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The interaction of optically excited excitons in atomically thin semiconductors with residual doping densities
leads to many-body effects which are continuously tunable by external gate voltages. Here, we develop a fully
microscopic theory to describe the doping-dependent manipulation of the excitonic properties in atomically

thin transition metal dichalcogenides. In particular, we establish a diagonalization approach for the Schrodinger
equation which characterizes the interaction of a virtual exciton with the Fermi sea of dopants. Solving this
many-body Schrodinger equation provides access to trions as well as a continuum of scattering states. The
dynamics of coupled excitons, trions, and scattering continua is subsequently described by Heisenberg equations
of motion including mean-field contributions and correlation effects due to the interaction of excitons with trions
and scattering continuum states. Our calculations for optical excitation close to the band edge reveal the influence
of doping on the exciton resonances in combination with the simultaneous identification of not only ground- but

also excited-state trion resonances.
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I. INTRODUCTION

Atomically thin semiconductors combine almost two-
dimensional confinement of carriers with weak dielectric
screening from the environment which leads to strong
Coulomb interaction energies compared to the thermal ener-
gies [1,2]. The strong Coulomb attraction between electrons in
the conduction bands and holes in the valence bands induces
bound electron-hole pairs, called excitons, with binding en-
ergies of several hundred meV in monolayer transition metal
dichalcogenides (TMDCs) [3-9]. The enhanced Coulomb in-
teraction also provides exceptionally large biexciton [10-15]
and trion binding energies [16-20]. Biexcitons constitute
bound Coulomb correlations of two virtual excitons [21-23]
originating from exciton-exciton interactions. Since the biex-
citon oscillator strength depends on the exciton density,
biexcitons can be controlled by the optical excitation power
[24,25]. On the other hand, trions or attractive Fermi polarons
[26,27], whose descriptions are equivalent at low doping den-
sities [28], are bound Coulomb correlations which arise from
the interaction of a virtual exciton with the Fermi sea of
free conduction band electrons or free valence band holes
in doped semiconductors [28,29]. Consequently, the trion os-
cillator strength is subject to the doping density and can be
regulated by external gate voltages [26,27].

Ab initio calculations of the trion binding energy are com-
monly available for monolayer TMDCs [30-34]. In contrast,
a complete fully microscopic theory of the doping-dependent
absorption spectra has not been provided so far: Available
theoretical studies are based on phenomenological approaches
which start from approximate variational exciton and trion
states [35—43]. Most of these studies also rely on phenomeno-
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logical momentum-independent contact Coulomb potentials
[35,36,38,39] or unscreened two-dimensional Coulomb po-
tentials neglecting the influence of the dielectric environment
[43]. In some works, excitons and doping densities are also
composed of independent electrons [39,43]. Moreover, avail-
able theoretical studies assume either equal electron and hole
masses [36,38-40,42,43] or infinite hole masses [37,43]. In
particular, no theory is available which can simultaneously
describe the doping-dependent absorption of ground-state (1s)
and excited-state (2s) excitons and trions beyond those ap-
proximations.

In this paper, we establish a theoretical framework for
many-particle correlations originating from exciton-electron
and exciton-hole interactions in the Heisenberg equation of
motion formalism. Our theory is restricted to the linear op-
tical response and linear doping densities, characterized by
fully thermalized Fermi distributions, and we treat the band
structure in an effective mass approximation. In particular, we
derive a Schrodinger equation for the interaction between a
virtual exciton and the Fermi sea of free electrons or holes that
can be exactly solved after separating the relative and center-
of-mass motion. This Schrédinger equation provides bound
solutions, referred to as trions, which appear energetically be-
low the exciton states, and unbound solutions characterized by
exciton-electron or exciton-hole scattering continua which set
in at the exciton energy. In particular, the Schrodinger equa-
tion enables not only access to ground-state (1s) trions but
also to excited-state (2s) trions and corresponding continua.
The dynamics of excitons, trions, and scattering continua is
subsequently determined by coupled Heisenberg equations
of motion. To relate the developed theory to experimentally
accessible observables, we analyze the doping-dependent ab-
sorption spectra for monolayer MoSe, as a representative
atomically thin semiconductor. Specifically, we provide a
consistent theoretical method to calculate the doping-depend

©2022 American Physical Society
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FIG. 1. Illustration of Coulomb correlations in the simplified band structure for monolayer MoSe, near the K and K’ high-symmetry

IR

points. (a) Optically excited interband transitions are composed of an electron “e” and a hole “h” in the same valley. (b) Intravalley and
(c),(d) intervalley electron-density-assisted transitions contribute for electron-doped semiconductors indicated by filled conduction bands. In
contrast, (e) intravalley and (f),(g) intervalley hole-density-assisted transitions contribute in the hole-doping regime illustrated by filled valence

bands.

spectra of not only ground-state (1s) but also excited-state
(2s) exciton and trion resonances. Since our theory is widely
adaptable to semiconductors with tightly bound excitons, we
believe that it might provide a basis for further theoretical
investigations of doping-dependent excitonic properties.

This paper is organized as follows: In Sec. II, the micro-
scopic observables including excitons, trions, and exciton-
electron and exciton-hole continuum states are introduced.
Afterwards, in Sec. III, the dynamics of microscopic observ-
ables is described by coupled Heisenberg equations of motion.
In Sec. IV, the doping-dependent absorption spectra are dis-
cussed for monolayer MoSe, as an exemplary atomically thin
semiconductor. Finally, in Sec. V, we summarize our results
and discuss possible future prospects.

II. MICROSCOPIC OBSERVABLES

In order to describe the exciton dynamics of atomically
thin semiconductors with residual doping densities, the in-
finite hierarchy of coupled Heisenberg equations of motion
for many-particle correlations needs to be systematically trun-
cated. To this end, we adapt the dynamical truncation scheme
[44,45] and restrict to the linear optical response and linear
doping densities.

Maxwell’s equations couple the optical light field to the o;
circularly polarized components (o; = o, o_) of the macro-
scopic interband polarization P % of monolayer TMDCs:

| 1 .
OES D A el v ) +ee (D)
Qiky

A denotes the two-dimensional normalization area, ¢ =
{&1, 51} is a compound index including the valley & = K, K’
and the spin s; = 4, |, and k| represents the two-dimensional
wave vector with respect to the high-symmetry point ;.

The interband dipole transition element d ﬁj;j’" includes the
valley-selective circular dichroism of monolayer TMDCs:
o4 circularly polarized light couples to the & = K valley,
whereas o_ circularly polarized light couples to the & = K’
valley [46-50]. The interband transitions <C;1,k1 v, »kl) are de-

termined by conduction band creation operators Coiky and
valence band annihilation operators v x, as illustrated in
Fig. 1(a).

