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The spin photocurrents, direct currents induced by light, hold great promise for introducing new elements to
spintronics. However, a general theory for spin photocurrents in real materials which is applicable to systems with
spin-orbit coupling or noncollinear magnetism is absent. Here, we develop such a general theory of second-order
spin photocurrents. We find that the second-order spin photocurrents can be classified into Drude, Berry curvature
dipole, shift, injection, and rectification currents, which have different physical origins and symmetry properties.
Surprisingly, our theory predicts a direct pure spin rectification current in an insulator induced by photons with
energies lower than the material band gap. This phenomenon is absent in the case of the charge photocurrent. We
find that the pure spin current of BiTeI induced by subgap light is large enough to be observable in experiments.
Moreover, the subgap pure spin photocurrent is highly tunable with the polarization of light and the flowing
direction of the spin photocurrent. This study lays the groundwork for the study of nonlinear spin photocurrents
in real materials and provides a route to engineer light-controlled spin currents.
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I. INTRODUCTION

Photocurrents, the current response of materials under light
irradiation, has potential in solar cell applications [1] and op-
toelectronic devices [2]. The spin version of the photocurrent
response is gaining much attention as a promising tool in spin-
tronics [3–5]. Spin photocurrents enable an optical generation
of spin-polarized currents, essential building blocks of spin-
tronics. Spin photocurrents have been intensely investigated,
both theoretically [3,5,6] and experimentally [7,8].

However, a general theory of bulk spin photocurrents is
yet to be developed, despite its importance and the interest
in it. Most of the existing studies either deal with spin-
collinear systems, where the spin-up and spin-down electrons
are completely decoupled [5,9,10], or consider a specific part
of the full response, such as the Drude current [11,12] or
the injection current [3,13,14]. The spin shift current in spin-
orbit coupled systems has been investigated in a few studies
[3,15–17] although we show that those descriptions for the
spin shift current are not complete. In addition, noncollinear
magnetism enables the generation of spin-polarized currents
[18] and spin Hall currents [19] without spin-orbit coupling.
However, current theories cannot describe spin photocurrents
in such systems. This situation is in sharp contrast to the
case of charge photocurrents [20], where a complete clas-
sification of second-order responses was recently developed
[21–26]. Thus, a complete, generally applicable theory of spin
photocurrent at the level of its charge counterpart is highly
desirable.
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In this paper, we develop a complete theory of second-
order spin photocurrents, which describes the spin and charge
photocurrents in a unified framework. Using perturbation the-
ory in the length gauge, we derive the expression for the
second-order spin conductivity tensor. We show that the spin
photocurrent can be classified into Drude, Berry curvature
dipole, shift, injection, and rectification currents. We find
that the spin shift and rectification currents can be written
in terms of the complex-valued spin shift vector, a gauge-
invariant quantity proposed in this work. Interestingly, the
spin rectification current is nonzero in insulators, in sharp con-
trast with its charge counterpart, the “intrinsic Fermi surface”
current, which is always zero in insulators [22,25,26]. Most
importantly, finite spin rectification currents can be generated
even by light whose frequency is lower than the band gap.
These subgap pure spin currents are highly tunable with the
polarization of light. We demonstrate our theory and findings
by presenting our calculations on the spin and charge photo-
conductivity of BiTeI.

II. THEORY

A. Second-order spin photoconductivity

We study the response of the system to external electric
fields using the Schrödinger equation for the one-particle re-
duced density matrix [27]. We write the responses in terms of
the velocity matrix element

va
mn,k = 〈umk|∂aH0(k)|unk〉/h̄, (1)

occupation factor fmk = 1/{1 + exp[(εmk − μ)/kBT ]}, and
frequency ωmn = (εm − εn)/h̄. Here, H0(k) is the periodic
Bloch Hamiltonian, |umk〉 the periodic part of the Bloch wave
function of state m with crystal momentum k, εmk the band
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energy, T the temperature, μ the chemical potential, and ∂a =
∂/∂ka. In the following, we omit the subscript k for brevity.
We also define fmn = fm − fn. We define the Berry connection
ξ a

mn = i〈um|∂aun〉, which satisfies

ξ a
mn = −iva

mn

/
ωmn (2)

for nondegenerate states with m �= n.
The spin current is the expectation value of the spin-current

operator, whose matrix element is

js,a
mn = 1

2 〈um|Ss, va}|un〉, (3)

where Ss is the spin operator with s = x, y, z. We also let
j0,a = va be the charge-current operator by defining S0 to be
the identity operator. For later use, we define

� js,a
mn = js,a

mm − js,a
nn . (4)

(See Appendix A for the discussion on alternate forms of the
spin-current operator).

Another key quantity for nonlinear spin currents is the
spin-velocity derivative of the velocity operator, which we
define as follows.:

ds,b;a
mn = js,ab

mn +
∑
p�=m

js,a
mpv

b
pn

ωmp
+

∑
p�=n

vb
mp js,a

pn

ωnp
. (5)

Here, we also defined

js,ab
mn = 1

2 〈um|{Ss, ∂a∂bH0(k)}|un〉. (6)

The name “spin-velocity derivative” reflects the fact that for
the charge current, d0,b;a

mn is identical to the generalized deriva-
tive of the velocity operator:

ds=0,b;a
mn = ∂avb

mn − i
(
ξ a

mm − ξ a
nn

)
vb

mn. (7)

For spin-collinear systems, the spin-velocity derivatives are
equivalent to the charge counterparts except for a minus
sign for the spin-down states. On the contrary, for spin-
noncollinear systems, the spin-velocity derivatives cannot be
simply related to the charge counterparts.

In this work, we focus on the second-order response, which
is the lowest order where a DC current response can occur
under AC driving fields. We consider external fields with
frequencies −� and � + ω and study the second-order re-
sponse with frequency ω in the DC limit ω → 0 with � fixed.
We assume a clean system with an infinite carrier lifetime
as done in previous studies of charge currents [20–22,24–
26,28]. Thus, the DC limit should not be taken literally: the
photocurrent should be understood as that from a difference
frequency generation where � � ω � 1/τ [22], where τ is
the characteristic lifetime of the bands.

Watanabe and Yanase [26] applied the general results of
Ref. [27] to the second-order responses of charge currents. In
this work, we extend this formalism [26,27] to spin currents.
The second-order spin and charge photoconductivity is the
sum of five distinct responses: Drude, Berry curvature dipole
(BCD), shift, injection, and rectification photoconductivities.
The formula for each photoconductivity is as follows:

σ s,a;bc
Drude (�) = q3

2h̄2V �2

∑
k,m

js,a
mm∂b∂c fm, (8)

σ s,a;bc
BCD (�) = −iq3

h̄2V �

∑
k,m,n
m �=n

Im
(

js,a
mnv

b
nm

)
ω2

mn

∂c fm − (b ↔ c), (9)

σ s,a;bc
inj.,τ (�) = τηs,a;bc

inj. (�)

= −τ
πq3

h̄2�2V

∑
k,m,n

fmn� js,a
mnv

b
mnv

c
nmδ(� + ωmn),

(10)

σ s,a;bc
shift (�) = iπq3

2h̄2V �2

∑
k,m,n

(
ds,b;a

mn vc
nm − ds,c;a

nm vb
mn

)
× fmnδ(� + ωmn), (11)

σ s,a;bc
rect. (�) = q3

2h̄2V

∑
k,m,n
m �=n

fmn

ω2
mn

×
[(

ds,b;a
mn vc

nm + ds,c;a
nm vb

mn − 2� js,a
mnv

b
mnv

c
nm

ωmn

)

× P
1

� + ωmn
− � js,a

mnv
b
mnv

c
nm

(� + ωmn)2

]
. (12)

Here, V is the volume of the system, and q the charge of an
electron. The detailed derivation of these equations is given
in Appendix B. For the injection current, we introduced a
phenomenological relaxation time τ [29]. This treatment is
needed to avoid divergence in the DC limit and is justified by
calculations based on the Floquet formalism [30].

The Drude [Eq. (8)] and BCD [Eq. (9)] terms contain
derivatives of the occupation factor. Therefore, the corre-
sponding currents are zero in insulators. While the shift and
injection currents originate from the absorptive (resonant)
response, the rectification current originates from the reac-
tive (nonresonant) response. The injection and shift currents
are nonzero only when occupied and unoccupied states are
resonantly coupled by light: � + ωmn = 0. In contrast, the
rectification current does not require an energy-conserving
transition.

