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Pulse shaping for on-demand emission of single Raman photons from a quantum-dot biexciton
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Semiconductor quantum dots embedded in optical cavities are promising on-demand sources of single
photons. Here, we theoretically study single photon emission from an optically driven two-photon Raman
transition between the biexciton and the ground state of a quantum dot. The advantage of this process is that
it allows all-optical control of the properties of the emitted single photon with a laser pulse. However, with
the presence of other decay channels and excitation-induced quantum interference, on-demand emission of the
single Raman photon is generally difficult to achieve. Here we show that laser pulses with nontrivial shapes can
be used to maintain excitation conditions for which, with increasing pulse intensities, the on-demand regime
is reached. To provide a realistic picture of the achievable system performance, we include phonon-mediated
processes in the theoretical calculations. While preserving both high photon purity and indistinguishability, we
find that although based on a higher-order emission process, for realistic system parameters on-demand Raman
photon emission is indeed achievable with suitably tailored laser pulses.
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I. INTRODUCTION

Single-photon sources based on semiconductor quantum-
dot systems are considered key components for integration
into quantum computers [1] and quantum cryptographic ap-
plications [2]. These sources have to produce light with
extraordinary quantum properties such as high indistinguisha-
bility, emission efficiency, and purity [3–9]. They are typically
based on single-photon transitions from one quantum dot state
to another or the cascaded emission of photons from a higher
electronic configuration in a quantum dot. Basic properties
of the emitted photons such as polarization state and fre-
quency are often predetermined by the chosen quantum-dot
transitions and structure used. Active control is difficult to
achieve. Here, we use a different approach and consider a
direct two-photon transition between the quantum-dot ground
state and the biexciton state, which offers flexibility in the
initial biexciton state preparation [10,11] with fidelities close
to one and the emission of quantum light with up to two
photons [12–14]. Previously, we demonstrated that the direct
(nonlinear) two-photon emission process from the biexciton
cannot only be used to emit a pair of photons but through
a photonic Raman process also to emit a single photon with
optical control [15,16]. The Raman emission process has the
unique advantage that properties of the emitted photon can be
controlled optically by the control laser, whereas they would
otherwise be predetermined by the quantum-dot system [17].
As depicted in Fig. 1, a coherent control pulse drives the
system from an occupied biexciton state into an intermedi-
ate virtual state inside the band gap from which the system
then relaxes into its ground state by emitting a single photon
[15]. This process was recently observed experimentally [18].

The single-photon emission can be enhanced using an opti-
cal cavity. Related types of optical Raman processes which
allow at least partial optical control of the properties of the
emitted photon, such as polarization state and frequency, were
previously studied in detail in different three-level systems
[15,19–23].

To unlock the full potential of quantum applications, high
single-photon emission probabilities are required, exceeding
66% for linear quantum computing [24] and 50% for Boson
sampling [25]. These numbers are based on a joint emission,
transmission, and detection efficiency as discussed in Ref.
[17]. For the single-photon emission of interest in the present
paper, we have previously shown that the Raman resonance
condition nontrivially depends on the shape of the control
pulse triggering the emission [16,23]. Moreover, the Raman
process can also act as a source of excitation-induced quantum
interference instead of as a source of single-photon emission
[23]. These two aspects play an increasingly important role
for elevated control pulse intensities and generally tend to
undermine our quest for entering the on-demand regime for
single Raman photon generation.

In the present paper, we demonstrate that a systematically
optimized pulse can be used to steer the emission into the
desired single-photon channel and effectively suppress unde-
sired emission and quantum paths in the system dynamics.
In Figs. 1(c) and 1(d), we show a sample result for which
a simple Gaussian pulse stimulates a single Raman photon
emission into the cavity mode with energy h̄ωc (parameters
of the Gaussian pulse were optimized to achieve maximum
emission probability). Further optimization can then only
be obtained using a nontrivial control pulse that does not
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FIG. 1. (a) Sketch of the optical transitions in a semiconductor
quantum dot in the circular polarization basis. (b) Sketch of the
single-photon Raman emission process from a direct two-photon
transition between biexciton and ground state. A control pulse with
σ+ circular polarization is used to stimulate the system into a virtual
state, from which a single photon with σ− circular polarization is then
emitted as the system relaxes to its ground state. An optical cavity is
used to enhance the single photon emission. In the present paper, us-
ing a mask in Fourier-space, systematically optimized control pulses
are used to maximize the single-photon emission probability. An ex-
ample of the pulse optimization in shown in (c). (d) Sample emission
spectrum with (solid line) and without (dashed line) control pulse
optimization. Optimization, in particular, decreases the emission into
competing decay channels through the biexciton exciton cascade.

only enhance the Raman single photon emission probability
significantly but also reduces competing emission channels.
On a more detailed level, it is also important to note that
the Raman single-photon emission benefits from resonance
enhancement when occurring spectrally close to the dipole-
allowed quantum dot transitions. However, with the cavity
mode nearby these transitions, cavity feeding assisted by
longitudinal acoustic (LA) phonons also becomes important.
We show that even including these additional processes, for
realistic system parameters and using well-established and
experimentally accessible methods of pulse shaping, the on-
demand regime for emission of single Raman photons from a
quantum-dot cavity system can indeed be reached while pre-
serving important figures of merit such as indistinguishability
and single-photon purity.

In the following section, Sec. II, we briefly introduce the
quantum dot cavity model used in the calculations. We de-
scribe the theory in more detail in Appendix A. In Sec. III, we
present our method of optimizing the single-photon emission.
We do this by introducing the theoretical concept of a Ra-
man population which we then optimize systematically using

shaped pulses. In Sec. IV, we discuss the results in the weak
and strong coupling regimes.

