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Simple analog of the black-hole information paradox in quantum Hall interfaces
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The black hole information paradox has been hotly debated for the last few decades, without full resolution.
This makes it desirable to find analogs of this paradox in simple and experimentally accessible systems, whose
resolutions may shed light on this long-standing and fundamental problem. Here we identify and resolve an
apparent “information paradox” in a quantum Hall interface between the Halperin-331 and Pfaffian states.
Information carried by the pseudospin degree of freedom of the Abelian 331 quasiparticles gets scrambled when
they cross the interface to enter non-Abelian Pfaffian state and becomes inaccessible to local measurements; in
this sense, the Pfaffian region is an analog of black hole interior while the interface plays a role similar to its
horizon. We demonstrate that the “lost” information gets recovered once the “black hole” evaporates and the
quasiparticles return to the 331 region, albeit in a highly entangled form. Such recovery is quantified by the Page
curve of the entropy carried by these quasiparticles, which are analogs of Hawking radiation.
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I. INTRODUCTION

The existence of black holes has received strong support
from recent observations [1–3]. Instead of being a region
which nothing can escape from, Hawking predicted that a
black hole emits radiation and evaporates slowly [4,5]. He
also concluded that the radiation carries no information except
mass, angular momentum, and charge of the black hole [6,7].
This result points to possible loss of information in black
holes. On one hand, it is consistent with the no-hair theo-
rem [9–11]. On the other hand, quantum mechanics forbids
information loss in any unitary process. This apparent contra-
diction leads to the black hole information paradox [12–14].
It is believed that the resolution of this paradox may provide
important clues on how to combine quantum mechanics and
general relativity.

Various approaches have been proposed to resolve the
paradox. Among them, the holographic principle [15–18]
supports the preservation of unitarity and information. In
particular, information can be encoded holographically on
surfaces, such as the event horizon. This belief is substan-
tiated by the discovery of the anti-de Sitter/conformal field
theory (AdS/CFT) correspondence [19]. Recently, the fire-
wall scenario [20] was conjectured to resolve the conflict
between black hole complementarity [21,22] and monogamy
of entanglement [23]. If this conjecture is correct, the fire-
wall at the event horizon (or black hole’s boundary) may
also break the entanglement between the outgoing and the
infalling particles. Thus the boundary can be as important
as, or even more important than, the interior of a black
hole.

Let us assume black hole evaporation is a unitary process.
Then how is information hidden in the black hole released
from Hawking radiation? Page argued that the release of in-
formation starts slowly at the beginning, but becomes faster in

the later stage of the evaporation [24–26]. If the system was
initially in a pure state, entropy of the radiation (coming from
its entanglement with the remainder of black hole) would first
increase from zero but eventually decrease back to zero when
the black hole evaporates completely, thus recovering the pure
state nature of the system and all the (quantum) information it
carries. This feature is now known as the Page curve. Based
on quantum information theory, the thought experiment by
Hayden and Preskill (Hayden-Preskill protocol) has provided
further insight on retrieving information from Hawking radia-
tion [27]. Suppose the black hole has already passed its Page
time and become maximally entangled with its previously
emitted Hawking radiation. If the internal dynamics of black
hole can be described by an instantaneous random unitary
transformation, then any additional information entering the
black hole can be recovered from Hawking radiation almost
immediately (a very short time compared to the lifetime of the
black hole) [27,28]. The protocol has postulated the existence
of information scrambling, which has been demonstrated in
recent quantum circuit experiment [29,30]. In addition, recent
studies have recovered the Page curve for AdS black holes
[31–36]. However, a full resolution of the paradox remains
an open problem [37]. It is thus desirable to mimic the in-
formation paradox in simple and experimentally accessible
systems, that allows for a complete understanding of this
process.

Somewhat similar to the holographic principle, the bulk-
edge correspondence relates the topologically protected edge
modes and bulk topological orders in fractional quantum Hall
(FQH) systems [38]. This allows us to learn about the bulk by
probing the edge of the system [39]. Comparatively speaking,
interfaces between a pair of FQH states are explored much less
[40–56]. The physics of interfaces is much richer than simple
edges [57]. For example, as we demonstrate below, certain
interfaces allow quasiparticle tunneling between two different
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FQH states, even if the quasiparticles are of very different
nature. If they have different internal degrees of freedom,
(local) information carried by them needs to be transmuted
(or scrambled in a specific way) to prevent information loss.
This motivates us to explore analogs of black hole information
paradox in quantum Hall interfaces.

In this paper, we identify and resolve an analog of in-
formation paradox in the quantum Hall interface between
the Halperin-331 [58] and the Pfaffian (Moore-Read) [59]
states. The Pfaffian state is well-known since it hosts non-
Abelian anyons, which may be useful in topological quantum
computation [60]. Meanwhile, both 331 and Pfaffian states
may describe FQH effect at half-integer filling factors. Here,
we focus on the ν = 1/2 FQH state in bilayer systems or
wide quantum wells [61,62]. Due to the competition between
interlayer tunneling and intralayer Coulomb interaction, a
phase transition between the 331 and Pfaffian states was pre-
dicted [63–65]. This suggests the possibility of creating a
331-Pfaffian interface by controlling the tunneling strengths
in different regions of the bilayer system. Interestingly, the
331 state has a pseudospin (layer) degree of freedom, which is
absent in the Pfaffian state. If the original information carried
by the pseudospin degree of freedom becomes irrecoverable
after quasiparticles cross the interface and enter the Pfaffian
liquid, it leads to an “information paradox.” We demonstrate
that the information is scrambled and stored nonlocally in
the Pfaffian liquid and the interface. We also mimic black-
hole evaporation in the same system, and find it satisfies the
Page curve naturally. In other words, the original pseudospin
information is recovered and the information paradox in our
model is resolved. Here, we need to emphasize that we are
not aiming at a resolution of the original information paradox
in astrophysical black holes. This is clearly unachievable by
proposing a simple analogy. Instead, we want to simulate
some important concepts in resolving the original paradox in
a simple and accessible manner.