The charge rectification current was discovered only re-
cently [22,25,26]. It was termed the “intrinsic Fermi surface”
contribution because one can convert Eq. (12) for the charge
current case into a Fermi-surface integral using Eq. (7):

σ i=0,a;bc
rect. = q3

2h̄2V

∑
k,m,n

fmn∂
a

(
vb

mnv
c
nm

ω2
mn

P
1

� + ωmn

)

= − q3

2h̄2V

∑
k,m,n

(∂a fmn)
vb

mnv
c
nm

ω2
mn

P
1

� + ωmn
. (13)

Hence, the charge rectification current is zero in insulators.
However, we find that the spin rectification current is

nonzero even in insulators. One of the reasons for the contrast
with the charge case is that the spin-velocity derivative ds,b;a

mn
with s �= 0 is not an actual derivative with respect to the crystal
momentum. In other words, the spin-velocity derivative, like
the spin Berry curvature [31], is not a geometric quantity.
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Thus, in the spin-current case, one cannot rewrite σ s,a;bc
rect. as

a Fermi-surface integral.
Since the rectification current does not require a resonant

coupling of occupied and unoccupied states, it leads to a
subgap spin photocurrent: a DC spin photocurrent under ir-
radiation of light with a frequency less than the band gap of
an insulating system. Such a subgap response is unique to the
spin photocurrent, while absent in the charge counterpart.

We note that the previously reported equations for the spin
shift current [15–17] are not equivalent to our results [Eqs.
(11), (22)]. Reference [15], which uses the velocity gauge,
considers only the diamagnetic two-photon output vertex and
ignores the contribution of a diagram with three one-photon
vertices. The photoconductivity formula of Refs. [16,17],
which is also based on the velocity gauge, does not take the
two-photon vertex into account. To obtain the correct result
using the velocity gauge formalism, one needs to consider all
diagrams consisted of one-, two-, and three-photon vertices
and apply related sum rules [25,28,29].

B. Writing photoconductiviy in terms of the complex shift vector

To understand the physical mechanism behind the spin
shift and rectification currents, we now show that these cur-
rents can be written in terms of the “spin shift vector” which
is a gauge-invariant quantity we introduce in this work.

For incident light with polarization vector E , the second-
order DC current response reads

σ s,a;E (�) =
∑
b,c

σ s,a;bc(�)EbE∗c. (14)

We also define

OE
mn =

∑
a

Oa
mnEa (15)

for any vector or tensor operator O. For a Hermitian matrix
O, the following holds:

(
OE∗

nm

)∗ =
∑

a

(
Oa

nmE∗a
)∗ =

∑
a

Oa
mnEa = OE

mn. (16)

Following Ref. [24], we define the complex shift vector
between two different bands m and n for light polarization

E as

R̃E ;a
mn = i

DaξE
mn

ξE
mn

= ξ a
mm − ξ a

nn + i∂a log ξE
mn. (17)

Note that we consider a fixed light polarization because the
shift vector does not transform like a vector with respect to
the rotation of the light polarization. By using Eq. (2), the
complex shift vector can be written in terms of the velocity
matrix and its generalized derivative:

R̃E ;a
mn = i

(
d0,E ;a

mn

vE
mn

− �va
mn

ωmn

)
. (18)

The standard shift vector [20] is the real part of the complex
shift vector:

RE ;a
mn = ξ a

mm − ξ a
nn − ∂a arg ξE

mn = ReR̃E ;a
mn , (19)

where “arg” denotes the argument of a complex number. This
real-valued shift vector describes the change in the position of
the electron in the transition from band n to m.

Now, we define the spin shift vector as the spin generaliza-
tion of Eq. (18):

R̃s,E ;a
mn = i

(
ds,E ;a

mn

vE
mn

− � js,a
mn

ωmn

)
. (20)

The spin shift vector is invariant to the gauge transformation
|umk〉 → |umk〉eiφmk and thus represents a physical quantity. By
an analogy to the charge case, the real part of the spin shift
vector can be interpreted as the shift in the spin position in the
transition from band n to m. However, in contrast to the charge
case, it is not possible to write R̃s,E ;a

mn directly in terms of the
matrix elements between bands m and n and their derivatives
due to the nongeometric nature of the spin-current operator.

To rewrite the shift photoconductivity [Eq. (11)] and the
rectification conductivity [Eq. (12)] in terms of the spin shift
vector, we use the following property:(

R̃s,E ;a
mn

)∗ = − i

(
ds,E ;a

mn

vE
mn

− � js,a
mn

ωmn

)∗

= − i

(
ds,E∗;a

nm

vE∗
nm

− � js,a
nm

ωnm

)
= − R̃s,E∗;a

nm . (21)

Then, by substituting Eq. (11) into Eq. (14), we can write
the spin shift current for light polarization E in terms of the
spin shift vector as

σ s,a;E
shift (�) = iπq3

2h̄2V �2

∑
k,m,n

(
ds,E ;a

mn vE∗
nm − ds,E∗;a

nm vE
mn

)
fmnδ(� + ωmn)

= iπq3

2h̄2V �2

∑
k,m,n

(
−iR̃s,E ;a

mn vE
mnv

E∗
nm + � js,a

mn

vE
mnv

E∗
nm

ωmn
+ iR̃s,E∗;a

nm vE∗
nmvE

mn − � js,a
nm

vE∗
nmvE

mn

ωnm

)
fmnδ(� + ωmn)

= iπq3

2h̄2V �2

∑
k,m,n

(−iR̃s,E ;a
mn + iR̃s,E∗;a

nm

)
fmnω

2
mnξ

E
mnξ

E∗
nmδ(� + ωmn)

= πq3

h̄2V

∑
k,m,n

Re
(
R̃s,E ;a

mn

)
fmn

∣∣ξE
mn

∣∣2
δ(� + ωmn). (22)
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In the last equality, we used Eq. (21). For the charge case
s = 0, Eq. (22) agrees with the known formula for the shift
current under linear and circular polarization [20,24,26].
(Note that according to our derivation, the shift current
due to circularly polarized light corresponds to the “gy-
ration current” term in Ref. [26]). The novel finding of
this work is that the spin shift current can be written
in the same form by defining the spin shift vector as
Eq. (20).

The last line of Eq. (22) has the form of the Fermi golden
rule. Hence, the spin shift current can be interpreted as the
current due to the spin density dipole generated by the transi-
tion from state n to m. This interpretation parallels the case of
charge shift current [20,32]. However, in contrast to the charge
case [Eq. (19)], it is not possible to write the spin shift vector
R̃s,E ;a

mn only in terms of the low-energy wave functions due to
the nongeometric nature of the spin-current operator.

For the spin rectification current, we find

σ s,a;E
rect. (�) = q3

2h̄2V

∑
k,m,n
m �=n

fmn

ω2
mn

[(
ds,E ;a

mn vE∗
nm + ds,E∗;a

nm vE
mn − 2� js,a

mnv
E
mnv

E∗
nm

ωmn

)
P

1

� + ωmn
− � js,a

mnv
E
mnv

E∗
nm

(� + ωmn)2

]

= q3

2h̄2V

∑
k,m,n
m �=n

fmn

ω2
mn

[(−iR̃s,E ;a
mn vE

mnv
E∗
nm − iR̃s,E∗;a

nm vE∗
nmvE

mn

)
P

1

� + ωmn
− � js,a

mnv
E
mnv

E∗
nm

(� + ωmn)2

]

= q3

h̄2V

∑
k,m,n
m �=n

fmn

[
Im

(
R̃s,E ;a

mn

)
P

1

� + ωmn
− � js,a

mn

2(� + ωmn)2

]∣∣ξE
mn

∣∣2
. (23)

In the last equality, we used Eq. (21).
Interestingly, the shift and rectification currents are pro-

portional to the real and imaginary parts of the shift vector,
respectively. While the real part of the shift vector has been
understood as the positional shift of the electron wave packet
[20,32], we find here that the imaginary part plays an im-
portant role in the charge and spin rectification currents. The
physical meaning of the imaginary part remains a subject of
future study.

C. Symmetry of photoconductivity

Next, we study the symmetry properties of the photocur-
rents. To represent the symmetry properties, we use the Jahn
symbols [33,34]. Let us briefly explain the Jahn symbols.
Each “V” term corresponds to the vector indices. The number
of V corresponds to the tensor rank. V’s inside [ ] and { }
denote symmetric and antisymmetric indices, respectively.
Symbols “e” and “a” denote that the tensor is axial and odd
under time reversal, respectively.

The real symmetric (imaginary antisymmetric) compo-
nent of the photoconductivity tensor, Re(σ s,a;bc + σ s,a;cb)
[Im(σ s,a;bc − σ s,a;cb)] corresponds to the generation of a cur-
rent under linearly (circularly) polarized light. In Appendix C,
we derive the symmetry transformation properties of the five
charge photoconductivity tensors using the symmetry of the
velocity matrix elements.