II. QUANTUM DOT SYSTEM AND ITS PROPERTIES

We model the quantum dot by including the relevant elec-
tronic configurations which are the ground state |G〉, two
excitons |XH 〉 and |XV 〉, and the biexciton state |B〉, with
respective energies EG, EH,V , and EB. We also include two
degenerate cavity modes with frequencies ωH,V and polariza-
tions that correspond to those of the excitons. We describe
the coupling of the cavity modes to the electronic transi-
tions with a coupling constant g and add a coupling to a
classical light field (∼�i), which is discussed in detail in
Sec. III B. To trigger the single photon Raman emission, we
use a circularly polarized pulse; the desired single photon
emission can then be detected in the other circular polariza-
tion channel as sketched in Fig. 1. In the circularly polarized
frame, the coherent light field and cavity photon operators
take the following form: �∗

σ± = 1√
2
(�∗

H ± i�∗
V ) and b†

σ± =
1√
2
(b†

H ± ib†
V ). We assume zero fine-structure splitting for

the excitons (δfss = 0), such that the circular states are elec-
tronic eigenstates of the quantum dot system. However, we
note that the single photon emission studied does not depend
on this specific choice; quantitative changes for the Raman
emission would be negligible [15] for typical values of δfss

[26] for the pulse and cavity detunings discussed here. The
system dynamics is calculated by solving the Liouville-von
Neuman equation in matrix representation which is outlined
in Appendix A 2. We consider coupling of the quantum dot
system to a bath of LA phonons (see Appendix A 1 b) and
apply a polaron transformation (see Appendix A 1 c) to obtain
the relevant equations of motion in the polaron frame. In
this approach, the phonon-assisted transitions are included
as Lindblad-type contributions to the system dynamics. This
allows us to introduce and optimize the analytical Raman
emission probability as detailed in Sec. III A. This would not
be straightforward with the numerically exact path integral
treatment of the phonons [27–29] that has recently gained
attention. Consequently, in the present paper we restrict our
analysis to the limiting cases in which the Lindblad terms
describe the phonon interaction well [30] as discussed in more
detail below. We also include cavity losses, with a rate κ that is
varied as needed to account for weak and strong coupling. Ad-
ditionally, we include losses into other noncavity modes with
a decay rate of γrad = 2 μeV in our calculations. Furthermore,
we add a pure dephasing term that goes beyond phonon-
assisted transitions [31] and which at low temperatures T
scales linearly γpure(T ) = 1μeV/K × T [32]. By applying the
quantum regression theorem, photon properties are calculated
from two-time expectation values such as the emission spec-
trum, indistinguishability, and purity of the emitted single
photon (a more detailed account is given in Appendix A 3).

III. SINGLE PHOTON EMISSION OPTIMIZATION

Single-photon sources with a high emission probability or
brightness are a desired key component for future quantum
applications. Therefore, it is crucial to improve the single
photon output of such sources. In this paper, we consider
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a single-photon emission process based on the stimulated
emission from a biexciton state in a quantum dot, as outlined
in the Introduction. However, there also exist different com-
peting spontaneous decay channels. Thus, it is necessary to
isolate the contribution of the desired, triggered single-photon
emission in the optimization process. To this end, in Sec. III A
below we introduce the single-photon Raman emission prob-
ability which is then used to optimize the source’s brightness.
This optimization then results in an optimized optical control
pulse that triggers the Raman photon emission process with its
maximum yield. We parametrize the pulse in an experimen-
tally accessible way based on well-established pulse-shaping
technology as detailed in Sec. III B, with additional remarks
concerning the optimization in Sec. III C.

A. Raman population

We are interested in the photon emission of the quantum
light source. The total photon emission probability from the
optical cavity with photon polarization i during a time span T
is given by [33]

Pems,i(T ) = κ

∫ T

0
Ni(t ) dt, (1)

where κ is the cavity decay rate and Ni(t ) = tr(ρ(t ) b†
i bi ) is

the photon population. This expression combines all photons
from different decay/emission events. We are, however, only
interested in the emission of a certain photon from the op-
tically controlled, direct transition from the biexciton to the
ground state. Following Ref. [23], we introduce the single-
photon Raman emission probability of polarization i as

PR,i(T ) = κ

∫ T

0
NR,i(t ) dt . (2)

Here, we are interested in the circularly polarized population
of the Raman photon NR,σ− (t ). This is obtained from the
Heisenberg equation for the mean of the circularly polarized
cavity photon number operator up to second order in the
hierarchy with the Raman process:

Rσ− (t ) = 〈|G〉〈B|b†
σ−(t )�∗

σ+ (t )〉. (3)

This describes the Raman process where the quantum dot
transition from the biexciton 〈B| to the ground state |G〉 is
triggered by a σ+ polarized control pulse �∗

σ+ (t ) and, con-

sequently, a single photon of opposite polarization b†
σ−(t ) is

created in the cavity mode. Integrating the second-order equa-
tion while keeping only the terms proportional to the Raman
process yields

NR,σ− (t ) = 2g〈B〉2

h̄2 Re
∫ t

0

∫ t ′

0
e−κ (t−t ′ )

× (eWBX (t ′ )−WBX (t ′′ ) − eWXG(t ′ )−WXG(t ′′ ) )

× Rσ− (t ′′) dt ′′ dt ′, (4)

where we have Wαβ (t ) = −i
∫ t

0 ωαβ,c(t ′) dt ′, and ωαβ,c(t ) :=
ωα − ωβ − ωc − i

2 (κ + �̄αβ (t )), with ωα/β relating to the

quantum-dot energies, and h̄ωc is the energy of the cavity
mode. The quantum-dot decay terms read

�̄Xσ−G(t ) = �XG + �
Xσ+G
L,+ (t ) + �

BXσ−
L,+ (t ), (5)

�̄BXσ+ (t ) = �BX + �
GXσ+
L,− (t ) + �

Xσ−B
L,− (t ). (6)

The pure dephasing and radiative decay are included via
�XG = γpure + γrad and �BX = γpure + 3γrad [16] while the
phonon-mediated processes driven by the laser field �

α/β
L,±

are approximated by the analytical rates from Refs. [30,34].
We neglect the cavity photon mediated rates as 〈B〉2g2 � κ

in our case. When we consider the single-photon emission
without the phonon-assisted processes, we set 〈B〉 = 1 and
�̄αβ (t ) = �αβ .