In the coherent limit, the Heisenberg equation of motion
for the interband transitions (c;q K Ve, kl) (see Sec. III), which
determine the interband polarization P %, cf. Eq. (1), couple
to different correlations in the (i) electron and (ii) hole doping
regimes:

(i) In electron-doped semiconductors the interband tran-
sitions <C; K Vqk ) couple to the electron occupations

+ s . .
<C51,klca,k1) = [ oi,» Characterized by the residual electron
densities f glkl , and to the electron-density-assisted transitions

(€} 10V ki ko—0Cerk,) » depicted in Figs. 1(b)-1(d):

¥ T ¢
(cfl ,k1+QUCI ,klcé“zqszQcﬁzwkz)
_ [T T _ T ¢}
- (c§1 ,k1+QU§1 ,klch,kz*chz»kz) SQ'O <C{l ki UCl-k|>f e.ks

¥ ¢
+8¢1.0 Ok 0.k (Cc, o U;.,k.)f e,lk,+Q' (@)

(i) In hole-doped semiconductors the interband
transitions (C; & Ve, k) couple to the hole occupations

<v§1,k1U;1,k1> =f z].,kl’ determined by the residual hole

densities f }il.k,’ and to the hole-density-assisted transitions
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(c; T+oVak, v§2_k2+QU;2qk2)C, illustrated in Figs. 1(e)-1(g):

(el v, v v )
Sk +Q 78k TG ka0 T 80 ko
[T T _ + ¢}
- <C(1,k1+Qv§1 ki v{z,k2+QUC2qk2) SQ’O <C(1,k1 UCl qk1>f hky
i &
+86.6 Ok (€4 10V k0l ok )

Here, { - )¢ denotes the correlated part [51]. The truncation
approach is valid in the limit of linear optical excitation.
Optically excited electron densities accompanied by simulta-
neously excited hole densities, due to assigning a hole to every
optically generated electron in the conduction band [52], were
neglected.

The residual electron “e” or hole “h” densities f g Ihk in
the atomically thin semiconductor are approximated by fully
thermalized Fermi distributions:

1
fg . 4)
ik = €xp [kBT( g/h,k - ME/h)] +1

kp denotes the Boltzmann constant, T is the temperature, and
Me/n Tepresents the chemical potential. The electron and hole
dispersion sg Ik =€ g /2 + 1’k?) (2m,,y,) are treated in an ef-
fective mass approximation and involve the band gap energy
€y ¢ between conduction and valence band edges as well as the

effectlve electron or hole mass m,/;,. The total electron “e” and
hole “A” densities N, are given by
1 4
Ne/h = Z Zfe/h,k‘ (5)
¢k

Since we focus on the lowest conduction bands and topmost
valence bands, the effective masses m, and m; were chosen
to be independent of the compound index ¢. Of course, an
extension to valley- and spin-dependent effective masses is
possible.

The treatment of optically excited interband transitions as
excitons is described in Sec. II A. Trions and exciton-electron
or exciton-hole continua necessary to describe the linear op-
tical response of electron- or hole-doped semiconductors are
introduced in Sec. I B.

A. Excitons

Interband transitions <C; 5V k ), as depicted in Fig. 1(a),
determine the interband polarization P %/ according to Eq. (1),
and are subsequently treated by the Wannier equation [53]:

h2k2
R ¢ R ¢ _ R¢
Vlkl Z Wk1 —ky ¢ U{kz - (E );;]v — ¢ ?)(,0 vik, . (6)

Instead of introducing doping-dependent filling factors in the
Wannier equation [54], we include these contributions later in
the equations of motion for exciton transitions. Solving the
Wannier equation, Eq. (6), provides a complete set of wave
functions ¢f ¢! ok, and corresponding energies € QU indicated by
the quantum number v. The Wannier equation has both left-

o iikl and right-handed ¢~ © "'k, solutions which are normal-

ized as follows [53]:
ZQDL 511 V4 o* ilz,kl = vy 0, @)

Since Eq. (6) is Hermitian, its left- and right-handed solu-
tions satisfy ¢t ¢, = (¢%¢), )>k [53]. The Wannier equation,
Eq. (6), depends on the reduced mass U = memy/(m, +
my,) which is defined with respect to the effective elec-
tron and hole masses m, and my;,. The screened Coulomb
potential Wy, = Vi /g, involves the bare Coulomb poten-
tial V; and the screening function & given in Ap-
pendix A. The screened Coulomb potential is obtained
from solving Poison’s equation for the following van
der Waals heterostructure: environment/air/atomically thin
semiconductor/air/environment [32,55]. The small air gaps
account for naturally occurring but nonvanishing interlayer
distances between the atomically thin semiconductor and its
dielectric environment characterized by the dielectric constant
g [56].

In the following, we expand the interband transitions
@m ok ) in terms of the complete set of exciton wave func-

R &1

tions ™ '} -and associated expansion coefficients represented

by the exciton transitions P {':

Jo = ZwR s PO ®)

< {1 ko {1

As a result, the excitonic expansion of the macroscopic inter-
band polarization P % defined in Eq. (1) becomes

U = X T PE D ee )
{ 1,vk1

B. Trions and exciton-electron/hole continua

The treatment of electron- densny assisted  tran-
I T .
51.t10ns <C{1,k1+Qv{1,k1 ka0, k2> s dllustrated N in
Figs. 1(b)-1(d), and hole-density-assisted transitions

+ . . .

gcflvklfgvflzklv{zqk2+QvC2-k.2> , depicted in lj“lgs. 1(e)-1(g),
is derived in the following. The approach is based on the
projection onto excitonic wave functions and electron or hole
densities.

Due to the anticommutation of the two electron cre-
ation operators, the electron-density-assisted transitions

i # <o
(k1400 k, €t kr—0 ik, SALISTY

t 1 c
(C;I,k1+Q”;z,k1 CC3J¢2—QC{4J€2)

i i ¢
_<C§3,k2—Qv(2,k1C§1,k1+QC§4,kz) : (10)

This antisymmetry property is fulfilled by the following
expansion into products of exciton wave functions <pR b

electron densities f ok’ and associated expansion coefﬁ01ents

$1,82,83,84,
Tx—e,v,Q .

T F c
(051 Tt a0, 0 Ve ki~ B ko —B0CEs, 0 —QC 2 ko )

_ Z R & (1&2@3,{4
Uk1

x e,,0
R & £3,82,81,84
-9 v,ocki+(@2—1)Q Tx—e,v,—kl—aXQ)fekz (11)
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This expansion is enabled by the conveniently chosen wave
vectors which separate the relative- and center-of-mass-
dependent parts of the dynamics; see Appendix D: The
relative motion of the electron-hole pair is described by
excitonic wave functions obtained by solving the Wannier
equation, Eq. (6). The relative motion of the second elec-
tron creation and annihilation operator is characterized by the
distribution function of the residual electron density. Even
though we use temperature-dependent Fermi distributions, our
theory can be also applied to a different distribution. The
center-of-mass motion of the electron-density-assisted transi-
tions is represented by the expansion coefficients which are
determined in the following. The second term on the right-
hand side of Eq. (11) ensures that the antisymmetry property
of electron-density-assisted transitions is fulfilled, Eq. (10),
and describes the corresponding expansion for exchanged

J

Vo

¥
2 ((C{] Jor o ka0, 0 Ve ki By ko —B.0C 1,0t 2 —0C 12 o

S+

electron creation operators. The two terms on the right-hand
side of Eq. (11) account for the two possibilities to match
every of the two electron creation operators with the valence
band annihilation operator. The chosen wave vector coordi-
nates involve the ratios of effective masses o, By, ®ye, Bre»
ay.py, and B, defined by

T Bo=—" (12)

Oy = ——, x — T >
me + my, me + my,

" __ B o (13)
Oxe = 7, X-e — A s
2m, + my, 2m, + my,

M p " (14)
U = ——————, Pon=—"7—.
o m, + 2my, wh m, + 2my,

Next, it will prove beneficial to introduce symmetric “+”
and antisymmetric “— linear combinations of the correlation
function defined in Eq. (11):

i t c
(CCLk] Fay koo 0 Vg1 e —Br ko —B.0CE1 a0 ko —QC s K ) )

_ R & 51 & {1,802 &
Z v,k X e,+,v,0 + 90 vanlJr(otz nHO Tx—e,:t,v,fklfa,[Q)f ek, (15)

The “+” (triplet) configuration describes states which are symmetric under exchange of the two electron creation operators,

whereas the “

(1,62
coefficients 7 ¢! ok,

expansion of the hole-density-assisted transitions (c!

