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Length scale formation in the Landau levels of quasicrystals
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Exotic tiling patterns of quasicrystals have motivated extensive studies of quantum phenomena such as
critical states and phasons. Nevertheless, a systematic understanding of the Landau levels of quasicrystals in
the presence of the magnetic field has not been established yet. One of the main obstacles is the complication of
the quasiperiodic tilings without periodic length scales, thus it has been thought that the system cannot possess
any universal features of the Landau levels. In this paper, contrary to these assertions, we develop a generic theory
of the Landau levels for quasicrystals. Focusing on two-dimensional quasicrystals with rotational symmetries,
we highlight that quasiperiodic tilings induce anomalous Landau levels where electrons are localized near
the rotational symmetry centers. Interestingly, the localization length of these Landau levels has a universal
dependence on n for quasicrystals with n-fold rotational symmetry. Furthermore, macroscopically degenerate
zero-energy Landau levels are present due to the chiral symmetry of the rhombic tilings. In this case, each
Landau level forms an independent island where electrons are trapped at given fields, but with field control, the
interference between the islands gives rise to an abrupt change in the local density of states. Our work provides
a general scheme to understand the electron localization behavior of the Landau levels in quasicrystals.
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I. INTRODUCTION

Quasicrystals (QCs), long-range crystalline order without
translational symmetry, motivate the intensive search for their
unique physical phenomena [1–14]. Of particular interest is
the unique rotational symmetries that are forbidden in a con-
ventional crystalline solid. Whereas crystalline systems in
two dimensions only permit two-, three-, four-, and sixfold
rotational symmetries, quasicrystals can have arbitrary n-fold
rotational symmetry at the cost of losing the lattice transla-
tion symmetry. Although the lack of translational symmetry
invalidates applications of the conventional Bloch theorem,
alternatively, interesting wave-function properties that are not
observable in conventional crystalline systems have been in-
vestigated [12,15]. Along with this, unconventional transport
properties and magnetic responses have been experimentally
observed in these systems. In addition, exotic magnetism and
superconductivity have been subsequently observed in these
quasicrystalline systems [16–24].

Quasicrystals in the presence of an external magnetic field
can exhibit highly nontrivial Landau levels (LLs) since the
wave functions cannot be described by the competition be-
tween the Fermi wavelength and the magnetic lengths. In
this paper, we study the electron localization properties of
the LL in general n-fold rotational symmetric quasicrystals
with rhombic tilings. We find that the Aharonov-Bohm-
type destructive interference of the LL leads to strictly
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localized states of the electron wave functions. This phe-
nomenon has been similarly studied in the context of the
Aharonov-Bohm cage in crystalline systems [25,26]. How-
ever, for the quasiperiodic case, exotic tiling patterns make
a unique formation of islands for electron localization and
possible interference between the islands via control of the
external magnetic field.

Our key results show that the LL wave functions for a
vertex model on rotational symmetric QCs with rhombic tiling
are strictly localized [31,32] within a certain radius lk at the
rotation centers of the QCs as shown in Fig. 1. This radius
lk is only dependent on n for the n-fold rotational symmetric
QCs as

lk = l
sin π (k + 1)/n

sin π/n
, (1)

where l is the unit length of the rhombus of the QC. k is an
integer which labels distinct localization lengths and magnetic
fluxes. Depending on the order of rotations n, the number
of localization lengths is uniquely determined as shown in
Figs. 1(a)–1(c) and Table I. The well-known Penrose tiling
and Ammann-Beenker tiling also belong to this category with
n = 5 and n = 8, respectively, as shown in Figs. 1(a) and
1(b). Moreover, we show that the effective chiral symmetry
of the rhombic tiling of QCs ensures macroscopically degen-
erate zero-energy LLs, where strictly localized electrons form
independent islands near the rotational symmetric centers of
QCs. With magnetic field control, interference between these
islands occurs, resulting in an abrupt change in the local
density of states [see Figs. 1(d) and 1(e)].
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FIG. 1. Schematic figure of the localization radius for the Landau
levels emerging in (a) Penrose tiling (n = 5), (b) Ammann-Beenker
tiling (n = 8), and (c) general n-fold rotational symmetric qua-
sicrystals with rhombic tiling. The Landau levels for strict electron
localization with localization radius lk emerge at the flux �k . (d) The
wave functions of the localized Landau levels arise near the local
rotation symmetry centers of the quasicrystals. Hence they form
independent islands, illustrated by the circles. (e) When the flux devi-
ates from �k , the interference between localized islands enhances the
localization. The different colored circles imply different amplitudes
of the wave functions on each island.

