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Stable electromagnetic interactions with effective media of active multilayers
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Gain is a blessing and a curse for photonic designs; indeed, gain-based devices may become unprecedentedly
efficient but, on the other hand, the local electromagnetic fields can increase exponentially with time and lead the
systems to instability. Such stability considerations are presented for a homogenized configuration incorporating
tilted active multilayers by determining the poles of its transfer functions across the complex frequency plane
and analytically deriving the respective constraints. The reported stable regimes will be crucial in tuning the
examined module when incorporated in photonic setups for serving multiple purposes from filtering and imaging
to cloaking and lasing.
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I. INTRODUCTION

Designs incorporating gain media can easily surpass
performance bars posed by passive setups and lead to unpar-
alleled levels of tunability and control, since they are able
to reformulate the energy equilibrium without being quan-
titatively restricted by the primary excitation power [1,2].
Active configurations have been fabricated to achieve per-
fect electromagnetic cloaking [3], ultraefficient polarization
engineering [4], and flawless reflection phase calibration [5],
being indispensable for a large range of integrated optical sys-
tems. In addition, lasing constitutes a significant category of
photonic operations that employ materials with gain and has
been experimentally accomplished with coupled plasmonic
nanocavity arrays [6], microrings of periodically placed bilay-
ers [7], or hybrid core-shell nanoparticles [8]. Parity-time (PT)
symmetry is also a design strategy allowing a controlled inter-
play between gain and loss that develops reconfigurable light
transport [9], unidirectional matching [10], and spatiotempo-
ral solitons [11]. All these fascinating findings have recently
ignited substantial funding initiatives encouraging research on
active topological metastructures [12], advanced functional
media [13], and responsive texture with gain [14], that are
expected to deliver even more efficient electromagnetic setups
in the near future.

However, the use of active materials may jeopardize the
stability of the hosting devices; namely, these substances can
pump unlimited amounts of energy and produce fields that
increase exponentially with time, having an apparently dis-
astrous outcome [15]. That is why a careful stability analysis
is mandatory every time one employs gain in a photonic de-
sign that interacts with light; otherwise, the reported resonant
regimes may not be attainable [16]. In particular, parametric
combinations that respect the stability constraints are neces-
sary in order to create frequency combs induced by phase
turbulence [17], sustain injection locking in semiconductor
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lasers [18], and develop nonlinear resonances in active
couplers [19,20] or photonic oscillators [21]. Importantly,
thorough stability considerations are provided for effects like
active scattering-cancellation cloaking [22], PT-symmetric in-
visibility [23], spectral singularities [24], and superscattering
in non-Hermitian cylindrical structures [25]. Similar stabil-
ity checks are core to studies investigating planar [26] and
cylindrical [27] metasurfaces for volumetric imaging as well
as non-Foster circuits with active components [28,29] and
negative capacitors [30].

One of the simplest and analytically solvable geometries
when modeling electromagnetic interactions contains periodic
stacks of multiple layers; some of the most important photonic
properties, like negative refractive index [31] or hyperbolic
dispersion [32,33], have been first experimentally demon-
strated in analogous layered structures. Broadband absorption
of the incoming illumination is also attained with stacked
plasmonic films in the visible [34], terahertz [35], and mi-
crowave [36] frequencies, while the coupling between fully
anisotropic graphene multilayers [37] have been successfully
used in the design of tunable infrared plasmonic devices
[38]. Furthermore, homogenization of alternating films with
different texture give effective permittivity tensors [39] that
correspond to zero-index optical metamaterials [40]. Similar
setups exploit the constructive and destructive interference
of waves to model maximally controllable modules [41],
efficient photovoltaic components [42], and highly selective
transmitters [43].

In this work, we investigate the stability of such a ubiq-
uitous component, finite in thickness, when one of the
periodically stacked media is active; in particular, a passive
slab hosts multiple tilted thin films with gain. The optical
axis of the corresponding effective anisotropic medium is
rotated and the structure is fed by obliquely incident waves
of arbitrary polarization. It is important to note that the actual
periodic configuration is replaced by a homogenized uniaxial
material; therefore, all the subsequent results are valid only
if the textural discontinuity between multilayers and passive
background does not severely affect the developed scattering
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effects. Analytical derivation for the poles of the transfer
functions at the complex frequency plane is provided and
the corresponding stability constraints are formulated. The
transmissivity across various parametric maps is presented
under the conditions for stable operation and the parametric
selections leading to significant pumping of energy are iden-
tified. In particular, by choosing properly the gain levels and
the incoming illumination direction, one can safely produce
fields several orders of magnitude stronger than the input ones,
while a proper tilt of the active layers can substantially en-
hance the systemic stability. The reported findings shed light
upon the stable modes of these versatile photonic modules and
can be critical when designing integrated setups that embody
them.

