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One- and two-dimensional twisted bilayer structures are examples of ultratunable quantum materials that are
considered the basis for the next generation of electronic and photonic devices. Here, we develop a general
theory of the electron band structure for such commensurate and incommensurate bilayer graphene structures
within the framework of the tight-binding approximation. To model the band structure of commensurate twisted
bilayer graphene (TBLG), we apply the classic zone folding theory. The latter leads us to the construction of
TBLG Hamiltonians in the basis of shifted Bloch wave functions (SBWFs) which, in contrast to the usual Bloch
functions, have the wave vector q shifted by a set of vectors Qi. The dimension of the considered Hamiltonians is
equal to 4T , where the factor T is a number of vertices Qi of the folded reciprocal space falling into the original
first Brillouin zone of any of the layers. We propose and discuss a method for choosing a reduced set of SBWFs
to construct effective Hamiltonians that correctly describe the low-energy spectrum of commensurate TBLG.
The flattening of low-energy bands with a decrease in twist angle is discussed. As we show, this spectrum results
from interactions between the lowest-energy modes of the folded dispersion curves. The effective Hamiltonians
for calculating the low-energy band structure of incommensurate TBLG and double-walled carbon nanotubes
(DWCNTs) are constructed in a similar way. To test the developed theory, we calculate the energies of 105
intratube optical transitions in 29 DWCNTs and compare them with experimental data. We also apply the theory
to calculate the energies of recently discovered intertube transitions. Geometrical conditions allowing this type
of transition are discussed. We show that these transitions occur in DWCNTs whose layers have close chiral
angles and the same handedness or, in the structural context, in DWCNTs with a large unit cell of the periodic
moiré pattern.
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I. INTRODUCTION

Monolayer graphene is an extraordinary material in which
electron dispersion obeys a linear law, and electrons being
massless Dirac fermions propagate with the constant Fermi
velocity [1]. Although the translational symmetry is preserved
when two layers of graphene are stacked as in graphite, the
characteristic masslessness of electrons disappears, as the dis-
persion becomes quadratic [2,3]. In turn, the relative rotation
of the graphene layers breaks the translational symmetry, and
we obtain another unique material, so-called twisted bilayer
graphene (TBLG), the physical properties of which radically
depend on the twist angle θ [4–7]. For example, additional
van Hove singularities (VHS) appear in the electron density
of states (EDoS) of TBLG [8]. At certain “magic angles” (the
largest of which is ∼1.1 ° [9,10]), the band structure of TBLG
rearranges in a critical way, namely, the dispersion curves in
the spectrum become flat, and the Fermi velocity near the
Dirac points vanishes [8–10]. The latter leads to the significant
increase in the EDoS, which in combination with the specific
interlayer coupling allows for superconducting and corre-
lated insulating states in TBLG, which have been extensively
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studied in more than a dozen theoretical and experimental
works [9–14].

At certain twist angles θ , the top and bottom layers have a
common subgroup of translations, and TBLG has a periodic
structure, the period of which either coincides with or is ex-
pressed in multiples of periods of the emerging moiré pattern
(MP) [15]. This fact simplifies the calculation of the band
structure within the nearest-neighbor tight-binding approxi-
mation (NN TBA) [16,17]; however, at small angles θ , the
periodicity of the superlattice unit cell significantly increases,
and one must solve the problem of eigenvalues for matrices
of very large dimensions [18]. Many theoretical approaches
used for the study of incommensurate TBLG are based on
the selection of an approximate unit cell [15,19], the period
of which coincides with the one of the MP. Such an approach
in combination with different tight-binding continuum models
has been used on multiple occasions to calculate the low-
energy region of the band structure of incommensurate TBLG
[15,20–23]. Within the framework of a similar theory, the first
magic angles corresponding to the band flattening were also
calculated [24].

In this paper, we propose a different unified approach that
allows one to calculate the band structure of both commen-
surate and incommensurate bilayer carbon nanostructures.
We start from the commensurate case. Compared with the
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non-TBLG, the area of the TBLG unit cell increases by a
certain number of times T , while the area of the first Brillouin
zone (FBZ) of the reciprocal space is reduced by the same
number. Therefore, the forming of the band structure of such
a bilayer system can be considered within the concept of zone
folding [25]: four electronic bands of two graphene sheets are
folded into a new reduced FBZ of TBLG and modified due
to interlayer coupling. Considering this folding, we construct
the Hamiltonian in the basis of shifted Bloch wave functions
(SBWFs). The SBWF differs from the ordinary Bloch func-
tion in that its wave vector q is shifted by some constant
reciprocal space vector Qi of the adjacent layer. Constructing
a Hamiltonian of commensurate TBLG, we use a basis of
4T linearly independent SBWFs with shift vectors coinciding
with the nodes of the reduced reciprocal lattice, which fall into
the FBZ of a graphene monolayer. The proposed Hamiltonian
has a simple quasidiagonal block structure. When consider-
ing only the low-energy spectrum, the Hamiltonian can be
greatly simplified by retaining only the modes related to those
Dirac valleys of the adjacent layers, which become transla-
tionally equivalent after the zone folding. Moving on to the
incommensurate bilayer graphene, we also apply a similar
approach and construct the effective Hamiltonian, allowing us
to calculate the low-energy region of the band structure. This
Hamiltonian contains only blocks corresponding to pairwise
interactions of states in the vicinity of three FBZ vertices from
the first and second graphene sheets. Accordingly, the basis
of the effective Hamiltonian includes only critical SBWFs
for which the quantity q − Qi is close to the origin of the
reciprocal space.

We generalize the developed theory and apply it to an-
alyze the band structure of incommensurate double-walled
carbon nanotubes (DWCNTs). In these objects, as in TBLG,
strong interlayer coupling in combination with the geometric
features can also lead to interesting changes in the electron
spectrum. A rearrangement of the band structure was demon-
strated [26–28]. It allows for electron transitions between
bands originating from different layers of DWCNT. Accord-
ingly, additional peaks, which cannot be associated with the
intratube transitions, emerge in DWCNT optical spectra. So
far, the effect has been experimentally observed only in the
DWCNT ((17),16)@(12,11) [26] and theoretically consid-
ered for DWCNTs (15,13)@(21,17), (12,12)@(21,13), and
(10,6)@(14,13) [27,28]. Along with the theory of effective
Hamiltonians, we develop a simple method for the approx-
imate calculation of interlayer coupling matrix elements in
incommensurate structures and apply the method to calculate
the energies of optical transitions in 30 DWCNTs, including
those where we believe the recently discovered intertube tran-
sitions can occur [27,28]. As we show, such transitions occur
in DWCNTs with large MP unit cells and, therefore, with the
same handedness and close chiral angles of the inner and outer
layers.

The rest of the paper is organized as follows. The next
section is devoted to the theory of the band structure in
commensurate TBLG within the concept of zone folding.
The SBWFs are also introduced in this section. In the third
section, we develop the theory of effective Hamiltonians for
incommensurate DWCNTs and incommensurate TBLG. In
the fourth section, we compare our theory with experimental

data on the optical spectra of DWCNTs. We also consider
the DWCNTs where intertube transitions are possible. The
final section of this paper is devoted to discussion of the
results obtained. In addition, in this section, we consider
the geometrical criteria for selecting DWCNTs in which in-
tertube electron transitions are possible.

II. COMMENSURATE TBLG

Within the NN TBA [16,17,29], the Hamiltonian of a
graphene monolayer can be written as

H =
[

0 f (q)
f ∗(q) 0

]
, (1)

where the quantity f (q) = γ {exp[−Iq · (a1 + a2)/3] +
exp[Iq · (2a1 − a2)/3] + exp[Iq · (2a2 − a1)/3]} is the
matrix element describing the interaction between the
graphene sublattices A and B, γ is the hopping coefficient,
a1 and a2 are the graphene basis translations, q is two-
dimensional wave vector, I is imaginary unit. Eigenenergies
of the Hamiltonian in Eq. (1) read E± = ±| f (q)|, while
eigenvectors can be found as

|ψ±〉 = |ψA〉 ± e−Iϕ |ψB〉, (2)

where |ψA〉 and |ψB〉 are the Bloch wave functions (BWFs)
of the sublattices [1]. In the coordinate representation, these
functions are written as

ψα (r) = 1√
N

∑
Rα

φ(r − Rα )exp(Iq · Rα ), (3)

where φ(r − Rα ) is the atomic pz orbital localized near the
site Rα , N is the number of atoms in the α sublattice, α =
A, B. In Eq. (3), the sum goes over all the nodes Rα . Positive
and negative signs in Eq. (2) correspond to states in the con-
duction band (CB) and valence band (VB), respectively, ϕ =
arg( f /| f |) is the phase shift between the sublattices. Thus,
the electronic states in a monolayer graphene can be clas-
sified using the vector q and the number σ = ±1, indexing
the CB (+1) and VB (−1). Within the framework proposed
below, one can calculate the band structure of a commensurate
TBLG without additional assumptions; however, evaluating
the Hamiltonian eigenenergies for a bilayer with a large unit
cell can be computationally expensive.

Let us consider two graphene layers stacked in AA packing
[15], and then let us rotate one of the layers by an angle
θ . At certain values of θ , both layers acquire the common
translation subgroup, which determines the periodicity of the
bilayer structure. The following two minimal translations are
usually chosen as a basis [15]:

C1 = ha1 + ka2,

C2 = (h + k)a1 − ka2.