II. THE 331-PFAFFIAN INTERFACE AND
INFORMATION PARADOX

A. A brief review of quantum Hall effect

To set the stage for later discussion, we first review briefly
some basic concepts in quantum Hall (QH) physics [66].
Electrons moving in two dimensions (x-y plane) and a perpen-
dicular magnetic field (in the z direction) have their energy
levels being quantized in Landau levels. Depending on the
ratio between the number of electrons and the number of
magnetic flux quanta enclosed by the system, the system can
have different filling factors ν. Of particular interest is the
case ν < 1, where only the lowest Landau level is partially
filled by electrons at low temperature. Since the kinetic energy
of these electrons is quenched due to Landau quantization,
the interaction between them dominates the properties of the
system. Various FQH states, which possess numerous fas-
cinating properties, are realized in this strongly correlated
electronic system. The exotic properties of FQH states are
associated with the topological order they possess [38]. Most
prominent among them is the existence of low-energy exci-
tations (quasiparticles) that have fractional charges and obey

fractional statistics (between bosonic and fermionic statistics)
[67]. A famous example is the Laughlin state at ν = 1/3
[68], in which quasiparticle with a fractional charge e/3 and
a fractional statistics 2π/3 can exist [69,70]. Note that both
fractional charge and fractional statistics were observed ex-
perimentally [71–73]. Such exotic quasiparticles are called
anyons, and the possible types of anyons are associated with
the specific topological order.

The bulk-edge correspondence, another consequence of
the topological order, relates the edge structure and the bulk
topological order in FQH systems. In particular, it predicts the
existence of gapless edge modes described by conformal field
theories (CFTs), and there is a one-to-one correspondences
between the bulk topological order and edge CFT [74]. In our
previous example, the edge of the Laughlin state at ν = 1/3
has a single chiral bosonic edge mode φ, which can be de-
scribed by the Lagrangian density,

L1/3 = − 3

4π
∂xφ(∂t − v∂x )φ. (1)

Here, v is the speed of the edge mode, and φ is a (chiral)
bosonic field. In general, the edge of a FQH liquid can have
more than one edge mode. For Abelian FQH states, the corre-
sponding edge theory is described by [38]

Ledge = − 1

4π

∑
i, j

Ki j∂tφi∂xφ j − 1

4π

∑
i, j

Vi j∂xφi∂xφ j . (2)

Importantly, the K matrix encodes all information of the topo-
logical order. For a FQH state in a bilayer system, it may
(but not always) be described by a two-component topological
order which has a 2 × 2 K matrix. In this situation, two differ-
ent edge modes exist. Furthermore, the possible type of edge
modes is not limited to bosonic mode. Other types of modes
such as Majorana fermion modes exist when the topological
orders are non-Abelian [75–78].

With the knowledge of the edge structure in hand, different
low-energy excitations in the FQH system can be described
or created by suitable CFT operators [74]. For example,
a charge-e/3 quasiparticle and an electron in the ν = 1/3
Laughlin state are created by the operators : exp (iφ) : and
: exp (3iφ) :, respectively. Here, : V : denotes the normal or-
dering of the vertex operator V . When there is no confusion,
this normal ordering notation will be dropped in the later
discussion. For a FQH state being described by a multicom-
ponent topological order, there are multiple types of anyons
(described by different CFT operators) that have the same
electric charge. In other words, the anyons have an additional
degree of freedom. This point will become clear when we
discuss our setup.

B. The 331-Pfaffian interface as a firewall

The specific system we consider is the interface between
Halperin-331 and Pfaffian quantum Hall liquids. Both QH
liquids have the same Landau level filling factor ν = 1/2,
which can be realized in a bilayer system. For the 331 liquid,
it is described by a two-component topological order with the
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FIG. 1. Localization of edge modes at the interface due to ran-
dom electron tunneling between 331 edge and Pfaffian edge. Solid
lines denote charge modes, whereas dashed lines correspond to neu-
tral modes. (a) The original edge modes in the 331 liquid and Pfaffian
liquid. (b) Counterpropagating edge modes with the same color are
gapped or localized. (c) Only a single chiral Majorana fermion mode
remains gapless and propagating along the interface.

K matrix [38,58],

K =
(

3 1
1 3

)
. (3)

The two different edge modes are denoted as φ↑ and φ↓.
The two most relevant operators creating an electron are
exp (3iφ↑ + iφ↓) and exp (iφ↑ + 3iφ↓). On the other hand,
the Pfaffian liquid is described by a single-component non-
Abelian order with K = 2. Its edge has a bosonic mode φ and
a Majorana fermion mode ψ [75]. The corresponding electron
operator is ψ exp (2iφ). Since the Halperin-331 and Pfaffian
edges have opposite chiralities at the interface, the interface is
described by the Lagrangian density [43],

L = − 1

4π

∑
i, j

Ki j∂tφi∂xφ j + 2

4π
∂tφl∂xφl − iψl∂tψl

− H(φ,ψ ). (4)

Here, the indices i, j =↑,↓ denote the layer or the pseu-
dospin. All φ↑, φ↓, and φl are charge modes. The first two are
right-moving along the edge of the 331 liquid, whereas the
last one is left-moving along the edge of the Pfaffian liquid.
The Pfaffian liquid also has a left-moving neutral Majorana
fermion mode ψl along the edge. The edge structures of both
quantum Hall states are illustrated in Fig. 1(a). As shown by
one of us, a relevant random electron tunneling between the
Pfaffian and 331 edges can lead to a phase transition at the
interface [43].