II. STABILITY CONSIDERATIONS

A. Problem statement

The structure under consideration is depicted in Fig. 1(a),
where the used Cartesian coordinate system (x, y, z) is also
defined. A slab of thickness h is filled with a medium of
relative complex permittivity ε1 and loaded with parallel thin
strips of another medium with relative complex permittivity
ε2. These thin films are tilted by angle ϕ with respect to
the horizontal x axis and the filling factor of ε2 into ε1 host
is denoted by 0 < r < 1. The configuration exists into free
space and can be excited by plane waves with frequency ω of
both polarizations: TM (sole electric field E ‖ ẑ) and TE (sole
magnetic field H ‖ ẑ) traveling along a direction forming an
angle θ with the horizontal x axis. Note that the period of the
lattice into the slab is d and a secondary Cartesian coordinate
system (X,Y, z) is indicated, with its X axis parallel to the
boundaries of the internal layers.

A harmonic dependence of time with the form exp(−iωt )
is assumed, which means that a negative imaginary part
Im[ε] < 0 of complex permittivity ε corresponds to gain and a
positive one Im[ε] > 0 indicates losses. As always, a Re[ε] >

1 corresponds to a dielectric behavior and a Re[ε] < 1 is
related to plasmonic response. One or both of the employed
media (ε1, ε2) can be active in a direct or an effective way
via time modulation [44] and, thus, instability may occur.
Therefore, our mission will be to derive the conditions for
stable operation and, once they are respected, investigate the
response of the device.

If we denote by Fz the z component of the corresponding
sole field in each case (Fz = Ez for TM modes and Fz = Hz

for TE modes), the Fourier transform of the transmissive
field behind the considered slab is given by Fz(ω, x, y) =
T (ω)e+ik(x cos θ+y sin θ ). The symbol T (ω) is used for the com-
plex transmission coefficient, playing the role of the transfer
function, k = ω/c is the operational free-space wave number,
and c is the speed of light into vacuum. In the presence of
noise with spectrum Q(ω), the time-dependent transmissive
field can be written as

fz(t, x, y) =
∫ +∞

−∞
Q(ω)T (ω)e−iωt+i ω

c (x cos θ+y sin θ )dω. (1)

As designated in Fig. 1(b), the integral (1) can be evaluated
by deforming the Fourier integration path and following an in-
finite semicircle at the lower half plane of complex frequency
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FIG. 1. (a) Physical configuration of the considered setup: a pas-
sive slab of thickness h and relative permittivity ε1 hosts strips of
active medium with relative permittivity ε2. The optical axis X of the
slab is tilted by angle ϕ and the structure is illuminated by a TM/TE
plane wave of frequency ω traveling across direction forming an
angle θ with the horizontal axis x. The transmission coefficient is
denoted by T (ω). (b) Sketch of the poles of the transfer function
T (ω) positioned on the complex frequency ω plane. Due to the
bypass of the Fourier integral, residues give exponentially decreasing
(stable) or increasing (unstable) time variations.

ω, across which the integrand exponentially vanishes for t > 0
due to the factor e−iωt . By taking into account that the noise
spectrum Q(ω) exciting the device cannot be singular, one di-
rectly infers that the integral (1) is proportional to the residues
of T (ω) at the unstable complex poles ω = ω̃ of T (ω) belong-
ing in the upper half space. In this way, the field will explode
like fz(t, x, y) ∼ exp(−iω̃t ) in the presence of at least one
unstable pole ω̃ of T (ω) with Im[ω̃] > 0 or asymptotically
vanish if all the poles ω̃ of T (ω) are stable (Im[ω̃] < 0). That
is why we show the representative variations with time t in the
insets of Fig. 1(b) for each of the two cases.

B. Electromagnetic fields

If one assumes that the period d of the periodically lo-
cated films of Fig. 1(a) is much smaller than the wavelength
λ ≡ 2πc/ω = 2π/k, the effective relative permittivities along
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the axes (X,Y ) are given by εX = (1 − r)ε1 + rε2 and εY =
ε1ε2

(1−r)ε2+rε1
, based on well-known homogenization formulas

[34]. Hence the relative permittivity tensor [ε] in the global
Cartesian coordinate system (x, y, z) takes the form [41]

[ε] =
⎡
⎣εxx εxy 0

εxy εyy 0
0 0 εX

⎤
⎦

=
⎡
⎣εX cos2 ϕ + εY sin2 ϕ (εX − εY ) cos ϕ sin ϕ 0

(εX − εY ) cos ϕ sin ϕ εY cos2 ϕ + εX sin2 ϕ 0
0 0 εX

⎤
⎦.