B. Pulse shaping

We model the pulse shaping required for the numerical
optimization according to the output of a 4 − f pulse shaper
[35]. Here, an input beam is focused onto a spatial light
modulator (SLM), which makes it possible to introduce a
frequency-dependent phase. The SLM applies a mask M to
an input field �in in frequency domain

�SLM(ω) = M(ω)�in(ω), (7)

with M(ω) = AM (ω)eiφM (ω). A common choice is to set
AM (ω) = 1, which implies that the pulse intensity will be
preserved by the SLM [36]. The phase mask is given by

φM (ω) = α cos[2πγ (ω − ωL ) + δ] + η(ω − ωL )2. (8)

The first term models a periodic phase commonly used in
optimal quantum control [37]. The second term is a quadratic
phase which introduces a linear chirp in the time domain [38]
and which is used to account for pulse-induced shifts during
the single-photon emission process. These shifts are a major
contribution to the overall pulse shape and can be analytically
understood in the context of Raman emission from three-level
systems (cf. footnote Ref. [45] of Ref. [23]). We choose a
Gaussian-shaped input field

�in
σ+(t ) = h̄

√
E0π

4 ps σ
e−( t−t0

σ
)2

eiωLt and �in
σ−(t ) = 0, (9)

with pulse width σ , center t0, dimensionless measure of en-
ergy E0, and h̄ωL = EB − EG − h̄ωC + �L, where �L is a
small detuning accounting for pulse-induced resonance shifts.
The pulse-shaping method conserves the pulse energy, hence
the dimensionless amplitude E0 acts as a constraint for the
optimized pulse.

C. Optimizing the single photon emission

We aim to optimize the single-photon emission as quan-
tified by the Raman emission probability PR,σ− in Eq. (2).
The parametrization of the pulse as introduced in the previous
section leads to a seven-dimensional optimization problem
with parameters x = {α, γ , δ, η, σ, t0,�L}. In this space, we
numerically seek [39]

max
x

PR,σ−(x). (10)
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We restrict the set x to parameters suitable for common SLMs
and chirped pulses based on Refs. [40,41] with

0 � α � 2π, 0 meV−1 � γ � 2 meV−1,

0 � δ � 2π, −25 meV−2 � η � 25 meV−2,

15 ps � t0 � 30 ps, 2.5 ps � σ � 5 ps.

A (strong) external light field coupled to the quantum dot
system changes the transition energies of the quantum dot.
The shift for the transition of interest, which in general de-
pends on time, can be calculated analytically in some limiting
cases [23]. The most important observation is that the shift
of the resonance can be well approximated by a linear chirp
in the time domain, η. Additionally, we include control of
the pulse frequency components with the parameters α, γ , δ,
which will steer the pulse energy into the desired spectral
regions and away from regions which will contribute to un-
wanted quantum interference [23]. Furthermore, we consider
an average laser detuning �L [15], which is the simplest way
to optimize by hand. We note that for large pulse detuning
from the electronic resonances and a strong pulse inclusion of
the average detuning alone, �L can already yield a significant
improvement in the photon population gained [15]. Lastly, we
allow slight variations in the pulse width with σ and pulse
maximum with t0.

The numerical optimization of the single-photon Raman
emission probability is performed by applying advanced non-
linear optimization algorithms as implemented in the IPOPT
(INTERIOR POINT OPTIMIZER) software package [42–44].
This requires the numerical evaluation of both the gradient
and the Hessian matrix of the circular Raman emission. To
calculate the occurring partial derivatives with machine pre-
cision, we employ algorithmic differentiation (AD) [45–48].
The CoDiPack library [49] is used for AD as it shows a
high performance for the problem considered in this paper.
We employ forward-mode AD which is more efficient than
reverse mode for the given number of optimization parameters
and parallelize the computations of the partial derivatives.

IV. RESULTS AND DISCUSSION

In this section, we discuss the main results of the single
photon Raman emission optimization. We begin the analysis
in Sec. IV A with the unoptimized case. We carry on with
Sec. IV B, where we study the Raman output depending on
the cavity detuning in the weak optical coupling regime. In
Sec. IV C, we examine the potential for on-demand operation
for higher quality cavities approaching the strong coupling
regime, while preserving other important photon properties
such as indistinguishability and purity.

A. Unoptimized single photon emission

First, we look at the dependence of the single photon Ra-
man emission on the detuning of a cavity mode in the weak
optical coupling regime with g/κ = 0.35. We consider the
case of an un-optimized (�SLM = �in) control pulse. In our
simulations, we assume the initial condition that the quantum
dot is prepared in the biexciton state and there are no photons
in the cavity modes. The results are shown in Fig. 2 for

(a) (b)

FIG. 2. Dependence of the unoptimized single-photon Raman
emission probability on the detuning of the cavity from the biexciton
to exciton transition �BX

C = h̄ωC − EB + EX in (a) and the exciton to
ground-state transition �X G

C = h̄ωC − EX in (b). Results are shown
without any optimization for zero phonon coupling as well as for
calculations including the phonon-assisted processes at temperatures
T = 1 K, T = 4 K, and T = 10 K for g/κ = 0.35. We constrain the
pulse optimization to E0 = 4. Negative values of the Raman emission
probability indicate undesired quantum interference as discussed in
the main text.

which we limited the pulse intensity to E0 = 4. The maxi-
mum Raman emission probability in this case does not exceed
20%. The strongest emission can be found between the two
resonances where the Raman process benefits most from the
resonance enhancement of both optically active transitions. If
the cavity is tuned close to resonance with the electronic tran-
sitions, the Raman emission probability becomes negative,
which indicates quantum interference of different photon-
emission paths, diminishing the emission of the spontaneous
cavity-enhanced decay of the electronic states, as discussed in
more detail in Ref. [23].

