 ( µm) 1/0.5 1/0.5 0.5/0.25
s1/s2 ( µm) 1.4/0.6 3/3.4 2.3/3.1
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FIG. 2. Polarization dependencies of the photovoltage Vph normalized to radiation power PS measured at f = 2.54 THz. Data presented
in (a) and (b) are obtained by rotation of a lambda-half plate, demonstrating variation of the signal upon rotation of the radiation electric
field vector E with respect to x axis. For azimuth angles α = 0 and 180 ◦, E is normal to the top gate stripes, whereas for α = 90 ◦ the field
is oriented along the stripes. Arrows on top illustrate orientations of radiation electric field vector for several values of α. Data presented in
(c) and (d) are obtained by rotation of a lambda-quarter plate by an angle ϕ which allows us to examine radiation helicity dependence of the
photovoltage. Upward arrows mark right-(σ+) and left-(σ−) handed circularly polarized radiation. The ellipses on top illustrate the polarization
states at several angles ϕ. Solid curves are fits after Eq. (2), (a) and (b), and Eq. (3), (c) and (d), see also theoretical Eqs. (11)–(13). The data in
(a) and (c) are obtained for sample #A at room temperature, connecting both top gates to ground. The data in (b) and (d) present photovoltage
generated in sample #B at T = 150 K for UBG,eff = 1 V and for lateral asymmetries of the applied electrostatic potential with opposite signs.
The insets in (a) and (c) represent the measurement configurations of the sample for linearly and elliptically polarized radiation. The inset in
(b) shows the DGG structure. Here, the color code corresponds to the applied top gates.

directed along the x axis, i.e., perpendicular to the stripes,
see inset in Fig. 1(b). The samples were illuminated through
z-cut crystal quartz windows of a temperature-regulated Ox-
ford Cryomag optical cryostat. The windows were covered
by black polyethylene films, which are transparent for THz
radiation, but prevent uncontrolled illumination of the sam-
ple with room light in both the visible and the infrared
ranges.

The photovoltage signal was measured as a voltage drop,
Vph, directly over the sample resistance, Rs, applying a stan-
dard lock-in technique. In all graphs, the photovoltage is
normalized to the radiation power coming onto the sample,
PS, with PS = IAS, where I is the radiation intensity and AS

defines the area of the DGG on top of the bilayer flake.
Note that the corresponding photocurrent Jdc relates to the
photovoltage Vph as Jdc = Vph/Rs.

III. RESULTS

Illuminating the BLG superlattice, we observed a photosig-
nal exhibiting the characteristic behavior of the ratchet effect.
This includes the dependence on the lateral asymmetry pa-
rameter Vph ∝ � and the variation of the ratchet current with
the polarization of the radiation [35,46]. Figures 2(a) and 2(b)
exemplarily show the dependence of the photovoltage on the
orientation of the electric field vector E of the linearly polar-
ized radiation passing through a lambda-half plate. The data
can be well fitted by

Vph(α) = V0 + VL1 cos 2α + VL2 sin 2α, (2)

where the terms cos 2α = PL1 and sin 2α = PL2 represent the
Stokes parameters and correspond to the linear polarization
degrees for the axes x, y and in the coordinate system rotated
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by an angle of 45 ◦, respectively [66,67]. Note that the am-
plitude VL1 was more than an order of magnitude greater
than VL2 for all studied conditions. The observed polarization
dependence is expected from the phenomenological theory
of the ratchet effect presented in Refs. [35,46], demonstrat-
ing that the fitting parameters V0,VL1, and VL2 describe the
polarization-independent ratchet contribution (V0) and the lin-
ear ratchet effect (VL1,VL2). Moreover, in this regard, the
theory reveals that the ratchet contributions should reverse
signs upon inversion of the lateral asymmetry. This feature
is clearly demonstrated in Fig. 2(b), which shows the data for
opposite signs of the parameter �, obtained by using different
combinations of the effective top gate voltages: UTG1 = −0.5
V/UTG2 = 0 (red circles) and UTG1 = 0/UTG2 = −1 V (blue
circles). Note that for zero top gate voltages, see Fig. 2(a), the
asymmetry is created by the built-in potential due to the metal
stripes of different widths (TG1 and TG2) deposited on top of
the encapsulated BLG.

Using elliptically (circularly) polarized radiation allows us
to explore a further ratchet contribution, the circular ratchet
effect [35,46], which is characterized by opposite signal po-
larities in response to the radiation of opposite helicities. The
corresponding dependencies on the rotation angle, ϕ, of the
lambda-quarter plate are shown in Figs. 2(c) and 2(d).
The data can be well fitted by

Vph(ϕ) = V0 + VL1

(
cos 4ϕ + 1

2

)
+ VL2

(
sin 4ϕ

2

)
+VC sin 2ϕ. (3)

Here the terms in brackets describe the variation of the Stokes
parameters PL1 and PL2 in λ-quarter arrangement [66,67], and
the circular effect is given by the last term on the right-
hand side of Eq. (3) with fitting parameter VC and Stokes
parameter PC = sin 2ϕ, which determines the degree of cir-
cular polarization. Also, for the circular contribution to the
total photosignal, we observed the expected ratchet behavior
VC ∝ �. This is exemplarily shown in Fig. 2(d), demonstrat-
ing that the polarity of the circular contribution VC reverses
by changing the sign of the lateral asymmetry parameter �,
obtained by different combinations of the top gate voltage.
Note that for ϕ = 45 ◦ and 135 ◦, the radiation is circularly
polarized and, consequently, the linear ratchet contributions
proportional to VL1 and VL2 vanish. The polarization behav-
ior of the ratchet response addressed above, see Eqs. (2)
and (3), allows us to analyze all three ratchet contributions:
the linear, polarization-independent, and the circular one. By
that, the linear and polarization-independent contributions
were extracted measuring the photoresponse Vph(α) to the
linearly polarized radiation with azimuth angle α = 0 and 90◦,
and using V0 = [Vph(0) + Vph(90◦)]/2 and VL1 = [Vph(0) −
Vph(90◦)]/2. Because of VL2 � VL1, the discussion below of
the linear ratchet effect is limited to VL1. The circular con-
tribution VC was obtained by measuring the ratchet current
in response to circularly polarized radiation and using VC =
[Vph(45◦) − Vph(135◦)]/2.

To explore the dependence of the individual ratchet ef-
fects on the lateral asymmetry �, we varied one top gate
voltage (UTG1 or UTG2), while keeping the other at ground
potential. Figure 3 shows these dependencies obtained by
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FIG. 3. Top gate dependencies of the polarization-independent,
V0/PS, and linear, VL1/PS, ratchet signals. The signals are normalized
to the radiation power PS. The data were obtained sweeping one
top gate potential and holding the other at ground. The individual
contributions were extracted from the total photoresponse apply-
ing differences in their polarization dependencies, see Eq. (2) and
corresponding discussion. The data are presented for sample #B,
T = 150 K and UBG,eff = 1 V. Solid curves show dependencies on
UTG1 and the dashed curve dependencies on UTG2. (a) UTG1 depen-
dence of the polarization-independent ratchet signal V0/PS obtained
for different radiation frequencies f = 0.69, 1.63, and 2.54 THz.
The color code of the curves refers to the color of the labeled fre-
quencies. (b) Comparison of the top gate dependencies of the linear
ratchet VL1/PS and polarization-independent ratchet V0/PS excited by
radiation with f = 2.54 THz. The insets show the absolute value of
the amplitudes as a function of the radiation frequency for different
combinations of the top gate voltages. Solid and dashed lines in the
insets are fits after Eq. (4) with τ = 0.17 ps.