II. GENERIC QUASICRYSTALS

We start our discussion by illustrating generic n-fold rota-
tional symmetric QCs with rhombic tiling. The tight-binding
model is comprised of uniform hopping terms

∑
i, j t |i〉〈 j|,

where i and j indicate the two sites connected by the edge of
the rhombus in the tiling. Figure 2(b) shows the typical n-fold
rotation symmetry centers of the tiling with the classifications
of the local sites. Here, X0-class sites are defined as the local
rotation symmetry centers. Xi-class sites with i = 1, 2, . . . are
classified in order of the distance from X0-class sites [see
Fig. 2(b)]. We can also classify different types of rhombuses.
An R1-type rhombus is a rhombus surrounding the X0-class
sites and an Rk-type rhombus with k > 1 is defined as a
rhombus in order of the distance from the X0-class sites. Now,
we consider the application of a uniform magnetic field per-
pendicular to a two-dimensional plane by applying the Peierls
substitution. It turns out that, at certain fluxes �k defined in
Eq. (3), strictly localized LLs emerge where the wave func-
tions perfectly vanish beyond the Xk+1-class sites.

Such a strict localization of the LLs can be understood
by considering Aharonov-Bohm interference at the rotation
symmetry centers. Let us consider a wave function initially
localized only at the X0-class sites. Then, under the time
evolution, the wave function propagates along the paths that

FIG. 2. (a) Bipartition of the sites in a rhombus. Each rhombus in
the QCs consists of four sites, which one can separate into two groups
Gα and Gβ . In the tight-binding model, the sites in Gα can only hop to
the sites in Gβ and vice versa. (b) Classification of the local site and
the rhombus in a generic n-fold rotational symmetric QC. X0-class
sites are defined as the local rotational symmetric centers. Xi-class
sites are ith distant sites from the rotation symmetric centers. We
define an Rk-type rhombus as a kth distant rhombus from the rotation
symmetry center. (c) The paths connecting in between the X0-class
site and X4-class site exist in pairs (red and blue arrow lines). The
combination of those two paths encircles an R1, R2, R3-type rhombus
exactly once. (d) Loop consisting of the class X1 and X2 sites (black
arrow lines).

connect the X0-class sites and Xk-class sites. Their paths exist
in pairs such that the combination of the two paths encircles
different types of rhombuses exactly once [for example, the
red and blue lines in Fig. 2(c) encircle an R1, R2, . . . , Rk−1-
type rhombus]. Therefore, the perfect destructive interference
between the pair of the paths occurs when the flux �k is given
as

�k = (2N + 1)π
1∑k

i=1 Ai

(2)

= (2N + 1)π
sin π

n

l2 sin k π
n sin π

n (k + 1)
.

Here, Ai is the area of an Ri-type rhombus and k is a positive
integer smaller than n−2

2 (see Supplemental Material Secs. 1
and 2 for the detailed calculations [33]). For the flux �k , the
electrons are perfectly localized in between the X0-class sites
and Xk-class sites with the localization radius lk defined in
Eq. (1).

One can use this analysis to find the general condition
for the destructive interference for any k values. Table I

TABLE I. Summary of the number of the possible localization lengths lk as a function of the order of rotations n. For example, in eightfold
(n = 8) rotational symmetric Ammann-Beenker tiling, the two localization lengths l1 and l2 exist. For general n, the number of possible
localization lengths is (n−3)

2 ( n
2 − 2) when n is an odd (even) integer.

Penrose [27] Ammann-Beenker [28] Unodecagonal [29,30] Heptadecagonal [29,30] General

Order of rotations (n) 5 8 11 17 n
Number of localization lengths 1 2 4 7 n−3

2 ( n
2 − 2)
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summarizes the number of possible localization lengths for
several examples of well-known QCs. For larger n, there are
more localization length scales. For example, we find that the
Penrose tiling (n = 5) only has a single localization length,
but for the eightfold (n = 8) rotational symmetric Ammann-
Beenker tiling, two different localization radii l1 and l2 exist
[see Figs. 1(a) and 1(b)]. For unodecagonal (n = 11) and
heptadecagonal (n = 17) rhombic QCs, on the other hand,
four and seven distinct localization length scales exist, respec-
tively. In generic n-fold rotational symmetry, we prove that an
n-fold rotational symmetric QC can host (n−3)

2 ( n
2 − 2), when

n is an odd (even) integer (see Supplemental Material Sec. 3
for details [33]). According to this result, it is worthwhile to
point out that, for two-dimensional crystalline systems, n � 6
can only have a single lk , whereas for general QCs, there can
be multiple localization length scales lk .

