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Constructing Hubbard models for the hydrogen chain using sliced-basis density matrix
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Sliced-basis DMRG(sb-DMRG) is used to simulate a chain of hydrogen atoms and to construct low-energy
effective Hubbard-like models. The downfolding procedure first involves a change of basis to a set of atom-
centered Wannier functions constructed from the natural orbitals of the exact DMRG one-particle density matrix.
The Wannier function model is then reduced to a fewer-parameter Hubbard-like model, whose parameters are
determined by minimizing the expectation value of the Wannier Hamiltonian in the ground state of the Hubbard
Hamiltonian. This indirect variational procedure not only yields compact and simple models for the hydrogen
chain, but also allows us to explore the importance of constraints in the effective Hamiltonian, such as the
restricting the range of the single-particle hopping and two-particle interactions, and to assess the reliability of
more conventional downfolding. The entanglement entropy for a model’s ground state, cut in the middle, is an
important property determining the ability of DMRG and tensor networks to simulate the model, and we study
its variation with the range of the interactions. Counterintuitively, we find that shorter ranged interactions often

have larger entanglement.
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I. INTRODUCTION

One working definition of a strongly correlated system
is one where density functional theory (DFT) approxima-
tions fail, typically because of strong entanglement or phases,
which do not look like Fermi liquids or insulators. Traditional
approaches to simulating these systems employ DFT in a
more limited way, namely to derive an effective model of the
key degrees of freedom of the system, which is then simu-
lated with another method that can treat strong correlations,
such as the density matrix renormalization group (DMRG), or
quantum Monte Carlo (QMC). These effective models are typ-
ically constructed by combining the DFT bands into localized
Wannier functions and deriving a screened Coulomb interac-
tion from constrained DFT [1-3] or, within a Green’s function
framework, the random phase approximation (RPA) [4-6]. In
the context of the high temperature superconducting cuprates,
such methods have been used to downfold to a Hubbard or
t-J model, with parameters in principle coming entirely from
the DFT or related methods, but in practice sometimes as-
sisted by experiment [7—-10]. Although these methods are con-
ceptually straightforward and extremely useful, there is gener-
ally no path towards systematically improving their accuracy.

A key limitation of these methods is that they gen-
erally require an a priori parametrization of an effective
Hamiltonian, which, in the absence of any rigorous scheme
to test different assumptions, provides no guarantee that the
excluded terms do not significantly alter the phase diagram of
the downfolded model. There do exist other techniques based
on Lowdin downfolding [11-13] and canonical transforma-
tion theory [14—18] that do not require such parametrizations,
but their application to real materials still remains to be carried
out and tested. In attempting to improve downfolding methods
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in the context of strong correlations, recent work has focused
on the importance of matching single-body and two-body den-
sity matrices between the full and effective systems [12,19—
23]. Importantly, it was realized that constructing a low energy
Hamiltonian does not require that one find exact eigenstates of
the full system; instead, one can sample from the manifold of
low energy states [22,23]. This approach allows one to con-
struct effective models without access to the exact eigenstates
of the full system.

Despite these advances, one thing that has been notably
missing in these works is the ability to use an accurate and
reliable strongly correlated method directly on the full system
in order to check these methods. The importance of these
checks was recognized by Shinaoka et al., who tested an
RPA downfolding technique with dynamical mean field theory
in the context of mapping multiorbital Hubbard models to
low energy models [24]. The problem has been the lack of
methods, which can treat strongly correlated real materials
directly, with clear-cut control of the accuracy. This situa-
tion has changed in the last few years, however, as there
has been considerable improvement in adapting a number of
strongly correlated methods to work directly on solids [25,26].
Progress has been made by focusing attention on some of the
simplest systems, which still have key features of a solid, such
as a chain of equally spaced hydrogen atoms. This system is
a natural playground to study Mott physics in one dimension,
with a one dimensional Hubbard model a natural candidate for
describing the low energy space. The hydrogen chain was the
subject of a large multi-method study [25,26], where it was
found that a number of methods can treat this system very
accurately, including sliced basis DMRG (sb-DMRG) [27],
the technique used here.
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The progress in simulations allows one not only to test
weak-coupling-based downfolding methods, but also to de-
velop new downfolding schemes, which use the strong
coupling algorithms directly. Here, we utilize very accurate
sbDMRG calculations on hydrogen chains of sizes up to
100 atoms to test downfolding ideas. We couple this with
DMRG calculations on the low energy models, which range
from simple Hubbard models to Hubbard-like models with
extended hopping and density-density interactions. Instead of
constructing Wannier functions based on independent par-
ticle bands, we construct “natural Wannier functions” [28]
from the natural orbitals of the fully-interacting single-particle
density matrix. This allows the technology developed for or-
dinary Wannier functions to be transferred over to the fully
interacting regime. Within this framework, we can consider
what terms are needed (including the range of both hop-
ping and Coulomb interactions) by generalizing the functional
minimization of the Peierls-Feynman-Bogoliubov variational
principle used in [29] to both the single- and two-particle
interactions. Moreover, we can evaluate the dependency of the
needed coupling on the range of excited states one wants to
represent with the effective model.