91 k+Q &1,k {7 k7+Q

= (singlet) configuration is antisymmetric with respect to the interchange of the two electrons. The new expansion
o on the right-hand side of Eq. (15) are defined by T i‘f; o = = (T8 T {l‘) 2©). An analogous

x-e,v,0
0) is derived in Appendix B.

The Coulomb correlations are treated by solving an associated Schrodlnger equation:

n*Q3 1 1\ x
{1,802 & R 1,8
2 \m,+my + v xeefht i@y F Z xe/h i v1,12,01,0, Z Wx'e/hviqu-vstz«Qa v x-e/h, %, 103,05

m
e/h Vz,Qz

_ &6 o R %1.8
- (G x-e/h, %+, ex,v]) w x-e/h,x,u,v1,0;"

Equation (16) provides a complete set of wave functions
VA i‘eizh L0, with real-valued energies € ﬁ‘gizh tp indi-
cated by the quantum number p with respect to the exciton
energy € fcfvl. Compared to the standard Schrddinger equa-
tion for electron/hole-density-assisted transitions [29,57-59],
as derived in Appendix D, Eq. (16) describes only the
center-of-mass motion depending on the wave vector Q of
the electron/hole-density-assisted transitions. According to
Eq. (11) the full wave function of the electron/hole-density-
assisted transitions also includes the excitonic wave function
and the distribution function of the residual electron density in
addition to the wave function * f(le?h L0, and therefore
depends on three wave vectors. Thus, Eq. (11) does not imply
a treatment of electron/hole-density-assisted transitions as a
rigid exciton attached to the Fermi sea of dopants. Instead, the
possibility to separate the center-of-mass motion results with-
out further approximations originates from the combination
of the conveniently chosen wave vectors and the treatment
of symmetric and antisymmetric linear combinations, which
facilitate the separation ansatz, Eq. (11). A detailed derivation
can be found in Appendix D.

Compared to a previously developed description [40],
our derived Schrodinger equation for electron/hole-density-
assisted transitions, Eq. (16), allows for an exact diagonal-

3,03
(16)

(

ization to obtain trions and continuum states. However, our
description is restricted to linear doping densities, which char-
acterize a lower doping regime compared to Ref. [40].

Since Eq. (16) is non-Hermitian, there are both left-
VA i‘»;ﬁqi’uthl and right-handed ¥ ® -il’;szhqi,ﬂLvl,Q] solutions
which are normalized as follows:

L&,% R 1.0
Z dl x-e/h,%,1,v1,0, 1/[ x-e/h,x,pu2,v1,0,
1,0,

The first term on the left-hand side of Eq. (16) characterizes
diagonal contributions which represent the relative motion
determined by the wave vector ;. Coulomb interactions are
described by the second term on the left-hand side of Eq. (16)
and constitute both diagonal and nondiagonal contributions.
The appearance of the inverse matrix of Si{g b1 10,0,.0,”
defined by Egs. (C1) and (C2), traces back to the treatment
of symmetric and antisymmetric linear combinations of the
Coulomb correlations in Eq. (15). The Coulomb interaction
kernel WX e/l v0.0,.0, is given in Egs. (C3) and (C4).
Solving Eq. (16) for the “4” configuration provides a
continuum of energetically dense states with state energies

61,6 Q : ; —
€ veintu = € 1, Which are unbound with respect to the v =

1s exciton energy € ?ls. These dense states are referred to as
the exciton-electron/hole continuum and illustrated as shaded

=810 (17)
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FIG. 2. (a) Binding energies of negatively/positively charged
ground-state 1s~/* and excited-state 25~/ trions with respect to
charge neutral 1s and 2s excitons in an electron and hole doped
monolayer MoSe, encapsulated in hexagonal BN. The exciton-
electron/hole scattering continua set in at the ls exciton energy
and are illustrated as shaded areas. (b) Normalized radial parts of
the wave functions of ground-state 1s excitons and 1s~/ trions for
monolayer MoSe, encapsulated in hexagonal BN. (c) Corresponding
wave functions of excited-state 2s excitons and 25~/ trions.

areas in Fig. 2(a). In contrast, the solutions of Eq. (16) for the
“—” configuration also comprise bound states, called trions
u = t, with energies € i‘_ﬁhﬁ , <€ iilx smaller than the 1s ex-
citon energy. Trions are depicted as dashed lines in Fig. 2(a).
Note that even though we use the term trion in the follow-
ing, we treat trions according to the Fermi-polaron picture
as four-particle complexes. Of course the “—” configuration
also provides exciton-electron/hole continuum states p # t
characterizing many dense states with energies € i‘_ﬁh’f’ w2
el

x,1s°
Since the “—” configuration is trivially zero for identical

compound valley-spin indices ¢; = ¢, intravalley trions with
same spins are naturally excluded; see Eq. (15). Note that even
though we refer to the u = ¢ states as trions they can also be
understood as attractive Fermi polarons [35,36] because their
descriptions are equivalent at low doping densities [28].

To compare our calculations to previous theoretical pre-
dictions, we first discuss freestanding (¢, = 1) monolayer
MoSe;. Solving Eq. (16) locates the negatively charged
1s~ trion 28 meV below the ls exciton. This value is

€

in agreement with former theoretical calculations obtain-
ing 21-35 meV for the 1s~ trion binding energy [10,16—
18,32,60-67]. On the other hand, solving Eq. (16) locates
the positively charged 1s* trion 27 meV below the 1s
exciton, which is close to the theoretical predictions of
28-34 meV [18,32,64].

However, atomically thin semiconductors are typically em-
bedded in a dielectric environment and we will subsequently
focus on monolayer MoSe, encapsulated in hexagonal BN
(¢, = 4.5). The environment results in enhanced dielectric
screening and decreases the trion binding energies with ris-
ing dielectric constant ¢, of the environment [18]. As a
result, encapsulation of monolayer MoSe, in hexagonal BN
reduces the binding energies of 1s~ and 1s* trions to 19 meV
as illustrated in Fig. 2(a). In addition to the ground-state
1s~ and 1s™ trions, Eq. (16) also provides excited-state 25~
and 2s* trions depicted in Fig. 2(a) which appear 21 and
22 meV below the 2s excitons, respectively. The outcome of
excited-state 25~/% trions is in agreement with recent ab initio
calculations [34].