The vector C1 is known as the chirality vector, and
its components (h, k), which are coprime numbers, are
called the chirality indices [29]. The chirality vector
(h, k) corresponds to the following twist angle θhk =
arccos[(h2 + 4hk + k2)/(2h2 + 2hk + 2k2)] and triangula-
tion factor T = h2 + hk + k2. Note that, in the case when
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FIG. 1. The first two commensurate bilayer structures (2,1) and (3,1) in the (a) and (b) direct and (c) and (d) reciprocal spaces. (a) and (b)
Large hexagons and arrows show the unit cell and the basis translations of superlattices, respectively. Dots represent the nodes of the primitive
hexagonal lattice; the positions of carbon atoms in both the top and bottom layers coincide with some of the nodes. The existence of this parent
lattice simplifies the calculation of the matrix elements of the bilayer Hamiltonian in Eq. (5). The translation length of the parent lattice is

√
T

times shorter than the radius of the carbon hexagon. (c) and (d) Superposition of the top and bottom layer first Brillouin zones on a honeycomb
hexagonal lattice reflecting the translational symmetry of the folded reciprocal space.

the difference between h and k is a multiple of three, the
structure (h, k) has translations that are

√
3 times shorter than

C1 (or C2). In other words, such a structure turns out to be
equivalent to the one with the chirality vector (h′, k′), where
h′ = (2k + h)/3 and k′ = (h−k)/3.

Figures 1(a) and 1(b) show the first two commensurate
bilayer structures with h = 2, k = 1, and T = 7 and h =
3, k = 1, and T = 13. A simple geometric analysis shows
that, in a TBLG with a factor T , there are 4T carbon atoms
per primitive hexagonal cell equally divided between the top
and bottom layers. The reciprocal space of both layers [see
Figs. 1(c) and 1(d)] is folded T times so that a common
hexagonal reciprocal space is formed, which is divided into
Brillouin zones with T times smaller area. If we use the
scheme of extended zones [25,27], then exactly T nodes
(which are centers of honeycombs with coordinates Q j) of
the hexagonal lattice of the common reciprocal space will fall
inside the FBZ of each of the layers. Consequently, we can
characterize the electron states in commensurate TBLG by the
following 4T SBWFs:

ψ
j
ζ

(r) = 1√
N

∑
Rζ

φ(r − Rζ )exp[I (q − Q j ) · Rζ ], (4)

where the index ζ goes over the sublattices A, B and A′, B′
of top and bottom layers, respectively, and j = 1, 2, . . . T .
Accordingly, the calculation of the TBLG band structure

reduces to the eigenvalue problem for the Hamiltonian with
4T dimensions.

The choice of basis functions in the form in Eq. (4) allows
us to describe the bilayer Hamiltonian Hb in a general form.
Its matrix elements read

Hb
ζ ,i;ξ, j = 1

N

∑
Rζ ,Rξ

exp {I[(q − Qi ) · Rζ − (q − Q j ) · Rξ ]}

× u(Rζ , Rξ ), (5)

where Rζ �= Rξ , and u(Rζ , Rξ ) is the hopping integral. We
define the function u(Rζ , Rξ ) following Refs. [15,30]. If
both sites Rζ and Rξ belong to the same layer and are the
NNs, then u(Rζ , Rξ ) = γ , where γ = 3 eV is the graphene
hopping coefficient [1,29]; otherwise, u(Rζ , Rξ ) = 0. To cal-
culate u(Rζ , Rξ ), when atoms with the coordinates Rζ and
Rξ belong to the different layers, one can use an approximate
equation:

u(ρ, d ) = γc exp

(
−

√
ρ2 + d2 − d

λ

)
,

where ρ is the in-plane distance between these atoms, d =
0.34 nm is the interlayer distance, λ = 0.045 nm is a char-
acteristic wavelength, and γc = 0.48 eV is the interlayer
hopping coefficient [15,31].
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FIG. 2. Band structures calculated using the complete and effective Hamiltonians. The electron spectra are calculated within a reduced first
Brillouin zone. The point �̄ is at its center, the point K̄ is one of the vertices and coincides with the point K, the point M̄ lies in the middle
of the hexagon edge. The dispersion curves obtained within the Hamiltonian in Eq. (5) are shown in black, and the ones calculated within the
effective Hamiltonian in Eq. (6) are shown in red. The light blue dashed line shows the spectrum of the effective Hamiltonian H24. (a) and (b)
The band structures for twisted bilayer graphene (TBLG) (2,1) and (3,1) are shown in the ranges ±6 and ±4 eV, respectively. On the scale
of (b), there is no visible difference in the range from −3 to 2.5 eV between the spectra calculated within the complete Hamiltonian and the
effective one H24. (c) and (d) The band structure calculated near the K point for the same superstructures. А gap between the bands typical of
commensurate TBLG appears [15,32]. On the scale of (c) and (d), the spectrum of H24 coincides with the one of the complete Hamiltonian.
The origin in (c) and (d) is chosen in the K̄ point. To the left from the origin, the curves in the direction �̄-K̄ are shown, while to the right from
the origin, the calculations in the direction K̄-M̄ are presented.

Note that it is convenient to index the rows and columns
of the Hamiltonian matrix Hb in such a way that results in
2T shifted blocks in Eq. (1) on the matrix diagonal. Each of
these blocks corresponds either to the upper or to the lower
layer (they have different basis translations) and is obtained
from Eq. (1) by the substitution q → q − Q j . When there
is no interlayer coupling, such a quasidiagonal Hamiltonian
describes a purely formal procedure of zone folding, as the
result of which four bands of bilayer graphene are folded
into 4T bands in common FBZ that is T times smaller. The
calculation of the sum in Eq. (5) in the commensurate case
is also simplified by the fact that the positions of both the top
and bottom layers are projected onto the same parent primitive
hexagonal lattice, the period of which is

√
T times smaller

than the distance between positions A and B in graphene.
Therefore, the function u(Rζ , Rξ ) takes on a discrete set of
values. The number of different values in this set is equal to
the number of coordination circles that surround a node of
the parent lattice within the distance ρ < ρ0, where ρ0 is the
chosen cutoff.

Note that, calculating the elements of the matrix in Eq. (5),
the rows of which are numbered by a pair of indices ζ , i
and the columns are numbered by a pair of indices ξ, j, one
can and should limit the calculations to a unit cell of the
commensurate TBLG. In the emerging bilayer superstructure,
each sublattice additionally splits into T subsublattices, whose
atoms are equivalent with respect to superstructure transla-
tions. Since for atoms belonging to the same subsublattice
with the coordinates R j scalar products Qi · R j do not de-
pend on the index j. When calculating the matrix elements
in Eq. (5), it is sufficient to consider only one site with indices

ζ or ξ (it does not matter which). The range of values of the
second index is limited by the fact that, for sufficiently distant
atoms, the function u(Rζ , Rξ ) = 0. Naturally, when using this
approach, the number N in Eq. (5) should be replaced with T .

Figures 2(a) and 2(b) show the band structures of commen-
surate patterns (2,1) and (3,1), in which the layers are rotated
relative to each other around a common sixfold axis. Simi-
larly, other less symmetrical constructions can be considered,
for example, the case when the relative rotation occurs around
a common threefold axis, passing in one layer through the
center of a hexagon and in the other one through a vertex.
This type of layer packing is called AB or Bernal stacking
[2,15,32]. For a given twist angle θ , the bilayer structures
corresponding to various stackings differ from each other only
by a small shift of one of the layers. The latter can always
be expressed as a basis translation of the parent lattice [see
Figs. 1(a) and 1(b)].

Note that, regardless of the chosen type of stacking, the
scheme of zone folding in the reciprocal space does not
change at all, and the corresponding spectra turn out to be very
close [15]. With a decrease of the twist angle θ , the difference
between the spectra of different commensurate structures with
the same θ vanishes [15,21], as the arrangement of the atoms
of one layer relative to the atoms of the other layer becomes
uniformly random, just as it happens in the incommensurate
case.

For calculation of the complete band structure, one can also
use an equivalent Hamiltonian (see Appendix B) constructed
in a basis of other 4T wave functions defined on 4T sub-
sublattices. This Hamiltonian has the same dimensions, and
calculating its matrix elements is a bit simpler. Nevertheless,
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the proposed SBWF formalism strongly simplifies the consid-
eration of the low-energy part of the spectrum. As we show,
this part of the spectrum can be obtained within the framework
of simple effective Hamiltonians proposed below.

Note that, due to increased translational symmetry of the
reciprocal space, the vertices of the FBZs rotated relative to
each other become equivalent [see Figs. 1(c) and 1(d)]. The
latter leads to a strong coupling between the lowest-energy
bands of the layers at the corresponding points. Let us denote
the vector translating K′ into K as Q0. Then to describe the
low-energy electron spectrum of the considered commensu-
rate bilayer, it is necessary to consider two pairs of SBWFs in
Eq. (4). The first pair with Q = 0 is for the top layer, and the
second pair with Q = Q0 is for the bottom one.

The nodes of the commensurate MP form a primitive pe-
riodic hexagonal lattice in reciprocal space, and the vector
Q0 can be expressed as an integer linear combination of this
lattice basis translations G1 and G2. For a commensurate
superstructure (h, k), these translations read as follows:

G1 = b1 + 2b2

3k
, G2 = −2b1 + b2

3k
,

where b1, b2 (b
′
1 , b

′
2) are the basis vectors of the top (bottom)

layer reciprocal lattice and b1 = b1 − b
′
1, b2 = b2 − b

′
2.