With a given flux �k the energy levels of the strictly lo-
calized LLs show very interesting characteristics. Regardless
of the specific values of �k , there are fixed energy levels.
In particular, LLs with the localization length l1 occur at
E1 = ±|t |√n or E2 = 0 (see Supplemental Material Sec. 4
for the details [33]). For �2 with l2, a zero-energy LL with
E2 = 0 is present [see Fig. 3(a)]. It is important to note that
the emergence of this zero-energy LL is not accidental but
originates from the chiral symmetry of the QCs, which will
be discussed in the next section.

To exemplify the above general argument, we consider
the case of eightfold rotational symmetric Ammann-Beenker
(AB) tiling. (Without loss of generality, the same analysis
can be applicable for general n-fold rotational symmetric
QCs.) For the wave-function propagation from the X0-class
site to the X2-class site, there exist two paths: X0 → X1 →
X2 and X0 → X ′

1 → X2. Thus, the amplitude of the wave
function at the X2-class site is determined by the interfer-
ence effect between the two paths as |ψ (X2)| = t |ψ (X0)|{1 +
exp[il2 sin(2π/8)�]}, where � is the flux per unit area and l
is the length of the edge of a rhombus. The wave function at
the X2-class sites vanishes when � = �1 ≡ (2N+1)π

l2 sin(2π/8) , where
N ∈ Z. As a result, the LL is strictly localized in the radius
l1 = 2l cos π

8 , which is one of the simple examples of Eq. (1)
for n = 8. The wave functions of the LLs in the AB tiling
can be confined within the larger distance, in between the
X0-class sites and X3-class sites. By calculating all the possible
paths that connect from the X0-class site to X3-class sites, we
find that the LLs are strictly localized within the radius l2 =
l (1 + 2 cos 2π

8 ) at the flux, �2 ≡ (2N+1)π
l2 sin(2π/8)

1
(1+2 cos 2π

8 )
, where

N ∈ Z.

III. ZERO-ENERGY LANDAU LEVELS

The effective chiral symmetry ensures a particle-hole sym-
metric energy spectrum of generic n-fold rotational symmetric
QCs with rhombic tiling. In rhombic tiling, each rhombus
consists of four sites, as shown in Fig. 2(a). In the tight-
binding model, one can group the four sites into two distinct
groups, each site of which can only hop to sites in the other
group. We call the two groups Gα and Gβ , respectively, and
the tight-binding model Hamiltonian can be written in the

FIG. 3. (a) Energy levels of the LLs at � = �2. We find the zero-
energy strictly localized LLs with localization length l2 (red lines).
(b) The zero-energy GIPR at � = �2 as a function of the system
size. The strictly localized LLs have a fractal dimension D2 = 1,
indicating that the wave functions are extended. For each zero-energy
LL, it forms an island near the rotation symmetry center and the
number of such islands is macroscopically increasing with system
size. (d) GIPR as a function of the magnetic flux. With magnetic
flux change, the GIPR increases, indicating the enhancement of the
localization. (c), (e) The real-space distribution of the zero-energy
LDOS at (c) ��/�2 = 0 and (e) ��/�2 = 10−3. (c) The LDOS is
strictly localized at the X3-class sites. Each rotation symmetry center
has the same LDOS amplitude. (e) When the flux is varied, strict
localization fails. Interference between the islands occurs and the
wave function has different LDOS amplitudes.

following form as

Hbip =
∑

iα∈Gα, jβ∈Gβ

tiα jβ |iα〉〈 jβ | + t∗
iα jβ | jβ〉〈iα|, (3)

where tiα jβ is the hopping term that connects between the
iα site in Gα and the jβ site in Gβ . In this form of the
Hamiltonian, the effective chiral symmetry operator � is ex-
actly defined as � ≡ ∑

iα∈Gα
|iα〉〈iα| − ∑

iβ∈Gβ
|iβ〉〈iβ |. The

Hamiltonian Hbip preserves the chiral symmetry by satisfying
the following condition, {�, H} = 0. For any eigenstate |ψE 〉
with energy E , we can define the eigenstate �|ψE 〉 with the
negative energy −E since it satisfies H�|ψE 〉 = −�H |ψE 〉 =
−E�|ψE 〉. As a result, the energy spectrum of the LLs in the
QCs with rhombic tiling is particle-hole symmetric.