One can easily derive the symmetry of the spin photo-
conductivity from the symmetry of the corresponding charge
photoconductivity. The second-order spin photoconductivity
σ s,a;bc is a rank-four tensor due to the additional vector de-
scribing spin polarization. Equation (3) shows that the spin
velocity transforms under symmetry operations like the prod-
uct of the charge velocity and the spin polarization vector.
The same relation holds for the spin and charge conductiv-
ity. The spin polarization vector is a time-reversal odd, axial

vector. Thus, the Jahn symbol for the spin photoconductivity
can be obtained by multiplying “aeV” to the Jahn symbol of
the corresponding charge photoconductivity. The only excep-
tion is the Drude current. As explained in Appendix C 1, the
charge Drude current has an additional symmetry for swap-
ping the current and field direction indices [Eq. (C13)]. An
analogous expression does not exist for the spin Drude current
because the spin velocity js,a

mm for s = x, y, z is not a derivative
of some quantity with respect to the crystal momenta.

In Table I, we summarize the symmetry of the charge and
spin photoconductivity tensors. The nonzero, independent co-
efficients for the photoconductivity tensors of a given material
can be easily identified using the MTENSOR program [34].

Let us focus on the role of the spatial inversion P̂ , time
reversal T̂ , and space-time inversion P̂T̂ . The properties of
the second-order charge conductivity in inversion- or time-
reversal-symmetric systems were recently studied [24,26].
Here, we extend the analysis to the spin conductivity.

TABLE I. Jahn symbols for the second-order charge and spin
photoconductivities in the clean limit. Symbol “0” indicates that the
corresponding currents are always zero.

Jahn symbols

Current type Linear pol. Curcular pol.

Drude a[V3] 0
Berry curvature dipole 0 V{V2}

Charge σ 0,a;bc

Shift V[V2] aV{V2}
Injection, Rectification aV[V2] V{V2}

Drude eVV[V2] 0
Berry curvature dipole 0 aeVV{V2}

Spin σ s,a;bc

Shift aeVV[V2] eVV{V2}
Injection, Rectification eVV[V2] aeVV{V2}
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Spatial inversion P̂ flips the sign of odd-rank vectors
and gives an additional minus sign to axial tensors. Since
the charge photoconductivity is an odd-rank polar (nonaxial)
tensor, it obtains a minus sign under P̂ . The spin photoconduc-
tivity is an even-rank axial tensor, so it also obtains a minus
sign under P̂ . Therefore, in an inversion-symmetric system,
both the spin and charge second-order photoconductivity is
always zero.

Time-reversal operation T̂ flips the sign of time-reversal-
odd tensors, which have “a” in their Jahn symbols. Therefore,
among the second-order photoconductivities, only those with-
out “a” in their Jahn symbols in Table I are allowed in a
T̂ -symmetric system. Therefore, in a T̂ -symmetric system,
the spin (charge) shift current is induced by circularly (lin-
early) polarized light, and the spin (charge) injection and
rectification current is induced by linearly (circularly) po-
larized light. Also, the spin Drude (charge BCD) current is
induced by linearly (circularly) polarized light.

For a P̂T̂ -symmetric system, the relation is the opposite:
only the photocurrents with “a” in their Jahn symbols are
allowed. The reason is as follows. All second-order spin and
charge photoconductivities are odd under P̂ . For the P̂T̂ -
symmetry operation, the (−1) factor from P̂ is multiplied
from the sign factor coming from T̂ . Thus, for both the
spin and charge cases, if the photoconductivity is even (odd)
under T̂ , it is odd (even) under P̂T̂ . In a P̂T̂ -symmetric
system, only tensors that are even under P̂T̂ can be nonzero.
Therefore, among the second-order photoconductivities, only
those with “a” in their Jahn symbols (i.e., those which were
not allowed in T̂ -symmetric systems) are allowed in a P̂T̂ -
symmetric system.

The injection and rectification currents have the same sym-
metry properties. To distinguish these contributions, one can
use a subgap light, which induces only the rectification cur-
rent. Another way is to measure the spin current for samples
with different carrier lifetimes (e.g., due to different impurity
concentrations) and use the fact that only the injection current
is proportional to the carrier lifetime.

III. RESULTS

Now, we apply our theory to the charge and spin pho-
tocurrent response of bulk BiTeI. BiTeI is a nonmagnetic
polar direct-gap semiconductor with a giant Rashba-type spin
splitting [36]. Here, we calculate the charge and spin pho-
toconductivity of BiTeI using a Wannier-function-based ab
initio tight-binding model [37]. Figure 1 shows the crystal
structure and Brillouin zone of BiTeI, and Fig. 2 shows the
band structure of BiTeI.

In Fig. 3, we show the charge and spin Sy photoconductiv-
ity. Spin Sx and Sz photoconductivities are shown in Fig. 5.
Since BiTeI is an insulator, the charge rectification current
is zero in the entire frequency range. In contrast, the spin
rectification current is nonzero, even for subgap frequencies.
Therefore, our theory predicts pure spin currents in the subgap
frequency regime. We note that the spin rectification current
diverges when � approaches the band gap in the limit of zero
smearing. In reality, this divergence will be regularized by the
finite broadening of the bands arising from the finite lifetime
of the electronic states.

FIG. 1. (a) Crystal structure of BiTeI. (b) Brillouin zone of BiTeI.
The crystal structure is drawn using the software VESTA [35].

The σ
y,x;yy
rect. component of the subgap spin photoconductiv-

ity, which describes the spin Sy current along the x direction
with irradiation of light linearly polarized along the y direc-
tion, has a magnitude around 20 μA/V2 h̄/e for an infrared
light with frequency 0.30 eV. The magnitude of this subgap
spin response is larger than the calculated spin shift currents of
collinear antiferromagnets BiFeO3 and hematite [5]. This pure
spin current could also be detected by using spin-to-charge
conversion methods such as the inverse spin Hall effect [38].

Remarkably, the polarization of the spin current can be
tuned by the polarization of the light. Figure 4 shows the spin
polarization of the subgap spin conductivity as a function of
light polarization angles:

σ s,a(θ, φ) =
∑
b,c

σ s,a;bcn̂bn̂c, (24)

where n̂ = (sin θ sin φ, sin θ cos φ, cos θ ) denotes the direc-
tion of the light polarization. The energy of the incident pho-
ton is � = 0.30 eV, below the calculated band gap of 0.35 eV.
Both the direction and magnitude of the spin polarization

FIG. 2. Electronic energy band structure of BiTeI calculated us-
ing density functional theory (DFT) and Wannier interpolation. The
green horizontal dotted lines indicate the center of the band gap.
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FIG. 3. (a) Schematic illustration of light-induced spin currents in BiTeI. (b)–(d) Charge and (e)–(g) spin Sy photoconductivity of BiTeI.
The vertical dashed lines indicate the band gap of 0.35 eV. The conductivity for linearly and circularly polarized light corresponds to the real
symmetric and imaginary antisymmetric components of the conductivity tensor, respectively.

can be highly tuned by changing the light polarization. Also,
the spin polarization depends significantly on the direction
of the spin current. These remarkable tunabilities are not
only scientifically important by themselves but may also open
doors to novel spintronics applications.

IV. DISCUSSION

For a material to produce a large spin photocurrent driven
by spin-orbit coupling, it should consist of atoms with high
atomic numbers, have a large structural asymmetry [39], and
have a small band gap [40]. BiTeI, which is well known for
the large Rashba effect and has a band gap of around 0.3 eV,
is one of the materials satisfying all these criteria. Monolayer
SnS and SnSe, which contain the heavy Sn atoms and host
large charge photocurrents [41], are also good candidates.
One could search for other materials that can host large spin
photocurrents based on these basic principles.

In this work, we considered the clean limit and found
that only the spin injection current depends on the lifetime.
It has also been numerically tested that the relaxation time
indeed has little effect on the spin and charge photocurrents
[16,21]. The effect of various scattering processes [8,42–44]

beyond the simple phenomenological relaxation-time approx-
imation on spin photocurrents may be a subject for a future
study.

Recently, Kaplan et al. [45] proposed that a subgap charge
photocurrent exists in systems without time-reversal sym-
metry. Within our theory, the subgap charge photocurrent
is always zero, with or without the time-reversal symmetry.
We first note that since BiTeI has a time-reversal symmetry,
the subgap charge photocurrent is zero in both theories. The
prediction of subgap photocurrents in a time-reversal sym-
metric system is unique to the spin-current response. Also,
in this work, we first take the clean limit of infinite quasi-
particle lifetime and then take the DC limit ω → 0 as in the
previous studies [20–22,24–26,28], while Ref. [45] takes the
clean limit after the DC limit. Thus, the two theories describe
different physical situations. Concretely, our results should be
understood as describing the difference frequency generation
scenario, where ω � 1/τ [22]. Also, while the subgap charge
photocurrent of Ref. [45] depends on the details of how the
clean limit is taken, the subgap spin rectification photocurrent
that we report is independent of such details. The relation
between the subgap spin rectification current and the subgap
charge photocurrent of Ref. [45] is a subject of future study.