applying radiation of different frequencies. First, these figures
clearly demonstrate that the inversion of �, achieved either by
changing the polarity of the gate voltage applied to one of the
gates or by exchanging the biased gates, yields opposite signs
of the photosignal. This behavior is shown for linear, VL1,
and polarization-independent, V0, contributions, see Figs. 3(a)
and 3(b), respectively. The same results are obtained for all
samples and all ratchet contributions, see Appendix B.
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Analyzing the results for different frequencies, we observe
that the overall behavior of the ratchet current is the same and
the only difference is a substantial increase of the current am-
plitude with decreasing frequency. This is shown in Fig. 3(a),
presenting the top gate dependencies of the polarization-
independent contribution, V0, measured in sample #B for three
radiation frequencies at T = 150 K. Figure 3(b) shows that
an increasing signal with the reduction of frequency is a
distinctive feature for both polarization-independent and lin-
ear ratchet effects. The insets in Fig. 3 show the frequency
dependencies of the ratchet magnitude obtained for opposite
signs of the lateral asymmetry � (UTG1,eff/UTG2,eff = −1.5
V/0 and 0/ − 1.5 V). Here the effective top gate voltages are
indicated as UTG1/TG2,eff = UTG1/TG2 − UTG1/TG2,CNP, where
the UTG1/TG2,CNP is the voltage value which corresponds to
the charge neutrality point (CNP). For top gate dependen-
cies of the resistivity, see Appendix A. Note that the signal
changes its sign in the vicinity of zero effective top gate bias.
Therefore, we analyzed the frequency dependency for high
negative gate voltages at which the UTG dependencies become
almost flat. The obtained data can be well fitted by the Lorentz
formula

Vph( f )/PS ∝ Vph(0)

1 + (2π f )2τ 2
, (4)

with the fitting parameter τ and Vph(0), corresponding to
the zero-frequency amplitude, see dashed and solid lines in
the insets of Figs. 3(a) and 3(b). The best fits are obtained
with the momentum relaxation time of τ = 0.17 ps, which
is several times shorter than that obtained from the width
of the cyclotron resonance (not shown) studied in the same
samples (τ = 0.6 ps at 4.2 K). This difference is attributed to
a substantially higher temperature at which the measurements
in Fig. 3 were performed (T = 150 K).

Cooling the sample from 150 to 4.2 K on the one
hand modifies the top gate dependencies in the vicinity of
UTG1/TG2,eff ≈ 0, and on the other hand drastically changes
the signal magnitudes as well as their frequency dependen-
cies, see Fig. 4. Apart from that, Figs. 4(a) and 4(b) clearly
demonstrate the characteristic ratchet behavior V0 ∝ �: the
photoresponse inverses its sign by exchanging UTG1 and UTG2

as well as changing the polarity of the electrostatic potential
applied to one of the top gates.

First, we address the peak feature, which is clearly seen
at UTG1/TG2,eff ≈ 0. Figures 4(a) and 4(b) show that under
these conditions the top gate dependencies of the signals
are in accordance with the first derivative of the conduc-
tance [68] (for top gate dependence of the resistivity see
Appendix A). This behavior is characteristic for both the
polarization-independent and the linear ratchet effects; see
Fig. 4(b).

Now we turn to the change of the signal magnitudes and,
in particular, their frequency dependencies. Strikingly, the re-
duction of temperature from 150 to 4.2 K drastically changes
the frequency dependence of the ratchet signal. While at a
frequency of f = 2.54 THz the temperature drop from 150
to 4.2 K does not affect much the photoresponse magnitude,
at lower frequencies the decrease in temperature significantly
(by two orders of magnitude) increases the ratchet current.
Alike for the analysis of the data obtained at T = 150 K,

(a)

(b)

(c)

FIG. 4. Top gate dependencies of the normalized ratchet signal
obtained in sample #B at low temperature, T = 4.2 K, applying radi-
ation with different frequencies. The data are measured for UBG,eff =
1 V. (a) Polarization-independent contribution, V0/PS, as a function
of the effective TG1 potential UTG1,eff = UTG1 − UTG1,CNP. The inset
shows TG1 and TG2 dependencies of the signal excited by radiation
with f = 2.54 THz. (b) Polarization-independent, V0/PS, and linear,
VL1/PS, ratchet contributions as a function of the effective TG2 poten-
tial UTG2,eff = UTG2 − UTG2,CNP. (c) Frequency dependence of both
contributions for several values of UTG1.eff using a double logarithmic
scaling. The values of UTG1 used for this plot correspond to almost
flat parts of the curves for all used frequencies. The red dashed line
is calculated after Eq. (4) with τ = 0.17 ps, which was used to fit the
data in the insets in Fig. 3. It demonstrates that in contrast to the data
for T = 150 K, the frequency dependence of the ratchet signals at
low temperatures is very strong.

which were presented above, we focus below on the frequency
dependencies of the signals obtained at high negative/positive
top gate voltages, where the signals are almost voltage in-
dependent. Since the signal amplitude changes by nearly
two orders of magnitude when varying the radiation fre-
quency by about four times, the frequency dependence is
presented on a double logarithmic scale. The red dashed line
in Fig. 4(c) shows the frequency dependence of Vph calculated
after Eq. (4), which is used to fit the data at T = 150 K. It
is seen that at low temperatures the data deviate significantly
from the expected Lorentz-like behavior.

To explore the characteristic features of the spectacular
modification of the ratchet effect, we measured the top gate
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FIG. 5. Frequency dependencies of the two ratchet contributions, V0 and VL1, for different temperatures and effective back gate voltages
measured for sample #B. For comparison of the signal behavior upon the change of the radiation frequency, each data set is normalized
on the value of the signal at the lowest frequency ( f = 0.69 THz). For better visualization of the different frequency dependencies, a double
logarithmic scale was used to present the data. (a) Data for three temperatures, 2, 4.2, and 150 K, obtained for UBG,eff = 1 V and UTG1 = −1.5 V.
The red solid curve [displayed as red dashed curves in (b)–(d)] corresponds to Eq. (4) with τ = 0.17 ps used to fit high temperature data in
the insets in Fig. 3, whereas the dashed blue curve represents the crossover from DD to HD following Eq. (33). (b) Both contributions
polarization-independent, V0, and linear, VL1, for UBG,eff = 1 V and positive/negative values of the effective TG1 potential. (c) V0 for T = 4.2 K
and two back gate potentials. (d) V0 and VL1 for T = 4.2 K and UBG,eff = 1 V obtained at signal’s extreme detected close to effectively zero
top-gate potentials. The thin linking lines [green and blue in (a) and (c), respectively] between the experimental points serve as guide lines for
better illustration. The experimental data are shown for UTG2 = 0.

dependencies of linear, VL1, and polarization-independent, V0,
ratchets at different frequencies, temperatures, and back gate
voltages. The data were used to obtain frequency dependen-
cies of the photosignals, presented in Figs. 4(c) and 5. To
investigate the difference in the frequency behavior obtained
for different sets of parameters (top/bottom gate voltages and
temperatures), we normalized each data set to the magnitude
of the signal at the lowest frequency used in our experiments
( f = 0.69 THz). The results are demonstrated in Figs. 5(a)–
5(d). As addressed above, because of the huge difference
in the signal magnitude, we used a double logarithmic pre-
sentation. Furthermore, we included in all panels red curves
(solid/dashed) calculated after Eq. (4) with the momentum
relaxation time, τ = 0.17 ps, used to fit the data at T = 150 K
in the insets in Fig. 3. Figure 5(a) shows the data at 4.2 K and
low back gate voltage (UBG,eff = 1V) previously presented
in Fig. 4(c), but now, as addressed above, normalized to the
response obtained at f = 0.69 THz. It can be clearly seen that
the frequency dependence of the ratchet magnitude obtained
at 4.2 K (blue circles) is different from that detected for 150 K

