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Valley-dependent time evolution of coherent electron states in tilted anisotropic Dirac materials
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The effect of the Dirac cone tilt of anisotropic two-dimensional materials on the time evolution of coherent
electron states in the presence of electric and magnetic fields is studied. We propose a canonical transformation
that maps the anisotropic Dirac-Weyl Hamiltonian with tilted Dirac cones to an effective and isotropic Dirac
Hamiltonian under these fields. In this way, the well-known Landau level spectra and wave functions allow
calculating the Wigner matrix representation of Landau and coherent states. We found a valley dependency in
the behavior of the Wigner function for both Landau and coherent electron states. The time evolution shows that
the interplay of the Dirac cone tilt and the electric field keeps the uncertainties of both position and momentum
in one valley significantly lower than in the other valley. The increment of quantum noise correlates with the
emergence of negative values in the Wigner function. These results may help us to understand the generation
of coherent electron states under the interaction with electromagnetic fields. The reported valley-dependent
signatures in the Wigner function of materials with tilted Dirac cones may be revealed by quantum tomography
experiments, even in the absence of electric fields.
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I. INTRODUCTION

Most of the two-dimensional materials discovered so far,
such as borophene, strained graphene, Weyl semimetals, and
the organic conductor α-(BEDT-TTF)2I3, present anisotropy
and tilted Dirac cones in their low-energy band structure
[1–13]. The intrinsic anisotropy of some materials like phos-
phorene has shown intriguing phenomena such as negative
reflection, anti-super-Klein tunneling, and perfect electronic
waveguides [14,15]. Meanwhile, the anisotropy induced by
strain engineering in graphene has led to the possibility
of obtaining pseudomagnetic fields [16,17], the tuning of
electronic and optical properties [18–30], valley-polarized
currents [31,32], and anomalous tunneling [33,34]. The elec-
tronic and transport properties are valley dependent due to
the tilting of Dirac cones, as shown in the relative spacing
of Landau levels [11,35,36], pseudomagnetic fields [4], and
other physical properties [8,9,19,37–54]. Recently, 8-pmmn
borophene and related tilted Dirac cone systems have been
proposed as ideal solid-state platforms to realize analogs of
gravitational waves in black holes and perform space-time
engineering [55,56]. These singular features motivate the in-
vestigation of unusual effects by the intrinsic Dirac cone
tilt. Under the presence of uniform and crossed electric and
magnetic fields, these outstanding electronic and transport
properties may be tailored further.

On the other hand, the Wigner function (WF) approach
has been a powerful physical tool in quantum optics [57–63],
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which has also been applied recently in condensed matter
in the study of electron dynamics in two-dimensional ma-
terials, particularly in graphene and under the presence of
electromagnetic fields [20,62,64–76]. The recent advances
in the experimental reconstruction of the WF of electronic
systems could bring the possibility of the realization of coher-
ent electron states in the laboratory and the development of
electron quantum optics [65,77,78]. Thus, the research of new
singular aspects in the recent discovery of two-dimensional
materials, which contain anisotropic tilted Dirac cones, may
offer new tracks for the design of protocols in a possible
experimental setup of coherent states. For instance, in the
context of valleytronics [79,80], the study of the density of
states and conductivity of 8-pmmn borophene under electric
and magnetic fields evidenced a valley dependence in magne-
totransport properties and polarization currents [36,42]. Weiss
and Shubnikov-de Haas [81] oscillations have macroscopic
manifestations which exhibit quantum and classical signatures
simultaneously. In this manner, our general aim is to provide
an adequate description in phase space of the physics of
certain quantum phenomena, and their semiclassical represen-
tation, that occurs in condensed matter systems.

Thus, in this paper, we analyze how the Dirac cone tilt
affects the time evolution of the WF of coherent electron states
in the presence of crossed electric and magnetic fields. We find
the exact solution of Landau states and energy spectra through
a canonical transformation of the Dirac-Weyl Hamiltonian
with tilted cones. The phase-space representation of Landau
states evidences a valley dependency in the WF. The shape of
the WF is strongly distorted and valley dependent with the
increasing of the electric field. We build coherent states in
terms of the basis of the Hilbert space, which consists of the
Landau states of the Dirac-Weyl Hamiltonian under electric
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and magnetic fields. The time evolution of these states and the
WF show a significant temporal delay of electrons from one
valley with respect to the other. In contrast to conventional co-
herent states, where the minimum uncertainty relation keeps
constant, the uncertainties of position and momentum increase
during the temporal evolution. Depending on the valley index,
these coherent electron states can behave like coherent light
states either for critical values of the electric field or the
tilt parameter near the collapse of Landau levels. The mean
trajectory of coherent states in the phase space is a spiral,
and the WF presents more negative values going toward the
origin. It agrees with the increase of position and momentum
uncertainties in the time evolution. Such results may be not
only tested by optical spectroscopy [82,83] or magnetotrans-
port measurements [84,85] but also by quantum tomography
[65,78,86] for the reconstruction of the valley-dependent WF
of tilted anisotropic Dirac materials.