Accordingly, the vector Q0 translating K′ into K is found as
−k(G1 + G2).

Note that the vector Q0 can also be expressed as an integer
linear combination of the vectors b1, b2 and b

′
1 , b

′
2. A shift

by a vector of the top (bottom) layer reciprocal space only
changes the phase of the Bloch function. Therefore, when
calculating the band structure, one can neglect the dependence
of Q0 on b

′
1 and b

′
2. Let us denote such a vector as Qs. Thus,

we obtain the first effective Hamiltonian:

Heff =
[

H(q) V(q, Qs)
V∗(q, Qs) H′(q − Qs)

]
, (6)

where the nondiagonal blocks are calculated as

Vα,α′ = 1

T

∑
Rα,Rα′

exp{I[q · Rα − (q − Qs) · Rα′ ]}u(Rα, Rα′ ).

(7)

Here, H (q) and H ′(q) are the Hamiltonians with the form
in Eq. (1) constructed for still and rotated layers, respectively,
α = A, B and α′ = A′, B′.

In the case of the pattern (2,1) [its reciprocal space is shown
in Fig. 1(c)], the vector translating K′ into K is −(b1 + b

′
2).

Therefore, as the vector Qs, one can take the vector −b1. For
the pattern (3,1) [see Fig. 2(c)], this vector is 2(b1 + b

′
2) −

(b
′
1 + b2), then Qs = 2b1 − b2. The spectra of both struc-

tures, calculated within the Hamiltonian in Eq. (6), are shown
in Fig. 2 by red lines.

Note that the spectrum of the complete Hamiltonian for
any commensurate superstructure is periodically repeated in
the reciprocal space spanned by the basis vectors G1 and
G2. The constructed effective Hamiltonian in Eq. (6) does
not have such a translational symmetry and approximates the
complete one only in the vicinity of the point K coinciding
with the vertex K̄ of the cell of the folded reciprocal space.

The accuracy of such an approximation of the low-energy
spectrum decreases when approaching the points �̄, M̄ (see
Fig. 2) and −K̄.

Let us now consider how a more complex effective Hamil-
tonian can be constructed, which approximates well the
low-energy spectrum within a cell of the folded reciprocal
space for any commensurate bilayer structure. Recall that the
previous effective Hamiltonian in Eq. (6) is constructed in
such a way that, when there is no interlayer coupling, the
peaks of the considered pair of Dirac cones exactly coincide
with the point K̄ of the reduced FBZ. The next effective
Hamiltonians can be constructed using the same idea. Namely,
to approximate the spectrum within a unit cell with six ver-
tices, we choose shift vectors in SBWFs in such a way
that a pair of Dirac cones [which correspond to the blocks
H(q − Qi ) and H′(q − Q

′
j ), respectively] appears in every

vertex of the cell. The basis of the Hamiltonian proposed,
which we denote as H24, consists of 24 shifted Bloch func-
tions. Figures 2(a) and 2(b) show the spectra of the complete
Hamiltonian (black solid lines) and the spectra of the effec-
tive Hamiltonian H24 (light blue dashed lines) calculated for
the structures (2,1) and (3,1). In the low-energy region, the
difference between the dispersion curves is not noticeable on
the scale of Fig. 2. For these structures and several following
ones (which we analyzed numerically), the effective Hamilto-
nian H24 reproduces the low-energy spectra of the complete
Hamiltonian with an accuracy of up to 10 meV.

Note that the constructed Hamiltonian H24 consists of two
weakly coupled blocks of two times smaller dimension. The
basis functions of the first block are chosen in such a way that
three pairs of Dirac cones originating from the top and bottom
layers appear in three translationally equivalent vertices of the
hexagonal cell. From a practical point of view, it is convenient
to choose the reduced cell that contains the points K and K′
[see Figs. 1(c) and 1(d)]. Then the basis of the first block
includes the basis functions of the Hamiltonian in Eq. (6), as
well as eight functions obtained from these four by using two
minimal basis translations that shift the points K and K′ to
the vertices of the same reduced cell. For example, for the
structure (3,1), this basis consists of SBWFs with translations
Qi = [0, G2, G1 + G2] for the top layer and SBWFs with
translations Q

′
j = [0,−G1, −G1 − G2] for the bottom one.

To clarify the origin of the 12 functions of the second
block, we note that the three remaining vertices of the con-
sidered cell are not translationally equivalent to the first three
ones. However, each shifted Hamiltonian in Eq. (1) produces
Dirac cones that simultaneously belong to both sublattices of
the honeycomb lattice of the folded reciprocal space. There-
fore, the basis functions are shifted only by integer linear
combinations of the vectors G1 and G2.

To determine the shift vectors for the functions of the
second block, note that the Hamiltonian in Eq. (6) also ap-
proximates the spectrum of the full Hamiltonian in the vicinity
of the point −K, which belongs to another cell of the folded
zone, obtained from the considered one by inversion of the
reciprocal space. These two cells are translated into each other
in the folded reciprocal space by a vector G̃. For the structures
shown in Figs. 1(c) and 1(d), this vector is expressed as G̃ =
2(G2 − G1). Accordingly, the functions of the second block
can be obtained from the first 12 functions simply translating
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FIG. 3. Flattening of the lowest-energy bands in twisted bilayer graphene with a small twist angle within the framework of zone folding
theory. (a) Schematic band structure produced by the coupling between two pairs of Dirac cones. The cone location points K̄1 and K̄2 are
separated by a minimum translation with length G. Purple dotted lines show the band structure when the coupling is switched off. The cones
of the top and bottom layers are rotated by an angle θ and, therefore, coincide only in the vicinity of the points K̄1 and K̄2. The band structure
(calculated with the account of van der Waals interaction between the layers) is shown by black solid lines. This interaction leads to the merging
and repulsion of previously intersecting dispersion curves. (b) and (c) Spectra of the effective Hamiltonian H24 calculated for commensurate
structures (15,1) and (27,1). The corresponding twist angles θ are 6.40 ° and 3.61 °. The maximum distance between the lowest energy bands
(which is near the point �̄) decreases from 1 to 0.4 eV.

them by G̃. The fact that the length of the minimal basis
translation of the folded reciprocal space G is substantially
less than the length of G̃ explains the weak coupling between
the 12 × 12 blocks of the Hamiltonian H24. The latter fact also
explains the weak repulsion of low-energy bands originating
from the different blocks [see the spectra near the points �̄ and
M̄ in Figs. 2(a) and 2(b)]. The ratio G/G̃ decreases with the
twist angle. As a result, the coupling between the Dirac cones
located in the translationally nonequivalent vertices of the cell
also weakens.

Within the framework of the proposed theory, it is easy
to clarify the flattening of the lowest-energy bands in TBLG
with a small twist angle. Even comparing Figs. 2(a) and
2(b), one can see that, with a decrease in θ , the distance be-
tween the bands (the maximum one is near �̄) has decreased.
Figure 3 shows the low-energy regions of spectra calculated
within the Hamiltonian H24 for structures (15,1) and (27,1),
where one can see the same tendency. Nevertheless, the band
structure produced by the Hamiltonian H24 is too complex
for a qualitative consideration of the occurring phenomenon.
Therefore, in Fig. 3(a), we schematically show the rearrange-
ment in the spectrum resulting from the coupling between
only two translationally equivalent pairs of Dirac cones. These
cones correspond to a Hamiltonian with the basis of 8 SB-
WFs that have the following shift vectors: Qi = [0, Q0] and
Q

′
j = [0,−Q0]. As shown in the figure, due to van der Waals

interaction, the dispersion curves merge and repel. As a result,
the intersections between the cones split into several bands,
and the lowest-energy ones are pushed by the bands above
toward the Fermi level E = 0.

Note that the maximum distance between the bands under
consideration can be estimated as GVF , where VF = √

3γ a/2

is the Fermi velocity in the graphene monolayer, and a is the
graphene lattice constant. The length G tends to 0 together
with the twist angle θ , and this fact clearly explains the band
flattening and the corresponding decrease in the gap between
the bands.

Concluding the discussion of this problem, we note that,
although the flattening mechanism within the proposed ap-
proach becomes practically obvious, a more detailed analysis
of the EDoS, including the consideration of magic angles, is
clearly beyond the scope of this paper.

We also note that the constructed effective Hamiltonian
H24 is only suitable to describe the lowest-energy region of
the spectrum. To describe the spectrum in a region with a
width of ±E , the basis of such a Hamiltonian should include
additional shifted Bloch functions that correspond to Dirac
cone pairs falling onto the area with a radius Qr and center
in �̄, where Qr � E/VF . When the interlayer coupling is
switched off, in the folded reciprocal space, these functions
exactly correspond to the bands whose energies lie within the
range of ±E .

Below, within the proposed formalism of shifted Bloch
functions, we will consider the construction of simpler ef-
fective Hamiltonians for the incommensurate TBLG and
incommensurate DWCNTs.