Next, we consider strong coupling of the cavity mode to the
electronic resonances with g/κ = 1. The two-photon transi-
tion can be driven at any energy. To observe a bright emission,
the transition must be driven near the real (bi)excitonic tran-
sitions. Furthermore, the quality factor of the cavity hardly
changes the energy of the maximum Raman emission and
slight deviations can always be compensated by the control
pulse. So, we choose the cavity mode to enhance the Ra-
man emission at �

BX/XG
C = ±0.3 meV for comparison with

the optimized case later on according to Fig. 4. The results
are presented in Fig. 3. With the cavity tuned close to the
biexciton to exciton resonance, we observe that the Raman
emission [Fig. 3(a)] is not only below 20% but also it is only a
fraction of the total cavity emission [Fig. 3(b)]. Consequently,
we do not observe a pure Raman photon in this case which
is also reflected in the comparatively low degree of indistin-
guishably [Fig. 3(c)]. Tuning the cavity to �XG

C = −0.3 meV
produces a similar picture. However, it can be seen that the
total cavity emission [Fig. 3(e)] levels off at above 20%
emission probability while the Raman emission [Fig. 3(d)]
decreases. Therefore, the observed total emission probabil-
ity has to be produced by alternative (non-Raman) emission
processes which consequently revive the indistinguishability
[Fig. 3(f)] at high pulse areas.
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FIG. 3. Dependence of the unoptimized single-photon emission
probability and indistinguishability on the control pulse strength. The
influence of electron-phonon coupling is shown for the single-photon
Raman emission probability [(a), (d)], the total cavity emission [(b),
(e)], and the indistinguishability [(c), (f)], depending on the pulse
strength for the two most promising cavity detunings from Fig. 2.
However, here we consider a higher-Q cavity with g = κ at Q ≈
21 000.

Using simple Gaussian pulses does allow us to trigger
single-photon emission from a quantum dot biexciton, how-
ever, the observed results are far from on-demand emission
behavior and the desired process cannot be triggered ex-
clusively. In the next sections, we demonstrate how pulse
optimization makes on-demand single photon Raman emis-
sion possible.
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FIG. 4. Dependence of the single-photon Raman emission prob-
ability on the detuning of the cavity from the biexciton to exciton
transition �BX

C = h̄ωC − EB + EX in (a) and the exciton to ground
state transition �X G

C = h̄ωC − EX in (b). Results are shown for zero
phonon coupling as well as for calculations including the phonon-
assisted processes at temperatures T = 1 K, T = 4 K, and T = 10 K
for g/κ = 0.35 and E0 = 4.

B. Single photon Raman emission

In this section, we turn to study the emission of optimized
Raman photons in a medium-Q cavity with g/κ = 0.35. We
start by examining the dependence of the single-photon Ra-
man emission depending on the detuning of the cavity mode
from the closest nearby quantum-dot resonance. Just as above,
we assume that at time t = 0 the quantum dot system is ini-
tialized in the biexciton state and no photons are present in the
optical cavities. Figure 4 depicts the resulting Raman emis-
sion probability for optimized pulses that are constrained to
the dimensionless pulse amplitude E0 = 4. Results are shown
with phonon-mediated transitions at T = 1 K, T = 4 K, and
T = 10 K as well as without phonon coupling for comparison.
In the cases considered, the single-photon emission process
is completed for times smaller than 60 ps. Spectrally ap-
proaching the single-photon resonances in the quantum dot
system again leads to a resonance enhancement also in the
nonlinear system response and enhances the emission prob-
ability of the single Raman photons. Exactly on resonance,
however, at �

BX/XG
C = 0, where one would expect the total

cavity emission probability to peak (not shown in Fig. 4), the
Raman emission rate also with optimization is close to zero
due to quantum interference of different emission channels
[23]. Nevertheless, in this case due to the optimization of the
pulse, the Raman emission probability contributes positively
to the overall emission. Again we observe the resonance en-
hancement from the nearby real transitions to be strongest if
the cavity is positioned between the electronic quantum dot
resonances, with a slight asymmetry favoring the exciton to
ground-state transition. The strongest single Raman photon
emission is found for detunings �

BX/XG
C = ±0.3 meV. We

note that to realistically benchmark the system dynamics this
close to the resonance condition, phonon-mediated processes
must be taken into account. Overall, we observe that the
coupling to phonons reduces the single-photon emission prob-
ability. The phonon-assisted processes open alternative and
competing decay channels and, in addition, 〈B〉 < 1 directly
reduces the generated Raman photon number average. At
low temperatures, the phonon bath can more easily absorb
than emit quanta of energy. Thus, phonon-assisted absorption
and emission prefer opposite spectral detunings [50]. Phonon-
assisted emission of a photon into the cavity mode occurs if
�

BX/XG
C < 0. In these cases, tuning the cavity to the biexci-

ton to exciton resonance does only increase the background
emission. If, however, the cavity is tuned to the exciton to
ground-state transition, phonon-assisted transitions hinder the
control laser to stimulate the higher order Raman process.
Consequently, the Raman emission probability is decreased.
On the other hand, if �

BX/XG
C > 0 these effects are weak, but

now the control laser is negatively detuned from the closest
quantum-dot resonance so the laser may induce optical tran-
sitions via the phonon side bands. However, in the case of
�XG

C > 0, the phonon interaction mainly introduces another
decay path to the system. We find an overall low degree of
second-order coherence of the emitted photons, with g(2)

σ−(0)
being well below 0.1.