II. ELECTRON DYNAMICS IN TILTED ANISOTROPIC
DIRAC CONE MATERIALS

Several two-dimensional materials such as 8-pmmn
borophene [4,5,36,42], strained graphene [19], Weyl
semimetals [13,43,46,47], and the organic compound
α-(BEDT-TTF)2I3 [11,35,37,39] present a tilted Dirac cone
in the low electronic band structure. The electronic properties
of the tilted anisotropic Dirac materials are described by the
continuous Dirac Hamiltonian

H = ν (vtσ0 py + vxσx px + vyσy py), (1)

where vx and vy are the anisotropic Fermi velocities and vt

is the tilt velocity quantifying the tilting of the Dirac cone.
The time-reversal symmetry operation p → −p allows inter-
changing the Dirac cones at valleys K and K’. It is possible
to get different representations of the Hamiltonian in Eq. (1)
depending on the election of the frame system and spinor
[11,44]. These velocities depend on the material and geo-
metrical restrictions exist for the ratio vt/vy to change the
dispersion relation. Since vt modulates the tilting of Dirac
cones, when vt � vy the Dirac cone intersects the plane kx-ky.
For illustrative proposes and without loss of generality, in the
forthcoming sections we will use the set of values vx = 0.86,
vy = 0.69, and vt = 0.32 in multiples of the Fermi velocity
vF = 1 that correspond to 8-pmmn borophene [4]. The matri-
ces σ j with j = x, y are the Pauli matrices, while σ0 is the
identity matrix. The quantity ν allows us to transit from valley
K (ν = 1) to valley K’ (ν = −1). The eigenenergies of the
Hamiltonian in Eq. (1) depict the low-energy excitations near
the Fermi level as

E = ν vt py + λ

√
v2

x p2
x + v2

y p2
y, (2)

which show an elliptical and tilted Dirac cone around valley K
(see Fig. 1). The band index λ indicates the conduction (λ =
1) or (λ = −1) valence band. The electron dynamics at the
other valley K’ is described by the Hamiltonian in Eq. (1) with
a tilt velocity of opposite sign. Therefore, the Dirac cone at
valley K’ has opposite tilt compared to valley K (see Fig. 1).

To analyze the dynamics of electrons in tilted anisotropic
Dirac materials under the presence of an in-plane electric

FIG. 1. Electronic band structure of a 2D material with tilted
anisotropic Dirac cones at the K and K’ points under crossed electric
E and magnetic B fields. The green and yellow arrows correspond
to drift vd and tilt vt velocities, respectively. The energy isolines
represent the Landau levels, which are distributed differently in the
two valleys, see Eq. (8).

field E = E x̂ and a perpendicular magnetic field B = Bẑ, we
include these fields in the Hamiltonian in Eq. (1) through the
scalar and vector potentials

H ′ = ν [vxσx px + (vtσ0 + vyσy)(py + xB)] + xEσ0, (3)

where we use the minimal substitution with the Landau gauge
Ay = xB. We set the direction of the electric field along with
the x axis to obtain the conservation of the linear momentum
in y. For an arbitrary orientation, it is more convenient to
choose the Landau gauge perpendicular to the electric field.
In this case, the conserved linear momentum is −px sin θ +
py cos θ , where θ is the angle of E with the x axis. This
substitution is fulfilled if the magnetic length lB = 1/

√
B �

26/
√

B [T] nm [11] is larger than the lattice constant of the
crystal. In our calculation, we set the electron charge e = −1
and the Planck’s constant h̄ = 1. The Hamiltonian in Eq. (3)
has translational symmetry in the y direction and, therefore,
the linear momentum py = ky is conserved, while that the
application of the magnetic field B breaks the time-reversal
symmetry. The conservation of py allows using the following
ansatz for the wave function:

�̄(x, y) = exp(ikyy)�(x). (4)

We use the canonical transformation

x = xc

√
vx

vy
, y = yc

√
vy

vx
, (5a)

px = pc
x

√
vy

vx
, py = pc

y

√
vx

vy
, (5b)

which lets invariant the commutation relations of position and
linear momentum. With this transformation, the Hamiltonian
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FIG. 2. Energy spectrum in Eq. (8) with ky = 0 and B = 1 as a
function of the electric field E for 8-pmmn borophene at the K (a) and
K’ (b) points.

in Eq. (3) is mapped to

H ′ = ν v′
F σ · (pc + Ac) + (ν vt py + xcE )σ0 = H ′

0 + ν vt pyσ0,

(6)

where v′
F = √

vxvy is the effective Fermi velocity, Ac = xcBŷ
is the vector potential, and the Hamiltonian

H ′
0 = ν v′

F σ · (pc + Ac) + xcEσ0 (7)

describes the interaction of massless Dirac fermions with an
effective electric field E = (E + ν vt B)

√
vx/vy and a magnetic

field B without the tilting of Dirac cones and anisotropy. The
Landau levels and bound states of Eq. (7) have been reported
in Ref. [87], where a boost transformation makes zero the
electrostatic potential in the Hamiltonian in Eq. (7) and the
magnetic field decreases with the factor