(2)

When the electric field is parallel to the z axis (TM polariza-
tion), we write Ez = e+iky sin θ [A e+ikκTMx + B e−ikκTMx], where

κTM =
√

εX − sin2 θ. (3)

Once the magnetic field is parallel to z axis (TE
polarization), the Helmholtz equation gives Hz =
e+iky sin θe−ik

εxy
εxx

x sin θ [A e+ikκTEx + B e−ikκTEx], where

κTE =
√

(εxx − sin2 θ )

(
εyy

εxx
− ε2

xy

ε2
xx

)
. (4)

The quantities A, B are arbitrary complex coefficients. Note
that Re[κTM/TE] > 0, since it is always taken positive by con-
vention.

The homogenization process [45] of replacing an actual
layered structure by an effective uniaxial medium with permit-
tivity described by (2) is not always successful. Indeed, reflec-
tivity from all-dielectric multilayers of deeply subwavelength
thickness cannot be well predicted via effective-medium the-
ory when the structure is excited obliquely via a dense
semicylindrical prism made of zinc selenide [46]. Similarly,
it has been shown [47] that a single subwavelength inclusion
can have a dramatic effect in an one-dimensional disordered
optical system under specific illumination angles while the
homogenization fails when the permittivity difference is small
[43]. Furthermore, nanophotonic disorders give strong field
localization [48], while extremely thin optical coatings can
substantially boost the absorbing efficiency of plasmonic slabs
[49].

However, we advocate that the aforementioned weak points
of effective-medium theory do not significantly affect the
validity of the results presented in our study. First of all,
the model is perfectly accurate in the case that we do
not regard a layered structure but an inherently uniaxially
anisotropic substance. But, even for the considered multilay-
ers, the breakdown of the effective-medium approximation
potentially occurs for discrete, singular incidence directions θ ;
that feature means that our conclusions for all the other angles
are correct. As indicated below, we search for constraints
leading to conditional stability, namely, stable operation if
the features of the incoming beam (polarization, wavelength,
angle) are taken constant; therefore, the critical angles for
total internal reflection, at which the effective-medium the-
ory potentially fails, can be excluded from the regarded θ

spectrum.

Moreover, in all the aforementioned works reporting fail-
ure of the effective-medium model [43,46–49], the incoming
beam meets a setup with layers of infinite length h/ cos ϕ →
+∞ ⇒ ϕ = 90◦; here, we have a configuration of tilted op-
tical axis which gives a full permittivity tensor. As a result,
the developed waves possess more complex forms and, thus,
achieving a combination of angles leading to the internal
reflection regime becomes more challenging. Furthermore, in
some of these papers [46,48] the breakdown of the homoge-
nization model happens when the layout is fed by evanescent
waves exiting a high-permittivity dielectric prism, which is
not the case in the present study where propagating fields are
exciting the device.

Despite all these arguments in favor of the suitability of
the employed approximations, we tested some representative
designs examined in this work by comparing the electromag-
netic signal distribution when simulating the actual layered
structures via commercial software COMSOL MULTIPHYSICS

[50], with the one derived when implementing the effective-
medium approximation. We have found, for a variety of slab
thicknesses, tilt angles, and by using omnidirectional line
sources containing all possible incidence angles θ , that the two
sets of data are qualitatively and quantitatively similar both
into vacuum and into the layered modules. The results are not
shown here for brevity but any discrepancies can be attributed
to the granularity of the used meshing required by the applied
finite element method and not to a systematic breakdown of
effective-medium theory for specific parametric sets.

C. Stability constraints

If one considers a source-free version of the problem
depicted in Fig. 1(a), the fields into the two semi-infinite
vacuum regions will be outgoing from the structure. After
imposing continuity for the tangential electric and magnetic
components along the interfaces x = 0, h and eliminating the
redundant complex coefficients, it is found that the considered
structure may support electromagnetic waves only if the fol-
lowing constraints are satisfied:

e+i ω
ω0

k0hκTM = ±1 + κTM sec θ

1 − κTM sec θ
≡ ±GTM, (5)

e+i ω
ω0

k0hκTE = ±u + εxxκTE sec θ

u − εxxκTE sec θ
≡ ±GTE, (6)

for each type of field (TM or TE respectively), where u =
εxxεyy − ε2

xy. The quantity ω0 > 0 is a reference frequency
dictated by the application for which we operate the device
and k0 = ω0/c is the respective free-space wave number.