DMRG and tensor network methods are based on low
entanglement. For DMRG, what matters is the total entangle-
ment when the system is cut in two. Two or three dimensional
systems have entanglement entropies, which grow propor-
tionally with the transverse area. In DMRG, in 2 or 3D, the
system is mapped onto a snake-like path and the higher
entanglement is tied to longer-range couplings along this
path. Therefore, it is natural to expect that even in a differ-
ent context, namely a 1D system with decaying long-ranged
interactions, longer ranges would correspond to higher entan-
glement. We test this proposition and find that it is generally
untrue. In the context of the Hubbard-like models considered
here, shorter-ranged models tend to have slightly more en-
tanglement than longer-ranged models. Nonsmoothness in the
interaction also tends to increase entanglement.

In the following section, we introduce the hydrogen chain
and the corresponding numerical methods used to solve the
system and downfold it to an effective model. Then in Sec. III,
we explore different types of effective models that we find can
be used to describe the hydrogen chain as well as investigate
the necessity of various terms in the model Hamiltonian. We
also study the entanglement dependence on the range of inter-
actions. Finally, we conclude in Sec. I'V.

II. HYDROGEN CHAIN AND NUMERICAL METHODS

In this section, we give a brief introduction to the Hydrogen
chain and sb-DMRG and introduce our method for construct-
ing Wannier functions.

A. Hydrogen chain

As used in this paper, the hydrogen chain (H chain) consists
of N protons and electrons. The protons are held fixed and are
equally spaced by a distance R. Hydrogen chains would be
unstable chemically, but for electronic structure calculations
they are realistic in the sense of having three dimensional elec-
tron wave functions governed by the Schrodinger equation,

with long range Coulomb interactions. Most importantly, it
can be regarded as a realistic model of a 1D solid, with an
interesting phase diagram as one varies R. The H chain is also
simple enough to be accessible to modern many-body meth-
ods [25,26,30-33], including DMRG methods. The H chain
is also thought to be equivalent to the Hubbard model in the
large R limit. These features, together with its computational
tractability, make the H chain an excellent candidate to study
the progression from a real system to an effective model.

Electronic correlations. The correlations within the
H chain are controlled by a single parameter R, the atomic
spacing. In a localized atomic orbital picture, R controls the
degree of overlap between neighboring orbitals, which in turn
determines the hopping strength. At small R, the orbitals
heavily overlap leading to more hopping, which, in the ex-
treme limit, begins to resemble a 1D electron gas. As R is
increased, the lack of overlap between neighboring atoms sup-
presses the hopping, leading to a more insulating state. This
is the standard scenario for a Mott metal-insulator transition,
although the 1D nature of the chain can alter the expected
physics.

For R > 1.8ap, the low-energy physics is dominated by a
single band composed primarily of the atomic 1s orbitals, with
higher orbitals mixing in slightly. At this stage, increasing
R increases the electronic correlations, roughly corresponding
to increasing U/t in the Hubbard model by decreasing 7. At
a critical R, < 1.8ap, instead of following the single band
Hubbard model for smaller U/t, additional bands start to
become occupied. These additional bands are diffuse and
emerge from the 2s, 2p,, and 2p, atomic orbitals. The oc-
cupancy of the 1s band drops below half-filling, and metallic
behavior is observed [26]. In this more complicated regime,
the system would require a multiband effective model. We
hope that the techniques developed in this paper will be
useful in constructing multiband models, but for simplicity
we restrict ourselves here to the single-band regime, with
R 2 1.8613.

Boundary conditions. In a real hydrogen chain, the tail
of the electronic wave function extends a moderate distance
beyond the nuclei that make up the chain. When dealing with
a finite chain as a segment of an infinite chain, however, the
electrons can no longer spread beyond the finite segment,
since the other atoms that make up the larger, infinite chain
obstruct them from doing so. Without taking this effect into
account, the end spill-off of the electrons will result in a
reduction of the bulk electron density, slowing the conver-
gence to the thermodynamic limit. Although this effect is very
minor at large R, it becomes important for sufficiently small
R, and results in a reduction in R, for shorter chains [26]. If
periodic boundary conditions are used, this boundary effect
does not occur, but periodic boundaries slow the convergence
of DMRG. Instead, we use hard walls placed at a distance R/2
beyond the first and last atoms in order to mimic the presence
of other atoms that would otherwise be there in the infinite
chain. While there are still some edge effects, we find that
they are much smaller than with open ends.

B. Sb-DMRG calculations

Adapting DMRG to real systems requires parameterizng
the continuous degrees of freedom into localized “sites” with
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a locally defined Hilbert space. In the conventional approach
the sites are linear combinations of Gaussian basis functions.
A severe drawback of this approach is the large number of
two-electron terms in the resulting Hamiltonian, scaling as
N;,‘ , where N}, is the number of basis functions. If one instead
used a real-space grid representation, with N, being the num-
ber of grid points, one gets Ng2 interaction terms but N, > Np,.
Sliced bases are a compromise, with favorable scaling and an
intermediate number of sites [27].