√
1 − (E/v′

F B)2. In
this way, the inverse boost transformation helps to solve the
eigenenergies of the Hamiltonian in Eq. (7) exactly. This
procedure allows us here to obtain the spectrum of the tilted
anisotropic Dirac materials by using the inverse canonical
transformation in Eqs. (5) (see Fig. 2):

En,ky = sgn(n)
√

vxvy

lB

(
1 − β2

ν

)3/4√
2|n| − ky

E
B

, (8)

where

βν = E
vyB

+ ν
vt

vy
= vd + νvt

vy
(9)

and vd = E/B is the drift velocity. Without loss of generality,
we define B = 1 in all our calculations to express the electric
field in units of the Fermi velocity vF . It is important to note
that the Landau-level spectra in Eq. (8) depends on valleys
K and K’ (see Fig. 2). This dependence of Landau levels
with the valleys and the direction of the electric field was
analyzed in Ref. [11], where the maximum difference occurs
when the electric field is perpendicular to the tilt velocity di-
rection. In the case of an electric field oriented in an arbitrary
direction, the valley dependence of the Landau-level spectra
persists generally, because the parallel component of the drift
velocity vd = E × B/B2 to the tilt direction breaks the mirror
symmetry of Dirac cones with respect to the x axis. In the
case when the electric field is parallel to the tilt direction,
the drift velocity vd is perpendicular to the tilt velocity vt

and the Landau levels are valley degenerated. The factor in

Eq. (9) indicates whether the orbits are closed when |βν | < 1
or opened for |βν | � 1 [11,87,88]. The transition from closed
to opened orbits appears for the collapse of Landau lev-
els at the critical value of βν = ±1, where classically the
electrons travel on a straight line, since the drift and tilt ve-
locities vd + νvt exceeds the velocity vy [11]. Such a collapse
can be reached tuning the electric field, the tilting of the
Dirac cones, or the effective Fermi velocity v′

F to be zero
[11,21,29,35,37,87,88]. For instance, in 8-pmmn borophene,
the collapse of Landau levels (β+ = 1) occurs for valley K at
the critical electric field or drift velocity Ec = vc

d = 0.37, but
this same value in valley K’ corresponds to β− = 0.07 and
electrons have closed orbits. If we change the electric field to
collapse the spectrum in valley K’ (β− = 1), this value is Ec =
1.01, while in valley K the parameter β+ = 1.93, indicating
that the electrons escape of the magnetic confinement. The
behavior of Landau-level spectra in valleys is interchanged
by reversing the critical electric field direction, which corre-
sponds to the solution βν = −1. It is important to note that
the critical values of vc

d = Ec depend on each tilted anisotropic
Dirac material, besides being constant amounts.

Now, to obtain the coherent states and their correspond-
ing WF in the next sections, we write the eigenstates of the
Hamiltonian in Eq. (3) as

�n(x) = M	n(x), (10)

where

M =
√

1

2

( √
C+ i

√
C−

−i
√

C−
√

C+

)
,

	n(x) = 1√
2(1−δ0n )

(
(1 − δ0n)ψn−1(x)

iλ ψn(x)

)
. (11)

The quantity δmn denotes the Kronecker delta, the entries of
the matrix M are C± = 1 ± √

1 − β2
ν , and the components of

the pseudospinor 	n(x) are given by the functions

ψn(ξn) =
(
1 − β2

ν

)1/8

√
2nn! lB

(
vy

πvx

)1/4

e− 1
2 ξ 2

n Hn(ξn), (12)

where Hn(·) are the Hermite polynomials. The quantity ξn is
given by

ξn = (
1 − β2

ν

)1/4
√

vy

vx

(
x

lB
+ lBky

)
+ sgn(n)βν

√
2|n|. (13)

We note that for βν = 0 in both valleys, which corresponds
to zero electric field and tilt, the eigenspinors 	n in Eq. (12)
reduce to the solutions of Landau-level spectra and states of
anisotropic massless Dirac fermions [20].

III. COHERENT ELECTRON STATES

Coherent states arise in multiple branches of physics,
mainly in quantum optics and information processes [59,62].
The minimal uncertainty of these states makes them the most
classical states in quantum mechanics. In condensed matter,
coherent states can be observed in low-temperature phenom-
ena, such as superconductivity [89–92] and Bose-Einstein
condensates [93–96]. The resemblance of electrons in 2D
materials with photons, mainly due to the linear dispersion
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relation, leads us to consider the possibility of obtaining co-
herent states in electronic systems. The presence of crossed
electric and magnetic fields as well as the tilting of Dirac
cones of the material are important keys for the quantization of
energy spectra. Moreover, the application of electric and mag-
netic fields offer additional degrees of freedom to manipulate
the trajectory of electrons. For these purposes, we build the
coherent states defining an annihilation operator �−

n that acts
onto the Hilbert basis 	n(r). With the inverse matrix M−1, we
obtain from Eq. (10) [97]

	n(x, y) = M−1�n(x, y). (14)

We also define the differential operators

θ±
n = 1√

2

(
∓ d

dξn
+ ξn

)
, θ+

n = (θ−
n )†, (15)

and the unitary shift operators T ± [98], whose action onto the
eigenfunctions ψn(ξn) is

Q−ψn(ξn) = T −θ−
n ψn(ξn) ≡ √

n ψn−1(ξn−1),

Q+ψn(ξn) = θ+
n T +ψn(ξn) ≡ √

n + 1 ψn+1(ξn+1). (16)

Therefore, the operators θ±
n lower and raise the eigenstates ψn,

while T ± shifts the index n of the spatial coordinate ξn by a
unity. Moreover, we can verify that [Q−,Q+] = 1.