If one assumes that the quantities GTM/TE are not depen-
dent on the oscillation frequency ω, Eqs. (5) and (6) can be
rigorously solved with respect to complex ω which, as will
become obvious later in the analysis, constitute the poles of
the system’s transfer functions T (ω). Their exact expressions
are given by

Re

[
ω

ω0

]
= Re[κ](mπ + arg[G]) − Im[κ] ln |G|

k0h|κ|2 , (7)

Im

[
ω

ω0

]
= − Im[κ](mπ + arg[G]) + Re[κ] ln |G|

k0h|κ|2 , (8)
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where m ∈ Z and κ = κTM/TE and G = GTM/TE in proportion
to the wave polarization we investigate. The poles lie along a
straight line with slope −Im[κ]/Re[κ], whose sign is decided
by Im[κ] since Re[κ] > 0, according to (3) and (4). To ensure
stability, these poles should belong to the lower half complex
plane (Im[ω] < 0) by keeping a positive real part (Re[ω] >

0); otherwise, the time dependence exp(−iωt ) loses its true
meaning. Therefore, we have a stable operation once

Im[κ](mπ + arg[G]) + Re[κ] ln |G| > 0, (9)

for every single integer m ∈ Z with m >
Im[κ] ln |G|−Re[κ]arg[G]

π Re[κ] .
By inspection of (9), it is clear that Im[κ] > 0 is a prereq-
uisite for stability since only then the inequality is obeyed
for m → +∞. If one takes into account the minimum m for
which (9) should be satisfied, the sufficient conditions for
stable operation read

Im[κTM/TE] > 0, |GTM/TE| > 1. (10)

It is noted that, for the simplest of the two polarizations (TM),
we obtain [51]

|GTM|2 = 1 + 4 Re[κTM] cos θ

Im2[κTM] + (Re[κTM] − cos θ )2 , (11)

meaning that the second of the two constraints in (10) is
automatically true for TM waves. Indeed, Re[κTM] > 0 as the
real part of a square root and cos θ > 0 because −90◦ < θ <

90◦ for the definition of incidence angle θ in Fig. 1(a). An
expression similar to (11) can be numerically obtained for TE
waves and, therefore, we draw the conclusion that the most
important inequalities from those in (10) are the first ones,
regardless of the type of excitation.

Given the fact that noise exists everywhere along the fre-
quency axis ω via the random spectrum Q(ω) of (1) and is a
signal containing any sort of wave, the stability of the system
is judged on the basis of imposing (10) for both the working
polarizations. However, in the following, we will investigate
the conditional stability of the system by assuming that char-
acteristics of the illumination like the type (TM/TE) and the
incidence angle (θ ) are kept constant, in the same way that the
angular momentum order has been taken fixed in a cylindrical
analog [25]. Our aim is to examine the behavior of the device
under the assumption that an efficient filter is employed to
block any other, deterministic or stochastic, incoming signal
except for that of the specific angle and polarization; similar
postulations hold for all the numerical results. Thus, in the
following, the conditions (10) will be considered separately
for each field type and for specific incoming wave direction.

Another interesting aspect of the investigated configuration
concerns its non-Hermitian characteristics due to the inclusion
of active layers. In particular, the creation of stable elec-
tromagnetic signals within such structures is similar to the
development of constant intensity waves in non-Hermitian
systems involving loss and gain [52], where the scattering
is counterbalanced by pumping extra energy [53]. Similarly,
these devices can achieve independent control of amplitude
and phase of the fields; such a concept is proven via a
Bohmian reformulation to Maxwell’s equations [54].