In sb-DMRG we use a real-space grid along one direction
and a localized set of 2D Gaussian basis functions spanning
the other two transverse directions, defining a “slice” at each
grid point. This is particularly advantageous when dealing
with systems extending much more in one direction than in the
transverse direction, such as chains of atoms. The entangle-
ment of the system in the sliced basis is favorable, not much
above that of the corresponding effective Hubbard model. In
contrast, sets of conventional basis functions must be local-
ized before being used in DMRG, since extended molecular
orbitals can give rise to volume-law entanglement scaling,
which becomes dominant on long chains.

In addition to maintaining an area-law entanglement scal-
ing, restricting these functions to slices makes each function
orthogonal to all other functions not on the same slice,
reducing the number of interaction terms from quartic to
quadratic in the number of grid points. The resulting long-
range Coulomb interactions may then by compressed via an
SVD scheme to produce an MPO with a modest bond dimen-
sion, which is nearly independent of system size [34,35]. This
technique allows the method to scale essentially linearly with
the number of atoms, making large chains of atoms accessible
to DMRG-level accuracy.

Constructing the sliced-basis functions. The 2D transverse
functions defining the slices are taken from standard 3D Gaus-
sian basis set functions defined by four numbers, (¢, n, m, k)
with each function taking the form

gi(F) = x"y"Ze . (1)

The values of n, m and k determine the character of the
function (i.e., s-type, p-type etc.) and { controls the width.
Some of these primitive Gaussians (especially the s functions)
are contracted with others of the same type to form new
contracted basis functions. In the case of uncontracted Gaus-
sians, the z¢ term is removed and the resulting 2D Gaussian
is used for each slice. In the case of contractions, the z&
comes in making the 2D contraction coefficients from the 3D
contractions; thus, a sharp localized Gaussian gets a bigger
weight for slices near the nuclei. In addition, we may use a
two-step calculation, where an initial sb-DMRG is used to get
a local single particle density matrix for each slice, which is
then used to contract the slice functions further, using slice
natural orbitals. Since the Wannier functions used for down-
folding the hydrogen chain come from the 1s band, for most
of the calculations we start withonly S (n = 0,m = 0, k = 0)
Gaussians (taken from a CC-pVDZ basis) and then use the
slice natural orbitals to reduce to a single function per slice.
In this case with only one function per slice, the Hamiltonian
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FIG. 1. Eigenvalues of the single-particle correlation matrix
from the ground state of H20 giving the natural orbital occupancy.
The first 10 states are doubly occupied and represent Hartree-Fock
type states. The second 10 states have small but non-negligible
occupancy. States beyond the first 20 show occupancy on the order
of 1072 and are truncated to give a downfolding approximation.

takes the simple form

. 1
b AT A 2 : b A
Hy, = E t;n’cjmcdn’ + 5 Vnsn’ntmnﬂ'”' @

o,nn’ o,nn’

where n and n’ enumerate the slices and sb indicates
sliced basis.

C. Downfolding to an effective model

Constructing the Wannier functions. Wannier functions
(WF) are linear combinations of Bloch orbitals, which
are eigenstates of a one-body Hamiltonian. The one-body
Hamiltonian is the result of a specific approximation, such
as a tight-binding model or density functional calculation.
Even within these approximate theories, where the electronic
ground state is fully specified by the single-particle states, the
inherent gauge freedom of the Bloch orbitals makes the result-
ing WFs nonunique. It was not until the introduction of the
“maximally localized” criterion [36] that WFs began taking
on a wide variety of tasks in, e.g., linear-scaling algorithms or
electronic structure calculations (see [37] for a nice review).

What about constructing WFs from a fully interacting
approach, such as DMRG, where the single-particle Bloch
orbitals that make up the WFs are no longer well defined?
As pointed out in [28], one can use the single-particle density
matrix, which is well-defined even in an exact theory, as a
surrogate for the Hamiltonian. One then takes its eigenstates
(the natural orbitals), sorts them into bands, and constructs
WFs. Of course, the full interactions fractionally populate the
omitted bands and reducing to the WFs is an approximation. A
good measure of the size of the error in going to the WF basis
is in the total occupancy of all the omitted natural orbitals,
which we find to vary between 1073 to 10~* depending on R
(see Fig. 1), making this a good approximation for the systems
studied here.
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This is the basic approach used here with sb-DMRG, but
we can go even further and use eigenvectors of not just the
ground state single-particle density matrix, but rather a sum of
density matrices from a set of low-lying many-particle excited
states in addition to the ground state, in order to capture
information that describes the physics beyond the ground
state. Generally, adding density matrices results in new eigen-
states, which attempt to cover the space of all the important
states of the individual density matrices. We find that using
this sum with a well-chosen set of excited states leads to a bet-
ter representation of the low-energy physics in the downfolded
model, such as the gaps between low-lying states. Choosing
which low-lying states to incorporate into the sum of density
matrices is key since too many incorporated states will lead to
more truncation unless one uses a less simplified model. Too
few may contribute to errors in reproducing the low-energy
physics.