In this way, we build the following operators:

�−
n = 1√

2

( √
N+2√
N+1

Q− −i λT + 1√
N+1

(Q−)2

i λT −√
N + 1 Q−

)
,

(17a)

�+
n = (�−

n )†, (17b)

in terms of Q± [70,71], where N = Q+Q− is the number
operator. The index of the matrix operators in Eqs. (17) means
that for each eigenvector �n, there is a set of ladder operators
with the same index. To avoid this, we join such matrix op-
erators with a one-dimensional projection operator P (k) [99].
Thus, we are able to define two ladder operators as

�− ≡
∑
n=0

�−
n P (n), �+ = (�−)†, (18)

such that

�±	k ≡
∑
n=0

�±
n (P (n)	k ) =

∑
n=0

δkn�
±
n 	k = �±

k 	k . (19)

Hence, the actions of the ladder operators �± on the
Hilbert states 	n(x, y) are given by

�−	n(ξn, y) =
√

2(1−δ1n )
√

n	n−1(ξn−1, y), (20a)

�+	n(ξn, y) =
√

2(1−δ0n )
√

n + 1	n+1(ξn+1, y), (20b)

whose commutation relation reads

[�−,�+]	n(x, y) = c(n)	n(x, y), c(n) =

⎧⎪⎨
⎪⎩

1, n = 0

3, n = 1

2, n > 1.

(21)
Now, we define the coherent states as eigenstates of the

annihilation operator �−:

�−	z(x, y) = z	z(x, y), z ∈ C, (22)

with complex eigenvalue, where

	z(x, y) =
∞∑

n=0

an	n(x, y). (23)

Using Eq. (20a), the explicit expression for the coherent states
is given by

	z(x, y) =
[
	0(x, y) + ∑∞

n=1

√
2αn√
n!

	n(x, y)
]

√
2 exp (|α|2) − 1

, (24)

where α = z/
√

2 = |α| exp(iϕ). It is worth noting that the
phase angle of α is identical to the angular rotation in the
classical motion and carries information about cyclic changes
for the average observable in the position and momentum
[100,101].

To analyze the time-dependent electron dynamics within
the WF approach, it is necessary to apply the time-evolution
operator U (t ) = exp(−iHt ) on the expansion of coherent
states in terms of Landau states �n(x, y),

�α (x, y, t ) = 1√
2 exp (|α|2) − 1

M

(
ψα,1(x, y, t )

i λ ψα,2(x, y, t )

)
, (25)

where

ψα,1(x, y, t ) =
∞∑

n=1

αne−iEnt

√
n!

ψn−1(x, y), (26a)

ψα,2(x, y, t ) =
∞∑

n=0

αne−iEnt

√
n!

ψn(x, y). (26b)

IV. WIGNER FUNCTION FOR LANDAU AND COHERENT
ELECTRON STATES

The WF W (r, p) is a quasiprobability distribution defined
as [102–104]

W (r, p) = 1

(2π )n

∫ ∞

−∞
ei p·r′

〈
r − r′

2

∣∣∣∣ρ
∣∣∣∣r + r′

2

〉
dr′, (27)

where ρ is the density matrix; r = (r1, r2, . . . , rn) and p =
(p1, p2, . . . , pn) are n-dimensional vectors representing the
classical phase-space position and momentum values, respec-
tively; and r′ = (r′

1, r′
2, . . . , r′

n) is the position vector in the
integration process. In contrast with the probability density
of any quantum state, the WF can take negative values. This
negativity in the WF indicates the nonclassicality of a state,
and it is interpreted as a sign of quantumness [60,62,105].
However, the probability distributions |ψ (x)|2 and |φ(p)|2 can
be obtained, integrating the WF on x or p, as well as the
normalization condition [58].

To calculate the Wigner matrix (WM) for the nth Landau
state in valleys K and K’, we substitute the eigenstates in
Eq. (10) into the Wigner representation in Eq. (27):

Wn(r, p) = MWn(r, p)M†, (28)
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with
Wn(r, p) = W (y, py )

2(1−δ0n )

(
(1 − δ0n)Wn−1,n−1(x, px ) −i λ(1 − δ0n)Wn−1,n(x, px )

i λ(1 − δ0n)Wn,n−1(x, px ) Wn,n(x, px )

)
, (29)

where the components Wj,g(x, px ) and W (y, py) are given by

Wj,g(x, px ) = 1

π

∫ ∞

−∞
e2i pxq1ψ j (x − q1)ψ∗

g (x + q1)dq1,

(30a)