FIG. 4. Spin polarization of the subgap spin rectification conductivity σ s,a [Eq. (24)] of BiTiI. The arrows and colors indicate the in-plane
and out-of-plane spin polarization of the current, respectively. Light frequency is � = 0.30 eV, below the calculated band gap of 0.35 eV.
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FIG. 5. (a)–(c) Spin Sx and (d)–(f) spin Sz photoconductivity of BiTeI. The vertical dashed lines indicate the direct band gap of 0.35 eV.

V. CONCLUSION

In conclusion, we developed a complete theory of second-
order spin photocurrents, which is generally applicable to
systems with spin-orbit coupling or noncollinear magnetiza-
tion. The spin shift vector, which is a gauge-invariant quantity,
governs the spin shift and rectification responses. We found
that subgap light can induce a DC spin-current response in
a nonmagnetic insulator, which does not occur in the charge
current case. This phenomenon enables an optical genera-
tion of pure spin currents, whose spin polarization is highly
tunable by the polarization of light or the flow direction of the
spin current. We applied our theory to BiTeI and found that
the calculated subgap spin photoconductivity is large enough
to be detectable in experiments. Our study paves the way for
theoretical and experimental studies of the nonlinear optical
generation of spin currents.

Note added in proof. Calculation of the spin shift [Eq. (11)]
and rectification current [Eq. (12)], as well as the spin shift
vector [Eq. (20)], requires a sum over an infinite number
of bands. In this work, we used the diagonal tight-binding
approximation, which involves an artificial truncation of
the bands. Reference [46] presents an efficient method to
calculate these quantities from first principles without any
band-truncation error.
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APPENDIX A: DEFINITION OF THE SPIN CURRENT

In the presence of spin-orbit coupling, spin is not a con-
served quantity. Thus, the conventional definition of the
spin-current operator [Eq. (3)], which is used in most studies
including ours, does not describe a conserved current. There-
fore, it is actually still debated whether this conventional, most
widely used definition of the spin-current operator should be
modified or not.

A modified definition of the spin-current operator as js,a =
d (raSs)/dt has been proposed for an inversion-symmetric
system in Ref. [47]. However, this definition gives a conserved
current only if the “spin generation in the bulk is absent.”
In the case of light irradiation, which is a prerequisite for
photocurrent response, the light-induced spin polarization is
always present [16]. Moreover, the spin generation in the bulk
through spin-orbit coupling is not forbidden in general when
the bulk is inversion asymmetric, which is another prerequi-
site for having a second-order photocurrent response. Thus,
even this modified definition of spin current does not give a
conserved current in the study of photocurrents.

Furthermore, there are some theoretical works claiming
that the conventional definition should be used as in [48]
because the nonconservation of spin current is a physical phe-
nomenon with possible experimental outcomes. Also, it has
been estimated numerically that the difference between the
conventional and modified spin currents will be on the order
of 10%–20%, indicating that the computational results will
not be qualitatively affected by the choice of the spin-current
operator [16]. Most importantly, the conventional definition
has been tested against experiments in the context of spin
Hall effects and gave good agreement on the spin Hall an-
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gle [49,50]. Therefore, we used the conventional spin-current
operator in our work.

We also note that to our knowledge all previous works on
the spin photocurrents, including Refs. [3,14,16], also used
the conventional spin-current operator.

One interesting property of the conventional spin-current
operator is that a nonzero spin current exists in equilibrium
[51]. We note in passing that this equilibrium spin current is
an intrinsic property of the spin current [48]. As we study only
the spin currents that occur in response to the external light,
we did not consider the equilibrium spin current.

APPENDIX B: DERIVATION OF SPIN
PHOTOCONDUCTIVITY

In this section, we derive the spin photocurrent conduc-
tivity. We assume nondegenerate bands. (For P̂T̂ -symmetric
cases, the recipe in Appendix B of Ref. [26] can be used.)

1. Perturbative expansion of density matrix

Under the independent particle approximation, the electron
Hamiltonian reads

Ĥ0 =
∑
k,m

εmkĉ†
mkĉmk. (B1)

Here, εmk is the band energy of state m with crystal mo-
mentum k, and ĉ†

mk and ĉmk are the electron creation and
annihilation operators, respectively. Using the Bloch theorem,
one can write an eigenvalue equation for the band energy and
the periodic part of the Bloch wave function:

H0(k)|umk〉 = εmk|umk〉. (B2)

In the following, we omit the subscript k for brevity.
In the length gauge and the dipole approximation, the per-

turbation due to the electric field is given by

V̂ (t ) = −qr̂aEa(t ), (B3)

where q is the charge of an electron, and Ea and ra are
the electric field and position operator along the direction a,
respectively. The sum over repeated superscripts is implied.
Here, r̂a is the position operator, whose matrix element is [52]

ra
mn = iδmn∂

a + ξ a
mn, (B4)

where we defined ∂a = ∂/∂ka and the Berry connection ξ a
mn =

i〈um|∂aun〉.
The Schrödinger equation for the one-particle reduced den-

sity matrix ρmn is [27]

ih̄
dρmn(t )

dt
= h̄ωmnρmn(t ) − qEa(t )[ra, ρ(t )]mn. (B5)

Defining the Fourier transformation as

ρab(t ) =
∫

dω

2π
e−iωtρab(ω), (B6)

the Schrödinger equation in the frequency domain becomes

h̄(ω − ωmn)ρmn(ω) = −q
∫

d�

2π
Ea(�)[ra, ρ(ω − �)]mn.

(B7)
Regarding the electric field as a perturbation, one can ex-

pand ρ as

ρ(ω) =
∑

n

ρ (n)(ω), (B8)

where ρ (n) is of order O(En). The zeroth-order term is the
Fermi-Dirac distribution:

ρ
(0)
ab (ω) = 2πδ(ω) faδab. (B9)

Using the perturbative expansion of the reduced density ma-
trix, the nth-order charge and spin-current responses can be
calculated as

Js,a
(n) (ω) = 1

V

∑
k,m,n

q js,a
mnρ

(n)
nm (ω). (B10)

Here, V is the volume of the system.
In this work, we focus on the second-order response, which

is the lowest order where a DC current response can occur un-
der AC driving fields. We define the second-order conductivity
tensor σ s,a;bc(ω; ω1, ω2) as

Js,a
(2) (ω) =

∫
dω1dω2

(2π )2
σ s,a;bc(ω; ω1, ω2)Eb(ω1)Ec(ω2)

× 2πδ(ω − ω1 − ω2). (B11)

To investigate the DC photocurrent, we set

ω1 = −�, ω2 = � + ω (B12)

and take the DC limit ω → 0. In other words, we study
σ s,a;bc(0; −�,�). We assume a clean system with an infinite
carrier lifetime as done in previous studies on charge-current
responses [20–22,24–26,28].

Watanabe and Yanase [26] showed that the matrix elements
of the second-order reduced density operator can be divided
into terms originating from the intraband (i) and interband (e)
position operators as

ρ (2)
mn = ρ (ii)

mn + ρ (ei)
mn + ρ (ie)

mn + ρ (ee)
mn . (B13)

Following Ref. [26], we define the contribution of each term
of Eq. (B13) to the conductivity as σ s,a;bc

(X ) for X = ii, ei, ie,
and ee, and we calculate each term. The physical phenomena
are quite different from the case of charge currents if we apply
this reduced density matrix to the calculation of spin currents.
Let us define ρbc (X )

mn (ω; ω1, ω2) to satisfy

ρ (X )
mn = 1

2

∫
dω1dω2

(2π )2
Eb(ω1)Ec(ω2)ρbc (X )

mn (ω; ω1, ω2)2πδ(ω − ω1 − ω2) + [(b, ω1) ↔ (c, ω2)] (B14)
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for X = 2, ii, ei, ie, and ee. Then, ρbc (2)
mn (ω; ω1, ω2) can be decomposed as follows [26]:

ρbc (2)
mn (ω; ω1, ω2) =

∑
X=ii, ei, ie, ee

ρbc (X )
mn (ω; ω1, ω2), (B15)

ρbc (ii)
mn (ω; ω1, ω2) = (−iq)2δmndωdω−ω1∂b∂c fm, (B16)

ρbc (ei)
mn (ω; ω1, ω2) = −iq2dω

mndω−ω1ξ b
mn∂

c fmn, (B17)