D. Nondispersive media conjecture

The derivations of the poles (7) and (8) and the subse-
quent stability constraints (10) are based on the conjecture
that GTM/TE and κTM/TE are independent from the operational
frequency ω. However, the retardation of oscillating atoms
and the physical principle of causality, stating that the output
of a system cannot temporally precede the input, calls for
dispersive media [27]. The most common frequency variation
of a material’s permittivity is given by the well-known Lorentz
model:

ε(ω) = 1 ∓ ω2
p

iω	 + ω2 − ω2
0

. (12)

The minus sign corresponds to passive designs and the plus
sign describes active ones for 	 > 0. Note that, just by flip-
ping the sign of losses 	, one obtains an active but noncausal
electrical response. The dispersive permittivity (12) implies
that the impulse response of a medium comprises of a delta
function at t = 0 and a damped oscillation beginning at t = 0.
According to this scenario, each atom of the material is con-
ceptually simulated by a spring whose resonance frequency
is denoted by ω0 and damping frequency by 	; the third
frequency ωp is called plasma frequency being proportional
to the number of atoms into the volume of the material.

If ε1 and ε2 are characterized by dispersion (12), the func-
tions GTM/TE(ω) and κTM/TE(ω) will be dependent on complex
ω. Thus the explicit deduction of the poles like in (7) and (8)
will be infeasible and, accordingly, closed-form stability con-
straints as in (10) will not be easily derived; on the contrary,
cumbersome numerical determination of the roots across the
entire complex ω plane will be required every single time the
setup alters. For this reason, we will hereinafter work with the
rules (10) to understand the approximate stability dynamics
of the system in Fig. 1(a). More specifically, we will assume
that the permittivities are dispersion free (ε1, ε2 independent
from ω). Alternatively, one may suppose that the central op-
erational frequency ω = ω0 belongs to a range across which
the function ε(ω) is relatively flat, a feature that can involve
Lorentz-type variation (12).

Another implication of dispersion-free assumption is that
we search for unstable poles (upper complex half plane,
Im[ω] > 0) that have strictly positive real parts (Re[ω] > 0).
Even though poles appear at the upper left quarter of the
complex ω plane, we will ignore them since the actual singu-
larities with Re[ω] < 0 are directly determined via the poles
with Re[ω] > 0. In particular, the transfer function T (ω) is
characterized by the property T (−ω∗) = T ∗(ω) because the
electric field response in time should be real [55,56]; as a
result, its poles are placed symmetrically with respect to the
imaginary Re[ω] = 0 axis. Hence a transfer function that does
not become singular at the {Im[ω] > 0, Re[ω] > 0} quadrant
will describe a stable system.

III. STABLE OPERATION

A. Transmissivity derivation

When the structure is illuminated by a plane wave with
magnetic or electric field always parallel to z axis given by
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FIG. 2. Transfer function magnitude |T (ω)| represented across
the complex frequency ω plane for (a) TM waves (unstable) and
(b) TE waves (stable). Plot parameters: ε1 = 1 + 2i, ε2 = 1 − 8i,
r = 0.5, ϕ = 30◦, θ = 0◦, and h = λ/2.

Fz = e+iky sin θ+ikx cos θ , the boundary conditions at x = 0, h
determine the following transmission coefficients:

TTM = 4κTM cos θ

(κTM− cos θ )2

e+ikh(κTM−cos θ )

G2
TM − e+2ikhκTM

, (13)

TTE = 4κTEεxxu cos θ

(εxxκTE − u cos θ )2

e+ikh(κTE−cos θ− εxy
εxx

sin θ )

G2
TE − e+2ikhκTE

, (14)

for each of the two considered polarizations (TM/TE). Note
that the poles of TTM/TE are the roots of the transcendental Eqs.
(5) and (6), respectively, whose explicit forms are expressed
by (7) and (8).

In Fig. 2, we represent the transfer functions for both types
of waves (TM/TE) across the complex frequency ω plane
and we realize that an active design can be stable for the one
polarization but unstable for the other. In particular, Fig. 2(a)
demonstrates the variation of |TTM(ω)| and the poles lie along
a straight line, as dictated by (7) and (8). The first pole is stable
but all the others possess larger imaginary parts and belong to
the upper half of the complex ω plane. On the contrary, for TE
waves [Fig. 2(b)], the locus of the poles is a downward sloping
curve due to the different sign of Im[κTE] > 0 and its entirety
is included into the stable half space.

B. Permittivities planes

The imaginary parts of the permittivities (ε1, ε2) are crucial
quantities determining the stability of the photonic setups;
therefore, the variation of the device output with respect to
them is meaningful and should be studied. In Fig. 3, we show
on the map (Im[ε1], Im[ε2]) the transmissivity expressed in
dB; the blank regions correspond to instability. In Fig. 3(a),
where TM waves are considered, half of the inspected para-
metric region sends the system to unbounded oscillations
since we have assumed that both the media occupy the same
volume in the layered configuration (r = 0.5). Note that the
response of the setup gets stronger when the imaginary parts
are selected smaller and, once the line Im[ε1] + Im[ε2] = 0
is crossed, the structure becomes unstable; thus, in this case,
the instability occurs when transmission increases. With blue
marker ×, we denote the design examined in Fig. 2, which is
unstable for TM waves.