(red circles). For f = 1.63 THz, the normalized ratchet am-
plitude already differs from the Lorentz curve (red solid line)
by about three times. Further increase of the frequency results
in an abrupt reduction of the magnitude. Now, at f = 2.54
THz, the signal deviates from the Lorentz curve by more than
30 times. Such a drastic change of the frequency dependence
of the ratchet current is observed for both V0 and VL1, see
Fig. 5(b). The decrease of temperature from 4.2 to 2 K, how-
ever, results in a substantially weaker frequency dependence,
see Fig. 5(a). Comparing the normalized signal’s magnitude
for T = 2 K (green circles) and for T = 4.2 K (blue circles)
with the Lorentz curve, we obtained that at f = 2.54 THz
the former one is reduced by three times, whereas the latter
one by 30 times. The weaker frequency dependence is also
detected for T = 4.2 K, but higher carrier densities obtained
by increasing the back gate voltage, see Fig. 5(c) showing
the data for UBG,eff = 1 V (blue triangles) and 5.5 V (dou-
ble colored triangles). Last but not least, in Figs. 5(a)–5(c)
we show the data taken at high positive/negative top gate
voltages, where the signals are almost independent of the top
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FIG. 6. Frequency dependencies of both ratchet contributions, V0

(filled symbols) and VL1 (empty symbols), measured in sample #B
for various sequences of top gate voltages (UTG1,eff or UTG2,eff ) and
UBG,eff = 1 V. The data obtained at different temperatures are shown
in red for T = 150 K and in blue for T = 4.2 K. Similar to Fig. 5(a),
the red solid curve corresponds to Eq. (4) with τ = 0.17 ps used to
fit the data at T = 150 K, whereas the dashed blue curve represents
the crossover from DD to HD following from Eq. (33). For better
visualization, a double logarithmic scale was used to present the data.

gate voltage. The strong frequency dependence at T = 4.2 K
and low carrier density has also been detected at the signal’s
extreme, obtained for top gates biased close to effectively zero
potentials. This is shown in Fig. 5(d) for V0 and VL1 measured
for UBG = 1 V.

To highlight the drastic difference in the frequency depen-
dence of the ratchet contributions, V0 and VL1, as compared to
the Lorentz curve we combined in Fig. 6 all data obtained for
UBG,eff = 1 V and two temperatures (4.2 and 150 K). The data,
extracted from Fig. 5, were obtained at a low carrier density
and exhibit the strongest difference in the frequency behavior.
The data reveal that for f = 1.69 THz at various experimental
conditions, the difference in magnitude, as compared to the
Lorentz curve ranges between 2.5 and 20 times, whereas for
f = 2.54 THz it becomes much larger and varies between 20
and 100 times. The large variation of amplitudes measured at
high frequencies for 4.2 K is attributed to very different se-
quences of top gate voltages. We see that although the ratchet
effect is sensitive to the details of the density profile controlled
by the top gates (as expected from the theory shown below),
the general trend of the frequency dependence strengthening
is clearly observed. A comparison with the developed theory,

see Sec. V, shows that such drastic frequency dependence is
expected for the THz-ratchet photoresponse in the HD regime.
The corresponding calculated curve is plotted in Fig. 6 as a
blue dashed line, whereas the Lorentz curve fitting the data at
T = 150 K is presented by the red solid curve. The compar-
ison between the experimental data and the calculated curves
will be presented in Sec. V.

IV. THEORY

We start with a brief review of state of the art. The standard
calculations of the ratchet current [35,46,51] are performed in
the DD approximation where both ee and electron-phonon in-
teractions are ignored as compared to fast impurity scattering
(although thermalization of the distribution function is implic-
itly assumed). Such a ratchet effect is sometimes referred to
as electronic ratchet. Actually, the effect of the ee interaction
is twofold and can be quite strong. First, as we mentioned,
sufficiently fast ee collisions can drive the system into the HD
regime. Second, ee interaction leads to plasmonic oscillations,
so a new frequency scale, the plasma frequency, ωp(q) appears
in the problem, where q is the inverse characteristic spatial
scale of the system. For grating-gate structures with period L,
it is given by q = 2π/L.

The ratchet effect is dramatically enhanced in the vicinity
of plasmonic resonances. This plasmonic enhancement can be
excluded experimentally by using high excitation frequencies,
ω � ωp(q). However, even in this case, one should choose the
DD or HD approximation depending on the relation between
the momentum relaxation and the ee-collision rates. While
hydrodynamics is usually applied to describe plasmonic ef-
fects, photogalvanic ratchets are mostly treated within the DD
approximation. The detailed study of the ratchet effects for
both regimes, including theoretical and experimental analy-
sis of the transition between them is absent so far. Hence,
interpretation of experiments requires a subtle analysis of ap-
plicability of the approximations used. The theory presented
below shows that both regimes are two limiting cases of
the same problem and suggests parameters controlling the
transitions between them. The theory is developed for diffu-
sive assumption, ql � 1. Ballistic effects are not significant
in the experiment because this inequality was satisfied even
for the lowest temperature. In particular, the results shown
in Fig. 6 below correspond to an electron density about
2.5 × 1011 cm−2 and, respectively, to the mean free path not
exceeding 0.4 µm, which is much smaller than the modulation
period.

A. Model

We consider the motion of 2D electrons with parabolic
energy dispersion in the static periodic potential

U (x) = U0 cos qx, q = 2π

L
, (5)

which arises in the 2D gas due to presence of the grating gate
structure with the period L.

The external field of general polarization is described by
phases α and θ ,

Ex = E0 cos α cos ωt, Ey = E0 sin α cos(ωt + θ ), (6)
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which are connected to the standard Stokes parameters as
follows:

PL1 = cos 2α, PL2 = sin 2α cos θ, PC = sin 2α sin θ.

(7)
Note that for the λ-half and λ-quarter experimental setup
arrangements, these parameters take the form given in Sec. III.

We also assume that the grating leads to modulation of the
electric field with depth h, so the field acting in the 2D channel
has spatially modulated amplitude. The components of total
field in the channel read

Ex(x, t ) = [1 + h cos(qx + φ)]E0 cos α cos ωt, (8)

Ey(x, t ) = [1 + h cos(qx + φ)]E0 sin α cos(ωt + θ ), (9)

where φ is the phase which determines the asymmetry of the
modulation.

We search the response of the 2D electron system to the
above described perturbation by using two approaches: HD
and DD. In both approaches, the direction of the current is de-
termined by the frequency-independent asymmetry parameter
Eq. (1),

� = E2
0 hU0q sin φ

4
, (10)

which is present due to the phase shift φ between the static
potential and the near-field amplitude.

B. Microscopic theory of limiting cases: Drift-diffusion
and hydrodynamic regimes

HD theory formulates equations for the concentration and
velocity. Calculations within the HD approach yield (here, we
rewrite results of Ref. [54] in terms of the radiation Stokes
parameters)

jHD
x = �

e3N0τ
3q2

m3

1 + PL1

(1 + ω2τ 2)
[(

ω2 − ω2
q

)2
τ 2 + ω2

] ,

jHD
y = −�

e3N0τ
3

2m3s2

(
ω2 − ω2

q

)
PL2 + ω

τ
PC(

ω2 − ω2
q

)2
τ 2 + ω2

. (11)

Here ωq = sq is the plasma frequency, s is the plasma wave
velocity, and τ is the electron momentum relaxation time.

In the DD theory, the ratchet current is obtained by sequen-
tial iterations of the kinetic equation in the weak electric field
radiation amplitude and the static force of the ratchet potential
∝ dU/dx. It was also assumed that the wave vector q is
sufficiently small, so one can keep linear in q terms only. Since
the parameter � already contains factor q, see Eq. (10), it can
be put zero in all other terms. Also, the DD approximation
fully neglects the ee interaction. Within such approximations,
the components of the ratchet current for parabolic energy
dispersion are given by [35,46,51]

jDD
x = −�

e3N0τ
3

m3v2
F

1 + PL1

1 + (ωτ )2
, (12)

jDD
y = −�

e3N0τ
3

m3v2
F

PL2 + 1
ωτ

PC

1 + (ωτ )2
. (13)

Here we do not take into account the so-called Seebeck ratchet
contribution [35,46,51] governed by the energy relaxation
processes.