Now, we follow Ref. [43] and briefly summarize how dif-
ferent modes get localized at the interface. This also allows
us to introduce useful notations for later discussion. One can
define a charge mode φr = φ↑ + φ↓ and a neutral spin mode
φn = φ↑ − φ↓ in the 331 liquid. Using this new set of modes,
the topological term of the 331 edge becomes

L331 = − 2

4π
∂tφr∂xφr − 1

4π
∂tφn∂xφn. (5)

The overall charge density at the interface is given by

ρ(x) = 1

2π
∂x(φ↑ + φ↓ + φl ) = 1

2π
∂xφc. (6)

TABLE I. Primary fields in the chiral Ising CFT with a central
charge c = 1/2.

Primary field Conformal spin Quantum dimension

I 0 1
ψ 1/2 1
σ 1/16

√
2

The random electron tunneling between the Pfaffian and 331
edges is described by

HT =
∫

ξ (x)ψl (e
3iφ↑+iφ↓+2iφl + eiφ↑+3iφ↓+2iφl ) dx + H.c.

=
∫

|ξ (x)|ψl (x)ψr (x) cos [2φc(x) + ϕ(x)] dx. (7)

Here, ξ (x) denotes the random tunneling amplitude. In the
second line, |ξ (x)| and ϕ(x) are the magnitude and the phase
of ξ (x), respectively. We have also fermionized exp [iφn(x)] =
ψr (x) + iψR(x). The resulting edge modes are shown in
Fig. 1(b). If HT is relevant in the renormalization group sense,
then both charge modes, ψl , and ψr are localized at the
interface. After the localization, only a single right-moving
Majorana fermion mode remains gapless and propagates
freely at long distance, as shown in Fig. 1(c). Notice that this
gapless mode is neither an original edge mode of the 331 nor
the Pfaffian state.

Since Pfaffian and 331 states are quantum Hall states
formed by superconducting pairing between composite
fermions [79], both of these two states have quasiparticles
with the smallest possible charge of e/4 [59,80]. However,
there is a fundamental difference between these quasiparti-
cles. For the 331 state, there are two different types of Abelian
e/4 quasiparticles created by the vertex operators, eiφ↑ and
eiφ↓ . One may view them as quasiparticles with different
pseudospins. When we formulate the information paradox in
the following discussion, this pseudospin will be regarded as
the degree of freedom of the Abelian quasiparticles. For the
Pfaffian state, there is only one type of e/4 quasiparticle cre-
ated by σe−iφl /2 [59]. Here, σ is the twist field with a scaling
dimension 1/16 in the chiral Ising CFT [81]. We summarize
the three primary fields and their properties in Table I. In
particular, σ satisfies the fusion rule σ × σ = ψ + I . Note
that we have omitted the subscript l for the Majorana field
to make the discussion of Ising CFT general. Its proper mean-
ing should be clear from context. The fusion rule indicates
that the quasiparticle is non-Abelian. An interesting question
is what happens if a quasiparticle is dragged from the 331
liquid in to the Pfaffian liquid? It seems that the pseudospin
information would be lost. In this sense, we can define the
interface between the two different QH liquids as the “event
horizon with a firewall” in our setup. This definition or analogy
makes sense since the interface plays the role of a one-way
surface of information in our setup, and the “destruction” of
pseudospin information at the interface resembles a firewall
conjectured in Ref. [20]. In addition, the Pfaffian liquid can
be viewed as the interior of a “black hole.” Suppose this
analogous black hole can evaporate (discussed in Sec. V)
and the original pseudospin information cannot be recovered

045306-3



KEN K. W. MA AND KUN YANG PHYSICAL REVIEW B 105, 045306 (2022)

TABLE II. Primary fields in the U(1)4 CFT. Here, the normal
ordering in the vertex operators are not shown explicitly. Note that
V3 = exp (3iφn/2) � exp (−iφn/2).

Symbol Vertex operator Conformal spin Type

V0 1 0 Boson
V1 exp (iφn/2) 1/8 Anyon
V2 exp (iφn) 1/2 Fermion
V3 exp (3iφn/2) 1/8 Anyon

at the end of the evaporation. Then, the lost of information
contradicts to the fact that quasiparticle tunneling is a unitary
process. Thus we have identified an apparent information
paradox.

III. 331-PFAFFIAN INTERFACE FROM
ANYON CONDENSATION

Before resolving the paradox, we reformulate the above
discussion in the framework of anyon condensation [41,82–
85]. This technique has been commonly applied to study
possible transitions between topologically ordered phases. In
the context of quantum Hall physics, it was used to study
the interface between Pfaffian and non-Abelian spin-singlet
(NASS) quantum Hall states [40,41]. In this section, we first
use anyon condensation to deduce the CFT description of the
331-Pfaffian interface. In the next section, we apply the same
technique to resolve the paradox. Along the way, we adopt a
pedagogical approach and aim at relating the rather abstract
technique to the more physical picture in Sec. II. It will allow
us to highlight the advantages of applying anyon condensation
in studying quantum Hall interfaces.