ρbc (ie)
mn (ω; ω1, ω2) = −iq2dω

mn

[
∂b

(
dω−ω1

mn fmnξ
c
mn

) − i
(
ξ b

mm − ξ b
nn

)
dω−ω1

mn fmnξ
c
mn

]
, (B18)

ρbc (ee)
mn (ω; ω1, ω2) = q2

∑
p�=m,n

dω
mn

[
dω−ω1

pn ξ b
mpξ

c
pn fnp − dω−ω1

mp ξ b
pnξ

c
mp fpm

]
. (B19)

Here, we defined

dω
mn = 1

h̄ω + i0+ − h̄ωmn
(B20)

with 0+ a positive infinitesimal value that ensures causality of the response. We write the diagonal components dω
mm as dω

since its value does not depend on m. Note that the constraint p �= m, n is included in the definition of ρbc (ee)
mn [Eq. (B19)] to

make sure that the intraband effect is excluded. The intraband effect is considered in ρbc (ie)
mn [Eq. (B18)]. Equations (B16)–(B19)

corresponds to Eqs. (16)–(19) of Ref. [26].
Using Eqs. (B10), (B11), and (B14) we find the following expression for the second-order spin photoconductivity:

σ s,a;bc
(X ) (ω; ω1, ω2) = q

2V

∑
k,m,n

js,a
mnρ

bc (X )
nm (ω; ω1, ω2) + [(b, ω1) ↔ (c, ω2)]. (B21)

Using the expressions for the second-order density matrix elements [Eqs. (B16)–(B19)], the second-order spin photoconductivity
can be computed as follows:

σ s,a;bc(ω; ω1, ω2) = σ s,a;bc
(ii) (ω; ω1, ω2) + σ s,a;bc

(ei) (ω; ω1, ω2) + σ s,a;bc
(ie) (ω; ω1, ω2) + σ s,a;bc

(ee) (ω; ω1, ω2), (B22)

σ s,a;bc
(ii) (ω; ω1, ω2) = q3

2V

∑
k,m

− js,a
mmdωdω2∂b∂c fm + [(b, ω1) ↔ (c, ω2)], (B23)

σ s,a;bc
(ei) (ω; ω1, ω2) = q3

2V

∑
k,m,n

−i js,a
mndω

nmdω2ξ b
nm∂c fnm + [(b, ω1) ↔ (c, ω2)], (B24)

σ s,a;bc
(ie) (ω; ω1, ω2) = q3

2V

∑
k,m,n

−i js,a
mndω

nm

[
∂b

(
dω2

nm fnmξ c
nm

) − i
(
ξ b

nn − ξ b
mm

)
dω2

nm fnmξ c
nm

] + [(b, ω1) ↔ (c, ω2)], (B25)

σ s,a;bc
(ee) (ω; ω1, ω2) = q3

2V

∑
k,m,n,p
p�=m,n

js,a
mndω

nm

[
dω2

pmξ b
npξ

c
pm fmp − dω2

np ξ b
pmξ c

np fpn
] + [(b, ω1) ↔ (c, ω2)]. (B26)

Now, we take the DC limit [Eq. (B12)] and analyze each term.

2. Drude current

First, we show that the DC limit of σ s,a;bc
(ii) (ω; ω1, ω2) is the Drude conductivity [Eq. (8)].

σ s,a;bc
(ii) (0; −�,�) = lim

ω→0

q3

2h̄2V ω

∑
k,m

− js,a
mm

(
1

� + ω
+ 1

−�

)
∂b∂c fm

= lim
ω→0

q3

2h̄2V ω

∑
k,m

js,a
mm

ω

(� + ω)�
∂b∂c fm

= q3

2h̄2V �2

∑
k,m

js,a
mm∂b∂c fm

= σ s,a;bc
Drude (�). (B27)
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3. Berry curvature dipole current

Next, we show that the DC limit of σ s,a;bc
(ei) (ω; ω1, ω2) is the Berry curvature dipole current contribution [Eq. (9)].

σ s,a;bc
(ei) (0; −�,�) = q3

2h̄2V �

∑
k,m,n
m �=n

js,a
mnv

b
nm

ω2
mn

∂c fnm + [(b,−�) ↔ (c,�)]

= q3

2h̄2V �

∑
k,m,n
m �=n

(
js,a
nmvb

mn

ω2
mn

∂c fm − js,a
mnv

b
nm

ω2
mn

∂c fm

)
− (b ↔ c)

= −iq3

h̄2V �

∑
k,m,n
m �=n

Im
(

js,a
mnv

b
nm

)
ω2

mn

∂c fm − (b ↔ c) = σ s,a;bc
BCD (�). (B28)

Defining the spin Berry curvature [31]

�s,ab
m = −2Im

∑
n �=m

js,a
mnv

b
nm

ω2
mn

, (B29)

one can rewrite Eq. (B28) as

σ s,a;bc
BCD = iq3

2h̄2V �

∑
k,m

�s,ab
m ∂c fm − (b ↔ c) = −iq3

2h̄2V �

∑
k,m

fm
(
∂c�s,ab

m − ∂b�s,ac
m

)
. (B30)

Equation (B30) clearly reveals that σ s,a;bc
BCD is proportional to the momentum space dipole of the spin Berry curvature.

4. Injection, shift, and rectification currents

Finally, we derive the formulas for the injection, shift, and rectification photoconductivities [Eqs. (10)–(12)] by showing that
the sum of σ s,a;bc

(ie) and σ s,a;bc
(ee) can be reorganized as the sum of injection, shift, and rectification currents.

First, let us consider σ s,a;bc
(ee,d) , which is the component of σ s,a;bc

(ee) [Eq. (B26)] with m = n:

σ s,a;bc
(ee,d) (ω; ω1, ω2) = q3

2V

∑
k,m,p

js,a
mmdω

[
dω2

pmξ b
mpξ

c
pm fmp − dω2

mpξ
b
pmξ c

mp fpm
] + [(b, ω1) ↔ (c, ω2)]

= q3

2h̄V ω

∑
k,m,p

� js,a
mpdω2

pmξ b
mpξ

c
pm fmp + [(b, ω1) ↔ (c, ω2)]

= q3

2h̄V ω

∑
k,m,p

� js,a
mpξ

b
mpξ

c
pm fmp

(
dω1

mp + dω2
pm

)
. (B31)

Since we are interested in σ s,a;bc(0; −�,�), using

dω1
mp + dω2

pm = 1

−h̄� + i0+ − h̄ωmp
+ 1

h̄(� + ω) + i0+ − h̄ωpm

= − 2π iδ(h̄� + h̄ωmp) − h̄ω

(h̄� + h̄ωmp)2
+ O(ω2), (B32)

we find

σ s,a;bc
(ee,d) (ω) = −iπq3

h̄2V ω

∑
k,m,n

� js,a
mnξ

b
mnξ

c
nm fmnδ(� + ωmn) − q3

2V

∑
k,m,n

� js,a
mnξ

b
mnξ

c
nm fmn

1

(h̄� + h̄ωmn)2
+ O(ω)

= −iπq3

h̄2V ω�2

∑
k,m,n

fmn� js,a
mnv

b
mnv

c
nmδ(� + ωmn) − q3

2h̄2V

∑
k,m,n
m �=n

fmn

ω2
mn

� js,a
mnv

b
mnv

c
nm

(� + ωmn)2
+ O(ω). (B33)

The first term of Eq. (B33), which contains the 1/ω divergence, is the injection-current contribution:

σ s,a;bc
inj. (ω) = −iπq3

h̄2V ω�2

∑
k,m,n

fmn� js,a
mnv

b
mnv

c
nmδ(� + ωmn). (B34)
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The 1/ω divergence in the injection current [Eq. (B34)] indicates that the photocurrent increases linearly with time. This
divergence can be avoided by introducing a phenomenological relaxation time τ [29], which is justified by calculations based on
the Floquet formalism [30]. The DC injection conductivity then becomes

σ s,a;bc
inj.,τ = τηs,a;bc

inj. = −τ
πq3

h̄2�2V

∑
k,m,n

fmn� js,a
mnv

b
mnv

c
nmδ(� + ωmn). (B35)

The second term of Eq. (B33) is a part of the rectification current:

σ s,a;bc
rect.,1 = − q3

2h̄2V

∑
k,m,n
m �=n

fmn

ω2
mn

� js,a
mnv

b
mnv

c
nm

(� + ωmn)2
. (B36)

Next, let us consider σ s,a;bc
(ie) . In the DC limit, one finds

σ s,a;bc
(ie) = q3

2V

∑
k,m,n
m �=n

−i js,a
mn

1

εmn

[
∂b

(
d�

nm fnmξ c
nm

) − i
(
ξ b

nn − ξ b
mm

)
d�

nm fnmξ c
nm

] + [(b,−�) ↔ (c,�)]

= q3

2V

∑
k,m,n
m �=n

i

[(
∂b js,a

mn

) − js,a
mn

�b
mn

ωmn
+ i js,a

mn

(
ξ b

nn − ξ b
mm

)] 1

h̄ωmn
d�

nm fnmξ c
nm + [(b,−�) ↔ (c,�)]

= iq3

2h̄V

∑
k,m,n
m �=n

(
js,a;b
mn − js,a

mn�
b
mn

ωmn

)
fnm

ωmn
d�

nmξ c
nm + [(b,−�) ↔ (c,�)]. (B37)

In the second equality, we used partial integration. We also defined

�b
mn ≡ vb

mm − vb
nn (B38)

and the generalized derivative

js,a;b
mn ≡ ∂b js,a

mn − i js,a
mn

(
ξ b

mm − ξ b
nn

)
. (B39)

Note that the generalized derivative js,a;b
mn is an actual derivative with respect to the crystal momentum, while the spin-velocity

derivative ds,b;a
mn is not.