We note that for a medium-quality cavity with g/κ =
0.35 or Q = 7447 at 880 nm we find that the Raman emis-
sion probability at low temperatures (T = 4 K) can reach
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FIG. 5. Dependence of the single-photon emission probability
and indistinguishability on the control pulse strength. The influence
of electron-phonon coupling is shown for the single-photon Raman
emission probability [(a), (d)], the total cavity emission [(b), (e)], and
the indistinguishability [(c), (f)], depending on the pulse strength for
the two most promising cavity detunings from Fig. 4. Here, a high-Q
cavity with g = κ at Q ≈ 21 000 is used.

60% and as such is already sufficient for quantum comput-
ing applications such as Boson sampling [25]. This is only
possible by optimizing the pulse so it already includes the
pulse-induced resonance shifts that alter the single-photon
Raman transition as introduced in Sec. III C. Here, the pulse-
optimized Raman emission completely avoids the undesired
quantum interference regime and can produce sufficiently
high degrees of emission probability close to the electronic
transitions.

C. Single photon emission and properties

Above we only considered a medium-quality cavity which
did not reach the required threshold of a photon emission
probability of 2/3 for on-demand emission [24]. In the
present section, we further increase the light-matter coupling
in our analysis. Now, a high-Q cavity with g = κ is used.
In Fig. 5, we show the total photon emission probability of
the σ−-polarized cavity mode, the Raman emission proba-
bility, and the indistinguishability of the photons after the
optimization process. One sees that a single-photon emis-
sion probability can be reached that is now high enough to
be considered on demand. The dependence of the single-
photon Raman emission probability on the detuning of the
cavity from the electronic transition is similar to the case
of low exciton-cavity coupling in the previous section be-
cause a higher Q factor increases the photonic mode density
at the desired frequency and thus increases the brightness
of the source. We analyze the two situations most suit-
able for single-photon emission with �BX

C = +0.3 meV and
�XG

C = −0.3 meV. Again, it is assumed that at time t = 0 the

quantum dot system is initialized in the biexciton state and
no photons are present in the optical cavity modes. With
increasing pulse energy E0 the Raman emission and the total
cavity emission rise. The higher light-matter coupling partly
compensates for the detrimental influence of the electron-
phonon coupling. In general, as the pulse energy increases,
the phonon-assisted effects become more pronounced, since
they scale with the square of the pulse energy as given in
Eq. (A17). This leads to a saturation in achievable photon
output at large pulse energies. We find a maximum Raman
emission probability of PR,σ− ≈ 85 % in the case of �BX

C =
+0.3 meV and a slightly lower value of PR,σ− ≈ 80 % for
�XG

C = −0.3 meV at the typical experimental temperature
of T = 4 K and E0 = 4. The difference PR,σ− − Pσ− , which
can be associated with destructive quantum interference [23],
is marginal at high pulse energies, so the quantum light
source can be characterized as an on-demand source with
emission probabilities of ∼80 %. At higher temperatures of
T = 10 K, the optimized emission probability still exceeds
the on-demand limit for �BX

C = +0.3 meV. However, in the
case of �XG

C = −0.3 meV, the emission probability is about
10% lower because, even in the case of a positively detuned
laser from the biexciton to exciton transition, with increasing
temperature the phonon bath is more likely to emit quanta of
energy to bridge the energy gap �XG

C for pulse-induced optical
transitions.

In Figs. 5(c) and 5(f), we depict the calculated indistin-
guishabilities for both detunings. At first, the indistinguisha-
bility rises with increasing pulse amplitude E0 until it plateaus
because of phonon-induced coupling. At higher temperatures,
the indistinguishability is reduced for �XG

C = −0.3 meV in
comparison with �BX

C = +0.3 meV. Here, starting with an
occupied biexciton, the σ+-polarized pulse can populate the
|X−〉 exciton with rising temperature more easily, result-
ing in the emission of σ−-polarized photons into the cavity
mode, which consequently reduces the indistinguishability of
the triggered σ−-polarized Raman photon. However, at low
temperatures the phonon-mediated process is suppressed, al-
lowing high values of I ≈ 0.95 at T = 1 K and I ≈ 0.92 at
T = 4 K. Additionally, since the off-resonant high-Q cavity
suppresses the (phonon-assisted) cascaded two-photon emis-
sion, an overall high single photon purity is found. While we
observe the highest purity at the lowest temperature, we find a
low degree of second order coherence g(2)

σ−(0) < 0.01 even at
T = 10 K.

Optimizing the pulses for single-photon Raman emission
allows for pure Raman emission at high pulse intensities. Con-
sequently, the achieved indistinguishably is comparatively
high. In Appendix B, we provide example parameters of the
optimized pulses.

Lastly, we analyze the effect of the fidelity of the initially
prepared biexciton state. As a rule of thumb, the figures of
merit analyzed here scale down with the initial biexciton
occupation. However, the specific numbers depend on the
shape and arrival time of the pulse. As a simple example,
here we look at the direct two-photon preparation that suffers
from damping by phonons in contrast to preparation via the
phonon sideband [51,52] and thus cannot be fully inverted.
A comparison of different optical excitation schemes under
the influence of phonons can be found in Ref. [53]. We note
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(a) (b)

FIG. 6. Single-photon emission with optical biexciton initial-
ization. A two-photon absorption process is used to prepare the
biexciton state from the initial ground state ρ(0) = |G〉〈G| with
a peak occupation of NB ≈ 0.72. Depicted are the single photon
Raman emission probability (a) and the indistinguishability (b), de-
pending on the strength of the control pulse for the case of �BX

C =
+0.3 meV. Again, a high-Q cavity with g = κ and Q ≈ 21000 is
used.

that the phonon-assisted preparation of the biexciton state
suffers more from higher temperatures than other preparation
protocols, as it is already reduced to about 50% at 40 K. So
far, we have considered a maximum initial fidelity of NB(tI =
0) = 1, where tI � 0 is the time when the maximum biexciton
occupation is reached. To simulate the case of NB(ti ) < 1, we
use a Gaussian pulse to incompletely drive the system from
the ground state (ρ(0) = |G〉〈G|) into the biexciton state by
two-photon absorption with a peak occupation of NB ≈ 0.72.
In Fig. 6, we depict the Raman emission probability and the
indistinguishability for �BX