From (2), we can see that expressing the original 3D
H-chain Hamiltonian in the sliced-basis has resulted in a 1D
single-band lattice Hamiltonian. Reduced to 1D, we can now
regard this system from a Luttinger liquid perspective, for
which all low-lying excitations are bosonic spin and charge
excitations. However, extra electrons added to the H chain
generally occupy additional bands, which tend to be diffuse
[26]. A single-band effective model cannot properly capture
such excitations, so we explicitly omit charge excitations from
consideration in building our effective models. The charge
excitations in the resulting models are expected to be quali-
tatively different from charge excitations of the H chain. In
contrast, the spin excitations do primarily live in the original
single band. Therefore, in addition to the ground state density
matrix, density matrices from states with one- and two-spinon
pair excitations are added, i.e. total spin S | < 2. Since the
excitations only affect the spin-independent Wannier func-
tions, we only create spin excitations in the spin-z direction,
speeding the calculations.

Specifically, the single-particle density matrix is calculated
using the ground state |Wy), 1-spinon pair excited state |W;)
and 2-spinon pair excited state |\V,) of the H chain as

CY = (Wolefejr + ¢85y W),
C = (Wil éfep +ef ey W), 3)
C = (Wl ¢&fiejn +ef ¢jy W)
The mixed density matrix is then given by C;; = Ci(;)) + Cl.(jl) +
3
diagonalization.

For an N,-atom hydrogen chain, the N, most occupied
natural orbitals are retained whereas the rest are projected
out. In the weakly correlated regime, the spectrum of the
ground state density matrix exhibits a sharp cutoff between
occupied and unoccupied states whereas in the strongly corre-
lated regime, the spectrum is more flat, reflecting the tendency
for these states to mix. However in both of these regimes,
there exists a sharp cutoff between the first N, states and the
rest, as shown in Fig. 1. Spectra from density matrices of
low-lying states (e.g., those generated by spinon excitations)
also demonstrate the same feature, indicating that the ground
state and a group of low-lying excited states are confined to

C(jz) and the natural orbitals, {§}, are readily obtained by
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FIG. 2. Translationally invariant Wannier function for (a) R =
2.0ap and (b) R = 3.2ag constructed from the single-particle density
matrices of H100. The top panels in each subplot show the full
3D Wannier functions in real-space integrated over y and the lower
panels, the 1D representation within the sliced basis as a function of
z for both sb-DMRG and Hartree-Fock derived functions.

the states below this cutoff. Therefore by diagonalizing a mix-
ture of density matrices, information regarding excited states
can be captured explicitly and used to construct the effective
model. The N, remaining natural orbitals are then localized
around each atom by projecting the 1D position operator into
this basis and rediagonalizing. This is exactly analogous to
the spread minimization procedure used in the construction
of maximally localized WFs. In 3D systems, the localization
functional must be variationally minimized, but reduces in 1D
to diagonalizing the projected position operator [37].

The procedure described thus far yields slightly different
WFs describing each atom. This is a consequence of using
open boundary conditions and as such, only the WFs near the
edge differ much from those in the bulk. In order to better
reproduce the model in the thermodynamic limit, we restore
translational invariance among the WFs by first aligning them
so that all the maxima coincide at one point then averaging
point-wise across all functions, weighing each function by
their proximity to the center of the chain. The translation-
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FIG. 3. Hamiltonian parameters from transforming the H-chain
Hamiltonian into an effective model using the Wannier functions for
H100. All parameters are scaled by the average value of the nearest
neighbor hopping denoted by 7. The top panel shows the single-body
terms and the lower panel, the two-body interaction terms. The
dashed lines in the lower panel are 1/r lines in units of 7.

ally invariant WF shown in Fig. 2 is then redistributed to
each atom.

The WFs are defined by the coefficients w,;, where
n=1,2,.., N, enumerates the grid and i = 1, 2, ..., N,, the
functions. The Hamiltonian then takes the form

§ : WFAT WFAT
lij O'lca] l]kl oi UJCU’kCUZ
o,ij o,ijkl
§ : wm nn’ w”’j (4)

sb
Ukl = E Wi, Wy Vi) Wiy Wi

The resulting Hamiltonian parameters are shown in Fig. 3.

As previously mentioned, in typical applications,
Wannier functions are constructed from single-particle
orbitals of mean-field calculations, so it is natural to compare
the performance of such functions to those obtained from
sb-DMRG. Although density functional approaches may be
better, for simplicity we compare unrestricted Hartree-Fock in
place of sb-DMRG to construct these functions and as Fig. 2
indicates, we find very similar Wannier functions. In this case,
we see that a conventional Wannier construction would likely
be satisfactory, although we expect higher accuracy from our
sb-DMRG approach.