From Sec. II, we know that the edges of the Halperin-
331 and Pfaffian liquids are described by CFTs with central
charges 2 and 3/2, respectively. These two edges are counter-
propagating at the interface. Hence, we expect the resulting
CFT describing the 331-Pfaffian interface has a net central
charge of 2 − 3/2 = 1/2. To deduce exactly what the CFT is,
it is first necessary to separate the charge and neutral sectors
for both Halperin-331 and Pfaffian liquids. It is because a
charge mode cannot be gapped out by coupling to a neutral
mode in a usual situation. Equivalently, we do not consider the
possibility of condensing charge bosons, which will break the
U(1) gauge symmetry. The separation was already achieved
in Sec. II. In particular, the combination of charge modes
φc = φr + φl was shown to be gapped out (more precisely,
localized) by HT [86]. Therefore we can focus our discussion
on the neutral sectors.

As stated previously, the neutral sector of the Pfaffian state
is described by a chiral Ising CFT. For the Halperin-331 state,
its neutral sector is governed by the spin mode φn, which
is described by the U(1)4 CFT. Different primary fields in
this Abelian CFT are summarized in Table II. Note that any
two vertex operators in the form eiαφn/2 and ei(α+4Z)φn/2 are
identified.

The structure (remaining gapless modes) of the 331-
Pfaffian interface is solely determined by anyon condensation
in the neutral sectors. This condensation occurs in the U(1)4 ×
Ising CFT. We emphasize again that the bar denotes conjuga-

TABLE III. Unconfined anyons in the U(1)4 × Ising CFT after
condensing the boson B = (eiφn , ψ̄ ). Vertex operators Vi are defined
in Table II. Here, the symbol � denotes identification of anyons mod-
ulo B. The conformal spins are deduced from s = h1 − h2 (mod 1),
where h1 and h2 denote the conformal dimensions of primary fields
in the U(1)4 and Ising CFTs, respectively.

Sector Unconfined anyons Conformal spin

Ĩ (V0, Ī ) � (V2, ψ̄ ) 0
ψ̃ (V0, ψ̄ ) � (V2, Ī ) 1/2
σ̃ (V1, σ̄ ) � (V3, σ̄ ) 1/16

tion of the Ising CFT due to the opposite chiralities between
the 331 and Pfaffian edges at the interface. Compared to the
original CFT, anyons in the conjugate CFT have the same
fusion rules, but complex conjugated topological spins and
braiding phases. Alternatively, one may interpret the conden-
sation as a coset construction [82]. We label a generic anyon as
(eiαφn/2, t̄ ). Here, the parameter α = 0, 1, 2, 3 determines the
corresponding primary fields in the U(1)4 CFT. Meanwhile,
t̄ = {Ī, ψ̄, σ̄ } denotes the primary fields in the conjugate Ising
CFT. In the present case, there is only one condensable boson,
B = (eiφn , ψ̄ ). The condensation of B leads to confinement of
some of the anyons in the condensed phase. An anyon remains
unconfined if and only if it has a trivial mutual statistics with
B. This condition ensures that an unconfined anyon has a con-
sistent topological spin in the condensed phase. Furthermore,
two anyons are identified when they differ from each other
by a multiple of B. Using operator product expansion, it is
straightforward to deduce the six (or three after identification)
deconfined anyons in the condensed phase. They are listed
in Table III. Their corresponding topological sectors, namely
Ĩ , ψ̃ , and σ̃ are defined according to their conformal spins.
From the table, we conclude that the 331-Pfaffian interface is
described by a chiral Ising CFT. Note that this Ising CFT has
an opposite chirality to the one describing the Pfaffian edge at
the interface.

Now, one may wonder why going through such abstract
and seemingly redundant procedures to find out the CFT de-
scribing the interface. Doesn’t the net central charge c = 1/2
directly indicate that it should be an Ising CFT? There are
two reasons for analyzing this simple system by anyon con-
densation. First of all, it is fortunate that for the 331-Pfaffian
interface, the mechanism and consequences of anyon conden-
sation can be visualized in a very transparent and physical
manner, but this is a very special case. In Eq. (7), the electron
tunneling between counterpropagating edges at the interface
couples ψl and eiφn . This leads to a mass term and eventually
gaps out the counterpropagating ψl and ψr . Only ψR remains
gapless at the interface. This was demonstrated by fermioniz-
ing eiφn = ψr + iψR. This type of arguments does not always
generalize to more complicated interfaces. On the other hand,
the condensation of B systematically captures the gaping pro-
cess and leads to a correct CFT description of the 331-Pfaffian
interface. More importantly, anyon condensation relates ev-
ery primary field in the original and condensed phases.
These relations cannot be obtained from the argument in
Sec. II.
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IV. TRANSMUTATION OF PSEUDOSPIN INFORMATION

The previous section has set the stage for us to discuss
the transmutation of pseudospin information when Abelian
quasiparticles cross the interface.

We first discuss and comment on the charge sectors. As
one will see, they basically play no role in the resolution of
the paradox. Since charge-e/4 quasiparticles are allowed in
both Halperin-331 and Pfaffian liquids, dragging quasiparti-
cles across the interface does not require any absorption of
net charge at the interface. Furthermore, the gapping of φc

indicates that the dragging will not create any low-energy
charge excitation at the interface [87].