W (y, py) = 1

π

∫ ∞

−∞
e2i(py−ky )q2 dq2 ≡ δ(py − ky), (30b)

being j and g positive integers. The wave functions ψ j and ψg

are the components given by Eq. (12).
For computing the function Wj,g(x, px ), we define the fol-

lowing quantities:

u = (
1 − β2

ν

)1/4 q1

lB

√
vy

vx
, s = (

1 − β2
ν

)−1/4
pxlB

√
vx

vy
. (31)

Hence, using these definitions and by substituting Eq. (12) in
Eq. (30a), we get

Wj,g(χn,m) = 1

π
exp

(
−1

2
|χn,m|2 + i(ξn − ξm)s

)

×
⎧⎨
⎩

(−1) j
√

j!
g! χ

g− j
n,m Lg− j

j (|χn,m|2), if j � g

(−1)g
√

g!
j!χ

∗ j−g
n,m L j−g

g (|χn,m|2), if j � g,

(32)

where the functions Lm
n (·) are the associated Laguerre polyno-

mials and the definition

χn,m =
√

2

(
ξn + ξm

2
+ is

)
. (33)

Thus, the components of the 2 × 2 WM turn out to be

Wn−1,n−1(χn) = 1

π
(−1)n−1e− 1

2 |χn|2 Ln−1(|χn|2), (34a)

Wn−1,n(χn) = (−1)n−1

π
√

n
χne− 1

2 |χn|2 L1
n−1(|χn|2)

= W ∗
n,n−1(χn), (34b)

Wn,n(χn) = 1

π
(−1)ne− 1

2 |χn|2 Ln(|χn|2), (34c)

where χn ≡ χn,n. In this way, the trace of the WF W (r, p) is
given by (see Fig. 3)

Tr[Wn(r, p)] = δ(py − ky)

21−δ0n
{Wn,n(χn) + (1 − δ0n)

×[Wn−1,n−1(χn) − 2λβν�(Wn−1,n(χn))]},
(35)

where �(z) denotes the real part of a complex number z. To
illustrate the valley dependency of the WF for the Landau
levels states in Eq. (35), we show the Landau states n = 0, 1,

and 2 for valleys K and K’ in Fig. 3. Singular features of
the WF of Landau states emerge by the combination of tilted
Dirac cones and an electric field. The term sgn(n)βν

√
2|n| in

Eq. (13) determines the center of the WFs when ky = 0, whose
origin is due to the tilting of Dirac cones and electric field.
For the Landau level n = 0, the WF in both valleys appear at
x = 0. But with n different to zero, the WF for K and K’ are
located asymmetrically in the x axis, as shown in Figs. 3(a)–
3(f). Importantly, this shift of the WF for Landau states still
occurs in the absence of the electric field, see Figs. 3(g) and
3(h). WFs for ν = ±1 have the same shape, but the center
appears at symmetrical points given by sgn(n)νvt

√
2|n|/vy

[see Eqs. (9) and (13)]. These features of the WF may be
revealed through a quantum tomography experiment, even
in the absence of an electric field, which is not possible by
magnetoresistance and density of states measurements due to
the valley degeneracy of Landau levels.

The effect of the electric field causes asymmetry in the
WFs of both valleys due to the competition between drift and
tilt velocities, as shown in Figs. 3(a)–3(f). Since β+ > β− for
valleys K and K’, the WF of the Landau level spectra with
ν = 1 is more distorted than the one with ν = −1. For the
degenerated level n = 0, we can observe that the shape of the
WF becomes different for each valley. The electric field scales
the position and linear momentum differently by the opposite
tilting of the Dirac cones in the different valleys. From the
critical electric field Ec = (vy − νvt )B, Landau levels and WF
collapse, since physically the system is in a regime in which
the electric field dominates over the magnetic field. Therefore,
it is possible to get open orbits of electrons, while in the other
valley, electrons present closed trajectories with a discrete
energy spectra represented by the Landau levels in Eq. (8).

Time evolution of the Wigner function
of coherent electron states

In analogy with the standard harmonic oscillator, we define
the position and momentumlike operators in terms of the
creation and annihilation operators acting onto the Hilbert
space basis [59], which is expanded by the eigenstates of the
Hamiltonian in Eq. (3):

X = 1√
2

(�− + �+), P = 1√
2i

(�− − �+). (36)

We calculate from the time-evolution of the coherent electron
states in Eq. (25) the expectation values (see Appendix):

〈X 〉 = 1√
2(2 exp (|α|2) − 1)

[
C+�(Z1) + C−

2
�(Z1)

]
, (37a)

〈P〉 = 1√
2(2 exp (|α|2) − 1)

[
C+�(Z1) + C−

2
�(Z1)

]
, (37b)

where �(z) denotes the imaginary part of a complex number
z, and

Zm = 〈	α|(�−)m|	α〉

= zm

[
2

∞∑
n=0

|α|2n

n!
e−i(En+m−En )t − e−iEmt

]
, (38a)
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FIG. 3. Trace of the Wigner matrix Wn(r, p) in Eq. (35) for different values of n in each Dirac point (ν = ±1). We set the values of
E = 0.25 from (a)–(f), and E = 0 for (g) and (h), B = 1, ky = 0, vx = 0.86, vy = 0.69, vt = 0.32, and λ = 1.