Truncating interaction terms. The number of interaction
terms in the Wannier effective Hamiltonian scales as N*,
which is inconvenient and costly. How can one renormalize
down to fewer terms? One approach is to perform unitary

transformations in the many-particle space, which can be con-
structed to remove off-diagonal interactions, at the expense of
creating new interactions involving more than two particles
[14-18,38,39]. However, these canonical transformation do
not reduce diagonal interactions, say of the form n;n; for
distant sites i and j. Thus, we could not use these to form
a local Hubbard-like model.

Another, completely different approach starts by asking:
Is there another, simpler Hamiltonian, which has approxi-
mately the same ground state? For example, in an insulator,
the precise form of the long-range Coulomb interaction likely
does not matter in the determination of the ground state, as
long as the difference is smooth, and the same change is
made in the nuclear-electron potential. A practical way to
optimize such effective Hamiltonians is to solve the effective
model (say, with DMRG, for each set of parameters) and
then minimize over its parameters the expectation value of
the original Hamiltonian within the model’s ground state.
If one approaches the ground state energy of the original
Hamiltonian, then the effective Hamiltonian is doing its job.
If, in addition, a set of low energy eigenstates also matched,
one would have an excellent effective Hamiltonian. Clearly,
one could need a different Hamiltonian depending on the
excitations being considered. Charge excitations would need
to have the long-range Coulomb terms kept. The ground state
energy of the effective Hamiltonian could be adjusted to be
correct simply by adding a constant. Other terms might need
to be added and optimized for, to get excited state energies
and wave functions correct.

Let the effective Hamiltonian we want to determine take
the form

Hegelti;, Vij] = Ztijé:;iéaj + % Z‘/z’jﬁiﬁj . Q)
1 1

Here we have chosen a simpler density-density two-electron
interaction. We will also restrict the range of #;; and V;; in
order to get a simple effective model, so many of these coeffi-
cients will be zero.

Taking the ground state of H.tobe |[We) = |Werelt; i Viil)s
we choose the optimal elements of t and V by minimizing

Ot;;, Vijl = (Werr| Hwr |Werr) (©6)

This procedure is used in [29] for the case of reducing long-
range two-particle interactions to an on-site interaction. In that
work, only the interaction terms were adjusted whereas in the
present case, the method has been generalized to adjust both
the one-particle and two-particle terms.

At each step of the optimization, the function evaluation
is carried out by first defining a Hamiltonian according to
the variational parameters #;; and V;; and then solving for the
ground state using DMRG, yielding |Wg). Then (6) can be
used to evaluate ®[z;;, V;;] by taking the energy overlap with
respect to this wave function. The number of sweeps for each
DMRG run is very small—usually no more than one or two—
since the wave function from the previous step can be used as
a starting point for the DMRG at the current step. Although we
are using the original Hamiltonian when computing (6) during
different steps of the optimization, it does not require running
DMRG directly on the original system. Therefore the only
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additional computational cost to the optimization comes from
evaluating the expectation value of the starting Hamiltonian
with respect to the effective ground state [i.e., calculating (6)].

In some cases, we found that this optimization could get
stuck. As a simple fix, instead of optimizing all the parameters
at once, we first optimize over the elements of V, keeping ¢
fixed, then over the elements of ¢, keeping V fixed, then over
V again, etc.

Truncating from V;j; — V;;. The presence of four-index
terms, Vlﬂf, greatly increases the MPO bond dimension,
strongly restricting the length of the chains we could study.
Inspecting the four-index terms, we find that the majority of
elements with i % [ and j # k are small, on the order of 10~°
— 1073, indicating a truncation of these terms may have neg-
ligible effects on the final model. Therefore in order to treat
much larger system sizes, we first reduce to an intermediate
model, keeping the hopping fixed, but reducing Vﬂf to a
diagonal V;;, without restricting the range of the interactions.
This is defined by taking the diagonal elements of the original
four-index interaction terms derived in (4) and writing the
reduced two-body terms as

Vij = Vi ™

To establish that this is a good approximation, we first assume
Vij = Vlyj/,F + 6ij€ 8)

and perform the optimization described in the previous sec-
tion over the set {¢;} on medium length chains, up to
N, = 20 atoms. On such systems, the corrections turn out
to be quite small, {€;} ~ 1072, When comparing the ground
states energies and wave functions between the original sys-
tem and it’s diagonal approximation, we find errors on the
order of 1073 for both the energy difference and wave function

overlap, indicating that the truncation of these terms is justifi-
able. Under this approximation, the Hamiltonian becomes

N 1
2 : WFE AT A 2 : WFA ~
HWF = tij Clicoj + E Vijji naina’j~ (9)

o,ij o,ij

We will use this approximation for Hyy for the rest of
the paper.

III. EXPLORING DIFFERENT EFFECTIVE MODELS

This section describes various effective models and in-
cludes a discussion on the range of one- and two-body terms
required to achieve an accurate effective model.

Short-range models

One fundamental question regarding effective models
is the necessity of the various terms that make up the
Hamiltonian such as the next-nearest neighbor hopping, third-
nearest neighbor hopping and the range of the Coulomb
interaction. Given the method outlined in the previous section,
we can apply it to a host of effective models, each with a
different set of single-particle and two-particle terms. Then
by comparing each of the resulting models to the original, we
can gauge the importance of the hopping and the two-body
interactions, specifically their relative magnitudes and range.