III. INCOMMENSURATE BILAYER STRUCTURES

As mentioned before, bilayer graphene with an arbitrary
twist angle θ is an aperiodic structure. However, the vectors
b1 and b2 always correspond to a periodic hexagonal
lattice in the direct space. Using the orthogonality relations
CM

i · b j = 2πδi j , where δi j is the Kronecker delta, one can
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FIG. 4. The direct and reciprocal spaces of the incommensurate twisted bilayer graphene (TBLG). (a) Two superimposed hexagonal lattices
with a twist angle θ = 3.5 ◦. The arrows show the basis translations of the moiré lattice. Near the nodes, the TBLG structure is practically the
same; however, the translations of the moiré lattice connect structurally nonequivalent points of TBLG. (b) Superimposed reciprocal lattices
of the top and bottom monolayers; θ = 3.5 ◦. (c) and (d) Selected regions of the panel (b) at a larger scale. Far from the origin, points of K and
K′ types can be arbitrarily close; an example is shown in panel (c). (d) Around the point �, there are three pairs of K and K′ points.

obtain the basis translations of this so-called moiré lattice:

CM
1 = a

′
1 − a1

4sin2 θ
2

, CM
2 = a

′
2 − a2

4sin2 θ
2

,

where a1, a2 and a
′
1, a

′
2 are the basis graphene translations in

the top and bottom monolayers, respectively. The period of
the moiré lattice is

CM = ∣∣CM
1

∣∣ = ∣∣CM
2

∣∣ =
√

3a0

2 sin
(

θ
2

) ,

where a0 = 0.142 nm is the carbon bond length, and the area
of the moiré unit cell is found as

SM = ∣∣CM
1 × CM

2

∣∣ = 3
√

3a2
0

8sin2
(

θ
2

) .

In the vicinity of moiré lattice nodes, the TBLG structure is
approximately the same; however, due to incommensurability
between the lattice and graphene monolayers, a slight shift
appears when translating from one lattice node to the other
[see Fig. 4(a)].

It is clear that the electron spectrum of incommensurate
TBLG can be approximated by the spectrum of the above-
considered commensurate TBLG since the only parameter
characterizing TBLG structure (which is the twist angle)
can change continuously. Nevertheless, below, we consider
a simple effective Hamiltonian constructed specifically for
incommensurate TBLG. The advantage of such a Hamiltonian
is that it can be easily adapted for the case of incommensurate
DWCNT. The structures of commensurate and incommen-
surate double-walled tubes are qualitatively different. It is
simply impossible to construct such a commensurate tube
approximating an incommensurate one since the DWCNT
structure is simultaneously characterized by four parameters:
two diameters and two chiral angles.

Now let us consider the differences between reciprocal lat-
tices of an incommensurate bilayer and a commensurate one.

In the infinite reciprocal space of the incommensurate TBLG,
K and K′ points can be arbitrarily close, corresponding at
first glance to a strong interlayer coupling [see Fig. 4(b)].
However, with the exception of only three pairs of K and K′
points, the coupling between the corresponding modes is quite
weak since the matrix elements in Eq. (7) decay exponentially
with the increasing distance |q − Qs| in the reciprocal space
(see Appendix C). In other words, if we superimpose two
incommensurate reciprocal spaces (of TBLG or DWCNT),
then near the points, where vertices K and K′ are close to
each other and locate far from the origin, the corresponding
interlayer interactions can be neglected [33].

Let us discuss how to construct in the incommensurate case
the effective Hamiltonian valid in the vicinity of the point
K1 = 1

3 (b1 − b2). Note that there are two other translationally
equivalent nodes of the graphene FBZ which are close to
the point �: K2 = K1 + b2 and K3 = K1 − b1. Near each of
these points, there are vertices K

′
1, K

′
2, and K

′
3, respectively. If

only pairwise interactions between the modes with the wave
vectors Ki and K

′
i , are considered, then the effective Hamilto-

nian can be constructed using four pairs of SBWFs. The first
and second pairs (for the top and bottom layers, respectively)
are both with Q0

s = 0. The remaining two pairs of Bloch func-
tions are also for the lower layer and have the following shift
vectors Q1

s = −b2 and Q2
s = b1. Accordingly, the effective

Hamiltonian for the incommensurate TBLG reads⎡
⎢⎢⎣

H(q) V(q, 0) V(q, b1) V(q,−b2)
V∗T (q, 0) H′(q) 0 0
V∗T (q, b1) 0 H′(q − b1) 0
V∗T (q,−b2) 0 0 H′(q + b2)

⎤
⎥⎥⎦,

(8)

where H(q) and H′(q) are matrices obtained from Eq. (1)
by substituting the corresponding basis vectors of the direct
lattice, and the superscript T denotes the operation of matrix
transposition.
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Note that the Hamiltonian in Eq. (8) can be rewritten
using the reciprocal space vectors b1 and b2 of a moiré
lattice, which is in many respects like the lattice of the folded
reciprocal space arising in the commensurate case. Then the
Hamiltonian in Eq. (8) turns out to be very similar to one of
the weakly coupled blocks of the Hamiltonian H24 described
at the end of the previous section. The difference is due to the
fact that the vector connecting the points K and K′ is not a
translation of the moiré lattice, and the reduced dimension of
the matrix in Eq. (8) is explained by the asymmetry of this
Hamiltonian with respect to the permutation of the upper and
lower layers.

It may also seem that Eq. (7) can still be used to calculate
the matrix elements V(q, Q j

s ) of the Hamiltonian in Eq. (8),
where it is sufficient to replace the triangulation factor T with
the number of hexagons that fall on a moiré unit cell with
an area SM . However, the translations CM

1 and CM
2 along the

moiré lattice connect nonequivalent points of incommensurate
TBLG since the latter is incommensurate with both graphene
layers. As a result, an additional small phase at the points
near the moiré lattice nodes can significantly impact the value
of the matrix elements, and this phase vanishes only when
averaged over an infinite incommensurate bilayer lattice.

As our numerical analysis shows, to evaluate V(q, Qs), one
should perform the calculations at least over several tens of
MP cells, which dramatically affects the computational effi-
ciency. The situation is a bit simplified by the fact that, due to
the incommensurability of the layers, the elements Vαα′ (q, 0)
practically do not depend on the sublattice indices α and α′,
and moreover, they are practically real. Thus, Vαα′ (q, 0) ≈
v(q), where the function v(q) can be calculated using the
following simplified equation:

v(q) = 1

N

∑
Rα,Rα′

cos [q · (Rα − Rα′ )]u(Rα, Rα′ ), (9)

in which the summation is performed over any two sublat-
tices belonging to different TBLG layers. See more detail on
deducing Eq. (9) in Ref. [27]. Note that the matrix elements
V(q, Qs) have the following property:

Vα (q, Qs) = exp(IQsRα )v(q − Qs), (10)

where the vector Qs can be any translation of the top layer
reciprocal lattice, particularly b1 or −b2. As Rα , one can
choose the coordinates of any of the atoms belonging to the
sublattice α since it does not change the phase in Eq. (9). Thus,
to obtain all the nondiagonal elements of the Hamiltonian
in Eq. (8), one should calculate the function v(q) and then
determine the complex factors according to Eq. (10). In the
explicit form, the nondiagonal blocks of the Hamiltonian in
Eq. (8) are found as V(q, b1) = Cv(q − b1) and V(q,−b2) =
C∗v(q + b2), where C = ( ε ε

ε∗ ε∗) and ε = exp(I2π/3).
The tight-binding theory developed above for bilayer

graphene can be generalized to the case of DWCNTs. To do
so, one should express the graphene primitive translations a1

and a2 in cylindrical coordinates, where the first and second
components of a vector correspond to the projections onto
the circumference and the longitudinal axis of the tube, re-
spectively (see Appendix A). Following Ref. [27], we define
the first component of the cylindrical translation as a fraction

of the single-walled carbon nanotube (SWCNT) perimeter.
With this definition, the first component μ of the wave vector
q = (μ, k) becomes a dimensionless integer; it numbers the
cutting lines in the unrolled reciprocal space of SWCNTs,
while the second component k is the projection of the wave
vector along the cutting lines [17].

Let us note that all the structurally identified DWCNTs
so far are incommensurate [34]; thus, we consider only this
case below. Unlike completely equivalent graphene layers, the
inner and outer tubes of DWCNTs are not equivalent to each
other. Therefore, the lowest-energy dispersion curves of the
outer and inner tubes can be considered within the framework
of the Hamiltonian in a basis of 12 SBWFs (two for each
pair of K and K′ points). An alternative and simpler option
is to use two different Hamiltonians for the outer and inner
tubes. Then each of them turns out to be like the Hamiltonian
of incommensurate bilayer graphene considered above. For
example, the effective Hamiltonian for the inner tube reads
as follows:⎡
⎢⎢⎣

Hin(q) Ev(q) Cv(q − b1) C∗v(q + b2)
Ev(q) Hout (q) 0 0
C∗T v(q − b1) 0 Hout (q − b1) 0
CT v(q + b2) 0 0 Hout (q + b2)

⎤
⎥⎥⎦,

(11)
where E = (1 1

1 1), the blocks Hin(q) and Hout (q) are obtained
from the Hamiltonian in Eq. (1) by the described above substi-
tution of the basis vectors of the direct and reciprocal lattices.
The eigenenergies of the blocks Hin(q) and Hout (q) are re-
spectively equal to E±

in = ±| fin(q)| and E±
out = ±| fout (q)|.

The vectors b1 and b2 are the basis vectors of the inner tube
reciprocal space (see Appendix A).