The normalized parts
Yk i’ij/Th}iK;i}HhQ for 1s~/* trions obtained for monolayer
MoSe, encapsulated in hexagonal BN are plotted as blue

solid and red dashed lines in Fig. 2(b). The wave functions
Yk ,{(IZ/T;,}EKhl—}H]‘Q for 1s~/* trions strongly resemble each
other due to comparable effective masses of the conduction

and valence bands [68]. A comparison to the radial parts of
the 1s exciton wave function @R K(QT}, plotted as a black solid

radial of wave functions

line in Fig. 2(b), shows that the 1s~/* trions are more confined

in reciprocal space. The wave functions wki{:/tl}’{_l(;i}H 2%.0

for 2s~/* trions are plotted as blue solid and red dashed lines
in Fig. 2(c) and again strongly resemble each other due to the
similar effective masses of the conduction and valence bands.
The wave functions ¥ ){cI(e/Tfl}iKZi}/*ZsQ for 2s~/* trions are
also only slightly less confined in reciprocal space than the
2s exciton wave function depicted as a black line in Fig. 2(c)
with a comparable Bohr radius.

All used material parameters are given in Appendix C
and the treatment of the angular momentum is explained in
Appendix E. While we develop the theory for the whole en-
semble of bound and unbound exciton states, our numerical
evaluations are restricted to the energetically lowest v = 1s,
2s, and 2pT exciton states.

The coefficients 7 "%

x-e/h,+,v,0

basis of wave functions y¥® i‘()izh 400 and new expansion

H (1,6 .
coefficients T ;')%5 |

are now expanded into the

7 1,8 _ R &1, [SHYS
Txie/zh,:l:,v,Q - Z w xie/zh,:l:,p,,v,Q Txie/zh,:lz,u‘ (]8)
n

The quantum number 4« comprises bound states like 1s~/* and
2s~/* trions as well as the unbound states forming the exciton-
electron/hole continuum. As a result, the electron- and hole-
density-assisted transitions can be expressed as
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- Z ((p vk 1// x-e,%,1,v,0 +¢ v,ak+(e2—1)0 w x-e,:t,u,u,—kl—ath)f ek x e, £, (19)
+, 1,0

i oo
<C§1 ey —o koo, 0 Ve k) +Benk2—p:0 U{Zs,Bx—hk2+Q Ve, ks )

_ R¢ R §1.¢ R 61,8 51,8
= Z (90 ot ¥ xlhity_vQ:F(p v, Bk +(1— BZ)QI// he vk, ﬁQ)fhkz T (20)

+,u,v

III. EXCITONIC EQUATIONS OF MOTION

The set of coupled Heisenberg equations of motion char-
acterizing doped atomically thin semiconductors are derived
in the following. The dynamics of exciton transitions P is
described in Sec. III A. In case of doped semiconductors, the
exciton transitions P 5‘ couple to trion transitions and exciton-

electron or exciton- hole continuum transitions Ti‘e hot as

explained in Sec. III B. The interaction is schematlcally 111us—
trated in Fig. 3. For an in-depth derivation of the set of coupled
excitonic Bloch equations see Appendix D.

A. Exciton transitions

The equation of motion for exciton transitions Pi‘l, de-
picted as red solid lines in Fig. 3, reads

(8 +v8 hei‘vl)Pa

510
= __ZQW kjl 1_fe/hkl)
i .
¢
+ﬂ Z WHI—F,vz,v] K fe/h k1

i7 ¢ &
+a Wx—e/h.:l:,l)z,l)l.kz,kl fe/h-kl

R 01,82 51,6
X Z U o L ovepnae 2D
w

The left-hand side of Eq. (21) describes free excitonic os-

cillations with the exciton energy ex », Which are damped

scattering excitons trions and scattering
continuum continuum
K1 AKTS (K1} {KLAKLY BAKLLY
Txe/+ Pv, T‘CL/’I+/4 ! T\'e h,—u
— 3 [ 5ot
(0 ¢¢¢¢
AN AT N
1
WS 4 t d 1s*

FIG. 3. Exciton transitions P "' in the K valley are optically
created by an incoming light field illustrated by the red arrow.
In doped semiconductors, the optically excited exciton transitions

PN couple via Coulomb interactions to intravalley 7 '*'! I LKHEL
AK' 1}

e /h i i scattering continuua (u # ) as well as

LK L)
xe/hfu 1"

and intervalley T

intervalley trions T*

(

by the phonon-mediated dephasing y ¢' [69-71]. An addi-
tional radiative dephasing is determined by the self-consistent
treatment of the coupled Maxwell’s and excitonic Bloch equa-
tions [25,72,73]. The first term on the right-hand side of
Eq. (21) is the optical source term due to an external light field
propagating perpendicular to the atomically thin semicon-
ductor. The light matter interaction term also includes Pauli
blocking proportional to the residual electron or hole dop-
ing density f ! Jnk- The excitonic Rabi frequency 3, i'IZ’
is defined in Eq. (C5) and A denotes the normalization
area.

The second term on the right-hand side of Eq. (21) rep-
resents a Coulomb-induced exciton energy renormalization
which increases the exciton resonance energy depending on
the electron or hole doping density f C‘/h » The associated

Coulomb matrix element W £ HoFovoor k is defined in Eq. (C7).
The third contribution to the rlght -hand side of Eq. (21)

describes negatively/positively charged trion transitions (u =

t) and exciton-electron/hole continuum transitions (u # t)

Tx‘e Jh+, A sources for optically generated exciton transi-

tions P{'. Trions and the scattering continua are illustrated
as dashed lines and shaded areas in Fig. 3, respectively.
The involved Coulomb matrix W ¢! &, is defined by
Egs. (C8) and (C9).

Note that the description is restricted to electron or hole
doping densities and does not characterize the dynamics
of optically excited densities which simultaneously occur
[74-77]. Therefore, a finite electron doping density N, implies
a vanishing hole doping density Nj,, where only exciton-
electron scattering contributes and exciton-hole interactions
are zero. The opposite holds true for nonzero hole doping
densities Nj.

x-e/h,%,v1,v2,ky

B. Trion transitions and exciton-electron/hole continuum
transitions

The equation of motion for trion transitions (u =t)
and exciton-electron/hole continuum transitions (u #t)

61,82
T”/hiu reads

1,8 1,8
[a’ + }/ x- e/h - E(E xle/zh +.u +A e/h):ITxle/zh +.u
i(1+8,0)

= Z vt Cl’jzh ETRON
x-e/h, %+, vy ,ka
2nA Zkl fe/h ki vy ,k>

& 71
Z Sxe/hi vi,v2.ko k3

v2,k3

41,8
x Z Wx]e/zh +.v2,03.,k3, k4) fe/h ke Py (22)

v3.ky
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FIG. 4. Absorption spectra for monolayer MoSe, encapsulated in hexagonal BN at (a),(b) 10 K and (c),(d) 77 K. The spectra are
shown for different (a),(c) electron doping densities N, and (b),(d) hole doping densities N,. The 1s and 2s exciton resonances as well as

negatively/positively charged 1s~/F and 2s~/* trions are indicated.