Zm = 〈	α|σy(�−)mσy|	α〉 = zm

[ ∞∑
n=0

|α|2n

n!
e−i(En+m−En )t

×
(√

n + m + 1

n + 1
+

√
n

n + m

)]
(38b)

for m = 1, 2, . . .. With the calculation of the expectation
values of 〈X 〉 and 〈P〉, we show the mean path of elec-

trons in the presence of the crossed electric and magnetic
fields in Fig. 4. It is worth noting that such a spiral tra-
jectory depends on the valley index, which also affects the
timescale. To estimate the generalized uncertainty principle
(GUP),

�X �P � |〈[X, P]〉|
2

, (39)
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FIG. 4. Mean trajectory of the coherent states from the expec-
tation values in Eqs. (37) of the operators X and P with E = 0.25.
The green and red rectangles indicate the size of the uncertainties
of the coherent states in valleys K (advancing on a solid blue spiral)
and K’ (dashed purple spiral), respectively. At the times t = 15, 30
and 45, the coherent states advance differently on the spiral. The
rectangle height and width indicate the uncertainty of X and P (con-
veniently, we decrease these rectangle lengths by the factor of 1/3).
The fifth green rectangle corresponds to the quasiperiod t = 107 [see
Eqs. (47)]. A movie shows the time evolution of the coherent states
in the Supplemental Material [109].

we have also computed the following expressions:

(�X )2 = 〈X 2〉 − 〈X 〉2

= N 2
α

4

{
C+[4(|z|2 + 1)e|α|2 − |z|2 − 3 + 2�(Z2)]

+ C−

[
(|z|2 + 1)e|α|2 + 1

2
�(Z2)

]}
− 〈X 〉2, (40a)

(�P)2 = 〈P2〉 − 〈P〉2

= N 2
α

4

{
C+[4(|z|2 + 1)e|α|2 − |z|2 − 3 − 2�(Z2)]

+ C−

[
(|z|2 + 1)e|α|2 − 1

2
�(Z2)

]}
− 〈P〉2, (40b)

N 2
α = 1

2 exp (|α|2) − 1
, (40c)

which are represented by the rectangles on the spiral in Fig. 4
for the times t = 15, 30, and 45. The states at the two valleys
advance differently on the spiral, and the uncertainties in-
crease toward the spiral center. During the time evolution, the
uncertainty relation �X�P/|〈[X, P]〉| does not keep the min-
imum value, as shown in Fig. 5. The uncertainty increases in
both valleys, though at a much slower rate in valley K, where
the uncertainty stays for longer times close to the minimal
value of a coherent light state (see the dashed blue horizontal
line). This behavior can be explained by the fact that the rel-
ative separation between Landau levels is almost constant for

FIG. 5. Uncertainty relation �X�P/|〈[X, P]〉| as a function of
the time t in (a) valley K and (b) valley K’ for different electric fields.
In valley K’, the uncertainty increases much faster as in valley K,
where the uncertainty stays for a long time close to the minimal value
of a coherent light state (blue dashed curve). All the uncertainties
reach the same asymptotic value close to |α|2.

any index level n, which approximates the constant separation
between energy levels in the quantum harmonic oscillator.
The maximum value of the uncertainty is approximately given
by |α|2, where |α| gives the amplitude of the oscillations
[106]. Besides, we can verify from the probability distribution
of occupation number Pα (n) = |〈�n|�α〉|2 that the coherent
electron states follow a Poisson-like distribution with mean
μ = |α|2 (see Fig. 6):

Pα (n) = 1

2 exp (μ) − 1

{
1, n = 0
2μn

n! , n > 0.
(41)

The maximum uncertainty occurs when the prepared coherent
state is getting closer to the center of the spiral in Fig. 4.
This coherent state tends to look like the Landau one that
contributes the most to the linear combination in Eq. (24),
according to the distribution of occupation numbers Pα (n),

FIG. 6. Occupation number distribution Pα (n) in Eq. (41) for the
coherent electron states �α for different values of μ = |α|2. The solid
lines connecting the dots, which show a Poisson distribution, are only
guides to the eye and do not indicate continuity.
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where n is equal to the integer part of μ = |α|2. These features
also appear in the time evolution of the WF of coherent states,
as will be explained later on.

Furthermore, the WF is calculated using the components of
coherent states in Eq. (25) into the integral matrix representa-
tion in Eq. (27):

Wα (r, p) = MWα (r, p)M†. (42)

Thus, the trace of this matrix provides us an expression of the
time-dependent WF for coherent states:

Tr[Wα (r, p, t )] = δ(py − ky)

2 exp (|α|2) − 1
{W11(χ, t )

+ W22(χ, t ) − 2λβν�[W12(χ, t )]}, (43)

where

W11(χ, t ) =
∞∑

n,m=1

αnα∗mei(Em−En )t

√
n!m!

Wn−1,m−1(χn,m), (44a)

W12(χ, t ) =
∞∑

n=1

∞∑
m=0

αnα∗mei(Em−En )t

√
n!m!