C = +0.3 meV. It should be noted
that the photon emission probabilities can exceed NB because
the decaying biexciton does emit two photons. The photon
emission probabilities as well as the indistinguishability are
reduced for all values of the pulse amplitude and temperature.
The single photon purity decreases only slightly with the pulse
amplitude as g(2)

σ−(0) < 0.002.
Although we find that almost all of the initial biexci-

ton occupations can be used for the creation of a single
Raman photon through the control pulse optimization, the
quantum efficiency of the single photon source is limited by
the fidelity of the initial biexciton occupation. We note that
the latter can be optimized separately. However, even with
significantly reduced initial biexciton occupation, we find on-
demand single Raman photon emission from the biexciton
within reach at low temperatures and sufficiently high pulse
energies.

We also demonstrated the importance of pulse optimiza-
tion. In the more complex partially stimulated two-photon
emission process, the pulse itself changes the resonances of
the system while it drives the Raman emission. This effect
was first analyzed for different three-level systems [23]. Here,
we expanded the analysis to the diamond-shaped four-level
biexciton system and showed that the optimization of chirped
pulses whose parameters are compatible with experimentally
available SLMs is sufficient to achieve on-demand single-
photon Raman emission from a quantum dot biexciton. This
emission process has the advantage that single-photon prop-
erties can be controlled all-optically with the control laser and
do not solely depend on the intrinsic quantum dot parameters.

V. CONCLUSION

We have studied the systematic optimization of a Raman
single-photon source based on a partially stimulated two-
photon emission process from the quantum dot biexciton
inside an optical cavity. We find that the underlying Raman
process is most efficient if the optical cavity used to en-
hance the light-matter coupling is placed near and between
the electronic transitions of the quantum dot. We show that
nontrivial shapes of the pulses triggering the Raman photon
emission are key to suppressing competing emission mecha-
nisms. For an initially fully populated biexciton state and a
sufficiently high-Q cavity (here with Q = 21 000 and g = κ),
we numerically demonstrate single Raman photon emission
with a probability of ∼80% and simultaneously high indis-
tinguishability of ∼92% and high single-photon purity with
g(2)(0) < 0.01. Even with incomplete optical biexciton initial-
ization, the on-demand regime can still be reached for realistic
system parameters.
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APPENDIX A: DETAILED THEORY

In this Appendix, we lay out the theory used to describe
the nonlinear excitation dynamics in the quantum dot cavity
system considered. In Appendix A 1, we introduce the system
Hamiltonian which is used to calculate the system dynamics
in Appendix A 2, including couplings to the environment. We
then summarize how to calculate the single-photon emission
spectra in Appendix A 3 a and photon indistinguishibility and
purity in Appendix A 3 b.

1. Hamiltonian

The quantum dot cavity system outlined in Sec. II can be
described with the Hamiltonian [31,54]

H = H0 + HS + HB + HQD−Ph, (A1)

where H0 and HS = HQD−Cav + HQD−L concern the QD-cavity
system of which we give a detailed description in Appendix
A 1 a. The Hamiltonian of the phonon bath HB and its coupling
to the quantum dot system are discussed in Appendix A 1 b.

a. Qunatum dot cavity part

We model the quantum dot by including the relevant elec-
tronic configurations which are the ground state |G〉, two
excitons |XH 〉 and |XV 〉, and the biexciton state |B〉, with
respective energies EG, Ei, and EB. We also include two
degenerate cavity modes with frequencies ωH,V and polariza-
tions that correspond to those of the excitons. The free system
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Hamiltonian then reads

H0 = EG|G〉〈G| + EB|B〉〈B|
+

∑
i=H,V

( Ei|Xi〉〈Xi| + h̄ωib
†
i bi ). (A2)

The electronic system couples to the cavity modes,

HQD−Cav =
∑

i=H,V

(g(|G〉〈Xi|b†
i + |Xi〉〈B|b†

i ) + H.c.), (A3)

with coupling strength g and cavity photon operators b(†)
i . To

trigger the single-photon emission, we include an off-resonant
coherent laser pulse,

HQD−L =
∑

i=H,V

((|G〉〈Xi|�∗
i (t ) + |Xi〉〈B|�∗

i (t )) + H.c.),

(A4)

with Rabi frequency �i. Here we assume zero fine-structure
splitting for the excitons with δfss. In this case, we can simplify
the following analysis by assuming circular polarization of the
control laser. The desired single-photon emission can then be
detected in the other circular polarization channel as sketched
in Fig. 1. In the circularly polarized frame, the coherent light
field and cavity photon operators take the following form:

�∗
σ± = 1√

2
(�∗

H ± i�∗
V ) and b†

σ± = 1√
2

(b†
H ± ib†

V ) (A5)

We solve the equations of motion in the linear basis with a
circularly polarized driving pulse and from this obtain the
corresponding circularly polarized photons as stated above.
However, for the analytical rates derived in Sec. III A, the
Hamiltonian in the circular basis is conveniently used instead.
The exciton states in the circular basis are given by |Xσ±〉 =

1√
2
(|XH 〉 ± i|XV 〉). Together, the full Hamiltonian of the light

matter interaction in the circular basis then reads

Hint = (|G〉〈Xσ+| + |Xσ−〉〈B|)(gb†
σ+ + �∗

σ+ (t )) + H.c.