Last, let us consider the remaining component of σ s,a;bc
(ee) with m �= n, which we denote as σ s,a;bc

(ee,od). In the DC limit, σ s,a;bc
(ee,od)

becomes

σ s,a;bc
(ee,od) = q3

2V

∑
k,m,n,p

m �=n,p�=m,n

js,a
mn

1

h̄ωmn

(
d�

pmξ b
npξ

c
pm fmp − d�

npξ
b
pmξ c

np fpn
) + [(b,−�) ↔ (c,�)]

= q3

2h̄V

∑
k,m,n

∑
p

p�=m,n

(
js,a
mpξ

b
pn

ωmp
+ js,a

pn ξ b
mp

ωnp

)
fmnd�

nmξ c
nm + [(b,−�) ↔ (c,�)]. (B40)

In the second equality, we changed the dummy indices (m, n, p) to (m, p, n) and (p, n, m) for the first and second term in the
parentheses, respectively.

To add Eq. (B37) and Eq. (B40), we use the following formula:

js,a;b
mn

ωmn
− js,a

mn

�b
mn

ω2
mn

+ i
∑

p
p�=m,n

(
js,a
mpξ

b
pn

ωmp
+ js,a

pn ξ b
mp

ωnp

)

= js,ab
mn

ωmn
− i

ωmn

∑
p�=n

js,a
mpξ

b
pn + i

ωmn

∑
p�=m

ξ b
mp js,a

pn − js,a
mn

�b
mn

ω2
mn

+ i
∑

p�=m,n

js,a
mpξ

b
pn

ωmp
+ i

∑
p�=m,n

js,a
pn ξ b

mp

ωnp

= js,ab
mn

ωmn
− i

� js,a
mnξ

b
mn

ωmn
− js,a

mn�
b
mn

ω2
mn

+ i

ωmn

∑
p�=m,n

js,a
mpξ

b
pnωpn

ωmp
+ i

ωmn

∑
p�=m,n

js,a
pn ξ b

mpωmp

ωnp

= js,ab
mn

ωmn
− � js,a

mnv
b
mn

ω2
mn

− js,a
mn�

b
mn

ω2
mn

+ 1

ωmn

∑
p�=m,n

js,a
mpv

b
pn

ωmp
+ 1

ωmn

∑
p�=m,n

vb
mp js,a

pn

ωnp
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= 1

ωmn

(
js,ab
mn +

∑
p�=m

js,a
mpv

b
pn

ωmp
+

∑
p�=n

vb
mp js,a

pn

ωnp

)
− � js,a

mnv
b
mn

ω2
mn

= ds,b;a
mn

ωmn
− � js,a

mnv
b
mn

ω2
mn

. (B41)

From Eqs. (B37), (B40), and (B41), we find

σ s,a;bc
(ie) + σ s,a;bc

(ee,od) = iq3

2h̄V

∑
k,m,n
m �=n

⎡⎢⎣ js,a;b
mn

ωmn
− js,a

mn

�b
mn

ω2
mn

+ i
∑

c
c �=a,b

(
js,a
mpξ

b
pn

ωmp
+ js,a

pn ξ b
mp

ωnp

)⎤⎥⎦
× fnmd�

nmξ c
nm + [(b,−�) ↔ (c,�)]

= iq3

2h̄V

∑
k,m,n
m �=n

(
ds,b;a

mn

ωmn
− � js,a

mnv
b
mn

ω2
mn

)
fnmd�

nmξ c
nm + [(b,−�) ↔ (c,�)]. (B42)

Now, let us separate d�
nm into the delta function part and the principal value part:

d�
nm = 1

h̄� + i0+ + h̄ωmn
= −iπδ(h̄� + h̄ωmn) + P

1

h̄(� + ωmn)
. (B43)

The delta function part is the shift current:

σ s,a;bc
shift = iπq3

2h̄2V

∑
k,m,n
m �=n

(
ds,b;a

mn vc
nm

ω2
mn

− � js,a
mnv

b
mnv

c
nm

ω3
mn

)
fnmδ(� + ωmn) + [(b,−�) ↔ (c,�)]

= iπq3

2h̄2V �2

∑
k,m,n

(
ds,b;a

mn vc
nm − ds,c;a

nm vb
mn

)
fnmδ(� + ωmn). (B44)

The principal value part is

σ s,a;bc
rect.,2 = q3

2h̄2V

∑
k,m,n
m �=n

fmn

(
ds,b;a

mn vc
nm

ω2
mn

− � js,a
mnv

b
mnv

c
nm

ω3
mn

)
P

1

� + ωmn
+ [(b,−�) ↔ (c,�)]

= q3

2h̄2V

∑
k,m,n
m �=n

fmn

(
ds,b;a

mn vc
nm + ds,c;a

nm vb
mn

ω2
mn

− 2� js,a
mnv

b
mnv

c
nm

ω3
mn

)
P

1

� + ωmn
. (B45)

Adding Eq. (B36) and Eq. (B45), we obtain the rectification current:

σ s,a;bc
rect. = σ s,a;bc

rect.,1 + σ s,a;bc
rect.,2

= q3

2h̄2V

∑
k,m,n
m �=n

fmn

[(
ds,b;a

mn vc
nm + ds,c;a

nm vb
mn − 2� js,a

mnv
b
mnv

c
nm

ωmn

)
1

ω2
mn

P
1

� + ωmn
− � js,a

mnv
b
mnv

c
nm

ω2
mn(� + ωmn)2

]
. (B46)

APPENDIX C: SYMMETRY ANALYSIS OF
PHOTOCONDUCTIVITY

In this section, we study the symmetry properties of the
second-order photoconductivity tensors. The real symmetric
(imaginary antisymmetric) component of the photoconduc-
tivity tensor, Re(σ s,a;bc + σ s,a;cb) [Im(σ s,a;bc − σ s,a;cb)] cor-
responds to the generation of a real-valued current under
linearly (circularly) polarized light. In other words, the pho-
toconductivity tensor for linearly (circularly) polarized light

is symmetric (antisymmetric) with respect to the exchange of
indices b and c. For later use, we define

σ s,a;bc
L = 1

2 Re(σ s,a;bc + σ s,a;cb) (C1)

and

σ s,a;bc
C = 1

2 Im(σ s,a;bc − σ s,a;cb). (C2)

The symmetry of the charge shift and injection conductivi-
ties were studied in Ref. [24]. Here, we complete the analysis
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by studying the symmetry of the Drude, BCD, and rectifica-
tion conductivities as well as the spin photoconductivities. Let
us begin with the charge case.

Following Ref. [24], we first study how the matrix el-
ements transform under a point-group symmetry operation
and the time-reversal operation. We do not assume that the
system is invariant under the symmetry operations. Instead,
we study the relationship between the matrix element and con-
ductivity tensors of the transformed and the original systems.
We denote the quantities of the transformed system with a
prime.

First, let us consider a point-group symmetry operation M̂
whose real 3 × 3 transformation matrix is M. We denote the
Hamiltonian of the original and transformed systems by H0

and H ′
0 = M̂H0 M̂−1, respectively. Also, H0(k) = exp(−ik ·

r)H0 exp(ik · r) and H ′
0(k) = exp(−ik · r)H ′

0 exp(ik · r). The
periodic parts of the Bloch states of the two systems satisfy
|u′

nk〉 = M̂|unM−1k〉. The eigenvalues satisfy ε′
nk = εnM−1k.

