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Diabolical touching point in the magnetic energy levels of topological nodal-line metals
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For three-dimensional metals, Landau levels disperse as a function of the magnetic field and the momentum
wave number parallel to the field. In this two-dimensional parameter space, it is shown that two conically
dispersing Landau levels can touch at a diabolical point—a Landau-Dirac point. The conditions giving rise
to Landau-Dirac points are shown to be magnetic breakdown (field-driven quantum tunneling) and certain
crystallographic spacetime symmetry. Both conditions are realizable in topological nodal-line metals, as we
exemplify with the material candidates CaX3 (X = As, P). The experimental fingerprints of a Landau-Dirac
point include (a) anomalous “batman”-like peaks in the magnetoresistance, (b) circular Landau-Fermi surfaces
revealed by angle-dependent ultrasonic attenuation, and (c) the tunability of the frequency onset of optical
absorption to zero.
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For a real Hamiltonian, energy-level surfaces over a two-
dimensional parameter space can locally form a double cone
(diabolo) with an energy-degenerate vertex known as a di-
abolical point [1–4]. The first physical application of the
diabolical point was by Hamilton in his 1832 prediction of
conical refraction [5,6]. Since then, the diabolical point has
re-emerged in diverse phenomena in singular optics [7], chem-
istry [8–10], and nuclear [11] and quantum [12] physics.
Its most recent revival is as Dirac-Weyl points [13] in the
crystal-momentum space of topological semimetals [14–18]
and insulators [19–22].

This work presents another type of diabolical point in a
textbook solid-state phenomenon: the quantized energy spec-
trum of three-dimensional metals subject to a homogeneous
magnetic field. A fundamental feature of the magnetic en-
ergy spectrum is its quantization into Landau levels [23],
which are naturally parametrized by the field magnitude
(B) and the momentum wave number (kz) parallel to the
field. In this two-dimensional parameter space, Fig. 1(b)
illustrates how two Landau-level surfaces can touch at a di-
abolical point, which will be referred to as a Landau-Dirac
point. Parallel transport around an equienergy contour of the
Landau-Dirac cone gives a topologically quantized, π Berry
phase [24].

Landau-Dirac points do not exist for metals with a sin-
gle Fermi pocket; their Landau levels are determined by
the Onsager-Lifshitz-Roth quantization rule [25–27]: h̄/eB =
(2πn + γ )/S(E , kz ), with S(E , kz ) the k area enclosed by the
orbit, 0 � n ∈ ZZ the Landau-level index, and γ ≈ 1 being
field independent to leading order in B [27–30]. Henceforth,
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we set h̄ = e = 1 so that B−1 equals the square of the magnetic
length. Generally for an electron-like (resp. hole-like) pocket,
S(E , kz ) is a single-valued function of kz and an increasing
(resp. decreasing) function of energy E , e.g., S = π (2mE −
k2

z ) for a free-electron gas with mass m. These conditions on
S(E , kz ) ensure that equienergy solutions of the quantization
rule lie on open, nonintersecting contours in (B-1, kz ) space, as
illustrated for the free-electron gas in Fig. 1(a). It follows that
the closed equienergy contours of the diabolo [cf. Fig. 1(b)]
cannot derive from a single electron-like or hole-like
pocket.