The matrix elements v(q) in the Hamiltonian in Eq. (11)
have the same properties as the elements of the incommen-
surate TBLG [27]. They are also real and practically do not
depend on the indices α and α′, with the only difference being
that, for the case of DWCNT in Eq. (9), the number N should
be replaced with

√
NinNout, where Nin and Nout are the num-

bers of hexagons in the inner and outer tubes, respectively.
To preserve the accuracy when calculating v(q) according to
Eq. (9), it is necessary to consider a DWCNT with a length
exceeding several tens of moiré periods along the tube axis.

Let us denote E+(E−) as the energy of the DWCNT band
originating from the inner SWCNT CB (VB). Expanding the
proposed effective Hamiltonian in Eq. (11) into the series up
to the second order of smallness in v(q), one can obtain the
energy shifts for the CB E+

in (q) ≡ E+ − E+
in and the VB

E−
in (q) ≡ E− − E−

in of the inner tube:

E+
in (q) =

3∑
j=1

v2
j (1 + cos ϕin )(1 + cos ϕout, j )

| fin| − | fout| j

+ v2
j (1 + cos ϕin )(1 − cos ϕout, j )

| fin| + | fout| j
, (12)

E−
in (q) = −

3∑
j=1

v2
j (1 − cos ϕin )(1 − cos ϕout, j )

| fin| − | fout| j

+ v2
j (1 − cos ϕin )(1 + cos ϕout, j )

| fin| + | fout| j
. (13)
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Equations (12) and (13) yield the energy shift for the direct
electronic transition in the inner nanotube:

Ein(q) =
3∑

j=1

2v2
j (1 + cos ϕin cos ϕout, j )

| fin| − | fout| j

+ 2v2
j (1 − cos ϕin cos ϕout, j )

| fin| + | fout| j
. (14)

In Eqs. (12)–(14), all the quantities depend on the wave
vector: v j = {v(q), v(q − b1), v(q + b2)}; ϕin and ϕout, j are
the phase shifts between the sublattices of the inner and outer
tubes, respectively [see Eq. (2)]; the values of | fout| j and ϕout, j

are calculated with the same wave vector shifts {0, b1,−b2}.
Obviously, the obtained expansions are applicable provided
that v � || fin| − | fout||.

The effective Hamiltonian for the outer tube is obtained
from Eq. (11) by a simple permutation of the indices “in” and
“out”. It is also necessary to replace the vectors bi with the
vectors b

′
i. The energy shifts for the bands of the outer tube are

obtained from Eqs. (12)–(14) by the same substitutions. Note
that Eqs. (12)–(14) can also be obtained within the framework
of the perturbation theory developed in Ref. [27].

In the next section, the developed theory of the band struc-
ture in incommensurate bilayer systems will be applied to
calculate the energies of optical transitions in DWCNTs and
particularly to calculate the energies of intertube transitions.
This type of optical transition has been discovered recently
and theoretically considered only for a few DWCNTs [26–28].

IV. OPTICAL TRANSITIONS IN DWCNTs

The theory developed above, and Eq. (14) particularly, can
be used to calculate the energy shifts of optical transitions
in DWCNTs. In this case, one should consider that, due to
many-electron interactions, the energy of optical transitions
in SWCNTs increases by several hundred millielectronvolts
compared with the predicted ones by the tight-binding ap-
proach [35], and the CB is replaced by an exciton band
[36]. However, the formation of a DWCNT from two pristine
SWCNTs practically does not affect these effects since the
binding energy of excitons significantly exceeds the energy of
the van der Waals interaction between the SWCNTs. Pertur-
bation theory combined with TBA was successfully applied
in Ref. [33]. Using this approach, the authors calculated the
energy shifts due to interlayer coupling and compared them
with the experimentally observed shifts in the positions of
absorption peaks. Our theory can also be applied to describe
the energy shift of electron transition when a DWCNT is
formed from SWCNTs. The optical transition energy in SWC-
NTs cannot be calculated using NN TBA, and one should use
experimental data or a semi-empirical equation from Ref. [37]
approximating the data on ∼200 SWCNTs with the diameters
ranging from 1.3 to 4.7 nm. Note that, in some relatively rare
cases, the error of the formula (1) from Ref. [37] can reach
up to 40–50 meV. When analyzing the experimental data, one
should also consider the screening effect in DWCNTs [33,38–
40], which leads to a redshift in the optical transition energies
by 50–60 meV.

Let us recall that the electron transitions observed in the
optical spectra of SWCNTs originate from points in reciprocal
space called van Hove singularities. Near the K points, the
VHS coordinates can be found as [27]

qp = K + P,

where K can be one of three vectors {K1 = 1
3 (b1 − b2), K2 =

1
3 (b1 + 2b2), and K3 = 1

3 (−2b1 − b2)}, P = (p/3, δk), p is
an integer, and δk describes a small band extremum shift along
the cutting line μ(p). The higher the energy of the band is, the
larger the shift δk becomes. Positive and negative numbers
p which are multiples of three (|p| = 3, 6, 9) correspond to
transitions in metallic SWCNTs (M11, M22, M33). These
transitions are split, and a positive number corresponds to a
slightly higher energy of the doublet than a negative one [41].
Other positive and negative numbers (|p| = 1, 2, 4, 5, 7, 8)
index electronic transitions in semiconducting tubes (S11, S22,
S33, S44, S55, S66). For the SWCNT (n, m), the sign of p
numbers is unequivocally determined by the integer constraint
for the “angular” component μ(p) = (n−m + p)/3 of the
vector q.

As we demonstrated above, in the case of DWCNTs, it is
necessary to consider the coupling between the modes of the
inner and outer tubes near three K points. Then to find the
energy shift of an optical transition with index p originating
from a SWCNT, one can use Eq. (14) rewritten as

E (p) =
3∑

j=1

Ein(out)(K j + P) + s, (15)

where s is the constant redshift occurring due to the screen-
ing effect.

In Ref. [27], we have successfully applied Eq. (15) to
analyze 94 intratube optical transitions in 27 DWCNTs taken
from Ref. [33]. With the found fitting parameters of the theory
[27], the energies of these transitions have been calculated
with a standard error of 18 meV, and the maximum error has
been 47 meV. The only drawback of this approach has been
the rather time-consuming calculation of Eq. (9).

Following the approximation [27,33], which states that
atom positions in different layers can be considered approx-
imately random relative to each other, the summation over the
inner or outer tube sites in Eq. (9) can be replaced by inte-
gration. Accordingly, the interlayer matrix element is simply
found as the Fourier transform of the hopping integral u(ρ, d )
(see Appendix C). Note that, since the interlayer distance in
DWCNTs is a variable, the parametrization of the hopping
integral is changed. If it is transformed (like in Refs. [27,33])
into the function w(l ) = γc exp(−l/λ), where l is the distance
between the considered atoms of adjacent layers, then the
integration yields a special function, which is not practical for
our calculations. However, since both functions u(ρ, d ) and
w(l ) are essentially phenomenological ones, then to obtain
observable expressions, we used a Gaussian function u(l ) =
γ

′
c exp(−αl2). As a result, we found the following expression

to calculate the interlayer matrix elements:

v(μ, k) = γ
′
cπ

S0α
exp(−αR2)exp

[
− 1

4α

(
k2 + μ2

RinRout

)]
,

(16)
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FIG. 5. Origin of intertube optical transitions in double-walled carbon nanotubes (DWCNTs) with the specific geometry. (a) Typical
reciprocal space of a DWCNT, where intertube optical transitions are possible. Superimposed extended Brillouin zones of the inner and outer
tubes are shown in red and black, respectively. Parallel gray lines represent the common cutting lines of the DWCNT. The projections of the
points K

′
1 and K1 on these lines have very close k coordinates, which correspond to the proximity of the band extrema originating from different

pristine SWCNTs. As an example, DWCNT (10,6)@(14,13) is chosen. (b) Schematic rearrangement in the DWCNT band structure caused
by inter-layer coupling. Black and red solid curves correspond, respectively, to the bands of the inner and outer tubes; k � K1, where K1 is
the k-coordinate of the point K1; E+

in(out) and E−
in(out) are the energies of the conduction and valence bands in non-interacting tubes; EDW

1 , EDW
2 ,

EDW
3 , EDW

4 are the corresponding energies of DWCNT bands. Double arrows demonstrate the emerging intertube transitions.

where Rin and Rout are radii of the inner and outer SWCNTs,
R = Rout − Rin is the interlayer distance in a DWCNT, μ

and k are the wave vector q components, and S0 is the area
of the graphene unit cell. The parameters α, γ

′
c , and s were

determined by the method of least squares and minimization
of the error in the calculations of E . For this fit, we used
the experimental data on 94 optical transitions from Ref. [33].
Due to reasons explained in Ref. [27], the data on transitions
from DWCNT (11,7)@(21,6) were excluded. As a result, we
obtained the following values of the constants: γ

′
c = 46 eV,

α = 38 nm2 . The found values of the screening constant
s are −55 and −60 meV when the energy shift E is
calculated for a transition originating from a metal tube and
a semiconducting one, respectively. With these parameters,
the standard error in our calculations turned out to be slightly
<18 meV, and a maximum error was 44 meV (the calculated
energies can be found in the Supplemental Material [42]).