In what follows, we first establish a baseline effective
model using (9), which includes the full-range hopping and
two-particle interactions. We can then restrict the range of
each of these terms, and optimize over the remaining terms.
Finally, we can reduce the effective model to a pure Hubbard
model defined by an optimal hopping ¢ and optimal on-site
interaction U.

Using Hyr as an effective model. A natural baseline can
be established by taking the effective model to be Hy . This
is the Hamiltonian that resulted from directly transforming
the H-chain Hamiltonian with the WFs and subsequently re-
placing VUWHF — V;; as was done in Eq. (9). The accuracy of
this and other effective models can be tested by comparing
several quantities such as the spin velocity, single-particle
Green’s function and spin-spin correlation to those of the
original H chain. These are meant to quantify both the ground
state properties as well as properties of the low-lying excited
states. Since at this stage, no Hamiltonian parameters have
been optimized, any errors in Hy r can only result from either
the truncation of the natural orbitals or the truncation of V,}Yf

The spin velocity is derived by measuring how the energy
gap between the ground state and a spin-excited state scales
with system size. This can be done for 1 and 2 pairs of spinons
to get information on how well the effective model reproduces
the low-energy physics of the original system. This is shown
in Fig. 4 for several effective models as well as the original
H chain. For smaller systems of 20 and 40 atoms, the finite
size effects can cause large errors in the gaps, both at R =
2.0ag and R = 3.2ap. At larger system sizes, these effects be-
come much more negligible and it can clearly be seen that the
gaps of the effective models begin to closely approximate the
gaps in the original H chain. Comparing the actual spin veloc-
ities, we find differences less than 10% between the H chain
and ﬁw]:.

In addition to the spin velocity, the single-particle corre-
lations can be computed and compared across models. These
are defined here as

81 = (& 08+, 811) (10)
and are expected to decay as a power law (up to log correc-
tions) for gapless systems, but exponentially in the presence
of a gap. In the family of effective models tested here, the
correlations are expected to decay exponentially since the
charge sector is gapped. The single-particle correlations are
shown in Fig. 5. In order to compare the correlations defined
in the sliced-basis for the H chain with those for the effective
model (expressed in the space of atomic sites), we transform
the single-particle Green’s function of the original system
using the WFs of the corresponding effective model. Measur-
ing the correlation length in this space gives Iy chain = 12.8
and lwp = 13.8 for R = 2.0ap, decreasing to ly.chain = 3.4
and lwg = 3.7 for R = 3.2ap, corresponding to differences
of about 8% between the H chain and Hwr for both atomic
spacings. The spin-spin correlations can also be computed and
are shown in Fig. 6.

The excellent agreement of both the correlations and spin
velocities between Hwr and the H chain demonstrates the
accuracy of the procedure used in deriving the WFs and the
following truncation of the 4-index interaction terms. At this
stage, Hyr constitutes the initial set of interactions needed in
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FIG. 4. Spin velocities for the H chain and two effective models defined in (9) and (12). The top row shows (a) 2-spinon and (b) 4-spinon
excitation gaps at R = 2.0ag for the H chain, its corresponding directly transformed model denoted as Hyr and optimal Hubbard model, Hiyp.
The same is done at R = 3.2ajp in the lower row for the (c) 2-spinon and (d) 4-spinon excitations. The numbers in the legend correspond to the

slope of the fitted lines, which give the spin velocities.

order to accurately represent the H chain. However, one can
go further and deduce the minimum set of interactions needed
to describe the original system with a certain accuracy.

Reducing the range of interactions. Despite the existence
of the full, long-range Coulomb interaction in the origi-
nal system, can we reconstruct the ground state and spin
excitations with shorter-range one-body and two-body inter-
action? Given the previously outlined optimization procedure,
the importance of these terms can be tested by fitting to
Hamiltonians with increasingly longer-range single-body and
two-body terms. The performance of each of these models can
then be assessed relative to Hyp by calculating,

WF
Emin - E()

8, =
Nq

(11)
where Eg;, is the minimum value resulting from the mini-
mization of (6) and E}'", the ground state energy of Hwr
with N, atoms. Small values of §, are indicative of effective
models, which are more closely related to Hwg.

In Fig. 7 we show the accuracy of different effective mod-
els when the range of the hopping and two-body interactions
are constrained, but with the detailed shape of the interac-
tions optimized subject to the constraint. For a pure Hubbard
model, §, =3 x 1073, in atomic units. If we increase only
the hopping, the energy improves to 1.7 x 1073 at a range of
3 lattice spacings. We get a much better improvement if we
keep the hopping nearest-neighbor but increase the Coulomb
repulsion out to a range of 3, with the energy error reducing
by over an order to magnitude down to 1.9 x 10~%. The best
improvement comes from increasing both ranges, where we
find an energy error well under 10~*. The optimal two-body
terms smoothly decay to zero with distance as opposed to
being sharply cut off. This decay is shown in Fig. 8 for several
effective models with varying maximum interaction range. As
the maximum range is increased, the two-body interactions
smoothly approach those of the original model.