C. Comparison of drift-diffusion and hydrodynamic regimes

Let us now compare results obtained within HD and DD
approximations. To this end, we first rewrite formulas for jHD

x,y
in the limit of the sufficiently small q, which was used in the
derivation of DD equations. We get

jHD
x ≈ �

e3N0τ
3q2

m3ω2

1 + PL1

(1 + (ωτ )2)2
, (14)

jHD
y ≈ −�

e3N0τ
3

2m3s2
0

PL2 + 1
ωτ

PC

1 + (ωτ )2
(15)

for q → 0. Comparing Eqs. (14) and (15) with Eqs. (12)
and (13), we see that jHD

y = jDD
y . Indeed, the plasma wave

velocity is given by

s0 =
√

e2N0

mC
+ v2

F

2
, (16)

where C = ε/4πDs is the channel capacitance per unit area,
Ds is the distance to the spacer, ε is the dielectric constant, N0

the concentration in the channel, and the term v2
F/2 represents

the contribution of the Fermi pressure. In the absence of the
interaction, the latter contribution dominates. Replacing in
Eq. (15), s2

0 → v2
F/2, we reproduce Eq. (13). On the other

hand, although polarization dependencies of x components of
the current is the same, they are parametrically different and,
moreover, have different signs:

jHD
x

jDD
x

= − v2
F q2

ω2(1 + ω2τ 2)
. (17)

The most important difference, which can be checked experi-
mentally, is the frequency-dependence difference both at high
and low frequencies. For high frequencies, HD current decays
much faster:

jHD
x ∝ 1

ω6
, jDD

x ∝ 1

ω2
, for ω → ∞. (18)

For low frequency, ω � 1/τ, jHD
x diverges while jDD

x satu-
rates:

jDD
x → const, for ω � 1/τ. (19)

We also notice that y components of the current calculated
in two different approximations coincide only in the limit q →
0. For any finite q, there is an essential difference. The circular
contribution diverges at ω → 0 in both approaches. In the HD,
this divergence is cured by the Maxwell relaxation. In the DD
approximation, it is cured by the energy relaxation caused by
the ee or electron-phonon interaction [51]. One can expect that
inclusion of the inelastic scattering into HD approach would
lead to restriction of response by at the frequencies of the
order of 1/τM + 1/τee. Also, taking into account finite q in
the DD model would limit the divergence of the response at
low frequency by conventional diffusion at ω ∼ D/L2 (here
D is the diffusion coefficient) which replaces the Maxwell
relaxation rate.
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Above, we discussed the nonresonant case ω � ωq. It
makes little sense to compare the two approximations in the
opposite resonant regime, since the DD approximation as a
starting point assumes that q is small and, as a consequence,
the inequality ω � ωq is fulfilled. For not too small q, reso-
nant conditions,

ωqτ � 1, ω − ωq ∼ 1/τ, (20)

can be satisfied and plasmonic resonances appear in the
ratchet effect [54]. One might expect that analogous res-
onances would appear in the DD approximation provided
higher order in-q terms are taken into account. This would
happen even in the absence of the ee interaction due to the
Fermi sound [see second term in the square root in Eq. (16)].

D. Transition from the hydrodynamic
to the drift-diffusion regime

In this section, we develop a theory describing a transition
from the HD to the DD approximation. We limit ourselves
by the case of linear polarization, parallel to the x axis. As
a key assumption, which essentially simplifies calculations
and allows us to get an analytical expression for dc current,
which shows HD-DD crossover, we use a model form of the
ee collision integral. Also, we do not discuss here effects of
the electronic viscosity, as well as effects related to heating of
the electron gas.

We start with the kinetic equation

∂ f

∂t
+ v · ∂ f

∂r
+ F

m
· ∂ f

∂v
= 〈 f 〉θ − f

τ
+ fHD − f

τee
, (21)

where m is the effective mass, (〈 f 〉θ − f )/τ is the impurity
collision integral (〈· · · 〉θ stands for velocity angle averaging),
and F includes both external field and the plasmonic field in-
duced by the inhomogeneous electron concentration. We use
the model form of the ee collision integral [69] ( fHD − f )/τee,
where fHD is the HD function having standard form

fHD(t, r, v) = 1

exp
[m(v−V (r,t ))2/2−μ(r,t )

T (r,t)

] + 1
, (22)

with local equilibrium parameters V (r, t ), μ(r, t ), and
T (r, t). These parameters are found by using unknown func-
tion f , which, in the general case, does not have HD form.
Evidently,

μ = N/g, N =
∫

f {d p}, V = 1

N

∫
v f {d p}, (23)

where N is the electron concentration, g is the density of
states (accounting for spin and valley degeneracy) and {d p} =
d2p/(2π h̄)2. To find the expression of T via f , one needs
to multiply ( fHD − f )/τee by ε = mv2/2 and integrate over
{d p}, having in mind that the ee collisions conserve the elec-
tron energy. We thus obtain∫

v2 f {d p} = 2g

m

(
μ2

2
+ π2T 2

6

)
+ V 2gμ. (24)

This equation defines the expression of the electronic temper-
ature in terms of function f with μ and V found from Eq. (23).
Physically, Eq. (24) follows from the energy conservation law.

Now multiplying the kinetic equation by 1, v, vivk and
integrating over momenta, we get the following equations:

∂N

∂t
+ ∇iJi = 0, (25)

∂Ji

∂t
+ ∇kJik − Fi

m
N = −Ji

τ
, (26)

∂Jim

∂t
− 1

m
(FiJm + FmJi )

=
(

1

τee
+ 1

τ

)(
δim

2
Tr[Jim] − Jim

)

+ N

τee

(
ViVm − δim

V 2

2

)
. (27)

Here,

J =
∫

v f {d p}, Jik =
∫

vivk f {d p}. (28)

Equations (25) and (26) represent, respectively, the continuity
equation and Euler-like equation. Equation (27) needs some
clarifications. First, in this equation we skipped the term
∂k

∫
vivmvk f {d p}, responsible for heat convection. Second,

we note that the trace of this equation gives infinite heating be-
cause we neglected cooling by phonons. Actually, this cooling
exists and limits the electron temperature. Then one can use
the following method for solution of Eqs. (25)–(27). First, we
write

Jik = (δik/2)TrĴ + �ik,

where Tr�̂ = 0. Equation (27) can be used for finding trace-
less part �ik. As for TrJik, it is determined by Eq. (24).
Finally, we neglect term ∝ T 2 in this equation, assuming that
cooling by phonons limits the temperature on a sufficiently
low level T � μ. Then, we arrive at the following system of
equations:

∂N

∂t
+ ∇iJi = 0, (29)

∂Ji

∂t
+ Jiγ + ∇i

(
V 2N

2
+ μ2g

2m

)
+ ∇k�ik = fiN, (30)(

∂

∂t
+ γ + γee

)
�ik = ( fiJk + fkJi ) − δik f · J

+ γeeN

(
ViVk − δik

V 2

2

)
. (31)

Here fi = Fi/m, γ = 1/τ , and γee = 1/τee. Next, we assume
that local current flows everywhere in the x direction and that
all variables depend on the x coordinate only: J ‖ ex, �xx =
−�yy = �. We skip index x below (Jx = J, Vx = V, fx = f ),
thus arriving at the following set of coupled equations:

∂N

∂t
+ ∇xJ = 0,

∂J

∂t
+ Jγ + ∇x

(
V 2N

2
+ μ2g

2m

)
+ ∇x� = f N,

∂�

∂t
+ (γ + γee )� = f J + γee

NV 2

2
.

(32)
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The solution of these equations can be found in a full analogy
with the HD case (see Ref. [54]). We delegate the calculations
to Appendix C. For an arbitrary relation between s and vF, the
expression for the current is quite cumbersome and is given
by Eqs. (C13), (C28), and (C29). This expression simplifies
under the assumption s � vF:

Jdc,x

C1
= ω2(γ 2 + ω2) + ω2

q[2γ (γ + γee ) − ω2]

(γ + γee )(γ 2 + ω2)
[
γ 2ω2 + (

ω2 − ω2
q

)2] . (33)

Here ωq = s0q is the plasma wave frequency with an account
of the sound contribution, cf. Eq. (16), and

C1 = e3N0

2m3s2
0

�, (34)

with � given by Eq. (1). In the derivation of Eq. (33), we
assumed s0 ≈ s.