Note that a similar expression for calculation of the
interlayer coupling in Eq. (16) can be obtained by sim-
ply expanding the argument of the function exp(−l/λ) =
exp(−

√
ρ2 + R2/λ) up to the second order of smallness in

ρ/R. Probably, this procedure was carried out in Ref. [33],
where the related details were omitted. As a result of this
expansion, the hopping integral is also expressed as a Gaus-
sian function but with different parameters and a different
dependence on the distance R. Even though the standard
error practically does not change within this approach, the
maximum error increases up to 50 meV.

In addition to its accuracy and computational efficiency, the
developed theory has the advantage that it allows calculating
the energies of intertube optical transitions (ITTs), which have
been theoretically predicted quite recently [27,28]. We found
the conditions allowing for ITTs in Ref. [27]. We demon-
strated that these transitions arise due to a rearrangement
in the band structure which is only possible in DWC-
NTs satisfying specific geometrical criteria. More precisely,

ITTs are allowed in those DWCNTs where the points K1 =
(b1 − b2)/3 and K

′
1 = (b

′
1 − b

′
2)/3 are close to each other

[27], i.e., these points should not be separated by more than
two cutting lines in the reciprocal space, and the difference in
their k coordinates along the tube axis should also be small,
much less than the inverse periods of the inner and outer
SWCNTs. An example of a reciprocal lattice satisfying these
criteria is presented in Fig. 5(a). When these conditions are
met, the VHSs of the outer and inner tubes turn out to be close
in the reciprocal space. The intertube coupling can modify
the band structure in such a way that VHSs originating from
different tubes become even closer, while the bands belonging
to the same tubes move apart. This type of rearrangement is
illustrated in Fig. 5(b). Note that the VB and CB of the inner
and outer tubes can be shifted differently, and the energies
of a pair of ITTs do not always coincide. In the earlier study
[27], we have shown that the values of dipole moment matrix
elements for intertube and intratube transitions can be of the
same order of magnitude. Since the intensity of a transition
is proportional to the value of the dipole matrix element and
EDoS [43,44], both types of electron transitions can be present
in the optical spectra of DWCNTs. However, due to the rear-
rangement shown in Fig. 5(b), the half-width of the intratube
transitions (corresponding to the shifted extrema) increases,
and its intensity decreases [27].

To obtain the unrolled reciprocal lattice of a DWCNT and
to check the proximity of the points K1 and K

′
1, one can

use the expressions from Appendix A or superimpose the flat
reciprocal spaces of the SWCNTs. For a proper overlap, not
only the directions of the chiral vectors C and C′ of the inner
and outer tubes must coincide, but also the angular lengths of
these vectors (2π ) must be the same. Hence, in the direction
perpendicular to the common axis, it is necessary to uniformly
deform the reciprocal space of one of the tubes, so the perime-
ters C and C′ of the unrolled nanotubes coincide [27,31,33].
In the resulting geometric structure, the cutting lines [17] of
both SWCNTs also coincide.
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FIG. 6. Rayleigh scattering spectra for double-walled carbon nanotubes (10,6)@(14,13) and (14,8)@(19,14). The dashed vertical lines
show the energies of optical transitions predicted by our theory. The labels of the transitions originating from the inner and outer single-
walled carbon nanotubes are shown at the top and bottom parts of the panels, respectively. Red dotted lines correspond to the intertube
transitions.

Let us proceed directly to the method for calculating the
energies of ITTs. Again, since the CB is replaced by the
exciton band [35,36], we cannot directly use the energies
given by the Hamiltonian in Eq. (11) to determine the ITT
energies. However, we can calculate the shift EITT in the
transition energy when a DWCNT is formed from two pristine
SWCNTs as

EITT = EDW − Ein + Eout

2
,

where Ein and Eout are the energies of the inner and outer
SWCNTs calculated using NN TBA, EDW is the transition
energy calculated using the Hamiltonian in Eq. (11). Fur-
thermore, to obtain the transition energy, it is necessary to
sum up EITT and the half-sum of the experimental energy
values or the values from the table in Ref. [37]. Naturally,
such an estimate assumes that the VB and CB in SWCNTs
are symmetric, and we use this approximation based on the
results from Ref. [37].

We now explore the existence of ITTs in individual DWC-
NTs, grown by catalytic chemical vapor deposition method
over open slits (see Ref. [34] for more details on the synthesis
procedure). These DWCNTs were index assigned by analyz-
ing the electron diffraction patterns following the approach
in Ref. [45]. Among tens of probed DWCNTs, we selected
two satisfying the condition for ITTs according to our theory,
namely, (10,6)@(14,13) and (14,8)@(19,14).

Figure 6 presents their Rayleigh scattering spectra (solid
blue lines) with the energies of optical transitions calculated
within the developed approach. The energies of intratube tran-
sitions (dashed lines) were found using Eqs. (15) and (16),
while ITT energies (marked as IT in Fig. 6) were calculated
using the Hamiltonian in Eqs. (11) and (16). The horizontal
error bars indicate the uncertainty in optical transition ener-
gies calculated for pristine SWCNTs. The uncertainty (±40
meV that is two standard deviations) results from using the
formula of Liu et al. [37].

We note that there are two ways to interpret the spectra of
the DWCNTs in Fig. 6. Since the electron diffraction pattern
analysis cannot distinguish the handedness of DWCNT layers,

we have to consider two possible geometrical configurations,
i.e., with the same and opposite handednesses [denoted in
the following as (+1) and (−1) DWCNTs, respectively]. The
latter DWCNTs do not have the ITTs since the points K1

and K
′
1 in this configuration always have a significant spacing

(see detailed geometrical analysis in the next section). Hence,
their optical spectra should contain only a superposition of in-
tratube transitions (Table I). On the other hand, DWCNT(+1)
satisfies the geometrical conditions for ITTs. Therefore,
the peaks at 1.98 and 1.74 eV in (10,6)@(14,13) and
(14,8)@(19,14) Rayleigh spectra, respectively, can be a su-
perposition of intratube transitions and ITTs. Let us note that
Rayleigh spectra of the DWCNT (14,8)@(19,14) in Fig. 6 can
be fitted using both sets of transitions from Table I, i.e., with
and without ITTs. Nevertheless, considering the accuracy of
the theory proposed, the peak at 1.98 eV in (10,6)@(14,13)
can hardly be associated with the nearest Sin

33 intratube tran-
sition, and in our opinion, the interpretation shown in Fig. 6
is much more likely. In addition, our previous spectroscopic
study [34] and independent high-resolution transmission
electron microscopy study [46] suggest that DWCNT(+1)
configurations are more abundant than DWCNT(−1). In any
case, further spectroscopic studies, which go outside the scope
of our largely theoretical work, are necessary to establish the
origin of the considered resonances exactly.

Let us note that the developed theory also agrees with
the results obtained in Ref. [28]. In that article, the author
demonstrates the possibility of intertube electron transitions
on the example of DWCNT (15,13)@(21,17). The theory [28]
predicts four ITTs in this tube, specifically, a doublet with
energies of 1.34 and 1.40 eV and a doublet with energies
of 2.26 and 2.31 eV. Our model predicts the same pairs of
ITTs; however, the energies of these doublets calculated using
Eqs. (11) and (16) turn out to be a bit different: 1.17, 1.28 eV
and 2.23, 2.35 eV.

In the conclusion of this section, we would like to em-
phasize that the developed tight-binding theory has many
potential applications. For example, it can be used to cal-
culate conductance, optical absorption, or even the magic
angles in TBLG. However, in view of the growing amount
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TABLE I. Energies of optical transitions in DWCNTs (10,6)@(14,13) and (14,8)@(19,14). The SW row shows the energies of pristine
SWCNTs comprising corresponding DWCNTs. Their values are taken from Ref. [37]. The DW(+1) and DW(−1) rows correspond to the
calculated energies in DWCNTs with the same (+1) and opposite (−1) handednesses.

DWCNT Transition Sin
22 Sin

33 M in
11− M in

11+ M in
22− ITT1 ITT2 Sout

33 Sout
44 Sout

55 Sout
66

(10,6)@(14,13) SW, eV 1.66 2.74 — — 1.93 2.34
DW(−1), eV 1.59 2.69 — — 1.88 2.28
DW(+1), eV 1.58 2.69 1.99 2.03 1.87 2.29

(14,8)@(19,14) SW, eV 1.69 1.80 2.91 — — 1.69 1.98 2.70 2.84
DW(−1), eV 1.63 1.73 2.86 — — 1.62 1.92 2.64 2.79
DW(+1), eV 1.65 1.80 2.86 1.75 1.75 1.59 1.92 2.63 2.77

of experimental data on the optical spectra of DWCNTs
[26,33,38,47,48] and the discovery of intertube electron
transitions [26–28], in this paper, we decided to focus on
calculations of optical transition energies, which is also the
simplest way to compare our theory with an experiment.

V. DISCUSSION AND CONCLUSIONS

In this paper, we developed a theory of the electron
band structure in bilayer carbon nanosystems. The proposed
method for the construction of the Hamiltonian uses the basis
of linearly independent Bloch functions shifted in the recip-
rocal space. The introduction of this basis is caused by the
lowering of the translational symmetry in the considered bi-
layer structures. Within the developed approach, to construct
an effective Hamiltonian, one can choose only a few critical
functions from the basis and consider the formation of the
low-energy band structure from the folded (or shifted) dis-
persion curves. One of the main advantages of the developed
theory is that it allows considering the electron properties of
commensurate and incommensurate bilayer structures from
a unified point of view. The effective Hamiltonians used to
calculate the electron spectra are constructed according to the
common principles. The small size of the matrices of these
Hamiltonians together with the simplified expressions for the
interlayer coupling provide an efficient way to calculate and
analyze the band structure of the investigated systems.