It is important to note here that DMRG is based on a low
entanglement approximation and that in general, long-range
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FIG. 5. Single-particle correlations for the H chain, its corre-
sponding directly transformed model defined in (9) and optimal
Hubbard model defined in (12) for H100 at (a) R = 2.0ag and
(b) R = 3.2ag. The correlators are calculated from the middle of the
chain to the right edge as defined in (10). Note here that, the WFs
are used to transform the H-chain correlation functions into the same
space as the effective models.

interactions can be a source of high entanglement, hindering
its effectiveness. Indeed there has been an effort to formally
prove this, although the proof has not yet been generalized
to interactions that decay as 1/r [40]. However, in our cur-
rent H-chain calculations, the Coulomb interaction does not
lead to high entanglement and has a similar effect in the
H chain’s associated effective models. Figure 9 compares the
entanglement computed across the center of the chain for the
H chain, Hwr and Hyyp,. For both R = 2.0ag and R = 3.2ag,
the entanglement is slightly higher in the H chain than in
either effective model. One possible source for this higher
entanglement could be the short-range dynamical correlations
in the sliced basis description, which are not present once one
truncates to Wannier functions. But comparing Hwg to Hup,
we find the entanglement to be lower for R = 2.0ap and nearly
identical for R = 3.2ap despite the presence of long-range
interactions in Awg.

(a) R=2.0ap
100 T T T T IL{
o ° HHup
A Huw
. N Ty
TCIIT + SAA + Hpy_chain
. 21+ A J
10 ++99 AAAA
1%} meo%gggggm,
-~ S ST Y Ve
000000000002
[eXeYe:
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. -Z b ¢ <
o5 10 QQQQQQOOOOQQ@
10_4 1 ! ! ! 1
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i = J

FIG. 6. Spin-spin correlations at (a) R =2.0ag and (b) R =
3.2ap for the original H chain and its corresponding effective models
defined in (9) and (12). The correlators are calculated from the left-
most edge of the chain to the midpoint for a system of 100 atoms.
The H-chain correlations have been scaled such that the point at site
50 match that of Hwg.

A key reason the long range Coulomb interaction does not
cause high entanglement could be tied to its smoothness—
two particles at large separation interact through changes in
the interaction, not the interaction itself, at least in terms

f
2 g Raﬂge °
sing?
et oppiE

FIG. 7. Error for effective models with varying-range one-body
and two-body interactions for H20 at R = 2.0ap. The dashed black
lines correspond to the error made by using only Hubbard interac-
tions in the effective model as in (12). Increasing the range of the
two-body interactions is seen to be more effective than increasing
the range of the one-body hopping.
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FIG. 8. Decay of two-body interactions with varying maximum
range for H40. The variable /y is defined as the maximum range of
the two-body interactions. For example, /y = 1 implies a range up
to nearest-neighbor, /y = 2, next-nearest neighbor, etc. The dashed
black line shows the decay of the two-body interactions for Hy r
scaled by the average nearest-neighbor hopping. The other lines are
the two-body interactions for the corresponding effective model with
only a nearest-neighbor hopping term and a limited range two-body
interaction. The error as defined in (11) is also shown in the last
column of the legend.

of the entanglement of the wave function. Another consid-
eration is the screening of the long-range interaction by the
other electrons—a nonsmooth interaction may not be as well
screened. We have investigated the relationship between the
interaction and the entanglement by studying a toy extended
Hubbard model, which allows for unphysical nonsmooth long
distance terms. The smooth interaction is shown in Fig. 10(a)
and its corresponding entanglement in the inset table. Com-
paring this to Figs. 10(b) and 10(c), which features the same
interaction with an abrupt discontinuity and its linear approx-
imation with a slope discontinuity, we can see that despite
the shorter-range of the latter two interactions, they exhibit
higher entanglement. Similarly, we can examine the entangle-
ment of each of the increasingly longer-range models shown
in Fig. 8. The entanglement as a function of the range of
their interactions is plotted in Fig. 10(d), which is seen to
decrease as the range of the interactions is increased. Finally,
one may attempt to approximate the smooth interaction with
a coarser, linearly interpolated interaction hosting much more
prominent slope discontinuities. Figure 10(e) shows the en-
tanglement steadily increasing as the interactions becomes
coarser.

The relationship between interaction and entanglement
is clearly subtle. The simple picture that longer-range in-
teractions cause more entanglement is clearly false. More
work is need in this area to clarify how entangle-
ment is altered by long-range interactions with different
features.

Hubbard model as an effective model. The range of the
one- and two-body interactions can be decreased even further
so that the remaining terms in the effective model represent
those of a pure Hubbard model, with only a nearest-neighbor

(a) R=2.0ap
2 ' I |
15¢ . i3 ey ]
o A
-------- fAIH—chain
0.5f — |
- - Hyrp
oL ' | |
(b) R =3.2ap
, . . .