In Fig. 3(b), we assume TE excitation and understand that
the response is not exclusively dependent on the quantity
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FIG. 3. Transmissivity |T |2 in dB with respect to the imaginary
parts of relative permittivities of the two media (Im[ε1], Im[ε2]).
(a) TM waves; (b) TE waves. Plot parameters: Re[ε1] = Re[ε2] = 1,
r = 0.5, ϕ = 30◦, θ = 0◦, and h = λ/2. The blue markers × denote
the design with transfer functions examined by Fig. 2. Blank regions
indicate instability.

(Im[ε1] + Im[ε2]). More specifically, the instability domain
is not anymore coherent and thus two blank regions appear in
the upper right part of the permittivity map while two stable
ones emerge at the lower left half. That is why the [same as
that of Fig. 3(a)] design marked with blue pointer × is now
stable, as indicated by the poles of its TE transfer function
in Fig. 2(b). However, it should be stressed that, even with
this alternative polarization, the response is always unstable
when both materials are active (Im[ε1], Im[ε2] < 0) and, of
course, the system is stable when the two media are passive
(Im[ε1], Im[ε2] > 0). It is also noteworthy that across all the
instability boundaries of Fig. 3(b) the system gives substantial
transmissivity (close to its maximal unitary value), as also
happens in Fig. 3(a).

In Fig. 4, we regard the map of real parts of permittivities
and identify the different influence they have on the stability of
the considered slab for different incoming wave polarizations.
In Fig. 4(a), where TM fields are examined, we obtain an
always-stable response with variation complementary to that
of Fig. 3(a), namely, |TTM|2 increases for increasing (Re[ε1] +
Re[ε2]). Importantly, the real parts of dielectric constants
(ε1, ε2) do not seem to affect substantially the TM stability
of the layout, at least in this specific design. In Fig. 4(b),
we assume TE waves and a large instability region around
the Re[ε2] = 0 line is formulated, which is almost symmetric
with respect to the Re[ε1] = 0 axis. In particular, the more

-5 0 5
-5

0

5

-80

-70

-60

-50

-40

-30

-20

-10

0

(a)

-5 0 5
-5

0

5

-80

-70

-60

-50

-40

-30

-20

-10

0

(b)

FIG. 4. Transmissivity |T (ω)|2 in dB with respect to the real
parts of relative permittivities of the two media (Re[ε1], Re[ε2]).
(a) TM waves; (b) TE waves. Plot parameters: Im[ε1] = 0.8,
Im[ε2] = −0.2, r = 0.5, ϕ = 30◦, θ = 0◦, and h = λ/2. Blank re-
gions indicate instability.
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FIG. 5. Signs of the real parts of the effective permittivities
(εX , εY ) on the map of the real parts of the permittivities of the orig-
inal media (ε1, ε2). (a) The identical case examined in Fig. 4(b) (r =
0.5). (b) Same case examined in Fig. 4(b) but with r = 0.15.

substantial |Re[ε1]| is, the more challengingly one achieves
stability via selecting Re[ε2] and vice versa. Interestingly, the
transmissivity of the slab just before entering the unstable
region is not necessarily equal to maximum; in some cases,
the response can even vanish.

This finding may sound peculiar since instability is subcon-
sciously related with huge field magnitudes. However, what
we represent in Figs. 3 and 4 is the magnitude of the phasors
of the transmissive fields |Fz|, under the assumption that the
system converges to finite responses. Indeed, the decision
regarding the instability or not of a system is not made by the
magnitude of the signal fz at a specific time (say, t = 0) but
by the evolution of the signal as the time t goes by. In other
words, in the presence of white noise Q(ω), a configuration
represented by a nonblank point (ε1, ε2) on the maps of Figs 3
and 4 will produce transmissive waves of magnitude |T (ω)|
that vanish with time. On the other hand, if the point (ε1, ε2) is
blank, the transmission will explode with time like exp(−iω̃t ),
as imposed by the unstable pole ω = ω̃, but at t = 0 will be
finite too and proportional to T (ω̃). Nonetheless, we avoid
showing these finite values since the system is unstable. It
is, therefore, directly inferred that one should not confuse
the amplification scenario of |T (Re[ω̃])|2 > 1 with the un-
stable regime concerning an exponentially increasing quantity
T exp(−iω̃t ) with time t .