The left-hand side of Eq. (22) represents oscillations with
the energy eif'e%h! +, obtained by a diagonalization of the
exciton-electron/hole Coulomb interaction in Eq. (16) which
is renormalized by the shift A Ejh defined in Egs. (C10) and
(C11). The oscillations are damped by a phonon-mediated
dephasing y i‘_e I The contributions on the right-hand side of
Eq. (22) characterize Coulomb-mediated source terms of the
trion transitions (i = t) and exciton-electron/hole continuum

transitions (u # 1) Ti{ﬁh ey due to exciton transitions Pég

and an electron or hole doping density f Zh k-

Filling factors (1 — f g /hAk) contributing to Eq. (22) were
neglected due to a systematic truncation to linear doping den-
sities valid for doping densities Ne/h and trion Bohr radii g,
satisfying N/, (a;)* <« 1[29]. This condition is fulfilled in the
range of low doping densities, where filling factors in Eq. (22)
effectively enter the exciton dynamics, Eq. (21), nonlinear in
the doping density f g Jnk- The nonlinear doping dependence
results from the coupling of exciton transitions to trions and
exciton-electron/hole continua, described by the last contri-
bution to Eq. (21), which also includes the doping density.
However, for larger doping densities N,/ not only six-particle
correlations resulting in additional filling factors [40] but also
dynamical screening [78,79] become of importance.

IV. DOPING-DEPENDENT ABSORPTION

In the following we discuss the doping-induced changes of
the absorption spectra near the energetically lowest 1s and 2s
exciton resonances.

The absorption spectra at different doping densities are
obtained by self-consistently solving the Maxwell’s [72,73]
and excitonic Bloch equations, Egs. (21) and (22). The set of
coupled excitonic Bloch equations can be solved numerically
in time domain or analytically in frequency domain as done
in Appendix F. The calculated absorption spectra for mono-
layer MoSe, encapsulated in hexagonal BN as a prototypical
atomically thin semiconductor are presented in Fig. 4. The
absorption spectra are evaluated at a temperature of 10 K in
Figs. 4(a) and 4(b) and 77 K in Figs. 4(c) and 4(d). The red
curves depict the absorption for an undoped sample with pro-
nounced energetically lowest 1s and excited-state 2s exciton
resonances. Note the different scaling of the absorption for 1s
and 2s excitons in Fig. 4. The 1s exciton linewidth, presented
as full width at half maximum, includes a radiative part of
approximately 1 meV as well as a phonon-mediated part of
about 1 meV at 10 K and 7 meV at 77 K [69]. In contrast,
the 2s exciton linewidth is mostly dominated by the phonon-
mediated part, since the radiative dephasing of 2s excitons is
much smaller [80].
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FIG. 5. Oscillator strengths and resonance energies of 1s and 2s
exciton resonances as well as negatively/positively charged 1s~/*
and 25~/ trions extracted from the absorption spectra for monolayer
MoSe, encapsulated in hexagonal BN at 10 K; cf. Figs. 4(a) and 4(b).

The absorption spectra for increasing electron doping den-
sities N, are plotted in Figs. 4(a) and 4(c) at 10 and 77 K,
respectively. With a growing electron doping density N,, the
Is and 2s exciton oscillator strengths decrease and the res-
onance energies are slightly shifted toward higher energies
compared to the undoped case. The oscillator strengths and
resonance energies extracted from Fig. 4(a) are plotted as
red circles in Fig. 5. The reduced oscillator strengths stem
from Pauli blocking and a Coulomb-mediated redistribution
of the oscillator strength. Pauli blocking is described by the
first term on the right-hand side of Eq. (21), whereas the
Coulomb-mediated redistribution originates from the second
and third terms on the right-hand side of Eq. (21). The
Coulomb-mediated redistribution results in asymmetric exci-
ton line shapes [81] and the formation of negatively charged
Is~ and 2s~ trion resonances, which appear approximately
20 meV below the neutral 1s and 2s exciton resonances.
Even though the trion linewidths are governed by individ-
ual phonon-mediated dephasing rates, we assumed identical
linewidths for all trion and exciton-electron/hole continuum
states in a first approximation and adjusted the values to
the phonon-mediated dephasing of excitons. In particular, we
assume equal 1s—/* and 2s/* trion linewidths, but want to
emphasize a recent study which found increased 2s~/* trion
linewidths [82]. The exciton-trion level repulsion contributes
to increasing exciton resonance energies and decreasing trion
resonance energies plotted as red circles in Fig. 5. The obser-
vation of reduced exciton oscillator strengths, the emergence
of trion resonances, as well as exciton and trion energy renor-
malizations are in agreement with recent measurements on
different monolayer TMDCs [82—-84].

Finally, the absorption spectra for an increasing hole dop-
ing density N, are plotted in Figs. 4(b) and 4(d) at 10 and 77 K,

respectively. Compared to an undoped sample, the oscillator
strengths of neutral 1s and 2s excitons reduce and their reso-
nance energies shift toward higher energies with rising doping
densities. The oscillator strengths and resonance energies ex-
tracted from Fig. 4(b) are plotted as blue squares in Fig. 5.
Moreover, positively charged 1s* and 2s™ trion resonances
appear energetically below the neutral 1s and 2s excitons, re-
spectively. All in all, the absorption is qualitatively equivalent
to the previously discussed case of electron doping. Again, our
observations closely align with recent gate-dependent mea-
surements [82—85].

V. CONCLUSION AND OUTLOOK

We introduced a microscopic theory to describe the
doping-dependent excitonic properties of atomically thin
semiconductors dominated by Coulomb scattering of excitons
with residual doping densities. Our formalism gives access
to the binding energies of negatively and positively charged
ground- and excited-state trions as well as the corresponding
exciton-electron and exciton-hole scattering continua. Thus,
our theory provides a basis to explore the fundamental prop-
erties of ground and excited-state excitons and trions in
semiconductors under the influence of residual doping den-
sities. As a first application, we studied the absorption spectra
for doped monolayer MoSe;.

An extension of our theory to photoluminescence, which is
determined by the photon flux of the emitted light, would re-
quire a fully quantized light-matter interaction [53]. Although
the exciton and trion energies and wave functions remain the
same as inputs to the photoluminescence, the dynamics needs
to be extended to account for scattering-induced incoherent
exciton and trion occupations in addition to the coherences
that govern the linear absorption. Moreover, phonon-assisted
processes must often be considered when describing photolu-
minescence [86].

The theoretical formalism can be adapted to other in-
organic or organic semiconductors which due to strong
Coulomb interactions exhibit tightly bound excitons. Possible
candidates are not only atomically thin semiconductors, like
van der Waals bound homobilayers [87-90] and heterobi-
layers of TMDCs [91-97], but also quantum wires or bulk
materials. Concurrently, the simplicity of our theory allows
further adaptations, for instance, to study the trion dynamics
in optical wave mixing experiments [98—102] or photolumi-
nescence [103-106] influenced by phonon-assisted relaxation
phenomena [107,108]. Further perspectives could be to theo-
retically investigate the influence of doping on spatiotemporal
dynamic effects not only in monolayer TMDCs [109-116]
but also in other atomically thin semiconductors like hybrid
perovskites [117-119].
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APPENDIX A: SCREENED COULOMB POTENTIAL

The two-dimensional Coulomb potential V4 including
the elementary charge ey, the vacuum permittivity &9, and
the two-dimensional normalization area .4 is described
by

2

0
= ——. Al
280A|k| ( )

The bare Coulomb potential V is screened by ¢ which takes
account of dielectric screening from an encapsulating material

J

characterized by the constant ¢, [32,55]:

1 — 8 e at2h)lkl _ 5, p=halkl 1 7 7 o=2hslkl

Ek = &4 (A2)

1+ 8¢ Pt 2h)kl 1 gye—hoalkl 1 3 gpe—2halkl’
with the dielectric constant ¢, and the height hy; of the
atomically thin semiconductor as well as the abbreviations
81 =0—-¢)/(1+¢e.)and & = (e2g — 1)/(€24 + 1). The di-
electric screening described by Eq. (A2) includes naturally
occurring air gaps [56] between the atomically thin semi-
conductor and its dielectric environment characterized by the
dielectric constant .. These interlayer gaps of width h, were
assumed to be identical on both sides of the atomically thin
semiconductor.