Wn−1,m(χn,m)

= W ∗
21(χ, t ), (44b)

W22(χ, t ) =
∞∑

n,m=0

αnα∗mei(Em−En )t

√
n!m!

Wn,m(χn,m). (44c)

The time evolution of the WF for these states in Fig. 7 agrees
with the spiral behavior of the expectation value of the op-
erators X and P in Fig. 4. We observe that the WF in valley
K propagates slower by the factor (1 − β2

ν )3/4 than in valley
K’, preserving a positive value for a longer time. If this factor
tends to zero, the coherent electron state stays fixed at the
same point in phase space and presents a Gaussian distribu-
tion. This is in contrast to coherent light states, where the
minimum uncertainty remains indefinitely in a circular trajec-
tory, and all the values of the WF are positive. Negative values
of the WF appear when the state advances toward the origin of
the spiral. This behavior is related closely to the increase of the
uncertainty relations to the asymptotic value ∼|α|2, where the
occupation probability has a Poisson distribution (see Fig. 6).
Nevertheless, there are also evident differences. For instance,
we can note that the initial states in Figs. 4 and 7 have a
different position in phase space. For larger times, as shown
in the Supplemental Material [107,108], the WFs are identical
to that of the Landau state with n equal to the integer part
of |α|2 for valleys K and K’, respectively, turning around the
centers given by

√
2βν |α| [see Eq. (13)]. This singular feature,

which also appears for the WF of Landau states in Fig. 3, is
a distinctive signature of the tilting of Dirac cones. Without
electric field, the centers are located at the symmetrical points
ν
√

2vt |α|/vy. The drift velocity vd separates asymmetrically
WFs in phase space. Such a signature remains hidden in
Fig. 4, showing an identical center due to the definition of X
and P as scaled and shifted operators in Eqs. (36).

Now, to find a possible approximate period τ for coherent
states, we can proceed as in Ref. [75]. Setting the eigenvalue
α, we compute the mean energy value 〈H〉α and the energy in-
terval in which it lies, namely, Ej,ky < 〈H〉α < Ej+1,ky . Thus,

the approximate period is determined as

τ = 2π

Ej+1,ky − Ej,ky

. (45)

As the energy spectrum depends on tilting parameter ν

through parameter βν , the period τ will be different for each
valley.

The mean energy 〈H〉α for the coherent states �α (x, y) is
given by

〈H〉α = 1

2 exp (|α|2) − 1

[
ky
E
B

(1 − 2 exp(|α|2))

+ sgn(n)
2
√

vxvy
(
1 − β2

ν

)3/4

lB

∞∑
n=1

|α|2n

n!

√
2|n|

]
.

(46)

For instance, for the coherent states with eigenvalue α = 4i,
and the same values used in Figs. 3 and 7, we have E15 <

〈H〉 = 1.828 < E16 for ν = +1 and E15 < 〈H〉 = 4.289 <

E16 for ν = −1. Therefore, the respective quasiperiods turn
out to be

τ+ ≈ 34.165π, τ− ≈ 14.566π. (47)

These results agree with the behavior shown in Figs. 4 and 7,
in which the times t = 107 and t = 45 have been considered
for the coherent states at valleys K and K’, respectively. The
time dilation on one of the valleys for coherent states is shown
as movies in the Supplemental Material [107–109]. In general,
the period τ in Eq. (45) increases as the separation of the
energy levels in Eq. (8) decreases close to the critical value Ec

of the electric field. This can be attributed to the longer time it
takes a Dirac fermion to complete a loop, as its orbit tends to
open. While for more separated energy levels, far away from
the critical value Ec, the period τ is less, indicating that orbits
are closed.

V. CONCLUSIONS AND FINAL REMARKS

Anisotropic and tilted Dirac cone materials possess ev-
ident valley-dependent electronic properties under crossed
electric and magnetic fields. A simplified continuum model
captures the main features of the electronic band structure
of several two-dimensional materials with anisotropic and
tilted Dirac cones. The effective Hamiltonian depends on two
anisotropic velocities and one tilt velocity [see Eq. (1)]. In
particular, we set these parameters to the known values of the
8-pmmn borophene in all our calculations. We use a canonical
transformation for mapping the anisotropic and tilted Dirac
Hamiltonian under crossed fields to an isotropic one without
the tilting of Dirac cones [see Eqs. (3), (5), and (6)]. This
allowed using the well-known solutions of the isotropic case
in our current configuration with anisotropy and Dirac cone
tilt [see Eqs. (8) and (10)]. We obtained the Landau levels and
their states, which are generally not degenerated for valleys K
and K’. We showed that the WF for the Landau state n = 0
has a Gaussian shape with a different deformation according
to the valley index [see Figs. 3(a) and 3(b)]. In all Landau
states, the valley-dependent factor βν modulates the deforma-
tion of the WFs through the electric and magnetic fields. The
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FIG. 7. Trace of the time evolution of Wigner matrix Wα (r, p) in Eq. (43) for different values of t in each Dirac point (ν = ±1). B = 1,
ky = 0, α = 4i, vx = 0.86, vy = 0.69, vt = 0.32, E = 0.25, and λ = 1. More details in the time evolution of the Wigner function are shown as
movies in the Supplemental Material [107,108].

valley degeneracy of Landau levels in the absence of an elec-
tric field avoids identifying the valley dependence in density
of states and magnetoconductivity in tilted Dirac materials
[42]. An important advantage for the realization of quantum
tomography experiments is the possibility to identify the val-
ley dependence of WFs still without the presence of an electric
field.