We thus focus on the neutral sectors. An Abelian quasi-
particle in the Halperin-331 liquid has its pseudospin degree
of freedom carried solely by the neutral mode φn. This is
observed by writing

eiφ↑ = eiφr/2eiφn/2, (8)

eiφ↓ = eiφr/2e−iφn/2. (9)

Hence, the vertex operators V1 and V3 encode the spin-up and
spin-down states of an Abelian charge-e/4 quasiparticle, re-
spectively. These two operators are not defined in the Pfaffian
liquid. To understand the transmutation of quasiparticles when
they cross the interface, we need to represent the four primary
fields in the U(1)4 CFT as different products between two
Ising CFTs. One of them describes the interface, whereas the
other describes the Pfaffian order. Both Ising CFTs now have
the same chirality to match the central charges, 1 = 1/2 +
1/2. From Table III, one can obtain the inverted expressions:

V0 ≡ I1 = I1/2 × Ĩ + ψ × ψ̃, (10)

V1 ≡ eiφn/2 = σ × σ̃ , (11)

V2 ≡ eiφn = ψ × Ĩ + I1/2 × ψ̃, (12)

V3 ≡ e−iφn/2 = σ × σ̃ . (13)

The tilded and untilded fields are in the CFTs describing
the interface and the Pfaffian liquid, respectively. Also, the
subscripts 1 and 1/2 in the identity fields denote the central
charges of the corresponding CFTs. When there is no confu-
sion, these subscripts will be skipped.

Equation (10) suggests that the U(1)4 CFT is obtained
from condensing the boson b = (ψ, ψ̃ ) [88,89]. This result is
consistent with the orbifold construction [90]. After the con-
densation, one of the unconfined particles is (σ, σ̃ ). We should
state clearly that these two twist fields describe excitations
(anyons) at different regions of the system, so it is meaningless
to consider their fusion. In other words, the present situation
is different from the case of a Pfaffian liquid, in which σ in
the bulk and σ at the edge created from vacuum must fuse to
I for conserving fermion parity. Importantly,

(σ, σ̃ ) × (σ, σ̃ ) = (ψ, ψ̃ ) + (I, Ĩ ) + (ψ, Ĩ ) + (I, ψ̃ ). (14)

The first two terms on the right hand side show that two
orthogonal copies of vacuum exist, so (σ, σ̃ ) needs to split
into two inequivalent types of anyons in the resulting U(1)4

CFT [88]. We denote them as (σ, σ̃ )1 and (σ, σ̃ )2. Both

331

Pfaffian

331

Pfaffian

chirality

FIG. 2. Transmutation of an Abelian 331 quasiparticle when it
crosses the interface and enters the Pfaffian liquid. Here, only the
neutral sector is considered (see the main text for more details). The
symbols | ↑〉 and | ↓〉 denote quasiparticles with pseudospin up and
down, respectively. Their corresponding vertex operators are V1 and
V3 in the U(1)4 CFT.

of them have conformal spins 1/8, which are identified as
the vertex operators V1 and V3 in the U(1)4 CFT (see Ta-
ble II). The fusion rules are consistent by imposing the
conditions (σ, σ̃ )1 × (σ, σ̃ )1 = (σ, σ̃ )2 × (σ, σ̃ )2 = V2 and
(σ, σ̃ )1 × (σ, σ̃ )2 = V0. Following Ref. [41], we interpret
the above result as an incoming pseudospin-up quasiparticle
transmutes into a neutral anyon σ̃ at the interface, and another
anyon σ free to move in the Pfaffian liquid. To be more
precise, the last anyon actually carries charge e/4, but we skip
displaying its charge sector e−iφl /2 explicitly. The same con-
clusion holds for an incoming quasiparticle with pseudospin
down. We illustrate the results in Fig. 2.

A. Matching of Hilbert spaces and analogy of
information scrambling

It is obvious that the total quantum dimension of (σ, σ̃ )1

and (σ, σ̃ )2 is two. It matches the two-dimensional Hilbert
space spanned by the pseudospin degree of freedom of an
Abelian charge-e/4 quasiparticle. This matching is guaran-
teed mathematically by the commutativity between fusion
and restriction in anyon condensation [82]. Interestingly, the
information of pseudospin is being stored nonlocally at the
interface and in the interior of Pfaffian liquid. There is no
local measurement that can distinguish between (σ, σ̃ )1 and
(σ, σ̃ )2. Hence, it is impossible to recover the original infor-
mation from any local measurement. This feature resembles a
quantum information scrambling, which can be defined as the
spreading of local information into many-body entanglement
and correlation in the whole system [29].

The situation becomes more interesting when we keep
dragging more Abelian quasiparticles across the inter-
face. Suppose N − 1 charge-e/4 quasiparticles were already
dragged. We assume the corresponding N − 1 anyons σ̃ cre-
ated at the interface are well separated from each other, so
that no fusion occurs between them. We also pose the same
assumption for the N − 1 anyons created in the Pfaffian liq-
uid. Consider dragging an additional charge-e/4 quasiparticle
across the interface. This process increases both numbers of
σ̃ and σ by one. As a result, there are N neutral anyons σ̃

at the interface, and N non-Abelian anyons in the interior
of the Pfaffian liquid. The dimension of the corresponding
topological Hilbert space is then increased by a factor of two,
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(b)

Pfaffian

(a)
331

(e)

331

(c)
331

(d)
331

(f)

331

FIG. 3. Illustration of dragging quasiparticles in to the black
hole (Pfaffian region) and simulating black-hole evaporation in the
331-Pfaffian interface. Before the evaporation: (a) dragging Abelian
charge-e/4 quasiparticles (black dots) in to the Pfaffian liquid;
(b) creating neutral anyons σ̃ (blue dots) and non-Abelian charge-e/4
quasiparticles (red dots). Different mechanisms of releasing quasi-
particles back to the 331 liquid during the evaporation: (c) combining
a non-Abelian anyon with an existing σ̃ at the interface; (d) creating
an additional pair of σ̃ (orange dots) and combining one of them with
a non-Abelian anyon. After the evaporation: (e) the most idealistic
scenario with the same number of quasiparticles as the initial con-
figuration in (a); and (f) the generic situation with a superposition of
different number of anyons in the Halperin-331 liquid. See the main
text for more details.

which is consistent with the one bit of information carried
by the additional Abelian quasiparticle from the Halperin-
331 liquid. We illustrate the example of N = 6 in Figs. 3(a)
and 3(b). Now, we relax the confining potential, and allow
the anyons to move and braid [91]. The braiding can fur-
ther scramble the original information [92]. The N anyons
at the interface are indistinguishable, so are those N anyons
in the Pfaffian liquid. Meanwhile, the information carried by
pseudospins of the original N Abelian quasiparticles is still
preserved. Both Hilbert spaces for indistinguishable anyons
at the interface and indistinguishable anyons in the Pfaffian
liquid have dimensions 2N/2. It is intriguing that the interface
and the Pfaffian liquid store the same amount of information.
This does not hold in the Pfaffian-NASS interface [40,41,93].