The velocity matrix element transforms as a vector:

v′a
mn(k) = h̄−1〈u′

mk|∂aH ′
0(k)|u′

nk〉
= h̄−1〈M̂umM−1k|∂a[exp(−ik · r)

× M̂H0M̂−1 exp(ik · r)]|M̂unM−1k〉
= h̄−1〈M̂umM−1k|M̂ ∂a[exp(−ik · Mr)

× H0 exp(ik · Mr)]M̂−1|M̂unM−1k〉
= h̄−1〈M̂umM−1k|M̂ ∂a

× [H0(M−1k)]M̂−1|M̂unM−1k〉

= ∂ (M−1k)b

∂ka
h̄−1〈umM−1k|(∂bH0)

× (M−1k)|unM−1k〉
=M−1

ba vb
mn(M−1k)

=Mab vb
mn(M−1k). (C3)

The derivative operation also transforms as a vector:

(∂a f )′(k) = ∂a f (M−1k) = ∂ (M−1k)b

∂ka
(∂b f )(M−1k)

= Mab(∂b f )(M−1k). (C4)

Similarly, one can easily show that the generalized derivative
d0,b;a

mn transforms as a rank-two tensor,

d ′ 0,b′;a′
mn (k) = Ma′aMb′bd0,b;a

mn (M−1k), (C5)

and that each of all the charge photoconductivity tensors
(Drude, BCD, shift, injection, and rectification conductivity
tensors) transforms under M̂ as

σ ′ 0,a′;b′c′ = Ma′aMb′bMc′cσ
0,a;bc. (C6)

Thus, the second-order charge photoconductivity σ 0,a;bc is a
rank-three tensor.

Next, let us consider the time-reversal operation T̂ . The
periodic parts of the Bloch states of the transformed and the

original systems satisfy

|u′
nk〉 = T̂ |un−k〉. (C7)

The velocity matrix element transforms as

v′a
mn(k) = h̄−1〈u′

mk|∂aH ′
0(k)|u′

nk〉
= h̄−1〈T̂ um−k|∂a[T̂ H0(−k)T̂ −1]|T̂ un−k〉
= h̄−1〈T̂ um−k|T̂ ∂a[H0(−k)]un−k〉
= h̄−1〈∂a[H0(−k)]un−k|um−k〉
= − h̄−1〈(∂aH0)(−k)un−k|um−k〉
= − va

nm(−k). (C8)

In the fourth equality, we used 〈T̂ u|T̂ v〉 = 〈v|u〉. The deriva-
tive operation also transforms as

(∂a f )′(k) = ∂a f (−k) = −(∂a f )(−k). (C9)

The generalized derivative d0,b;a
mn transforms as

d ′ 0,b;a
mn (k) = j0,ab

nm (−k) +
∑
p�=m

va
pm(−k)vb

np(−k)

ωmp(−k)

+
∑
p�=n

vb
pm(−k)va

np(−k)

ωnp(−k)

= d0,b;a
nm (−k). (C10)

Now, using the symmetry properties of the matrix ele-
ments, we study the transformation of charge conductivity
tensors under T̂ .

1. Drude

Equation (8) shows that the charge Drude conductivity is
always symmetric in the exchange of b and c. Hence, we find

σ 0,a;bc
Drude,C = 1

2 Im
(
σ 0,a;bc

Drude − σ 0,a;cb
Drude

) = 0. (C11)

Further from Eq. (8), one can easily show that the charge
Drude conductivity transforms as

σ ′ 0,a;bc
Drude = −σ 0,a;bc

Drude . (C12)

The (−1) factor shows that the charge Drude conduc-
tivity is odd under T̂ . Thus, in a T̂ -symmetric system,
the charge Drude conductivity is zero because σ 0,a;bc

Drude =
σ ′ 0,a;bc

Drude = −σ 0,a;bc
Drude holds.

One can use j0,a
mm = va

mm = ∂aεm/h̄ and partial integration
to rewrite the charge Drude conductivity as follows:

σ 0,a;bc
Drude = q3

2h̄2V �2

∑
k,m

j0,a
mm∂b∂c fm

= q3

2h̄3V �2

∑
k,m

(∂aεm)(∂b∂c fm)

= q3

2h̄3V �2

∑
k,m

(∂a∂b∂cεm) fm. (C13)
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Hence, the charge Drude current is symmetric under the per-
mutation of all three indices.

2. Berry curvature dipole

For the BCD current, Eq. (9) shows that it is always anti-
symmetric in the exchange of b and c. Hence, we find

σ 0,a;bc
BCD,L = 1

2 Re
(
σ 0,a;bc

BCD + σ 0,a;cb
BCD

) = 0. (C14)

The summand of Eq. (9) transforms under T̂ as[
Im

(
j0,a
mn vb

nm

)
ω2

mn

(∂c fm)

]′
(k)

=
[

Im
(

j0,a
nm vb

mn

)
ω2

mn

(−∂c fm)

]
(−k)

=
[

Im
(

j0,a
mn vb

nm

)
ω2

mn

(∂c fm)

]
(−k). (C15)

Hereafter, we use the notation that the arguments k and −k as
well as the prime apply to all matrix elements inside the outer-
most parentheses on its left. In the last equality of Eq. (C15),
we used the Hermiticity of the current operators. Thus, the
charge BCD conductivity is symmetric under T̂ :

σ ′ 0,a;bc
BCD = σ 0,a;bc

BCD . (C16)

3. Shift

Next, let us consider the shift conductivity. Using Eqs. (C8)
and (C10)), we find that the matrix element in Eq. (11) trans-
forms as (

d0,b;a
mn vc

nm − d0,c;a
nm vb

mn

)′
(k)

= −(
d0,b;a

nm vc
mn − d0,c;a

mn vb
nm

)
(−k)

= (
d0,c;a

mn vb
nm − d0,b;a

nm vc
mn

)
(−k). (C17)

Note that the time reversal exchanges the field direction in-
dices b and c without a sign flip. Thus, the charge shift
conductivity transforms under T̂ as

σ ′ 0,a;cb
shift = σ 0,a;bc

shift . (C18)

The shift conductivity for linearly polarized light transforms
under T̂ as

σ ′ 0,a;bc
shift,L = 1

2 Re
(
σ ′ 0,a;bc

shift + σ ′ 0,a;cb
shift

)
= 1

2 Re
(
σ 0,a;cb

shift + σ 0,a;bc
shift

) = σ 0,a;bc
shift,L, (C19)

while that for circularly polarized light transforms as

σ ′ 0,a;bc
shift,C = 1

2 Im
(
σ ′ 0,a;bc

shift − σ ′ 0,a;cb
shift

)
= 1

2 Im
(
σ 0,a;cb

shift − σ 0,a;bc
shift

) = −σ 0,a;bc
shift,C. (C20)

The shift conductivity for linearly (circularly) polarized light
is even (odd) under time reversal.

4. Injection

Next, let us consider the injection conductivity. Using
Eqs. (C8), we find that the matrix elements in Eq. (10) trans-

form under T̂ as(
fmn� j0,a

mn vb
mnv

c
nm

)′
(k) = −(

fmn� j0,a
mn vb

nmvc
mn

)
(−k). (C21)

The time reversal exchanges the field direction indices b and
c and gives a sign flip. Thus, the rectification conductivity
transforms under T̂ as

σ ′ 0,a;cb
inj. = −σ 0,a;bc

inj. . (C22)

The injection conductivity for linearly polarized light trans-
forms under T̂ as

σ ′ 0,a;bc
inj.,L = 1

2 Re
(
σ ′ 0,a;bc

inj. + σ ′ 0,a;cb
inj.

)
= − 1

2 Re
(
σ 0,a;cb

inj. + σ 0,a;bc
inj.

) = −σ 0,a;bc
inj.,L , (C23)

while that for circularly polarized light transforms as

σ ′ 0,a;bc
inj.,C = 1

2 Im
(
σ ′ 0,a;bc

inj. − σ ′ 0,a;cb
inj.

)
= − 1

2 Im
(
σ 0,a;cb

inj. − σ 0,a;bc
inj.

) = σ 0,a;bc
inj.,C . (C24)

Note the sign difference between Eqs. (C19) and (C20) and
Eqs. (C23) and (C24). The injection conductivity for linearly
(circularly) polarized light is odd (even) under time reversal.

5. Rectification

Finally, let us consider the rectification conductivity. Using
Eqs. (C8) and (C10), one can show the term in the inner
parentheses of Eq. (12) transforms under T̂ as(

d0,b;a
mn vc

nm + d0,c;a
nm vb

mn − 2� j0,a
mn vb

mnv
c
nm

ωmn

)′
(k)

= −
(

d0,b;a
nm vc

mn + d0,c;a
mn vb

nm − 2� j0,a
mn vb

nmvc
mn

ωmn

)
(−k).

(C25)

The time reversal exchanges the field direction indices b and
c and gives a sign flip. Thus, the rectification conductivity
transforms under T̂ as

σ ′ 0,a;cb
rect. = −σ 0,a;bc

rect. , (C26)

which has the same form as Eq. (C22). Thus, the symmetry
property of the rectification conductivity is identical to that of
the injection conductivity. This result completes the symmetry
analysis of second-order charge photocurrents.