In the limit γee → ∞, we reproduce HD equations:

Jdc,x

C1
= 2τω2

q

(1 + τ 2ω2)
[
ω2

/
τ 2 + (

ω2
q − ω2

)2] . (35)

In the opposite limit γee → 0, we arrive at the DD equation:

Jdc,x

C1
= τ 3

1 + τ 2ω2

{
1 + ω2

q

[
2 + τ 2

(
ω2 − ω2

q

)]
ω2 + τ 2

(
ω2 − ω2

q

)2

}
. (36)

This equation is further simplified in the limit q → 0 to

Jdc,x

C1
= τ 3

1 + τ 2ω2
. (37)

The frequency dependencies of Jdc,x given by Eq. (33) are
analyzed in Fig. 7. In Fig. 7(a), we plot the dependence of
the dc response on the frequency for the fixed quality factor,
ωqτ = 5, and different values of τee/τ ranging from 0.001
(HD regime) to 10 (DD regime). We see that the response
shows the plasmonic resonance both in HD and DD regimes.
We also see that with decreasing τee/τ the high-frequency
behavior evolves from slow 1/ω2 to much sharper 1/ω6 law.
In Fig. 7(b), we plotted the response as a function of frequency
for the small value of τee/τ = 0.01 corresponding to the HD
regime for different quality factors. We see that, as expected,
the plasmonic resonance becomes sharper with increasing
ωqτ. At the same time, the high-frequency asymptotic of the
current is not sensitive to the quality factor and is given by
1/ω6 dependence. In Fig. 7(c), we plotted the dc current as a
function of ωqτ for fixed different values of ω. We see that the
resonance occurs at ωq ≈ ω.

V. DISCUSSION

Above we presented the theoretical curves for different
values of parameters (see Fig. 7). Let us now compare the
developed theory and experimental data. For that we present
in Fig. 8 the results obtained for the case of linear ratchet
contribution, VL1, high enough top gate voltages and two
temperatures. The choice is because our theory is developed
for such conditions. Although the experimental precision did
not allow us to identify plasmonic resonances, we were able
to distinguish between different high-frequency asymptotic
dependencies specific for HD and DD regimes.

(a)

(b)

(c)

FIG. 7. Theoretical dependencies following from Eq. (33).
(a) Dependence of current on ω/ωq, for ωqτ = 5 and different values
of τee/τ covering both HD and DD regimes. (b) Frequency depen-
dence of the dc response for different quality factors. (c) Dependence
of the response on the quality factor for different ω.

Our experimental results on three graphene structures with
different parameters of DGG provide a self-consistent pic-
ture demonstrating that the photosignals (photocurrents) are
generated due to the presence of asymmetric superlattices
and consequently controllable lateral asymmetry parameter �.
The change of signs upon reversing the in-plane asymmetry
of the electrostatic potential as well as changing the carrier
type clearly demonstrate that they are caused by the ratchet
effect. Corresponding experimentally results shown in Figs. 2
and 3, inset in Fig. 4(a), and Fig. 11 in Appendix B, are
in full agreement with theoretical Eqs. (11)–(13). Observed
photocurrents are characterized by specific polarization
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FIG. 8. Frequency dependencies of the photocurrent, Jdc, accord-
ing to Eq. (33) showing the crossover from the DD to the HD regime
with increasing γee/γ and the experimental data for the linear ratchet
contribution (VL1 as well as the corresponding theoretical curves. The
results are presented in linear, (a), and double logarithmic, (b), scales.
The latter is used because for f = 1.63 and 2.54 THz, the signals dif-
fer up to two orders of magnitude. The theoretical curves correspond
to the following parameters: τ = 0.1 ps, τee = 900 ps, fq = 1.16
THz (red curve) and τ = 0.7 ps, τee = 0.001 ps, fq = 1.16 THz (blue
curve). The dashed curves were calculated by using τ = 0.7 ps and
a corresponding τee as labeled in the figure.

dependencies, revealing substantial contributions of all three
ratchet effects: polarization-independent, linear, and circular
ones; for polarization dependencies, see experimental Fig. 2
and Eqs. (11)–(13). Comparing the magnitudes of the ratchet
effect detected in BLG DGG structures (current paper) with
those in monolayer graphene [60], we obtained that they are
close to each other (same order of magnitude, a more precise
comparison cannot be done because, e.g., the DGGs in these
samples are not the same). Alike that reported previously for
monolayer graphene, we also detected that at low tempera-
tures the ratchet effects are enhanced in the vicinity of the
Dirac point, see Fig. 12 Appendix B.

Most remarkably, we identified several regimes where the
frequency dependence of the signal is qualitatively different,
see Fig. 5. The most substantial difference is observed be-
tween frequency dependencies of the ratchet effect excited in
samples at high temperature (150 K), j ∝ 1/ω2, and liquid he-
lium temperature ( j ∝ 1/ω6, for low carrier density controlled

by the back gate voltage), see Fig. 5(b). We demonstrate ex-
perimentally crossover between these regimes with changing
temperature, see Fig. 5(b), and concentration, see Fig. 5(c).
We attribute this remarkable result to the transition from the
DD to HD regime, see Sec. IV D. We developed a theory
which allows one to describe a transition from the DD to the
HD regime. In particular, Eq. (33) reveals dependence on γee

and γ and shows Jdc,x ∝ 1/ω2 high frequency asymptotic for
γee → 0 and Jdc,x ∝ 1/ω6 for γee → ∞. We demonstrate that
Eq. (33) describes the experimental data very well if one uses
γ and γee as fitting parameters, as seen from Fig. 8. We see
that the high-temperature (T = 150 K) data are well fitted by
the DD model. Physically, this is clear because at such high
temperature, transport is fully dominated by phonons. This
is not the case for low temperature, T = 4.2 K. For such a
temperature, crossover to the HD regime with much stronger
ω dependence is clearly seen in the experiment. Let us discuss
this point in detail. Our experimental results on frequency
dependence are shown in Fig. 5, where data for three different
temperatures: T = 2, 4.2, and 150 K as well as for different
gate voltages are presented in double logarithmic scale. As
seen, data obtained at T = 150 K are perfectly fitted by the
Lorentz curve with the asymptotic behavior 1/ω2. We also
see that for a relatively low temperature, T = 4.2 K, the high-
temperature dependence follows 1/ω6, which is in a good
agreement with the HD model. On the other hand, further
decrease of the temperature to T = 2 K moves the system
back to the DD regime. Such a nonmonotonous dependence
can be easily understood. Indeed, for high temperatures, the
phonon scattering dominates over γ and γee. For a temperature
T = 2 to 4.2 K, the phonon scattering is negligible, so we have
a competition between γ and γee. The rate of the ee scattering
increases with temperature and decreases with the electron
concentration:

γee ∝ T 2/EF . (38)

(Here, we limit ourselves by a very rough estimation. For
discussion of more complicated models, see Ref. [70] and
references therein). Hence, at a very low temperature, the ee
collisions are also negligible and we return to the DD regime.
This is clearly seen in Fig. 5(b): With lowering T to 2 K,
the frequency dependence becomes less sharp. The depen-
dence on back-gate voltage is also consistent with Eq. (38).
Indeed, as seen from Fig. 5(c) the data for UBG,eff = 1 V are
well fitted by 1/ω6, while the data for UBG,eff = 5.5 V are
closer to a 1/ω2-dependence.

The direct comparison of the theoretical formula Eq. (33)
with the experimental data is presented in Fig. 8. We see that
the experimental data for T = 4.2 K can be well fitted by
Eq. (33) with γee = (50 − 70)γ [71].

Finally, we note that while so far we discussed only the data
corresponding to the conditions satisfying those considered in
the theory (linear polarization and the gate voltages far from
the CNP) the strong frequency dependence has also been ob-
served for polarization-independent ratchet contribution and
gate voltages in the vicinity of the CNP. These experimen-
tal results are summarized in Fig. 6 and demonstrate that at
T = 4.2 K and low carrier density the ratchet currents closely
follows the calculated curve (blue dashed curve in Fig. 6,
which is similar to the solid blue curve in Fig. 8).
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Let us summarize our key findings:

(1) We demonstrated an experimentally strong ratchet ef-
fect in BLG and found its frequency dependence.