The above discussion also suggests another important
feature. In addition to being stored nonlocally, the original
pseudospin information is actually “hidden” in the fusion
channels of the non-Abelian anyons. Hence, the scrambled
information is protected topologically and will not be de-

stroyed by any local perturbation. This property is essential
in topological quantum computation (TQC) [60,94–97].

B. Upper bound of information storage and
holographic principle

Our previous discussion assumed that local anyons in the
system can be well separated to prevent fusion. This assump-
tion leads to a natural question. How much information can
be stored nonlocally with the topological protection that has
been described?

Recall that the minimum separation between two anyons
is in the order of the magnetic length �B, so that they are
well defined individually and do not fuse. From this, one may
naively think that the maximum amount of information can be
stored is NA ∼ A/π�2

B, where A denotes the area of the Pfaf-
fian liquid. This argument is valid if the information is carried
solely by anyons in the Pfaffian liquid. However, this is not
true in the present case. We have assumed both Pfaffian liquid
and 331-Pfaffian interface were initially in the ground state
with no excitations. As we discussed, the nonlocal storage of
pseudospin information of the Abelian quasiparticles from the
Halperin-331 liquid requires both anyons at the interface and
in the Pfaffian liquid.

For an interface with a length (perimeter) L, it can only
accommodate NL ∼ L/�B neutral anyons σ̃ . Since the radius
R of a circular quantum Hall droplet satisfies R 	 �B, one has
NL 
 NA. When the number of σ̃ gets close to or exceeds NL,
different σ̃ anyons start to fuse. The resulting particles will
be either a fermion or a boson that can propagate back to the
Halperin-331 liquid. More explicitly, one has

(I, σ̃ ) × (I, σ̃ ) = (I, Ĩ ) + (I, ψ̃ ). (15)

For the first fusion outcome, the two σ̃ anyons at the interface
can fuse to a neutral boson with its spin part described by
V0 [see Eq. (10)]. This neutral boson can then split to a pair
of quasihole and quasiparticle with opposite charges but the
same pseudospin, and propagate in the 331 liquid. For the
second fusion outcome, the neutral fermion can split to a
pair of quasihole and quasiparticle with opposite pseudospins
propagating in the 331 liquid. Consequently, some of the
hidden information is released and being accessible by local
probes. Therefore the “black hole” is no longer completely
black. Note that the released information is not protected
topologically and can suffer from quantum decoherence. The
discussion shows that the length of the interface sets an upper
bound of storing information nonlocally and topologically via
(σ, σ̃ ) pairs. Furthermore, the magnetic length �B = √

1/eB
(in the unit of h̄ = c = 1) plays the role of Planck length in
the present system. Here, B denotes the magnetic field.

The above observation actually resembles the argument
from holographic principle in black holes. Based on this prin-
ciple, the maximum amount of information can be stored in
a black hole is not determined by its volume, but bounded
by its area [17]. This is because the Bekenstein entropy of
the black hole is proportional to its area [4,98–100], which
limits the number of degree of freedoms the black hole can
have. In contrast to the quantum Hall interface, the black hole
can always store and “hide” more information by increasing
its area. Since the length of the quantum Hall interface is
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assumed to be fixed, the analogous (a weaker version of) holo-
graphic principle there implies that Hawking radiation in the
form of Abelian quasiparticles and quasiholes will be released
when the bound NL ∼ L/�B is reached. Roughly speaking,
any additional incoming information is thus reflected by the
interface (event horizon).

C. Firewall to electrons

So far, we have only focused on the charge-e/4 quasi-
particles. Some readers may argue that these anyons are not
fundamental particles, so their transmutation at the interface
is not that unusual. In fact, the interface can also cause a
dramatic effect to incoming electrons from the Halperin-331
liquid. Since e3iφ↑+iφ↓ = e2iφr eiφn and eiφ↑+3iφ↓ = e2iφr e−iφn ,
the vertex operator V2 encodes the fermionic nature of the
electron. Similar to the usual case in which the Pfaffian and
the Halperin-331 liquids are separated by the vacuum, the
electron can tunnel in to the Pfaffian liquid as a fermion (with
a topological sector ψ). However, Eq. (12) implies that it is
also possible for the electron to excite a Majorana fermion
ψ̃ at the interface, leave its Fermi statistics there, and tunnel
in to the Pfaffian liquid as a boson (with a topological sector
I). In this nontrivial case, the electron cannot simply pass
through the 331-Pfaffian interface as if there is nothing there.
This feature is another manifestation of the firewall nature of
the interface. We should note that a similar fractionalization
of electron was also proposed in the interface between a
Z2 short-ranged resonating bond quantum spin liquid and a
superconductor [101].