6. Spin shift vector

Now, let us discuss the symmetry transformation property
of the spin shift vector, which we have proposed as a key
quantity that describes the spin shift and rectification currents.
Note that in the shift vector R̃s,E ;a

mn , one should not treat the
light polarization E as a tensor index because the shift vector
does not transform like a tensor for that index [see the second
term of Eq. (20)]. Hence, we treat E as an external parameter
that is transformed together with the system.

First, let us consider a rotation operation M̂, whose real
3 × 3 transformation matrix is M. The light polarization
vector transforms as E ′a = MabEb. If an operator Oa(k)
transforms as O′a

mn(k) = MabOb
mn(M−1k) under a rotation
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FIG. 6. Spin polarization of the subgap pure spin current along
the z direction. The arrows indicate the in-plane spin polarization
of the current. The Sz component is zero due to symmetry. Light
frequency is � = 0.30 eV. The scale of the arrow is smaller than in
Fig. 4.

M, we find that OE
mn transforms as(

OE
mn

)′
(k) = O′a

mn(k)E ′a = MabMacOb
mn(M−1k)Ec

= δb,cOb
mn(M−1k)Ec = OE

mn(M−1k). (C27)

In other words, the inner product of two vector quantities
[Oa

mn(k) and Ea] transforms as a scalar. Then, one finds that
the spin shift vector [Eq. (20)] transforms as

(
R̃s′,E ;a′

mn

)′
(k) = i

(
ds′,E ;a′

mn

vE
mn

− � js′,a′
mn

ωmn

)′
(k)

= iMs′sMa′a

(
ds,E ;a

mn

vE
mn

− � js,a
mn

ωmn

)
(M−1k)

= Ms′sMa′aR̃s,E ;a
mn (M−1k). (C28)

For an improper rotation, the spin shift vector gets an addi-
tional −1 factor because the spin-current operator is an axial
vector.

Next, for the time-reversal operation, the light polarization
transforms as E ′a = (Ea)∗. If Oa transforms under time rever-

sal as O′a
mn(k) = ±[Oa

mn(−k)]∗, OE transforms as(
OE

mn

)′
(k) = O′a

mn(k)E ′a = ±[
Oa

mn(−k)
]∗

(Ea)∗

= ±[
OE

mn(−k)
]∗

. (C29)

Then, for s �= 0 we find

(
R̃s,E ;a

mn

)′
(k) =

[
i

(
ds,E ;a

mn

vE
mn

− � js,a
mn

ωmn

)]′
(k)

= i

[(
ds,E ;a

mn

vE
mn

− � js,a
mn

ωmn

)
(−k)

]∗

= −(
R̃s,E ;a

mn (−k)
)∗

. (C30)

In the second equality, we included the −1 factor that occurs
because the spin-current operator is odd under time reversal.
For the charge case, one finds(

R̃0,E ;a
mn

)′
(k) = (

R̃0,E ;a
mn (−k)

)∗
. (C31)

APPENDIX D: COMPUTATAIONAL DETAILS

1. Details of density functional theory calculations

We used the QUANTUM ESPRESSO package [53] to perform
density functional theory calculations. For the self-consistent
field calculation, we used an unshifted 16 × 16 × 12 k-point
grid, a kinetic energy cutoff of 80 Ry, fully relativistic
ONCV pseudopotentials [54] taken from the PseudoDojo
library (v0.4) [55], and the Perdew-Burke-Ernzerhof (PBE)
exchange-correlation functional [56]. The lattice parameters
and atomic coordinates were optimized until the stresses and
forces were less than 1.0 × 10−6 Ry/bohr3 and 6.0 × 10−4

Ry/bohr, respectively. The optimized lattice parameters
were a = 4.44 Å and c = 7.39 Å, consistent with those of
Ref. [57]. Although the PBE functional overestimates lattice
parameters compared to the experimental values [36], it gives
band-gap and Rashba splitting in reasonable agreement with
experiment [57].

FIG. 7. Charge shift current calculated with and without the diagonal tight-binding approximation (diag. TBA).

045201-15



JAE-MO LIHM AND CHEOL-HWAN PARK PHYSICAL REVIEW B 105, 045201 (2022)

FIG. 8. Spin Sz injection current calculated with and without the diagonal tight-binding approximation.

We used the WANNIER90 package [58] to construct the
Wannier-function-based tight-binding model. The Brillouin
zone was sampled with an 8 × 8 × 6 grid for Wannierization.
We construct 18 Wannier functions using the atomic p orbitals
as initial guesses. Disentanglement was not used since the
target bands are isolated from other bands. To preserve the
crystal symmetries, we did not perform the maximal local-
ization step. The centers of the Wannier functions for the

tight-binding model were calculated using the translationally
invariant formula: Eq. (31) of Ref. [37].

2. Details of photoconductivity calculations

We used a modified version of WANNIER90 [58] for the
Wannier-interpolation calculation of the photoconductivity.
We sampled the Brillouin zone using a grid shifted by half the
grid spacing along all axes. Using the shifted grid speeded up

FIG. 9. Convergence of photoconductivity with respect to the size of the k-point grid. (a)–(c) Charge and (d)–(f) spin Sz photoconductivity
calculated with an Nk × Nk × Nk k-point grid. The plotted photoconductivity tensor components are those plotted in Figs. 3(b)–3(g).

045201-16



COMPREHENSIVE THEORY OF SECOND-ORDER SPIN … PHYSICAL REVIEW B 105, 045201 (2022)

FIG. 10. Convergence of photoconductivity with respect to η. (a)–(c) Charge and (d)–(f) spin Sz photoconductivity calculated with η = 1
and 0.1 meV. The plotted photoconductivity tensor components are those plotted in Figs. 3(b)–3(g).

the convergence. The photoconductivity was calculated using
a dense k-point grid of 800 × 800 × 800 to obtain converged
values. A fixed numerical smearing of 20 meV was applied
to the delta functions and principal values involving the en-
ergy difference between the initial and final states. A detailed
convergence study is shown in Figs. 9–11. The Fermi-Dirac
occupation was calculated at zero temperature.

To avoid numerical problems related to near-degenerate
states, we regularized the denominator including intermediate
states, such as 1/ωnp in Eq. (5), to Re[1/(ωnp + iη)] [59,60].
The broadening parameter was set to η = 1 meV unless noted
otherwise.

FIG. 11. Convergence of charge rectification conductivity. The
maximum absolute value is calculated in the 0–2 eV window. The
size of the k-point grid is Nk × Nk × Nk . The lines are a guide to
the eye.

We use the diagonal tight-binding approximation (TBA)
within which the position matrix elements between different
Wannier functions are neglected [60]. This approximation
is needed because using the existing Wannier interpolation
methods, it is theoretically impossible to calculate the spin-
velocity derivative [Eq. (5)] without erroneously truncating
the summation over bands. By using the diagonal tight-
binding approximation, the sum rules are modified to include
only a finite number of bands [60] and are satisfied without
any truncation error.

The accuracy of the diagonal tight-binding approximation
can be tested by calculating the charge shift current and charge
and spin injection currents without the approximation. Such a
calculation is possible because the injection current [Eq. (10)]
does not involve the spin-velocity derivative, and a truncation-
error-free expression exists for the charge shift current [60].
In Figs. 7 and 8, we show that the diagonal tight-binding
approximation changes the photoconductivity only slightly.

APPENDIX E: ADDITIONAL COMPUTATIONAL RESULTS

Figure 5 shows the spin Sx and Sz photoconductivity for
currents flowing along the x direction.

Figure 6 shows the spin polarization of the subgap spin
conductivity for currents flowing along the z direction as a
function of light polarization angles. Note that the size of the
spin conductivity shown in Fig. 6 is an order of magnitude
smaller than that of Fig. 4. The spin photocurrent flowing
along the z direction in BiTeI is small because the correspond-
ing group velocity of the carriers is small in BiTeI, a layered
compound.
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In Figs. 7 and 8, we show the charge shift and spin
injection currents calculated with and without the diago-
nal tight-binding approximation. We find that the diagonal
tight-binding approximation changes the photocurrent only
slightly.

Figures 9–11 show the convergence of the photoconduc-
tivity with respect to the k-point grid size. In Fig. 9, we

find that all photoconductivity elements are already con-
verged at a 400 × 400 × 400 k-point grid. Figure 10 shows
that all photoconductivity elements are converged with re-
spect to η at η = 1 meV. In Fig. 11, we show that the
charge rectification current converges to zero in the limit
of an infinitely fine k-point grid as η → 0, as expected in
insulators.
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