S vN

0 i L L L

0 10 20 30 40
Cut Location

FIG. 9. The von Neumann entanglement entropy calculated
across each bond along the length of chain for (a) R = 2.0ap and
(b) R = 3.2ap. The same quantity is plotted for the effective models
defined in (9) and (12) for comparison.

hopping ¢, an on-site interaction U, and a chemical potential
w. We allow for slight variations of the model parameters near
the edges so that the full Hamiltonian reads

Huwo = ) 1116605 + ) Uagiyi+ ) il (12)
i i

0.{ij)

For small R, the effective Hubbard model is expected to be
in the weakly correlated regime, gradually becoming more
and more correlated as R is increased. This behavior is shown
in Fig. 11 for the optimal Hubbard models. We can see that
beyond R = 3.2ap, the effective model transitions into the
strongly-correlated Hubbard regime where it is expected to
be a better representation for the original H chain. This can
be seen in Figs. 4-6, which compare the spin velocities and
correlations of the H chains and their corresponding effective
Hubbard models at R = 2.0ag and R = 3.2ap.

At R = 2.0ap, the spin velocities for the 1- and 2-spinon
pairs in the effective Hubbard model show an error of ~6%
and ~8% relative to the original H chain, respectively. At
larger R, these errors decrease to ~1% for both excitations.
Similarly, the decay of the single-particle Green’s function
can be measured as the slope of the lines shown in Fig. 5.
For R = 2.0ag, the decay rates between the effective Hubbard
model and the H chain differ by ~29% whereas at larger R,
the error decreases to ~16%. This main difference lies within
the decay of the tails as an on-site interaction alone can have
difficulty in replicating the long-range correlations built up
from having a similarly long-range interaction. Note that for
Hwr, the decay follows those of the original H chain much
closer in comparison. This is in contrast to the spin-spin cor-
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FIG. 10. A survey of the effects of different interactions on the entanglement entropy. The models here are all Hubbard models modified
with a long-range interaction, with the exception of (d), which uses the optimized models from Fig. 8. The left column shows the entanglement
for (a) a smooth interaction, (b) the same interaction with a discontinuity and (c) the linear approximation to the smooth interaction with a
slope discontinuity. In the right column, the effects of longer-range interactions are shown. In (d), /y is defined as the maximum range of the
two-body interaction shown in Fig. 8 for various ranges. The entanglement entropy across the center bond for each of these models is plotted.
In (e), the interactions are given by 1/r”. At very long range, the entanglement is large, but then decreases to a minimum as y — 1. Then, as
the interactions become shorter range, the entanglement across the center bond is seen to increase.
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FIG. 11. Optimal Hubbard parameters for each H chain as a
function of the atomic spacing, R for H100. The resulting Hubbard
model becomes “strongly correlated” near R = 3 — 4ap where the
corresponding value of U/t becomes larger than the bandwidth of
about 4¢. The dashed red line shows the optimization error as defined
in Eq. (11).

relations, which show Hyy, and Hwr agreeing almost exactly
as R increases from 2.0ap to 3.2ap.

The general good agreement between Hyy, and the origi-
nal H chain shows that in this case the long-range Coulomb
interaction is not important in determining the ground state
and spin excitations. However, it is important to remember
that this system is at half-filling, and it is insulating. Doping
the hydrogen chain is less natural than in a solid: one would
need to add in an artificial neutralizing charge background.
The long range Coulomb interaction is likely more important
in the doped case. In addition, we have considered only large
enough R so that diffuse bands are not occupied. The occupa-
tion of these outer bands self-dopes the 1S band and induces
a metal-insulator transition [26]. In this case the long range
Coulomb interaction may play an important role in both the
interactions of the holes in the 1S band and in the physics of
the diffuse electrons in the outer bands.

IV. CONCLUSIONS

Using sb-DMRG and the method outlined above, Wannier
functions constructed from a sum of single-particle density
matrices from different spin sectors can be used to downfold
a chain of hydrogen atoms to a simple effective model. We
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found that the Wannier functions constructed from the DMRG
natural orbitals are only slightly different from Hartree-
Fock Wannier functions, suggesting that for this aspect of
downfolding, conventional DFT-based approaches are likely
reliable. These models capture the key non-charge proper-
ties of the low-energy physics of the original system, such
as spin velocities, single-particle correlations and spin-spin
correlations. We were able to construct effective models with
just a handful of parameters, with the range of the inter-
actions controlling the resulting accuracy. We found that a
pure Hubbard model with only a nearest-neighbor hopping
and on-site interaction can provide a good representation the
ground state and spin-excitation sectors of the H chain. Fur-
ther improvements in accuracy are obtained through slightly
more extended interaction terms, reaching no more that

3 lattice spacings away, provided these interactions are care-
fully optimized. In this case the Coulomb terms are found to
be more important than the extended hopping terms. In this
study we restricted ourselves to the insulating regime; it is
likely that longer-range interactions are needed in the metallic
regime of the H chain. In the insulating regime, unexpectedly,
we find that the entanglement entropy tends to be slightly
smaller for models with longer ranged interactions.
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