+ (|G〉〈Xσ−| + |Xσ+〉〈B|)(gb†
σ− + �∗

σ− (t )) + H.c.
(A6)

The relevant equations of motion in the polaron frame will be
formulated in the following sections.

b. Phonon part

In the case of InAs/GaAs QDs driven near resonance, the
interaction with phonons is predominantly governed by the
coupling to LA phonons [50]. By modeling the phonon bath
as harmonic oscillators with wave vector q and energy h̄ωq,
the Hamiltonian of the phonon bath may be written as [31,54]

HB =
∑

q

h̄ωqa†
qaq, (A7)

while

HQD−Ph =
∑

s=B,XH,XV

|s〉〈s|
∑

q

h̄λi
q(a†

q + aq) (A8)

describes the electron-phonon interaction. Here, a†
q and aq are

bosonic creation and annihilation operators for a phonon in

mode q. The exciton-phonon coupling strength can be quan-
tified by real constants λi

q [30,55]. Furthermore, for an ideal
QD we have λB

q = 2λXH
q = 2λXV

q [56].

c. Polaron transformation

At this point, a commonly used approach [30,31] is to
apply the transformation

H ′ = eSHe−S with S =
∑

s=B,XH,XV

|s〉〈s|
∑

q

λs
q

ωq
(a†

q − aq). (A9)

This transforms the Hamiltonian into the polaron frame, re-
moving the explicit appearance of the electron-phonon inter-
action HQD−Ph [57,58]. Using the Baker-Campbell-Hausdorff
formula the transformation defined by Eq. (A9) may be car-
ried out analytically [55], yielding

H ′ = H ′
0 + H ′

S + HB + HI. (A10)

Here, the transformed Hamiltonian of the QD and the cavity
modes is given by

H ′
0 =

∑
s=B,G,XH,XV

E ′
s|s〉〈s| +

∑
i=H,V

h̄ωcb†
jb j, (A11)

where E ′
s = Es − ∑

q
λs

q/ωq. This polaron shift of the QD en-
ergy levels can be included in the original definition of Es and
therefore be disregarded [30]. The transformed QD interaction
Hamiltonian

H ′
S = 〈B〉HS (A12)

is scaled by the thermal average of the phonon bath displace-
ment operator [50]. Since 〈B〉 < 1, this effectively decreases
the coupling strengths g and �(t ). Lastly, the new interac-
tion Hamiltonian of the phonon–assisted optical transitions is
given by

HI = ζgXg − ζuXu, (A13)

with fluctuation operators ζg = 1
2 (B+ + B− − 2〈B〉) and ζu =

B+ + B− [58] which are Hermitian combinations of the oth-
erwise non-Hermitian operators B± [59].

2. System dynamics

The density matrix ρ of the quantum-dot cavity system in
the polaron frame obeys the following Liouville-von Neuman
equation [15,30,58]:

d

dt
ρ(t ) = 1

ih̄
[H ′

S (t ), ρ]

+ Lcav(ρ) + Lpure(ρ) + Lphonon(ρ) + L′
rad(ρ),

(A14)

which includes coupling to an environment via contributions
of the type L(ρ). The loss of cavity photons is included by

Lcavity(ρs) = κ

2h̄

∑
i=H,V

(2biρsb
†
i − b†

i biρs − ρsb
†
i bi ), (A15)

where κ is the cavity loss rate which is varied in
fractions/multiples of g to investigate both weak and strong
coupling. We use g = h̄/10 ps−1, g/κ = 0.35, and a biexciton
binding energy of 3 meV if no other values are stated. To

045302-8



PULSE SHAPING FOR ON-DEMAND EMISSION OF … PHYSICAL REVIEW B 105, 045302 (2022)

account for the decay of quantum-dot coherences, a pure
dephasing term

Lpure(ρs) = 1

2h̄

∑
χ,χ ′;χ 
=χ ′

γ χ,χ ′
pure |χ〉〈χ |ρs|χ ′〉〈χ ′| , (A16)

with χ, χ ′ ∈ {G, XH , XV , B} is included. A linear increase
of the pure dephasing rate γpure at low temperatures T is
accounted for as γpure(T ) = 1μeV/K × T [31,32]. Addition-
ally, phonon-assisted optical transitions are included using
a second-order Born-Markov approximation tracing out the
phononic degrees of freedom. The term obtained describing
the electron-phonon interaction reads [30,55]

Lphonon(ρ) = − 1

h̄2

∫ ∞

0
dτ

×
∑

m=g,u

(Gm(τ )[Xm(t ), Xm(t − τ, t )ρ(t )] + H.c.),

(A17)

and captures phonon-assisted optical transitions as well as
energy shifts related to the coupling to the phonon bath. Equa-
tion (A17) is found to be a valid approximation if [30,60]

� :=
(

�

ωb

)2

(1 − 〈B〉4) � 1. (A18)

Here, � is either the coupling of electronic states to the cavity
modes for which the above relation is clearly fulfilled or
the coupling to the laser pulse for which we limit the pulse
intensity accordingly to � < 0.1.

The polaron Green functions are given by [31]

Gg(τ ) = 〈B〉2(cosh(φ(τ )) − 1), (A19)

Gu(τ ) = 〈B〉2 sinh(φ(τ )), (A20)

with the phonon correlation function [57,58]

φ(t ) =
∫ ∞

0

J (ω)

ω2

[
coth

(
h̄ω

2kBT

)
cos(ωτ ) − i sin(ωτ )

]
dω

(A21)

and the thermal average of the phonon bath displacement
operator [50]

〈B〉 ≡ 〈B±〉 = exp

[
− 1

2

∫ ∞

0

J (ω)

ω2
coth

(
h̄ω

2kBT

)
dω

]
,

(A22)

where T is the temperature of the QD sample. The main
source of phonon-induced dephasing in InAs/GaAs QDs is
a deformation potential induced by LA phonons [50,61,62].
In this case, the phonon spectral function may be written as

J (ω) = αω3e
− ω2

2ω2
b , (A23)

where exciton-phonon coupling strength α and phonon cutoff
frequency ωb are material parameters of the QD. Typical ex-
perimental values in InAs/GaAs QDs are α = 0.03 ps2 and
h̄ωb = 1 meV [55]. The phonon-assisted operators are

Xg = X + H.c. and Xu = i(X − H.c.), (A24)

where

X =
∑

j=H,V

(|Xj〉〈G| + |B〉〈Xj |)(gb j + � j ). (A25)

We note that in the numerical implementation, all operators
are treated in the interaction picture with respect to H0 [16].