V. SIMULATION OF BLACK HOLE EVAPORATION

In order to resolve the information paradox in our model,
it is necessary to mimic a black-hole evaporation in the 331-
Pfaffian interface. As we will show, the process recovers the
original information carried by the pseudospin degree of free-
dom naturally. To simplify the discussion, we assume only
charge-e/4 Abelian quasiparticles were dragged across the
interface before the “evaporation.” In general, one can also
drag quasiholes and quasiparticles with other charges. Under
the above assumption, we argued in Sec. IV A that neutral
anyons σ̃ and non-Abelian charge-e/4 quasiparticles carrying
σ are created. This is illustrated in Figs. 3(a) and 3(b).

The “black-hole evaporation” is simulated by shrinking
the Pfaffian region. Experimentally, it may be achieved by
reducing the interlayer tunneling in the bilayer system [43,63–
65]. When a non-Abelian quasiparticle reaches the shrinking
interface, it is released back to the Halperin-331 liquid. This
process plays the role of Hawking radiation in the present
setup. There are two different mechanisms for the conversion
from a non-Abelian quasiparticle into an Abelian quasipar-
ticle. First, the former may encounter an existing σ̃ at the
interface. In this case, they recombine and transmute back to
an Abelian quasiparticle [see Eqs. (11) and (13)]. This special
scenario is shown in Fig. 3(c). In order for this recombination
to occur, it requires a highly delicate control of the shrinking
process. Thus it is unlikely to recombine all the existing σ̃ and
σ (with charge sector skipped) in this way. On the other hand,
it is likely that a non-Abelian anyon reaches the interface at

a position with no neutral anyon σ̃ . Being already outside the
Pfaffian liquid, the non-Abelian anyon still needs to transmute
into an Abelian quasiparticle. In this case, a pair of σ̃ needs
to be created at the interface. One of them combines with
the non-Abelian anyon to covert into an Abelian quasiparticle
in the Halperin-331 liquid. The remaining one is left at the
interface. This mechanism is shown in Fig. 3(d). Since the
additional pair of σ̃ are created from the vacuum, they must
have their fusion channel in the trivial topological sector.
Hence, they do not carry additional information. All above
processes are unitary, so information should be preserved.

A. Recovery of Page curve and resolution of the
information paradox

Now, we show that the above black-hole evaporation recov-
ers all original information and satisfies the Page curve. Here,
the first subsystem consists of anyons remaining in the Pfaf-
fian liquid and the interface. Another subsystem consists of
Abelian quasiparticles in the Halperin-331 liquid. For simplic-
ity, we call these two subsystems as (I) and (II), respectively.
Since we treat the Pfaffian liquid as the black hole and the
interface as an event horizon, reduced density matrices at
different stages are obtained by partial tracing out (I). At the
beginning of the evaporation, (II) is in a vacuum state with no
quasiparticles, so its entropy is zero. When the Pfaffian liquid
starts to shrink, the entropy of Abelian quasiparticles originat-
ing from their entanglement with (I) increases. However, the
increase in entanglement entropy will not continue forever. By
keep shrinking the Pfaffian region, the number of non-Abelian
anyons and the dimension of the corresponding Hilbert space
decrease. Hence, the dimensions of Hilbert spaces of (I) and
(II) will become comparable and eventually equal to each
other. The entanglement entropy reaches its maximum at this
moment [24], which is known as the Page time. The Page
time depends on the actual shrinking process. After passing
the Page time, the entanglement entropy starts to decrease.

In the most idealistic (yet most unlikely) situation which
one can recombine all N non-Abelian anyons with the origi-
nally existing σ̃ (exist before the evaporation) at the interface,
the Page time occurs when N/2 quasiparticles are released
to the 331 region. This feature does not hold in a generic
situation. One can actually deduce the average entanglement
entropy of (II) in the most idealistic case. We assume the
initial state of the total system (before shrinking the Pfaffian
region) is a random pure state |〉 in the 2N -dimensional
Hilbert space. The entanglement entropy is averaged with
respect to the unitary invariant Haar measure on the space of
unitary vectors |〉 in the 2N -dimensional Hilbert space [24].
Suppose j non-Abelian anyons have been dragged out from
the Pfaffian region and transmuted back to Abelian quasipar-
ticles in the Halperin-331 liquid. The corresponding Hilbert
space dimensions of (I) and (II) are given by n = 2N− j and
m = 2 j , respectively. When m � n, the conjecture by Page
(later proved by Sen [102]) suggests that the average entan-
glement entropy of (II) takes the form [24],

〈S(II)〉 ≡ Sm,n =
(

mn∑
k=n+1

1

k

)
− m − 1

2n
. (16)
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For m > n, one obtains 〈S(II)〉 by interchanging m and n in
Eq. (16). By plotting 〈S(II)〉 versus ln m, one concludes that it
is identical to the one in Fig. 1 of Ref. [25].

From our previous discussion, it is very likely that the
number of σ̃ anyons increases during the black-hole evapo-
ration. This leads to two consequences. First, it is possible
that all non-Abelian anyons in the Pfaffian liquid have been
released to the 331 liquid, but some σ̃ anyons still remain at
the interface. These anyons are entangled with the Abelian
anyons in the Halperin-331 region, so the entanglement en-
tropy is still nonzero. Second, the bound NL ∼ L/�B can be
satisfied easily during the shrinking process. The discussion
in Sec. IV B showed that pairs of Abelian quasiparticles and
quasiholes with opposite charges will be released to the 331
region. After eliminating the Pfaffian region completely, the
total number of anyons in the 331 region needs not be equal
to the number in the original configuration (before sending
the anyons in the Pfaffian liquid). Only in the most idealistic
situation that we mentioned previously, these two numbers
are equal as shown in Fig. 3(a) and 3(e). In general, the final
state of the system will have a superposition of different total
numbers of anyons in the 331 liquid. It is reasonable since
the total charge in the system is still conserved. This idea
is illustrated in Fig. 3(f). In particular, Fig. 3(f) denotes a
superposition state of 6 + M charge-e/4 quasiparticles and M
charge-−e/4 quasiholes, where M is a non-negative integer.
This kind of superposition state is actually a closer analog of
the actual Hawking radiation emitted from a black hole, which
consists of different types of particles or excitations.