APPENDIX B: EXPANSION OF HOLE-DENSITY-ASSISTED TRANSITIONS

The treatment of hole-density-assisted transitions (c

cf
tions (¢, o ki +QVe ki €0 k-0 0 k : .
annihilation operators suggests the following expansion:

i oo\ _
(cfl 7k1_ax-/xk2+(¥va§2akl+ﬂx-hk2_ﬂxQv{}aﬁ.r-hk2+gv§4ak2) - Z(

v
Again, “4” symmetric and “—
1

— RO p oL
Z( vlkl xlhith:F(p v, Bk +(1— ﬁz)QTxlh:t:vkl

o defined by 7 ‘162

4“1 E?
with the expansion coefficients T o =

i ¥
¢k +0 Ve ky v{z,k2+Qv{2,k2>
) discussed in Sec. I B. The antisymmetry with respect to the exchange of the two valence band

R &1

Let i
2(<C§1qk1*d»hkz+0thv{1 7k1+ﬁx—hk27ﬂXQv;Zvﬂx—hk2+Qv{2ek2) +

[ . . . . .
is similar to electron-density-assisted transi-

£1,62,83,84 R ¢ £1,83,82,84 4
v Tt =" pkracpo T i —p0)f s (BD

” antisymmetric linear combinations are treated:

: oy
<C§1 o —opka a0 vé“z 1+ Brnka—p 0 vé’l \Brnk2+Q vfz o ) )

o)f P (B2)

$1,81,62,82 $1,82,61,8
Z(Tx -h,v,Q + Tx—h,v,Q )

APPENDIX C: MATRIX ELEMENTS

In the following, the used matrix elements are defined: The matrices S fc‘_e Jhtv2.0,.0, and the Coulomb interaction kernels

w i‘_g Jhd 02,0105 which determine Eq. (16) are defined by
S et 0.0, = i 00,0, F % O 00,9 0 w0, (C1)
S b0y, = Ovivn 0,0 F %‘ 0" 50110, O 0,150, (C2)
W et 000, = ,%1 Xk: o kW0, (" i p0i-00 — ¢ Vrkrani0r-02)
FWira.0,+0,(#" i;,k—ﬁx(Ql—Qz) — " i'z,—Ql—atQZ)]» (C3)
w ifh,i.ul,n,g],g, k 0" 5'1 [Wo,-o, (¢" i'z,km(Ql—Qz) —¢" ii,k—ﬁle—Qz))

R R¢
:FW_k+ﬁXQI+Q2 ((0 vlz,k+ax(Q1*Q2) —¢ V;aQ1+,BxQ2)]. (C4)

The light-matter interaction strength is characterized by the Rabi frequency 2 i‘lZ’

Q) =

The interband dipole transition element d Cf'ua'f

gap e g

d g::{él ,51},05

T = _i((SU/'ﬁJr(SEI,K + 80,,

L{] [d{I .0} EG,(Z) —ta)gt] (CS)

involves the elementary charge ¢(, the material parameter y,,, and the band

0 8 1) . (C6)
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TABLE I. Material parameters for monolayer MoSe;.

Thickness dy 0.668 nm [120]

Single particle band gap &g 2.18 eV [120]

Effective electron mass m, 0.49my [68]

Effective hole mass my, 0.59m, [68]

In-plane dielectric constant €24 13.3[121]

Material parameter V2d 0.22 eV nm [68]

Interlayer gap hy 0.3 nm

Phonon-mediated dephasing hy K1 =y K0 0.6/3.8 meV at 10/77 K [122]

The Kronecker deltas take account of the valley-selective circular dichroism in monolayer TMDCs [46-50]. Equation (C5)
additionally includes the envelope of the light field at the monolayer position [t][E;'" (")) as well as the phase factor e/®’
determined by the optical frequency wy.

The Hartree-Fock Coulomb matrix element W 2 Foon,Q is defined by
V¢ — R¢ L& L¢
14 I-}—F,vl,vz,Q - Z Wk*Q ¢ vll,k((p vIZQ 4 vlz,k)' (C7)
k

The Coulomb matrices W i‘_g bt v0.0,.05 describing the coupling between excitons and trions as well as exciton-electron/hole
continuum states in Eqgs. (21) and (22) are given by

A

& _ R &1 L& L&
w x-€,£,v1,1,0,,0, — Z Y ok [WQIJF(l*ax—e)Qz (('0 V2. k—B.Q = BeeQr ¢ stk+01xQ|+ax-eQz)
k

Lt L&
:FWk+ale—(1—ax,e)Q2 (90 Vllvk_ﬂ.rgl_ﬁx-egz —@ vlz’,QlJraHQZ)]a (C8)

¢ _ R?¢ L¢ L¢
Wxih,:t,vl,vz,Ql,Qz = Z % v: ’k[ng_(l_ﬁx»h)Qz ((P v;,k+alefo¢X,hQ2 -9 v;,kfﬂleJrﬂ,thz)
k

L¢ L¢
FWok.0,+0-800: (9" 0,00y — @ 10.0145.10.) - (€9)

@ 9

Finally, the electron “e” and hole “/” renormalizations A Z , appearing in Eq. (22) read

1 Z Flzk% m, + my,
Zkl fi,zkl T 2 (Zme + mh)me

1 k2 m, + my, .
AG = Sy ey (€11
e & Me = 2ty iy

A =

[ s (C10)

All material parameters used for monolayer MoSe; are listed in Table I.

APPENDIX D: DERIVATION OF EXCITONIC BLOCH EQUATIONS
In the following, we present an in-depth derivation of the excitonic Bloch equations, Egs. (21) and (22). To that end, the used
carrier Hamiltonian is given in Sec. D1, before deriving Eq. (21) in Sec. D2 and subsequently deriving Eq. (22) in Sec. D3.