The optical quantum–dot transitions are time-dependent in
the interaction picture Xm(t − τ, t ). To calculate the Xm(t −
τ, t ) exactly, we resort to solving the Heisenberg equation of
motion [55],

d

dτ
O(t − τ ) = 1

ih̄
[H ′

I (t − τ ), O(t − τ )] + ∂

∂τ
O(t − τ ),

(A26)

with O(t − τ ) ∈ {|Xj〉〈G|b j, |B〉〈Xj |b j, |Xj〉〈G|�(t −
τ ), |B〉〈Xj |�(t − τ )}. Integrating this differential equation
from the initial condition O(t − 0, t ) = O(t ) backward until
t − τ yields O(t − τ, t ) and thus Xm(t − τ, t ) via Eqs. (A24)
and (A25). Note that in the interaction picture, the involved
operators carry an explicit time dependence, for instance,

∂

∂τ
[|Xj〉〈G|b j (t − τ )]

= −i(ωXj − ωG − ωc)|Xj〉〈G|b j (t − τ ). (A27)

We also consider radiative decay into modes other than the
system cavity modes with [12,31,50]

Lrad(ρs) = γrad

h̄

∑
i=XH ,XV

(L|G〉〈i| + L|i〉〈B|)(ρs), (A28)

where we chose γrad = 2 μeV and

Lσ (ρs) = (2σρsσ
† − σ †σρs − ρsσ

†σ ). (A29)

The polaron-transformed Hamiltonian H ′
S [Eq. (A10)] which

appears in the polaron master equation for the density matrix
ρ scales the optical transitions in HS [63] by a factor of 〈B〉.
This rescaling also occurs in the radiative decay term with
L′

rad(ρ) = 〈B〉2Lrad(ρ) [50,58].

3. Single photon properties

In this section, we introduce the photon emission spectrum
as well as the indistinguishability and purity.

a. Single photon emission spectrum

In Fig. 1(d), we introduced the cavity emission spectrum,
which is known as the physical spectrum of light [12,16,64].
It can be calculated as

Si(T , ω) = �
∫ T

0
dt

∫ T −t

0
dτ 〈b†

i (t )bi(t + τ )〉eiωτ (A30)

for a given (circular) polarization i up to a time T and it re-
quires the evaluation of two-time expectation values which we
calculate using the quantum regression theorem [65]. We note
that in the cases considered here, the single-photon emission
process is completed in a time frame less than 60 ps such that
we can safely chose T = 60 ps as a cutoff value for the time
integrations.
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TABLE I. List of parameters of those pulses for which optimal
emissions are found as shown in Fig. 5 (initial condition |B〉) and
Fig. 6 (initial condition |G〉) for E0 = 3 at different temperatures.

Initial condition |G〉 |G〉 |B〉 |B〉
T [K] 1 4 1 4
�L [meV] 0.17 0.17 0.16 0.15
α [rad] 2.05 3.14 3.14 3.14
γ [meV−1] 1.31 1.14 1.13 1.17
δ [rad] 2.69 2.72 −0.74 −0.74
η [meV−2] 12.94 0.80 −25.0 −24.44
t0 [ps] 26.75 25.56 22.38 22.73
σ [ps] 4.97 5.0 5.0 4.99
Pulse area [π ] 8.2 8.2 8.1 8.2

b. Indistinguishability and purity

The purity and indistinguishability of an emitted photon
are crucial figures of merit of single-photon sources. Those
properties are essential for applications of quantum tech-
nology [66]. The single-photon purity quantifies whether a
quantum light field contains more than one photon. It is de-
fined as the normalized equal-time two-photon expectation
value [67]:

g(2)
i (0) = 〈b†

i (t )b†
i (t )bi(t )bi(t )〉

〈b†
i (t )bi(t )〉2

. (A31)

The two-photon component of a pure single-photon field
equals zero.

The indistinguishability is of importance whenever photon-
photon interaction is vital [66]. It can be measured in a

Hong-Ou-Mandel interference experiment and reflects the
joint detection probability at two photon detectors [68]. We
model this coincidence detection probability according to Ref.
[55] as

pc =
∫ T

0

∫ T
0 G(2)

HOM,i(t, τ ) dτ dt∫ T
0

∫ T
0

(
2G(2)

pop,i(t, τ ) − |〈bi(t + τ )〉〈b†
i (t )〉|2) dτ dt

.

(A32)
Here

G(2)
HOM,i(t, τ ) = 1

2

(
G(2)

pop,i(t, τ ) + G(2)
i (t, τ )

− |〈b†
i (t + τ )bi(t )〉|2), (A33)

with G(2)
pop,i(t, τ ) = 〈b†

i bi〉(t )〈b†
i bi〉(t + τ ) and G(2)

i (t, τ ) =
〈b†

i (t )b†
i (t + τ )bi(t + τ )bi(t )〉 is the second-order autocorre-

lation function. The indistinguishability I = 1 − pc has a
maximal value of 1.

APPENDIX B: OPTIMIZED PULSES

Table I lists sets of parameters for which an optimal emis-
sion was found as shown in Figs. 5 and 6 for E0 = 3 at
different temperatures. Either an initially prepared biexci-
ton state is assumed (system initially in state |B〉 with zero
photons) or the biexciton state is prepared by two-photon
absorption from the ground state of the quantum dot (system
initially in state |G〉 with zero photons). We note that an ini-
tialization pulse may also introduce pulse-dependent spectral
shifts, which are reflected in the optimized parameters of the
(temporally overlapping) control pulse.
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