Strictly speaking, the use of the wave vector (and Bloch
functions) to characterize the modes of an incommensu-
rate system is not completely correct, and an alternative
approach is to consider a very large finite fragment of an
infinite structure and diagonalize Hamiltonian matrices with
the correspondingly large dimensions [28,49]. However, in
the vicinity of Dirac points, the concept of a wave vector
turns out to be quite applicable for the lowest-energy elec-
tron excitations in the bilayer incommensurate systems under
consideration. It is like many other aperiodic systems, where
low-frequency sound with a wavelength much larger than
the size of characteristic structural units can be characterized
by a wave vector [50]. The applicability of the wave vector
concept, proven for DWCNTs by the comparison with experi-
mental data, can also be justified by the fact that the graphene
layers interact via relatively weak van der Waals forces, and
the atoms of one layer are located more or less randomly
with respect to the atoms of the adjacent layer. The use of the
wave vector turns out to be very beneficial also for intertube
transitions when one of the bands involved in the transition

originates predominantly from one pristine nanotube and the
other predominantly comes from another tube [27].

Continuum models [15,20–22,24] are often used as an
alternative approach to calculate the band structure in in-
commensurate objects. Within this framework, the interlayer
coupling is expanded into series in the moiré vectors b1

and b2 of the reciprocal lattice. It is also assumed that
Fourier transform of the interlayer hopping integral u(ρ, d )
decays quite fast with increasing distance in the reciprocal
space. Thus, this expansion is limited only to a few first
Fourier components. Indeed, the interlayer matrix elements
decay according to the exponential law. However, the ap-
plicability of such an expansion for structures with only an
approximate periodicity is a matter of debate since the value
of the matrix elements in this expansion will depend on the
choice of the unit cell. In our opinion, the approach [27,33]
is more convincing. Its main assumption is that, in an incom-
mensurate bilayer, on average, atoms of different layers are
located relative to each other in an approximately random
manner. Therefore, to calculate the interlayer coupling, we
recommend using Eq. (9), or when the low-energy region of
the band structure is considered, one can use the approximate
expression Eq. (C6) from Appendix C.

Within the framework of our approach, it is also possible
to find more accurate conditions allowing ITTs and show that
DWCNTs, where ITTs are possible, are characterized by large
unit cells of MPs and a specific relation between the chirality
indices. Let us consider the unrolled net of DWCNT. For the
sake of clarity, we assume that the sheet of the inner nanotube
is stretched ε times, where ε = Rout/Rin, and the sheet of the
outer tube is not deformed, i.e., ε = 1. Then (in comparison
with the expressions from Appendix A), the reciprocal space
vectors of the inner and outer nanotubes unrolled into the
sheets are redefined as follows:

b1 =
[

2πn√
3T a0ε

,
2π (2m + n)

3
√

T a0

]
,

b2 =
[

2πm√
3T a0ε

,− 2π (2n + m)

3
√

T a0

]
,

(17)

where T = n2 + m2 + nm. Like the TBLG case, using the
vectors b1 = bin

1 − bout
1 , b2 = bin

2 − bout
2 , and orthogonal-

ity relations, one can construct a moiré lattice in the direct
space. The area SM of the moiré unit cell can be found as

SM = (2π )2

|b1 × b2| . (18)
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FIG. 7. Moiré patterns (MPs) in double-walled carbon nanotubes (DWCNTs) (14,2)@(15,13), (10,6)@(14,13), and (12,11)@(17,16).
(a) The unrolled direct space of DWCNT (14,2)@(15,13). In this nanotube, ϕ = 21.052 ◦, and intertube optical transitions are forbidden
according to our theory. One can see an aperiodic motif in the pattern, and the regions of local similarity are very small. (b) The unrolled
direct space of DWCNT (10,6)@(14,13). In this tube, intertube transitions are possible, and the points K1 and K

′
1 are quite close. The regions

of local similarity become elongated in comparison with those in the panel (a). (c) The unrolled direct space of DWCNT ((17),16)@(12,11).
The chirality vectors of the outer and inner tubes are almost collinear, which corresponds to the extremely elongated MP. Moreover, the points
K1 and K

′
1 almost coincide in the scheme of superimposed zones.

Earlier [27], we formulated the conditions allowing ITTs as
a requirement for the proximity of points K1 and K

′
1. Namely,

these two points should not be spaced by more than two
cutting lines, while the difference of their k coordinates along
the DWCNT axis should also be small. Using Eq. (17), it is
easy to show that the first of these conditions is equivalent to
the following one:

|nin − min − nout + mout| < 6, (19)

where (nin, min) and (nout, mout) are the chirality indices of
the inner and outer tubes, respectively. Using the expressions
in Eq. (17), one can also demonstrate that the smaller the
difference of k coordinates of the points K1 and K

′
1, the more

accurate the relation below:

nout + mout

nin + min
≈ Rout

Rin
. (20)

Let us show that satisfaction of the conditions in Eqs. (19)
and (20) for a given DWCNT corresponds to a large unit cell
of the MP in this tube. To do so, consider the problem of
maximizing SM with respect to the indices of the outer and
inner tubes. Suppose that nout = xnin and mout = ymin. If we
assume, when formally finding the extremum of SM , that the
tube indices are real and not necessarily integers, then the
solution of the equation system SM/ ∂x = 0 and ∂SM/∂y =
0 is

x = y = Rout

Rin
. (21)

Accordingly, the larger the area SM , the more accurate the
following relations:

nout

nin
≈ mout

min
≈ Rout

Rin
. (22)

Note that Eq. (22) is equivalent to the condition that the
difference ϕ of the chiral angles of the DWCNT layers is
close to zero. The relations in Eq. (22) also become quite
accurate if the left-hand side of the inequality in Eq. (19)
vanishes. However, one should not a priori [without direct

calculation of Eq. (18)] assume that a DWCNT, in which the
left-hand side of Eq. (19) is zero, always has a larger value of
SM than another DWCNT whose chiral indices satisfy Eq. (20)
with better accuracy.

For the DWCNT (12,11)@(17,16) (in which ITTs were
detected experimentally [26]), the right-hand side of Eq. (19)
is equal to zero. In this DWCNT, ϕ = 0.436 ° and SM =
1532.06 nm2. Among the nanotubes that we discussed in this
paper, and in which we suppose the presence of ITTs, the
largest value of ϕ = 6.988 ◦ corresponds to the DWCNT
(10,6)@(14,13). The area of the moiré cell in this tube is
SM = 7.37 nm2 and is hundreds of times smaller than in the
DWCNT (12,11)@(17,16) (see the MPs in above DWCNTs
in Fig. 7). Thus, the analysis performed shows that simply
large (not necessarily extremely large) areas SM and, accord-
ingly, small angles ϕ correspond to DWCNTs with strong
interlayer coupling and possible intertube transitions.

In all the considered DWCNTs where ITTs can occur, the
values of ϕ are small, and the points K1 and K

′
1 are close.

The latter brings us to a natural question: Are there such
incommensurate DWCNTs in which the points K2 and K

′
2 or

K3 and K
′
3 are close instead of the points K1 and K

′
1? Using

Eq. (17), it is easy to obtain the conditions for the proximity of
these points and then carry out the corresponding analysis, for
example, using a simple computer program. It turns out that,
in the extremely rare cases of DWCNTs selected this way, the
points K1 and K

′
1 are always going to be even closer. Thus, the

pairs of K points in DWCNTs are fundamentally nonequiv-
alent, and if there is indeed a strong coupling between the
DWCNT layers, then it is due to the proximity of the first pair
of points.

In conclusion, in this paper, we have developed a theory of
the band structure in TBLG and incommensurate DWCNTs.
We found more accurate conditions which allow ITTs and
demonstrated ITT presence in the DWCNTs (10,6)@(14,13).
Using the simplified method for calculating the interlayer
matrix elements in incommensurate bilayer carbon nanostruc-
tures, we calculated the energies of intratube and intertube
optical transitions in 30 DWCNTs. The proposed theory is
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in excellent agreement with all known experimental data on
optical transitions [26,33,47,48]. This theory can be easily
generalized to the case of other incommensurate bilayer sys-
tems where the periodic MPs emerge [51–56] and also can
be used to calculate the band structure in promising trilayer
graphene structures where, as in TBLG, Mott insulating and
superconducting states were discovered [57–59].
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APPENDIX A: DESCRIPTION OF THE DIRECT AND
RECIPROCAL SPACES OF SWCNT

In regard to SWCNT translational and rotational symmetry,
it is convenient to express the graphene basis translations
a1 and a2 in the cylindrical coordinate system. By simply
projecting these vectors along the perimeter and the axis of
a SWCNT with the chiral indices (n, m), we obtain the first
and second components of the SWCNT basis translations,
respectively. In the explicit form, they are written as [27]

a1 =
[

(2n + m)π

(n2 + m2 + nm)
,

3ma0

2
√

n2 + m2 + nm

]
, (A1)

a2 =
[

(2m + n)π

(n2 + m2 + nm)
,

−3na0

2
√

n2 + m2 + nm

]
, (A2)

where a0 = 0.142 nm is the length of the carbon bond. Using
the relations aib j = 2πδi j , one can easily find the components
of the reciprocal lattice vectors b1 and b2:

b1 =
(

n,
2π

3a0

2m + n√
n2 + m2 + nm

)
, (A3)

b2 =
(

m,− 2π

3a0

2n + m√
n2 + m2 + nm

)
. (A4)

Within the proposed definition of basis translations, the
first component of the vectors in Eqs. (A3) and (A4) becomes
dimensionless since it measures the distance in units equal
to the distance between the nearest cutting lines. Thus, the
cutting lines of inner and outer tubes forming a DWCNT will
automatically match in the scheme of superimposed extended
zones.