It would be also interesting to investigate the nature of the
effective media expressed via the permittivities (ε1, ε2) and
thus we identify four distinct regions on the parametric plane
(Re[ε1], Re[ε2]), as in Fig. 4, in proportion to the signs of
the real parts of the homogenized permittivities (εX , εY ). Dark
blue domains describe a dielectric uniaxial material, while
light blue areas indicate a plasmonic substance. Similarly,
yellow and brown colors are used for hyperbolic media, while
blank regions correspond again to permittivity combinations
leading to instability for the given amounts of gain and loss. In
Fig. 5(a), we consider the same system examined in Fig. 4(b)
under TE excitation since only then the effective medium
is anisotropic; indeed, one directly observes that numerous
combinations of (ε1, ε2) examined in Fig. 4(b) give equivalent
materials with hyperbolic dispersion relation. By juxtapos-
ing Figs. 4(b) and 5(a), it is clear that when the hyperbolic
homogenized material has Re[εX ] < 0 the transmissivity is,
on average, much weaker than in the hyperbolic scenario
with Re[εX ] > 0. Importantly, the isocontour levels of |TTE|2
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FIG. 6. Transmissivity |T |2 in dB with respect to the imaginary
parts of relative permittivities of the two media (Im[ε1], Im[ε2]).
(a) r = 0.4; (b) r = 0.5. Plot parameters: Re[ε1] = Re[ε2] = 1, r =
0.5, ϕ = 30◦, θ = −45◦, and h = λ/2. Only TE type of excitation is
considered. Blank regions indicate instability.

of Fig. 4(b) have conformal shapes with the boundaries of
different regions of Fig. 5(a). In Fig. 5(b), we repeat the
calculations of a structure identical to that of Fig. 5(a) but
for active layers with smaller filling factor (r = 0.15). It is
remarked that the domains of permittivities (Re[ε1], Re[ε2])
giving hyperbolic dispersion get substantially shrunk; the
same happens with the unstable regions since the volume of
the gain medium decreases too. Finally, the symmetry of the
hyperbolic parametric domains with respect to the origin is
again demonstrated, as in Fig. 5(a).

By observing Figs. 3–5, it is understood that the most
interesting dynamics emerge when the slab is excited by TE
waves; therefore, in the following examples the variation of
transmissivity will be investigated only for TE polarization.
In addition, up to that point, we have considered normal
incidence (θ = 0◦) and thus the transmitted power does not
surpass unity, even though active media are employed. In
Fig. 6, we assume an obliquely traveling wave with θ = −45◦
and one readily finds that transmission power can be up to
four orders of magnitude larger than the incoming one; it is
clearly an evidence that the incorporated gain media pump far
more energy than that absorbed by the dissipative materials or
reflected back at x → −∞. In Fig. 6(a), we take r = 0.4 and
represent |TTE|2 on the (Im[ε1], Im[ε2]) map; the distribution
differs from that of Fig. 3(b) as it is asymmetric due to the
different filling factors of the two materials. However, the
variation across the isolated stable domains in the lower left
part of the map can complement well the variation at the
unstable domains of the upper right part, like two pieces of
a puzzle. This property is related to the interchangeability of
the two media and the periodicity of the layered structure of
Fig. 1(a). In Fig. 6(b), where r = 0.5, the perfect symmetry
of Fig. 3(b) is restored since additionally Re[ε1] = Re[ε2].
Similar to Fig. 3(b), the response is much stronger at the
two islets of stability compared to the upper right region of
the considered map; however, as mentioned above, the non-
normal incidence substantially enhances the produced power.

C. Configuration plane

Having understood the dynamics of the device when
the features of the two employed media (ε1, ε2) are being
swept, it is meaningful to show the variation of transmissiv-
ity |TTE|2 with respect to the physical characteristics of the
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FIG. 7. Transmissivity |T |2 in dB with respect to the optical tilt
ϕ and duty cycle r. (a) θ = −45◦, (b) θ = −30◦, (c) θ = −15◦, and
(d) θ = 0◦. Plot parameters: ε1 = 1 + i, ε2 = 1 − 6.5i, and h = λ/2.
Only TE type of excitation is considered. Blank regions indicate
instability.

configuration. In particular, in Fig. 7, we represent the re-
sponse of the device as a function of the optical tilt ϕ and duty
cycle r for various illumination directions θ . When the tilt
angle ϕ increases, the system is sent to instability for a smaller
portion r, since that filling factor corresponds to the active
medium. In Fig. 7(a), we assume θ = −45◦ and observe a
vastly asymmetric response with respect to ϕ = 0◦, indicating
that significant transmissivities are recorded once the sign of ϕ

and θ are opposite (ϕθ < 0) [34]. More specifically, the device
turns to instability for ϕ > 0 through huge values, while its
output across the symmetric boundary (ϕ < 0) is vanishing.
An opposite behavior is observed when the incoming angle is
taken positive (θ > 0).