1. Hamiltonian

The carrier Hamiltonian H in the rotating frame approximation [123] is given by [124,125]

_ a o f & i _ §1,0j 50 —iwot T §1,0j 720 —iwot T* O F
H= Zee,kl CClsklcCLkl + Zsh,kl UCl:kl v{l,kl Z (d () ET t)e CClsk1U§1,k1 + [d v ET t)e ] U{l,klcClykl)

S1.ky Sk Sk
1 .
- i i i i + 7
+ 2 Z WQ(CCI,k1+QC§2»k2—QC(2,k2C§1,kl + v§1»k1+Qv§2,kz—Qv€2»k2v§1,k1 + 2CCl,k1+Qv§2,k2—Qv§2qk2C§1»kl)' (DD
&1,8
ki k2,0

The first line of Eq. (D1) characterizes noninteracting carriers. The electron and hole dispersion sg Ik =€ g, /2 + 1’k?) 2mesn)

are described in an effective mass approximation and include the band gap energy 8§, between conduction and valence band
edges as well as the effective electron or hole mass m, ;. The second line of Eq. (D1) describes interband transitions of carriers
between valence and conduction bands due to a o; circularly polarized light field (o; = o, o_) at the monolayer position. The

interband dipole transition element d ﬁ‘ 2 is defined in Eq. (C6) and E;’ (t) denotes the envelope of the light field with optical
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frequency wy. The last line of Eq. (D1) represents electron-electron, hole-hole, and electron-hole Coulomb interactions with the
screened Coulomb potential Wy = Vp/eg provided in Appendix A.

2. Interband transitions

The time evolution of considered observables is determined by the Heisenberg equations of motion: 9, - = %[H , - ]. Using

the carrier Hamiltonian, Eq. (D1), the dynamics of electron-hole pairs czl s Ve reads

K i . , . .
_ Iq i _ $1,0j 0 —iwot T* A _ i
al o1k Cl,kl - h( + 2u Cflaklvflqkl h[d&v ET t)e ] (1 € b ok v{].klv{hkl)

i i . 3 .
_t + L i f T 1
h ZWkl*kz CCl,kZU{lka + h Z WQ(C{lvkl"’Qv{laklc{27k2_QCC2’k2 c(l,kl Ull,k1+Qc€2,k2+QCC2,k2)

k> 62.k2,0
i 1 + . .
— i f A f
+ h Z WQ(CC] J Vo ki +0Y0. 00 Vo o +0 T Coki+0 Ve Kk Ve ks v(z,kz—Q)' (D2)
$2.k2,0

The first term on the right-hand side of Eq. (D2) describes the free motion depending on the reduced mass pu = m.my,/(m, +
my,). The second contribution to the right-hand side of Eq. (D2) represents the light-matter interaction. The last three terms
of Eq. (D2) characterize Coulomb interactions which introduce a quantum mechanical hierarchy problem due to the coupling
of two-operator electron-hole pairs to four-operator terms characterized by the last four contributions to the right-hand side of
Eq. (D2). The arising hierarchy problem is treated by exploiting a cluster expansion scheme [51]. Thus, the dynamics of the

interband transitions (Czl, i Uz, ,k1> becomes

i PN, iC o o mor o
[at - ﬁ( + 2/"/ )]( {'1 Ky [1 kl) E[div ! ET/(t)e Ot] ( fekl ]‘Lk] ZWkl k2 kzvfl,k2>
i
T ZWkrkz (CZ,,k, U{.,kl)(fekz f i) ZWkl s { ;. &V w)F e T L 0)
k>

i T ¥
+ g Z WQ((C; ,k1+QvC1 yk1C{2qk2—QC§2vkz)C - <C; ki U{l -k1+QC§2qk2+QC§2,k2)E)

$2.k2,0
i
— i T c_ t c
+ h Z WQ((CQ,klv(lqk1+Qv§2,k2v§2qkz+Q) € +0 Ve UC2,k2U{2qk2—Q> ) (D3)
$2.k2,0
Here, electron occupations are characterized by residual electron densities f ', O = (¢ ; Con) and hole occupations are

c

determined by residual hole densities f i‘ K= The electron-density- ass1sted transitions (¢!

(v Yok { ki )- € b +0 Ve ke zz,szQ {27k2>
are defined in Eq. (2) and the hole-density-assisted transitions <C§1 K0V Vo ks +Qv§2ykz) are defined in Eq. (3).

The second term on the right-hand side of Eq. (D3) introduces a Coulomb-mediated coupling among interband transitions
(c Z i Vel 1> and( e b Ve ks ) with different wave vectors k| and k,. After identifying the Wannier equation, Eq. (6), the interband

transitions (c;r kU, x,) can be expanded in terms of a complete set of exciton wave functions (pR & . k, and exciton transitions P 5‘

according to Eq. (8) The third and fourth term on the right-hand side of Eq. (D3) reduce the band gap energy and exciton bmdmg
energy, respectively.
Equation (D3) is now multiplied by - T2k ?

Using the definitions of the Rabi frequency Qi' (,:’ , Eq. (C5), and the Hartree-Fock Coulomb matrix element Wf,; om0

L 5‘ x, and the normalization of exciton wave functions, Eq. (7), can be employed.

Eq. (C7), the dynamics of the exciton transitions P 6'1 becomes

i _ G0 ¢ i o ¢
(3t — —€ I' )IMl = ZQ v j ek. hl,k.) + A W oH Fo ok (fek1 fh],kl)Pilz
Vg,k]

i L¢ L¢ T + c T + c
+ ﬂ Z WQ((/J Vl]wkl -9 Ullqkl"rQ) ((Cé'lyk1+Qv§1,k1C(zqkz—QCQJQ) _<C§1qk1+Qv§1-k1v§2,k2+Qv§2,k2) ) (D4)
$2.k1 k2,0

Finally, the electron- and hole-density-assisted transitions on the right-hand side of Eq. (D4) can be substituted according to
Egs. (19) and (20) which finally leads to Eq. (21).
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3. Electron-density-assisted transitions
. . . . . .. t + . .
The Hels§nb§rg equation of motion of electron-density-assisted transitions Cy 40V k: €y dor—0 s s 1S calculated using the
carrier Hamiltonian, Eq. (D1):
0

¥

¥
c(] ki +0 v{z,kl C{Lkz *Qc§4yk2

_1[8;1+h_2('ﬁ+292+2k1-9—2k2-9)} ;
8
n

T
T h 2 me €t 40V K oy k-0 ks

i £1,0j =0; —iwot 1% T i £2,0j =0; —iwot 1% T
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The first term on the right-hand side of Eq. (D5) describes the free motion. The second to seventh contributions to the
right-hand side of Eq. (D5) characterize the light-matter coupling. Here, the term associated with the four-operator term
CZ:]JC] +Qc;’erc{2’klcQ’k2 can be either represented by quadratic doping densities or an exciton density [52] and will be
subsequently neglected by truncating the dynamics to linear doping densities and the linear optical response solely. The fifth
to seventh contributions to the right-hand side of Eq. (D5) represent nonlinear x ®) terms [44,45,126] which go beyond the linear
optical response, also referred to as x ! regime, and are neglected. Coulomb interactions, described by the last term on the
right-hand side of Eq. (D5), lead to a quantum mechanical hierarchy problem due to the coupling of the electron-density-assisted
transitions, represented by four-operator terms, to six-operator terms. The arising hierarchy problem is also truncated to the
linear optical response and linear doping densities, where the six-operator terms are neglected and only the four-operator terms
are considered [29].