APPENDIX B: EQVIVALENT APPROACH TO CONSTRUCT
TBLG HAMILTONIAN

To calculate the TBLG band structure, one can use a
different set of wave functions instead of Eq. (4) and cor-
respondingly a different Hamiltonian. Let us consider the
following set:

ϕk (r) =
√

T

N

∑
Rk

φ(r − Rk )exp(Iq · Rk ), (B1)

where the integer k = 1 . . . 4T indexes the subsublattices,
φ(r) is the atomic pz orbital, Rk is the coordinate of an atom

belonging to the subsublattice k, and N is the number of
hexagons in the top (or bottom) layer of graphene. Within
the proposed basis, the Hamiltonian matrix elements are
written as

H ′b
i, j = T

N

∑
Ri,R j

exp[Iq · (R j − Ri )]u(Ri, R j ), (B2)

where the coordinates Ri and R j correspond to different sub-
sublattices. As before, when calculating the sum over the
subsublattice i, we can consider only one atom in this sub-
sublattice. Then Eq. (B2) is rewritten as

H ′b
i, j =

∑
0R j

exp[Iq · (R j − Ri )]u(Ri, R j ). (B3)

The band structures calculated within the Hamiltonians in
Eqs. (B3) and (5) numerically coincide.

APPENDIX C: INTERLAYER MATRIX ELEMENTS IN
INCOMMENSURATE BILAYER SYSTEMS

Let us consider the coupling between the modes with wave
vectors q and q − Qs of the top and bottom graphene layers,
respectively. Let R be the coordinate of a node in the sublattice
i of the top layer and R′ be the coordinate of a node in the
sublattice j of the bottom layer. Then the interlayer coupling
matrix element is written as

V (q, Qs) = 1

N

∑
R,R′

exp{I[q · R − (q − Qs) · R′]}u(|ρ|, d ),

(C1)

where N is the number of hexagons in the top (or bottom)
monolayer of graphene, d = 0.34 nm is the interlayer dis-
tance, and ρ = R − R

′
. Let us rewrite Eq. (C1) as

V (q, Qs) = 1

N

∑
R

exp(IQs · R)

×
∑

R′
exp[I (q − Qs) · (R − R′)]u(|ρ|, d ).

(C2)

Following Refs. [27,33], we consider the relative positions
of atoms in different layers of incommensurate TBLG approx-
imately random. Then the in-plane distance R − R′ runs over
an almost continuous set of values, and we can replace the
sum by an integral:

V (q, Qs) = 1

NS0

∑
R

exp(IQs · R)

×
∫

S′
exp[I (q − Qs) · (R − R′)]u(|ρ|, d )dS′,

(C3)

where S0 is the area of the graphene unit cell, and S′ is
the bilayer graphene area. It is easy to see that the integral
in Eq. (C3) is simply the Fourier transform of the function
u(|ρ|, d ), for which it is convenient to choose a Gaussian one:

u(|ρ|, d ) = γ
′
c exp[−α(ρ2 + d2)]. (C4)
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Let us consider separately the integral from Eq. (C3):

γ
′
c

S0
exp(−αd2)

∫
S′

exp[I (q − Qs) · ρ]exp(−αρ2)dS′. (C5)

Substituting ρ = (x, y) and integrating over the infinite
area of the bilayer, we reduce Eq. (C5) to the following
expression:

γ
′
cπ

S0α
exp(−αd2) exp

[
− (q − Qs)2

4α

]
.

Thus, the interlayer coupling matrix elements in Eq. (C1)
decay exponentially with an increase in the distance |q − Qs|.
Further, the factor 1

N

∑
R exp(IQs · R) in Eq. (C3) is equal to

one if Qs = 0. The modulus of this factor is also equal to
one if Qs is a translation vector of the top layer reciprocal
lattice. In this case (when choosing the origin at the center of
a carbon hexagon), the phase of this expression can take only
the following three values: 0, ±2π/3. In all the other cases,
Eq. (C1) vanishes, and there is simply no coupling between
the modes q and q − Qs. Let us note, since the TBLG is
symmetric with respect to layer permutations, then there also
should be coupling between the modes whose wave vectors
differ by any vector Q

′
s of the bottom layer reciprocal lattice,

and the distance |q − Qs
′| is relatively small. Thus, in the

cases when Qs = 0, the matrix elements can be approximately
calculated as

v(q) = γ
′
cπ

S0α
exp(−αd2) exp

(
− q2

4α

)
. (C6)

If Qs is expressed as an integer linear combination of
basis vectors of the top (or bottom) reciprocal lattice, the
matrix elements are found according to Eq. (10). Otherwise,
V (q, Qs) = 0.

The interlayer matrix elements in a DWCNT can be calcu-
lated in a similar way. To do so, we carry out the transition
to the cylindrical coordinate system and note that the function
in Eq. (C4) depends only on the distance l between the points
R and R′ on the surface of two cylinders: u(ϕ,z) ≡ u(l ).
Then

u(l ) ≈ γ
′
cexp[−α(RinRoutϕ2 + z2 + R2)], (C7)

where Rin and Rout are radii of the inner and outer SWCNT,
R = Rout − Rin is the interlayer distance in the DWCNT,
ϕ = ϕ−ϕ′, and z = z−z′. Deriving Eq. (C7), we used the
expansion of cos ϕ, which is justified by the fact that, in
concentric nanotubes, two orbitals with an angular spacing
practically do not overlap. Let us consider first the case Qs =
0 and rewrite Eq. (C2) as

v(q) = 1√
NinNout

∑
R′

∑
R

exp[Iq · (R − R′)]u(l )

≈
∑

R′

∫
S

cos (μϕ) cos (kz)u(ϕ,z)dS

S0
√

NinNout
, (C8)

where μ and k are the wave vector q components in the
SWCNT, S is the area of the inner tube, dS = Rindϕdz, and
Nin and Nout are the hexagon numbers in the inner and outer
layers of DWCNT, respectively. In Eq. (C8), like the flat case,
we replace the summation over R by an integration over the

area of the inner nanotube. Since the function u(ϕ,z) is
even with respect to the arguments ϕ and z, Eq. (C8)
is also real. Making the substitution ϕ → ϕ, z → z and
performing the summation over the nodes of the outer tube
R′, we obtain the following integral:

v(q) = C
∫ π

−π

cos(μϕ)exp
(−αRinRoutϕ

2
)
dϕ

×
∫ +∞

−∞
cos(kz)exp(−αz2)dz, (C9)

where C = γ
′
c exp(−αR2)

√
RoutRin/S0. Deriving Eq. (C9),

we also used the relation
√

Nout/Nin = √
Rout/Rin. Due to the

fast convergence of the function exp(−αRinRoutϕ
2), we can

extend the integration limits and integrate from −∞ to +∞.
As a result, we obtain

v(μ, k) = γ
′
cπ

S0α
exp(−αR2) exp

(
−qin · qout

4α

)
, (C10)

where qin · qout = k2 + μ2/(RinRout ) is a scalar product of
the wave vectors in the inner and outer tubes. The interlayer
matrix elements for Qs �= 0 are found according to the same
principle as in the case of bilayer graphene. If Qs is a transla-
tion of the inner (or outer) tube reciprocal lattice, one should
use Eq. (10). Otherwise, V (q, Qs) = 0.

Below, for reference, we give expressions for the inter-
layer matrix elements obtained as the Fourier transform of the
function u(ρ, d ) = γc exp[−(

√
ρ2 + d2 − d )/λ] (in the case

of TBLG) and the function u(l ) = γc exp[−(l−d )/λ] (in the
case of DWCNT):

vTBLG(q) = 4γc

λS0
exp

(
d

λ

)√
πd3

2

(
q2 + 1

λ2

)−3/4

K−3/2

×
[

d

(
q2 + 1

λ2

)1/2]
, (C11a)

vCNT(μ, k) = 4γc

λS0
exp

(
d

λ

)√
πR3

2

(
qin · qout + 1

λ2

)−3/4

× K−3/2

[
R

(
qin · qout + 1

λ2

)1/2]
, (C11b)

where Kν (x) = ∫ ∞
0 exp[−x cosh(t )] cosh(νt )dt is the modi-

fied Bessel function of the second kind.
Expanding into series Eqs. (C11a) and (C11b) in λ/d (or

λ/R), one can obtain the following simplified expressions
for the matrix elements:

vTBLG(q) = 2πλd

S0
γcexp

(
−λd

q2

2

)
, (C12a)

vCNT(μ, k) = 2πλR

S0
γcexp

(
−R − d

λ

)

× exp

(
−λR

qin · qout

2

)
. (C12b)

Note that the matrix elements in Eqs. (C12a) and
(C12b) also decay according to the same exponential law
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as the functions in Eqs. (C6) and (C10), respectively.
Equation (C12b) coincides with the expression for the

interlayer matrix elements from Ref. [33] up to a constant
factor.
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