In Fig. 7(b), we consider a less obliquely incident wave
(θ = −30◦) and the obtained transmissivity pattern becomes
more symmetric, while the average magnitude of |TTE|2 gets
smaller. This trend continues in Figs. 7(c) and 7(d), where
the maximal response weakens and the distribution becomes
more even with respect to ϕ. Note that the instability region is
only slightly dependent on the incoming direction θ but gets
enlarged when the films of the active media are positioned less
normally to the boundaries x = 0, h. Therefore, the unstable
behavior is more probable not only when the corresponding
filling factor r increases but also when the optical axis into the
anisotropic slab is rotated. It is also remarkable that, regard-
less of the incidence direction θ , there is a tilt angle ϕ beyond
which the stability of the setup deteriorates substantially since
the corresponding boundary in all the four cases of Fig. 7 is
almost vertical.

D. Spectra plane

We have considered two types of maps for investigating
the operation of the device: one regarding the imaginary (or
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FIG. 8. Transmissivity |T |2 in dB with respect to the relative
frequency ω/ω0 and incoming angle θ . (a) ϕ = 0◦; (b) ϕ = 30◦.
Plot parameters: ε1 = 1 + i, ε2 = 1 − 10i, r = 0.5, and h = λ/2 at
ω = ω0. Only TE type of excitation is considered. Blank regions
indicate instability.

real) parts of the permittivities (ε1, ε2) and one concerning the
configuration parameters (ϕ, r). It would be also stimulating
to observe the variation of transmissivity |TTE|2 across the
plane of excitation spectra, namely, the oscillation frequency
ω (wavelength spectrum) and the direction of incidence θ

(angular spectrum). In Fig. 8(a), we consider normally grown
flakes (ϕ = 0◦) and a symmetric distribution of the device
response with respect to θ = 0◦ is obtained. As indicated by
Figs. 3 and 4, when there is no tilt of optical axis or, recipro-
cally, the incoming wave meets normally the slab boundaries,
the output is bounded by unity (even for TE fields). Note that
for increasing frequency ω the transmissivity decreases since
the slab becomes more opaque and this trend is milder for
normal incidence (θ = 0◦). Obviously, for ω → 0 the setup
gets totally transparent (|TTE| → 1).

In Fig. 8(b), we assume tilted active slabs (ϕ = 30◦) and,
as noted in Fig. 7, a condition ϕθ < 0 favors transmissivity
since the incoming beam is forced to reflect many times
between the active flakes and, thus, gradually gains energy
at each round trip. In particular, the response is weak and
decreasing with frequency when ϕθ > 0, while being much
stronger and an increasing function of ω for ϕθ < 0. Indeed,
for ϕθ > 0 the losses dominate across the propagation path
that belongs almost entirely into the passive host, while for
ϕθ < 0 the incident ray interacts many times with the active
medium and, as an avalanche [34], becomes more and more
powerful.

IV. CONCLUSIONS

Active multilayers with tilted optical axis formulate a ho-
mogenized anisotropic slab that gets obliquely excited by
electromagnetic waves. The transfer function of the setup is
analytically derived and its poles on the complex frequency
plane are obtained; therefore, stability conditions are rigor-
ously deduced under the assumption of dispersion-free media.
The transmissivity of the slab is represented across several
parametric maps concerning the employed gain or lossy ma-
terials, the geometry specifications, and the excitation spectra;
in this way, one can tune the system to transmit power several
orders of magnitude larger than the incoming one, without
taking the risk of instability.
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An interesting expansion of the presented study would
be to optimize the structure and the texture of the specific
layout so that various types of responses are maximized, once
paired to the suitable excitation. In this sense, the existence or
nonexistence of the limits in the performance of this class of
active designs will be reported while respecting the stability
conditions. The recorded supreme efficiencies would help to
express the corresponding scores of passive designs as a frac-
tion of them and serve the role of bars for more complicated
structures employing more sophisticated gain media to pass.
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