We developed the coherent states using the Landau eigen-
function basis of the Hamiltonian in Eq. (3). We also proposed
the position and momentumlike operators in terms of the
annihilation operator in Eqs. (22). We evidenced that the
expectation values of the operators X and P in phase space
and the time evolution of the WF follow a spiral behavior,
as shown in Figs. 4 and 7. The emergence of negative values
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in the WF is related to the increasing uncertainties of the
position and momentum. The coherent electron states lose
the coherence, and tend to the Landau state that contributes
the most to the linear combination of the coherent state it-
self, Eq. (24). The mean values of X and P go toward the
origin of the spiral, as shown in Fig. 4 and Supplemental
Material [109], and it is due to the definition of these op-
erators in Eqs. (36). However, the time evolution of WFs
in Fig. 7 and Supplemental Material [107,108] showed that
coherent states reached different positions in phase space at
longer times, which can be tested from quantum tomography
experiments. Increasing the electric field to a critical value
causes a time dilation in the WF in one of the valleys (see
Figs. 4, 5 and 7). We also estimated a quasiperiod in the
time evolution of coherent states from the expectation value
of the Hamiltonian in Eqs. (47). Thus, critical values of the
electric field do not only collapse the WFs and Landau-level
spectra in a single valley but also delay the time evolution of
coherent states in a small region of the phase space, keeping
a minimum uncertainty. It is also worth remarking that, al-
though our numerical results were computed by using 8-pmmn
borophene parameters, they can be extended to any other tilted
anisotropic Dirac cone material by adjusting the correspond-
ing parameters. Our theoretical findings may help to establish
experimental protocols for the realization of coherent electron
states in two-dimensional materials under the interaction of
electromagnetic fields. For instance, the coherent state de-
scription developed through the phase-space representation
may provide a way of describing phenomena such as the
Shubnikov-de Hass oscillations via quantum tomography ex-
periments in the presence of a Hall field at low temperatures.
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APPENDIX: GENERALIZED UNCERTAINTY PRINCIPLE

To compute the uncertainties �X and �P of the operators
X and P in Eqs. (36) and to establish the generalized uncer-
tainty principle,

�X �P � |〈[X, P]〉|
2

, (A1)

we define the following operators and its square:

ϒq = 1√
2iq

(�− + (−1)q�+), (A2a)

ϒ2
q = 1

2
[�−�+ + �+�− + (−1)q((�−)2 + (�+)2))],

(A2b)

for q = 0, 1, such that ϒ0 ≡ X and ϒ1 ≡ P.
From Eq. (14), we have that �α (x, y) = M	α (x, y), where

M =
√

1

2
(
√

C+σ0 − √
C−σy). (A3)

Thus,

〈�α|ϒq|�α〉 = 〈	α|M†ϒqM|	α〉
= 1

2 [C+〈	α|ϒq|	α〉 + C−〈	α|σyϒqσy|	α〉
− √

C+C−〈	α|(ϒqσy + σyϒq)|	α〉]. (A4)

Using the simplest notation |n; k〉 ≡ |ψn(ξk )〉 and taking
into account that the operators T ± might generate states not
physically acceptable, as well as the orthogonality condition
〈n′; k′|n; k〉 = δn′nδk′k , the mean value of ϒq and its square ϒ2

q
turn out to be

〈	α|ϒq|�α〉 = N 2
α

2
√

2iq

[
C+( f (z, t ) + (−1)q f ∗(z, t ))

+ C−
2

(g(z, t ) + (−1)qg∗(z, t ))

]
, (A5a)

〈	α|ϒ2
q |�α〉 = N 2

α

4

[
C+(4(|z|2 + 1)e|α|2 − |z|2

−3 + 2(−1)q�(r(z, t )))+C−

(
(|z|2 + 1)e|α|2

+ (−1)q

2
�(s(z, t ))

)]
, (A5b)

where

f (z, t ) = z

[
2

∞∑
n=0

|α|2ne−i(En+1−En )t

n!
− e−iE1t

]
, (A6a)

g(z, t ) = z
∞∑

n=0

|α|2ne−i(En+1−En )t

√
n!(n + 1)!

(
√

n + 2 + √
n), (A6b)

r(z, t ) = z2

[
2

∞∑
n=0

|α|2ne−i(En+2−En )t

n!
− e−iE2t

]
, (A6c)

s(z, t ) = z2
∞∑

n=0

|α|2ne−i(En+2−En )t

√
n!(n + 2)!

×(
√

(n + 2)(n + 3) +
√

n(n + 1)). (A6d)

Finally, the GUP reads

�X �P � N 2
α

4
|C+[4e|α|2 + |z|2 − 3] + C−e|α|2 |. (A7)
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