(2) At high temperatures (T � 150 K), the dc photore-
sponse varies with the radiation frequency according to the
Lorentz formula with 1/ω2 asymptotic behavior in good
agreement with the DD model.

(3) Strikingly, at liquid helium temperature the response
exhibited drastic frequency dependence with 1/ω6 asymptotic
behavior, which is perfectly fitted by the HD equation.

(4) Variation of temperature in the interval T = 2 − 4.2 K
and concentration (by back gate potential) showed crossover
between 1/ω2 and 1/ω6.

(5) We derived an analytical expression which cap-
tures basic experimental results. In particular, it describes a
crossover between the DD and HD regimes.

A few comments need to be made on the temperature
dependence of the effect and on the differences of our ap-
proach with previous analysis of viscous flow of the electron
liquid. The temperature range in which the observation of the
HD regime is possible is limited both from above and from
below. The lower limitation is caused by the decrease of the
ee scattering rate with temperature, whereas the scattering rate
on impurities is almost temperature independent. Therefore, at
sufficiently low temperatures, ee scattering is turned off and
the system goes into the DD regime. On the other hand, with
increasing temperature, sooner or later, strong scattering by
phonons comes into play, which in the context of the problem
under study is like scattering by impurities. Accordingly, there
is an upper limit on the temperature. Importantly, as one can
see from our data, the lower temperature limit for realiza-
tion of the HD regime in our case is smaller as compared
to realization of the viscous flow of the electron fluid stud-
ied experimentally; e.g., see Refs. [8,9]. Indeed, one of the
hallmarks of the viscous Poiseuille flow is the Gurzhi effect
predicted in Refs. [5–7]. Starting from its first experimental
observation in Ref. [8], this effect is considered as one of
the most convincing arguments in favor of viscous transport.
The Gurzhi effect is observed in a system of finite transverse
(with respect to electron flow) width d under the assumptions
lee � d � LG, where lee is the ee collision length, LG = √

llee
is the so-called Gurzhi length, and l is the mean free path
with respect to impurity scattering. The inequality d � LG

is not easy to satisfy in a sufficiently wide sample. That is
why for the observation of viscous transport it is necessary to
use narrow-channel samples with ultrahigh mobility. Also, for
the observation of negative nonlocal resistance, see Ref. [9],
the size of the viscosity-induced whirlpools responsible for
viscous backflow (this size is in the order of LG) was in the
order of the size between contacts probing a negative voltage
drop. If one uses thin wires or narrow strips for the observation
of the Gurzhi effect, the second inequality, lee � d can be
satisfied only at sufficiently high temperatures. By contrast,
we study a bulk effect which does not disappear with in-
creasing system size and distance between contacts. For the
observation of the HD transport, we only need the condition
lee � l, which is independent of the system size.

Moreover, the HD regime is not necessarily viscous. The
key property of the HD regime (as compared to the DD one)

is the presence of only three collective variables (local tem-
perature, concentration, and drift velocity), which completely
characterize the system, in contrast to the DD regime, where
the distribution function is not reduced to a HD ansatz depend-
ing, in the general case, on an infinite number of variables.
This regime can be realized for the case when the viscous
contribution to the resistivity is small. This gives an additional
possibility to observe the HD regime being exactly the case,
which we studied in the current paper. Importantly, we studied
the nonlinear regime with respect to the exciting field (which
contains both static and dynamical parts and the final result
is obtained only in the third order with respect to the total
field). In such a regime, in contrast to the linear one, the
difference between the distribution functions in the DD and
the HD regimes is very strong and causes currents, which are
strongly different even if one neglects viscosity. This allows
one to distinguish between the DD and the HD regimes under
the condition d � max(LG, l ).

We note also that the search of the HD regime in the
static transport measurements at low temperature is difficult
not only due to the low rate of ee scattering, insufficient to
realize condition lee � d , but also due to the presence of
quantum corrections (see discussion in Ref. [9]), which can
also contribute to a negative resistance considered as the main
evidence of the HD regime in Ref. [9]. That is why Ref. [9]
is focused on the study of temperatures higher than 20 K. In
our case, quantum corrections are suppressed because of the
high-frequency measurements.

The above discussion can qualitatively explain why we
observe the HD regime for lower temperatures as compared
to Refs. [8–10]. A more detailed study requires microscopic
calculations of all scattering times involved in the problem
(momentum relaxation time due to scattering by impurities,
ee collision rate, and electron-phonon scattering rate) and in-
cluding the differences between parabolic and linear spectra.
In this context, we note that the purpose of this paper is
not to develop a quantitative approach to the problem and
to carry out detailed microscopic calculations, which make
it possible to determine the temperature boundaries of the
HD range. Such research is beyond the scope of this paper,
in which we have developed a phenomenological approach
to the problem. We demonstrated that even this simplified
approach, involving a model form of the ee collision integral,
allows one to qualitatively explain the change in the frequency
dependence observed in our experiments and the tremendous
suppression of the high-frequency response in comparison
with the generally accepted predictions within the framework
of the DD model.

VI. SUMMARY

To conclude, we observed and studied in detail the ratchet
effect in BLG, focusing on the frequency dependence of the
effect. We clearly identified two different regimes with a qual-
itatively different frequency dependence corresponding to a
smoother and sharper frequency response. We also developed
a theory that allows us to interpret these results as a transition
from the DD regime to HD regime.

Summarizing this work, we would like to stress two key
points:

(i) At present, the generally accepted model, within which
photovoltaic phenomena in spatially modulated media are
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described, is the DD model, which predicts a 1/ω2 depen-
dence for the ratchet current. This frequency dependence was
studied in this paper in detail. Our experimental results un-
equivocally demonstrate that the high-frequency response is
not described by an 1/ω2 dependence and for high frequencies
is several orders of magnitude smaller. The observed high-
frequency data are much better fitted by 1/ω6 dependence.

(ii) The conclusion about HD-DD transition is based not
only on our experimental results but also, to a large extent,
on theoretical calculations. We have developed a theoretical
model that allows us to describe the transition from the DD to
the HD regime. This model also unequivocally predicts funda-
mentally different frequency dependencies for these regimes.

A combination of results (i) and (ii) gives very serious
support of our central statement about DD-HD transition.
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APPENDIX A: TRANSPORT AND MAGNETOTRANSPORT

Electron transport and magnetotransport measurements
were limited to the two-terminal method where the voltage
drop was measured with a lock-in amplifier, while a low
ac current Iac = 0.1 µA at f = 12 Hz was applied through
10 M� series resistor.

Figure 9(a) shows the sheet resistivity of the investigated
samples, #A – #C, at T = 4.2 K as a function of the back gate
voltage UBG. For UTG = UTG1 = UTG2 = 0 V (black curve),
a clear single maximum, corresponding to the CNP, is de-
picted in the response. For sample #C, the sheet resistivity
maximum of ρ = 0.54 k�/sq is located at U max

BG = −0.15 V,
yielding a negligibly low doping of the structure. Samples
#A (U max

BG = −16 V, ρ = 0.78 k�/sq) and #B (U max
BG = −1 V,

ρ = 2.65 k�/sq) follow the same overall behavior, however,
the former shows a noticeably larger shift of the resistivity
maximum. This negatively shifted CNP in sample #A reveals
a high residual n-type doping. Since measurements were also
performed at room temperature, the uncoated edges near the
contacts may have attracted adsorbates, changing the doping
of the graphene structure. Hence, in the following, the applied
back gate voltage will be presented as an effective voltage
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FIG. 9. Two-terminal sheet resistivity ρ as a function of back and
top gate voltages at T = 4.2 K. The data are presented for samples
#A, #B, and #C. UTG = UTG1 = UTG2. Insets in panels (Ic), (IIc), and
(IIIc) are optical micrographs of the samples.

with UBG,eff = UBG − U max,m
BG , where m marks the sample in-

dication.
The application of the same voltages UTG1 = UTG2 �= 0 to

the top gates results in a substantial change of the resistivity
response, see blue and red curves in Figs. 9I–9III(a). Here,
two peaks are apparent: the main Dirac peak near zero and a
satellite peak at a positive (negative) back gate voltage in the
case of negative (positive) top gate bias. This additional resis-
tivity maxima may be understood qualitatively in an extended
capacitor model [72,73].