Furthermore, chiral symmetry ensures the existence of
zero-energy LLs at any lk . Here, we only provide the sketch
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of the proof for k = 2 and the rigorous proof for the general
values of k is provided in Supplemental Material Sec. 4 [33].
The Schrödinger equation for strictly localized LLs with the
localization length l2 can be written as follows,

⎛
⎝

0 T †
01 0

T01 0 T †
12

0 T12 0

⎞
⎠

⎛
⎝

ψX0

ψX1

ψX2

⎞
⎠ = E

⎛
⎝

ψX0

ψX1

ψX2

⎞
⎠, (4)

where TIJ represents the hopping matrix from the I-class sites
to J-class sites. ψXi indicates the vector of the wave functions
at the Xi-class sites. The chiral symmetry constrains ψX1 =
0 but ψX0 
= 0 for the zero-energy wave function. Then, the
linear equations in Eq. (4) host a zero-energy solution if and
only if the matrix T †

12 of the left-hand side is invertible. Using
the standard Gaussian elimination method, we find that the
matrix becomes noninvertible only if the following condition
is satisfied,

1 + (−1)(n−1)eiAloop,2� = 0, (5)

where Aloop,2 is the area of the loop that consists of X1-class
sites and X2-class sites. The above equation is valid only
if �/�1 is a rational number. Since �2/�1 is an irrational
number, the above condition is not satisfied. Therefore, strictly
localized zero-energy LLs exist. For k 
= 2, one can also check
the invertibility using the Gaussian elimination methods.

IV. MACROSCOPIC DEGENERACY

Now let us quantify the localization behavior in a generic
magnetic flux. We calculate the generalized inverse par-
ticipation ratio (GIPR), which is defined as GIPR(ω) ≡∑

i ρ(i, ω)2/[
∑

i ρ(i, ω)]2, where ρ(i, ω) is the local density
of states at the ith site with the energy ω. The dependence
of the system size N characterizes the multifractality of the
wave functions by GIPR(ω) ∝ N−D2 , with the fractal dimen-
sion D2; D2 = 0 corresponds to the localized states, D2 = 1
corresponds to the extended states, and 0 < D2 < 1 indi-
cates the multifractal critical states [34]. Figure 3(b) shows
the calculated GIPR of the AB tiling at zero energy as a
function of the system size. Interestingly, we find that the
fractal dimension of the strictly localized LLs corresponds to
D2 = 1, i.e., the extended states. This indicates that, although
the LLs are strictly localized at the rotation symmetry centers,
the number of such rotation symmetry centers proportionally
increases with the system size. Thus, one can imagine that the
strictly localized zero-energy LLs form an island near each

rotation symmetry center and a macroscopic number of such
islands exist as shown in Fig. 3(c), which is also illustrated in
Fig. 1(d). The emergence of macroscopic LLs is the unique
feature of rotational symmetric QCs.

As the magnetic flux is slightly changed from �2, strict
localization fails, and the wave functions of the LLs extend
beyond each island. Figure 3(d) shows the GIPR as a function
of the magnetic field. By slightly changing the flux � =
�2 + ��, the GIPR rather increases, which indicates the en-
hancement of the localizations, resulting in an abrupt change
in the local density of states (LDOS). Thus, the GIPR has
local minima at � = �2. To understand the enhancement of
the localization, we compare the LDOS at �2 and �2 + ��

[Figs. 3(c) and 3(e)]. Figure 3(c) shows an identical LDOS
amplitude in each rotational symmetric center. This is a con-
sequence of the strict localization of wave functions forming
independent islands with �2. In contrast, Fig. 3(e) shows
that each rotational center has a different LDOS amplitude.
It indicates the onset of interference between the islands that
enhances the GIPR.

V. DISCUSSIONS AND CONCLUSION

To summarize, we theoretically demonstrate anomalous
strictly localized LLs on rotational symmetric QCs with
rhombic tiling. We show that noncrystallographic rotational
symmetries [3] generate multiple strictly localized radii lk .
Furthermore, we show that the chiral symmetry of the rhombic
tiling QCs gives rise to macroscopically degenerated zero-
energy LLs for any lk . As a result, under special magnetic
fields, independent islands are formed by these strictly lo-
calized electrons. By controlling the magnetic field strength,
we find that the interference between the islands enhances
the amount of localization in terms of an increase in GIPR.
We emphasize that our general works on rhombic tiling QCs
indeed illustrate anomalous LLs that are forbidden in conven-
tional crystalline systems as shown in Table I. Furthermore,
the exotic tiling pattern of QCs induces a unique formation of
the islands for strictly localized LLs and their interferences as
illustrated in Fig. 1.
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