Independent of the actual shrinking process, the system
must return to a pure state when the Pfaffian region is elim-
inated completely. Then, the entanglement entropy goes back
to zero and resembles the Page curve. The original pseudospin
information is recovered but in a highly entangled form. Thus
the paradox in our model is resolved. Our above discussion
suggests that the Page curve in the present system should be
more complicated than the one in Fig. 1 of Ref. [25].

VI. CONCLUSION AND DISCUSSION

To conclude, we have identified and resolved an “informa-
tion paradox” in the 331-Pfaffian quantum Hall interface. The
paradox originates from an apparent inability to recover the
original pseudospin information of Abelian charge-e/4 quasi-
particles after they cross the interface and enter the Pfaffian
liquid. We employed the technique of anyon condensation and
found that each incoming quasiparticle is transmuted into a
pair of non-Abelian anyons. One of them is created in the Pfaf-
fian liquid, whereas the other is created at the interface. Hence,
the original information is stored nonlocally in the system, and
cannot be recovered by any local measurement. We believe
this is a fair analogy to an object falling into a real black
hole, in the sense that while the information it carries is not
lost, does become inaccessible to an (outside) observer. This
resembles the idea of quantum information scrambling, which
is consistent with the modern viewpoint that black holes are
fast (perhaps the fastest) information scramblers [27,103–
106]. The matching between the dimensions of Hilbert spaces
for the Abelian quasiparticle and non-Abelian anyons further
verifies the preservation of information.

Also, we considered the case when more quasiparticles are
dragged across the interface. We argued that the maximum
amount of information the system can store in a topologically
protected way is bounded by the length of the interface. This
feature is reminiscent of a similar bound in black hole set by
its area due to the holographic principle and the Bekenstein
entropy. Furthermore, we pointed out that the interface be-
haves like a firewall not only to anyons, but also to electrons.
The latter is supported by observing an incoming electron
from the Halperin-331 liquid can drip off its Fermi statis-
tics at the interface. Finally, we discussed the simulation of
black-hole evaporation by shrinking the Pfaffian region which
releases quasiparticles back to the 331 liquid. We argue ex-
plicitly that the corresponding entanglement entropy would
follow the Page curve. As a result, the original pseudospin
information is recovered and the “information paradox” in our
model is resolved. Note that remnants may be left at the end
of evaporation in actual astrophysical black holes [107–109].
This may provide an alternative resolution of the information
paradox, which is not addressed in the present work.

It is quite surprising that the seemingly simple 331-Pfaffian
interface has a rich analogy with black-hole physics. At the
same time, we need to point out some potential differences
between our model and real astrophysical black holes. For a
(semi)classical black hole, the horizon is not expected to have
an effect on an infalling object (the so-called “no drama sce-
nario), including the information carried by it. Whether this
remains to be the case or not for a fully quantum-mechanical
black hole is unclear. A firewall at the horizon is a possible
scenario that is currently under investigation and debate [20].
In our model, the Abelian quasiparticles must be transmuted
when they cross the 331-Pfaffian interface. This is inevitable
as the Halperin-331 and Pfaffian liquids allow different de-
grees of freedom. Thus the interface in our model behaves
like a firewall. In our opinion, this interface may be a very
simple and accessible “black-hole firewall”, which deserves
more attention. In future work, it will be tempting to examine
possible analogy of black-hole thermodynamics in quantum
Hall interfaces. It is also interesting to examine whether the
331-Pfaffian or other quantum Hall interfaces can provide
an easy simulation of (a topological version of) the Hayden-
Preskill protocol.

The black-hole information paradox is arguably one of
the most fundamental problems in physics, which involves
gravitation, quantum field theory, and in particular, quantum
information science. This long-standing problem is currently
being actively studied by physicists in many different areas,
and from very different perspectives (but so far only theoret-
ically). Its resolution may well pave the way for the quantum
theory of gravity, the holy grail of theoretical physics. While
there is a lack of complete similarity between our model and
certain believed processes in actual black holes (especially
in the description of black-hole evaporation which should be
spontaneous), the analogy presented here provides a simple
and accessible platform to simulate (i) apparent information
loss, (ii) information scrambling, and (iii) information recov-
ery. We believe these are arguably the most important and
central concepts in understanding and resolving the original
information paradox. Furthermore, our work may open a new
research direction of studying how local information can be
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transmuted and stored nonlocally in an actual black hole.
Since the concept of firewall and many other aspects in the
paradox are still under intense debate, it is worthwhile to have
simple analogies that capture some of the relevant concepts
(but not necessarily all details precisely) in the original prob-
lem. In addition, our results have established a connection
between quantum information, black-hole physics and quan-
tum Hall physics, and may bring experimentalists into this
exciting research area.

Lastly, it is worthwhile to mention that a deep connec-
tion between quantum Hall effect and gravitational physics
has been revealed in previous work [110–119]. In particu-
lar, Refs. [117–119] have suggested a possible simulation of

Hawking-Unruh effect by scattering quasiparticles in quantum
Hall systems. It is optimistic that more connections between
black-hole physics and quantum Hall physics may be discov-
ered in the future.
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