While the back gate acts on the entire graphene flake, the
top gates only couple to the graphene regions underneath,
shifting the CNP only in those regions. When the top gates
are grounded, apart from a small contribution owing to the
work function difference between the metallic top gate stripes
and graphene, this leads to a single resistivity maximum,
black curves in Figs. 9I–9III(a). By contrast, when the top
gate stripes are connected to a finite potential, the carrier
concentration in the regions directly below is shifted, resulting
in a double resistivity peak in the back gate sweep. This is
also confirmed by Figs. 9I–9III(b), where the resistivity ρ is
illustrated as a function of the applied top gate bias, while
keeping both, back gate and one top gate, at zero and sweeping
the other as indicated in the figures.
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FIG. 10. (a) Magnetic field dependence of two-terminal sheet
resistivity ρ measured in sample #B at T = 4.2 K. (b) The oscilla-
tory part �ρ was obtained by subtraction of the Hall contribution
indicated by the dashed black line in (a). The data are presented
for different effective back gate voltages and zero top gate bias,
UTG = UTG1 = UTG2 = 0. The curves in (b) are offset for clarity.

Figure 10(a) shows the sheet resistivity of sample #B in
dependence on a perpendicular magnetic field for various
effective back gate voltages ranging from 6–11 V, keeping the
top gates at zero volts. Due to a two-point measurement geom-
etry, the plotted resistivity is a superposition of longitudinal,
Hall, and contact resistance contributions. To analyze and
compare with the obtained photovoltage data at nonzero mag-
netic fields, the Hall contribution was subtracted, providing
the oscillatory part �ρ plotted in panel Fig. 10(b). The resis-
tivity decreases with increasing UBG,eff and the Shubnikov-de
Haas oscillations (SdHO) are shifted toward higher fields, see
Fig. 10. The carrier concentration is obtained by taking the
fast Fourier transform of the SdHO, giving the gate-coupling
factor α′ ≈ 6 × 1010 cm−2V−1 for the corresponding sample.
We may conclude that the discussed transport properties show
that all samples are comparable bilayer structures of high
quality, demonstrating ranges similar to those found in several
theoretical and experimental publications [74–77].

APPENDIX B: ADDITIONAL PHOTOVOLTAGE
MEASUREMENTS

1. Dependence of the photovoltage on the
lateral asymmetry parameter

The ratchet behavior was observed for all samples inves-
tigated in this paper. It is confirmed by the observation that
Vph ∝ �. Figures 11(a)–11(c) show the results on the linear
ratchet effect obtained for samples #A – #C, respectively. The
polarization-independent and circular component are depicted
in Figs. 11(d) and 11(e). To extract V0, VL1, and VC from
the total photoresponse, we exploited different behaviors of
individual contributions to the ratchet effect on radiation’s
polarization. The photovoltage was measured for α = 0, 90 ◦,
and ϕ = 45 ◦(σ+), 135 ◦(σ−) to calculate the curves in Fig. 11
accordingly [see Eqs. (2) and (3) of the main text]. These
figures reveal the presence of the built-in asymmetry and
clearly demonstrate that the inversion of �, obtained either
by the change of polarity of the gate voltage applied to one of
the gates or by exchange of the biased gates, yield opposite
signs of the photoresponse. In samples #A and #B, featuring
the same top gate stripe widths and spacings, we obtained very
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FIG. 11. Amplitude of ratchet photovoltage normalized on ra-
diation power PS as a function of the effective top gate voltage
UTG1 (UTG2) shown as red solid (blue dashed) curves measured for
grounded top gate TG2 (TG1). (a)–(c) The linear ratchet photovolt-
age VL1/PS measured in samples #A (T = 300 K), #B (T = 150 K),
and #C (T = 150 K), respectively. The data for samples #A and #C
are presented for UBG,eff = 0 and for sample B for UBG,eff = 1 V.
(d) The polarization-independent ratchet signal V0/PS measured in
sample #B at T = 150 K. (e) Circular ratchet response obtained for
sample #B at T = 150 K and UBG,eff = 1 V. The inset in (a) shows
the DGG structure. The color code corresponds to the applied top
gates.

similar magnitudes of signals, whereas in sample #C with two
times narrower stripes and spacings (d1/d2 = 0.5/0.25μm
and a1/a2 = 1/0.25μm), the amplitude of the ratchet voltage
was several times less, see Fig. 11(c).

2. Back gate voltage dependence of the ratchet current

At low temperatures, the ratchet effect shows a sign-
alternating behavior with enhanced magnitude in the vicinity
of the CNP (see Fig. 12). A very similar behavior is also
observed varying the top gate voltages (see Fig. 4). Fig-
ures 12(a) and 12(b) show the sample’s resistivity and the
ratchet photosignal excited by linear polarized radiation as a
function of UBG, respectively. For equally biased gates, UTG =
UTG1 = UTG2, we observed that the photovoltage inverses its
sign close to the CNP and is strongly enhanced in its vicinity.
To visualize it, in Fig. 12(c) the voltage U i

BG corresponding
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FIG. 12. Back gate voltage dependencies of resistivity and pho-
tosignal measured in sample #B at T = 4.2 K and three values of top
gate voltage UTG = UTG1 = UTG2. (a) Back gate voltage dependence
of the two-terminal sheet resistivity. U i

BG with i = {1,2,3} labels back
gate voltage of resistivity maxima. (b) Back gate voltage dependence
of the photosignal obtained for α = 90◦. (c) The curves are replotted
as a function of the effective back gate voltage calculated after
UBG,eff = UBG − U i

BG.

to the maximum resistivity was subtracted from the back
gate voltage UBG and the data were plotted as a function of
UBG,eff . Our analysis shows that this behavior can roughly
be described by the first derivative of the conductance. Such
behavior has been reported for the ratchet effect in monolayer
graphene [60] and graphene-based field-effect transistors [78].
On the one hand, it is well-known that the broad band rectifi-
cation of THz radiation in an FET channel is proportional to
the so-called FET factor given by G−1 dG

dVG
and, on the other, in

graphene it can additionally be caused by enhanced plasmonic
rectification of THz radiation in graphene structures toward
the CNP suggested in Ref. [79]. A detailed discussion of these
effects is out of scope of this paper.

APPENDIX C: DERIVATION OF ANALYTICAL
EXPRESSION SHOWING CROSSOVER FROM THE

HYDRODYNAMIC TO THE DRIFT-DIFFUSION REGIME

Here, we derive analytical equation for dc current valid for
arbitrary relations between γ and γee and between s and vF .