Next, a cluster expansion is exploited to express Eq. (D5) in terms of interband transitions (c;‘kl Ve, kg )0 electron densities

.
I

a o gf _ TR .- t c . . .
fe,kl = (Ccl,klca,h)’ and electron-density-assisted transitions <CC1,k1+Qv§1,k1c{z,kz—QC§2$k2) , as introduced in Eq. (2):
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n > o (6 k1 0V iy +0 e ko010 e - (D6)
7

Even though the free energy on the left-hand side of Eq. (D6) contains no contributions proportional to k; - k,, there appear
terms of the form k; - Q and k; - Q. Therefore, it is convenient to use the three wave vectors K, k,, and O, defined by k| =
K| — Biokr — B:Q, and Q = (1 — a, )k + O,. The advantage of the new set of wave vectors K, k, and @, is that no terms
of the form K - k», K, - O,, or k; - O, contribute to the free energy anymore. As a result, the following relation can be proven
by using the definition of the reduced mass u = m.my,/(m, + my) as well as the definitions of the ratios o, By, 0y, and By
given in Egs. (12) and (13):

k_%+2Q2+2k1.Q—2k2-Q_Iﬁ_2 me + my, 2( 1 1)

B —— D7
U me 2 > 2m, + my)m, ®7

| ———— R
me + my, me
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Thus, writing Eq. (D6) in terms of the new set of wave vectors K, k;, and Q, instead of k;, k,, and Q leads to
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Q/

Next, the dynamics of symmetric “+” and antisymmetric “—” linear combinations of Eq. (D8) is considered:
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The interband transitions on the right-hand side of Eq. (D9) are now expanded in terms of the complete set of exciton wave
functions and exciton transitions following Eq. (8). Furthermore, the symmetric “+4” and antisymmetric “—"" linear combinations
of electron-density-assisted transitions in Eq. (D9) are expressed by exciton wave functions ¢ ¢! expansion coefficients

v3,Ky°
T i‘fj[ 5.0, and electron densities f gsz according to Eq. (15):
. 2
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R & R &1
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Here, we used the following relation which directly follows from the definitions of the reduced mass u = m.my,/(m, 4+ my,) and
the ratio o, given in Eq. (12):

K2

K 2_110,)
Ty Qz(; n L) S G} GV (—K, — oszz)z(; + L ) (D11)
m, +mh me n

m, + my, m,
Note that the new basis defined by Eq. (15) now implicitly includes two Coulomb contributions which revealed the structure of
the Wannier equation, Eq. (6). Therefore, the last two lines of Eq. (D10) only encompass four contributions instead of previously
six electron-density-assisted transitions characterized by the last six lines of Eq. (D9).

Next, Eq. (D10) is multiplied by W Yk " vz K, 2_k, and the normalization of exciton wave functions, Eq. (7), is used
eks

to obtain

. 212
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The definitions of S, , , 0,k OF W 0,k and Wt 0,.0, are given in Egs. (C1), (C10), (C8), and (C3),

respectively.
Finally, Eq. (D12) is multiplied by ZVz,Qz ) ile’i);fvz’QI’Qz and one obtains
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The inverse of the matrix S ¢! et.v11,0,,0, 18 defined by

Z (SX -e, i)ul v2,0,,0, Sx]e +,00,03,0,,05 81}1,\)3 8Q1*Q3' (D14)
12,0,

113

Due to the conveniently chosen coordinates as well as symmetric “4” and antisymmetric “—" linear combinations, the
Schrodinger equation given in Eq. (16) can be identified in Eq. (D13). This Schrodinger equation, Eq. (16), only depends on
the wave vector @, and can be directly solved. Expanding the coefficients T i‘_fiyvl_ 0 in terms of corresponding wave functions

VS i‘f; .0 and new expansion coefficients 7' i‘fft .. according to Eq. (18) leads to Eq. (22).

APPENDIX E: ANGULAR MOMENTUM

Neglecting band structure asymmetries of the atomically thin semiconductor in the in-plane directions around the high-
symmetry points [127] leads to an in-plane rotational symmetry of the Wannier equation, Eq. (6). Consequently, the exciton
wave functions ¢* °! »% can be separated into the product of a radial part PR ».x and a phase factor e

QDR ilk _ CI)R s eimwfbk. (E1)

The radial k and angular coordinates ¢ are defined by k = k ¢'%*. The phase ¢”% is determined by the angular momentum 1,
associated with the exciton eigenstate v.
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{1,802

On the other hand, the trion and exciton-electron/hole continuum wave functions y* el

series in angle coordinates [22,128] as follows:

R &1, R¢ I
K” xle/zhiuvk qu x]e/zhzi:uvkelmu “ (Ez)

my

« are expanded in a Fourier

with the angular momentum m,,. As a result, the matrix elements in the eigenvalue Eq. (16) are also expanded in a Fourier series
which obey angular momentum conservation which we have also verified numerically. Our numerical evaluations are restricted
to the energetically lowest v = 1s, 2s, and 2pjE exciton states with angular momentum m, = 0, £1 and associated trion states
with angular momentum m,, = 0, £1.

APPENDIX F: ANALYTICAL SOLUTION IN FREQUENCY DOMAIN
The set of coupled differential equations, Egs. (21) and (22), can be analytically solved in frequency domain. The exciton
transitions P 5‘1, described by Eq. (21), are optically driven by the light field at the monolayer position E;f (t) which enters the
equation of motion via the Rabi frequency i‘]Z’ defined in Eq. (C5). The light field E;’(¢) is determined by the incoming
light field Eg’ (1) and the interband polarization P %/ (r) [72,73]. After transferring the light fields Eg/, (1) = Eq /(1) e~ and

the interband polarization P % (t) = P (t) e into a rotating frame of the laser frequency wo and applying a slowly varying
envelope approximation [129], the envelope of the light field £ 77 (t) becomes

EV ()= EJ La 145 pon)]. Fl
0 ()+z280€0n’A{;€ o nld e PL] D

Here, n, is the constant background refractive index, the macroscopic interband polarization P/ (¢) was already ex-
panded according to Eq. (9), and counter-rotating terms were neglected [123]. Equation (F1) is subsequently inserted

into the Rabi frequency Qi‘lZ’ given in Eq. (C5). Afterwards, the incoming light field £/ (0) = [dt €@~ EJ/ (1),
exciton transitions P* 511 (w) = f dt el@—wor p* 1{11 (t), and trion and exciton-electron/hole continuum states T*i‘eizh n M(a)) =

[dt el T i‘ eizh £ L(t) are Fourier transformed. Consequently, the result of solving the trion and exciton-electron/hole

continuum dynamics, described by Eq. (22), is inserted into the equation of motion of the exciton transitions, determined by
Eqg. (21). The procedure leads to the exciton transitions P* 5‘1 (w) in frequency domain:

[F )é;] + i(é foU] - hw)]p* 1;)11 (w) = l[? Elu(;/)] Egj (w) - Z [F Ele/h Vi,V + Fx e/h,vi, vz(a)) + le -e/h,v1,v2 (w)]p* l;;‘ll (w)’ (FZ)

V2

with the phonon-mediated dephasing I' ¢ = Ky &' and the dipole transition element ad o V1 :
1,0, 1 1,0}
dclvljﬂzAZ(pRilkdl l 1_fe/hk) (FS)

Equation (F2) couples exciton transitions P* b '(w) with different quantum numbers v; and v, via the radiative dephasing

r fle Jh,vr,0a the frequency-dependent scattering- mduced dephasing I" ¢! v/l v s (w) as well as the frequency-dependent renormal-
ization A % ve/hoviva (w) defined by
i, 0';
a)0|d
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