Using dimensionless variables

n = δN/N0, N/N0 = 1 + n, j = J/N0, π = �/N0,

we rewrite Eqs. (32) as follows:

∂n

∂t
+ ∇x j = 0, (C1)

∂ j

∂t
+ jγ + 1

2
∇x

{
v2

F

2
(1 + n)2+ j2

1 + n

}
+ ∇xπ = f (1 + n),

(C2)

∂π

∂t
+ (γ + γee)π = f j + γee

j2

2(1 + n)
. (C3)

Now, we take into account the plasmonic collective force
and replace

f → f − s2∂xn, (C4)

where f on the right-hand side of this equation corresponds
to external force. Then we arrive at the following set of equa-
tions:

∂n

∂t
+ ∇x j = 0, (C5)

∂ j

∂t
+ jγ +

(
v2

F

2
+ s2

)
∇xn + ∇xπ = A, (C6)

∂π

∂t
+ (γ + γee )π = B. (C7)

The terms A and B entering the right-hand side of these equa-
tions read

A = f + f · n − s2n∂xn − v2
F

4
∂x

[
n2 + 2 j2

v2
F(1 + n)

]
, (C8)

B = (
f − s2∂xn

)
j + γee

j2

2(1 + n)
. (C9)

There is a linear in f term here and also a number of nonlinear
terms. Following the method used in Ref. [54], we will solve
this system perturbatively with respect to

f = −eE0

m
[1 + h cos(qx + ϕ)] cos ωt + 1

m

dU0

dx
. (C10)

We will use the notation a(i, j) ∝ (E0)i(U0) j for any quantity
a calculated in the ith order in E0 and jth order in U0. For
example, n(1,1) denotes concentration, calculated in the first
order with respect to U0 and first order with respect to E0. The
nonzero response to the current appears in the order (2,1) and
is proportional to asymmetry factor �. Averaging Eq. (C6)
over t and x and taking into account Eq. (C8), we find that the
dc current is given by

jdc = γ −1〈 f n〉t,x. (C11)

Hence, we need to calculate f n in the order (2,1).
Importantly, at each iteration step, one can use values of

parameters A and B entering the right-hand sides of Eqs. (C5)–
(C7) found in the previous step. Let us clarify this point in
more detail. At the first step, we simply neglect all nonlinear
terms in A and B, i.e., writing A = f , B = 0. The force f can
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be presented as

f = f10 + f̃10 + f01,

where

f10 = −eE0

2m
e−iωt + c.c.,

f̃10 = −eE0

2m
h cos(qx + φ)e−iωt + c.c., f01 = 1

m

dU0

dx
.

Here and in what follows, we use notations f̃10 and f10 to
distinguish between x-dependent and x-independent terms of
the same order. Solving then Eqs. (C5)–(C7), we find n, j and
π in the orders (1,0) and (0,1). Substituting these solutions
into quadratic nonlinear terms in A an B, we find sources for
orders (1, 1), (2, 0), and (0, 2). The terms of the needed order
(2,1) appear on the next iteration step. On each iteration step,
we solve Eqs. (C5)–(C7) with given coefficients A and B. It is
convenient to write this solution in the formal operator form

ni j = 1

(γ + γee + ∂t )
(
γ ∂t + ∂2

t − s2
0∂

2
x

)
× [ − (γ + γee + ∂t )∂xAi j + ∂2

x Bi j
]
,

ji j = 1

(γ + γee + ∂t )
(
γ ∂t + ∂2

t − s2
0∂

2
x

)
× [

(γ + γee + ∂t )∂t Ai j − ∂x∂t Bi j
]
,

πi j = 1

γ + γee + ∂t
Bi j . (C12)

Here Ai j = Ai j (x, t ) and Bi j = Bi j (x, t ) are the right-hand
sides of Eqs. (C6) and (C7), respectively, in the order (i, j).
Due to nonlinearity of the problem, characteristic frequencies
and wave vectors entering Fourier transform of Ai j, Bi j at the
each step of iteration are given by harmonics of the ω and
q, respectively: Mω, Kq,where M and K are integer numbers.
For M = ±1 and K = ±, Eq. (C12) shows plasmonic reso-
nance at ω ≈ ωq.

Using Eq. (C11), we find that in the lowest nonzero per-
turbation order, (2,1), dc current is given by the sum of two
contributions:

Jdc,x ≈ eN0γ
−1〈 f n〉2,1

t,x = J I
dc,x + J II

dc,x, (C13)

where

J I
dc,x ≈ eN0γ

−1〈( f10 + f̃10)n11〉t,x, (C14)

and

J II
dc,x ≈ eN0γ

−1〈 f01n20〉t,x. (C15)

To find n11 and n20, we need to do two iterations. At the first
iteration step, we find

n10 = 0, j10 = −eE0

2m

i

ω + iγ
e−iωt + c.c., (C16)

n01 = eU0

ms2
0

cos (qx), j01 = 0, (C17)

ñ10 = eE0h

2m

q sin (qx)e−iωt

ω(ω + iγ ) − ω2
q

+ c.c.,

j̃10 = −eE0h

2m

iω cos (qx + φ)e−iωt

ω(ω + iγ ) − ω2
q

. (C18)

Using these equations, one can find sources

A11 = ( f10 + f̃10)n01 + f01ñ10 − s2
0∂x{ñ10n01},

B11 = ( j̃10 + j10)( f01 − s2∂xn01),

A20 = f10ñ10 − ∂x{ j10 j̃10},
B20 = γee j10 j̃10 + f10 j̃10 + f̃10 j10 − s2 j10∂xñ10, (C19)

which allow us to make the next iteration step by solving
Eqs. (C12) with (A11, B11), and (A20, B20) on the right-hand
side. Doing so, we can find n11 and n20, respectively. In
Eqs. (C19), we neglected terms, prohibited by symmetry con-
sideration, for example, f̃10ñ10. Equations (C19) also contain
terms with the product of two spatially oscillating functions.
For example, f̃10n01 ∝ cos(qx + ϕ) cos(qx) (and other similar
terms), which contain zeroth and 2q spatial harmonics. Zero
harmonics gives zero contribution to n11, n20 as follows from
Eq. (C12). Second harmonics yields n11, n20 ∝ exp(2iqx).
These terms drop out after spatial averaging in Eqs. (C14)
and (C15). Leaving terms, which give nonzero contributions,
after simple algebra we find

A11 = f10n01 = −eE0U0

2m2s2
0

cos (qx)e−iωt + c.c., (C20)

B11 = j10( f01 − s2∂xn01) = qeE0U0

2m2

(
1 − s2

s2
0

)

× sin (qx)
ie−iωt

ω + iγ
+ c.c., (C21)

A20 = 〈 f10ñ10 − ∂x{ j10 j̃10}〉t = qhe2E2
0

4m2

× sin (qx + φ)

{
iγ

(ω − iγ )(ω2 + iγω − ω2
q )

+ c.c.

}
,

(C22)

B20 = 〈γee j10 j̃10 + f10 j̃10 + f̃10 j10 − s2 j10∂xñ10〉t

= he2E2
0

4m2
cos (qx + φ)

×
{

ω(γee + 2γ ) + iq2(s2
0 − s2)

(ω − iγ )(ω2 + iγω − ω2
q )

+ c.c.

}
. (C23)

Having in mind that Eq. (C15) contains averaging over time
and that f01 does not depend on time, we averaged A20 and
B2,0. Substituting these formulas into Eq. (C12), we find
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n11 = ∂xA11(iω − γ − γee) + ∂2
x B11

(γ + γee − iω)
(
ω2

q − ω(ω + iγ )
) + c.c., (C24)

= eqE0V0

2m2s2
0

sin (qx)

{
iω − (γ + γee) − q2(s2

0 − s2) i
ω+iγ

(γ + γee − iω)(ω2
q − ω(ω + iγ ))

e−iωt + c.c.

}
, (C25)

n20 = −∂xA20(γ + γee) + ∂2
x B20

ω2
q(γ + γee)

(C26)

= e2E2
0 h

4m2
cos (qx + φ)

{
−iγ (γ + γee ) − ω(γee + 2γ ) + iq2

(
s2

0 − s2
)

s2
0(γ + γee)(ω − iγ )

(
ω2 + iγω − ω2

q

) + c.c.

}
. (C27)

Next, we do the final step, namely, substitute n11 and n20 into Eqs. (C14) and (C15) and find two terms contributing to dc current:

J I
dc,x = C1s2

0

2γ s2

iω − (γ + γee ) + q2
(
s2 − s2

0

)
i

ω+iγ

(γ + γee − iω)
(
ω2

q − ω(ω + iγ )
) + c.c., (C28)

J II
dc,x = C1s2

0

2γ s2

−iγ (γ + γee ) − [
ω(γee + 2γ ) + iq2

(
s2

0 − s2
)]

(γ + γee )(ω − iγ )
(
ω(ω + iγ ) − ω2

q

) + c.c., (C29)

where C1 is given by Eq. (34). Summing up these equations and skipping terms ∝ (s2
0 − s2), we reproduce Eq. (33) of the main

text.
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