However, if multiple pockets are linked by field-driven
quantum tunneling (known as magnetic breakdown [31–35]),
we will show that tunneling-induced level repulsion can
convert open contours to closed contours of a diabolo.
A stable Landau-Dirac point relies on certain crystallo-
graphic symmetries that are preserved in the presence of the
field. For example, the composition T c2y of time reversal
and twofold rotation (about a field-orthogonal axis) maps
(B−1, kz )→(B−1, kz ), ensuring that Landau-Dirac points are
movable over (B−1, kz ) space, but irremovable unless annihi-
lated in pairs—as analogous to Dirac points in graphene [15].
Either spatial inversion i [(x, y, z) → (−x,−y,−z)] or reflec-
tion rz [(x, y, z) → (x, y,−z)] maps (B−1, kz ) → (B−1,−kz ),
and therefore protects crossings between Landau levels of
opposite i (or rz) representations on high-symmetry lines. All
three symmetries, plus the condition of magnetic breakdown,
are realizable in topological nodal-line metals [36–41], as
we will first demonstrate with a conceptually simple, min-
imal model, and subsequently for the nodal-line metallic
candidates CaX3 (X = As, P). We will show further that a
Landau-Dirac point reveals itself in anomalous “batman”-like
peaks in the density of states [cf. Fig. 1(b)], as well as hav-
ing unique fingerprints in ultrasonic attenuation and optical
absorption.
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FIG. 1. Magnetic energy levels for a free-electron gas (a), and
for topological nodal-line metals [(b), (c)]. Left of each panel:
equienergy contours of energy-level surfaces in (B-1, kz ) space, with
distinct surfaces distinguished by color; right: corresponding density
of states, regularized by a finite lifetime.

I. PROOF OF PRINCIPLE

We first present a minimal model of Landau-Dirac points
with both rz and T c2y symmetries. At zero field, our effective-
mass model describes two parabolic bands with opposite-sign
masses:

H (k) = [(
k2

x + k2
y

)/
2m − ε0

]
τ3 + uzkzτ1 + uxkx. (1)

ε0 > 0 implies that the two bands overlap on the energy axis;
however, level repulsion is absent in the kz = 0 plane owing
to rz symmetry: τ3H (k)τ3 = H (kx, ky,−kz ). It follows that a
zero-energy, nodal-line degeneracy encircles k = 0 with ra-
dius kR = √

2mε0, supposing ux = 0. If nonzero, the uxkx term
causes the nodal line to disperse with bandwidth �E = 2uxkR.
Thus, for a Fermi energy satisfying |EF | < �E/2, the Fermi
surface comprises electron and hole pockets that interconnect
like a linked sausage, as illustrated in Fig. 2(b). Close to either
interconnection points (with EF = 0), an effective Hamilto-
nian is attained by linearizing Eq. (1) around k = (0,±kR, 0):

H± = ±uyδkyτ3 + uzkzτ1 + uxkx, uy =
√

2ε0/m, (2)

whose equienergy contours form a hyperbola depicted in the
inset of Fig. 2(a).

Applying a magnetic field parallel to −z, the magnetic
energy levels are eigenvalues of the Peierls-Onsager Hamilto-
nian H (Kx, Ky, kz ), which is obtained by substituting (kx, ky)
in the zero-field Hamiltonian [cf. Eq. (1)] by noncommut-
ing operators satisfying [Ky, Kx] = iB [42,43]. If B is much
smaller than the k area of both sausage-shaped pockets,
the following semiclassical interpretation holds: The Lorentz
force pushes electrons along trajectories indicated by arrows
in Fig. 2(a). In the vicinity of both connection points [k =
(0,±kR, 0)], interpocket tunneling occurs with the Landau-
Zener probability [33,44–51]:

ρ2 = e−2πμ, μ = S�/8B, S� = 4v2
z k2

z /vxvy, (3)

with S� being the rectangular area inscribed by the two
hyperbolic arms [cf. inset of Fig. 2(a)]. By matching the
Wentzel-Kramers-Brillouin (WKB) wave functions [52] at
the tunneling regions (by the Landau-Zener connection for-

FIG. 2. For the minimal model in Eq. (1) with parameters vx =
vz = m = 1 and ε0 = 10, we plot the zero-energy, Fermi surface
within the Brillouin zone in panel (b); a constant (kz = 0.4) cross
section of the same surface is shown in panel (a). Inset of panel
(a): enlarged view of breakdown region. Landau-Fermi surfaces over
(B−1, kz ) are indicated by black dots and black lines in panels (c)–(e),
for E=0, 0.01, 0.95 respectively. Right panels [(d) and (e)] plot the
corresponding density of states (DOS) in arbitrary units. The diabolo
in panel (d) [(e)] is the energy dispersion of the type I (resp., type II)
Landau-Dirac cone encircled in blue (resp., brown).

mula [49]), we derive a quantization rule for the magnetic
energy levels:

0 = Q(E , kz, B-1 ) = cos X + ρ2 cosY + τ 2 cos Z,

(X,Y, Z ) = 1

2B
(S1 − S3, S12 + S23, S1 + S3 + 4ωB), (4)

with τ 2 = 1 − ρ2 being the probability that an incoming
electron “reflects” off the tunneling region with a differ-
ent velocity. ω = μ − μ ln μ + arg[�(iμ)] + π/4 is the phase
acquired during this adiabatic reflection, with � being the
Gamma function; S1 (S3) is the k area of the left (right)
sausage-shaped pocket, and S12 := S1 + S2 (S23 := S2 + S3)
is the area of the left (right) circular trajectory linked by
tunneling [cf. Fig. 2(a)].

For kz = μ = 0, Landau-Zener tunneling occurs with unit
probability, and solutions of Eq. (4) describe independent
cyclotron orbits over overlapping circles:

cos X + cosY = 0 ⇒ S12,23(E , 0)/B = 2π (n + 1/2). (5)

The zero-energy solutions of Eq. (5) are doubly degenerate
and lie at equidistant points on the vertical axis of Fig. 2(c),
owing to the commensuration of areas: S12(0, kz ) = S23(0, kz ),
which derives from the effective-mass Hamiltonian in Eq. (1).

There is no unique semiclassical trajectory in the interme-
diate tunneling regime with nonzero, finite μ∝k2

z . We focus
on a class of solutions contained in certain hypersurfaces in
(E , kz, B−1 ) space (r space, in short), defined by X (r)/π∈2Z
and 2Z + 1. Whether even or odd, cos X is extremized to
±1, and hence this class of solutions satisfy cosY = cos Z =
∓ cos X . These two constraints (within a two-dimensional
hypersurface) can only be satisfied at isolated points, denoted
by {r}. Such points lying within the (X = 0) hypersurface

045141-2



DIABOLICAL TOUCHING POINT IN THE MAGNETIC … PHYSICAL REVIEW B 105, 045141 (2022)

are illustrated as black dots in Fig. 2(c); note the (X = 0)
hypersurface is just the E = 0 plane owing to the just-
mentioned commensuration condition, and the black dots lie
at the intersections of red lines (defined by cosY = −1) and
yellow lines (cos Z = −1).

Moving off a hypersurface in the normal (or antinormal)
direction, each point solution evolves into an ellipse, as il-
lustrated for E = 0.01 in Fig. 2(d). To prove that r is a
diabolical point, apply that r is an extremal point for each
of {cos X, cosY, cos Z}. Consequently, for any solution of
the quantization rule that deviates from r by small δr =
(δE , δkz, δB−1 ), 0 = Q(r + δr) − Q(r), with the right-hand
side quadratic in δr to the lowest order. Solving this quadratic
equation for the Landau-level dispersion,

δE = (−b ±
√

b2 − 4ac)/2a, a = X 2
E − ρ2Y 2

E − τ 2Z2
E ,

b = [2XE (δkzXz + δB-1XB−1 )] − ρ2[X→Y ] − τ 2[X→Z],

c = [(δkzXz + δB-1XB-1 )2] − ρ2[X→Y ] − τ 2[X→Z].

XE ,z,B−1 denotes the partial derivative of X with respect to
(E , kz, B−1 ), as evaluated at r; [X → Y ] denotes the substi-
tution of X with Y in the square-bracketed expression on the
same line. Since the quantity under the square root is quadratic
in (δkz, δB−1 ), the solution in (δkz, δB−1 ) space generically
forms a diabolo with vertex at r.

The perturbative stability of Landau-Dirac points is guar-
anteed by T c2y symmetry: H (Kx, Ky, kz )∗ = H (Kx,−Ky, kz ).
Given this antiunitary constraint, a standard generaliza-
tion [53] of the von Neumann–Wigner theorem [1] states that
the codimension of an eigenvalue degeneracy is two, implying
degeneracies are perturbatively stable in the two-dimensional
(B−1, kz ) space. The Landau-Dirac points at kz = 0 are dou-
bly protected by rz symmetry, because each such point is a
crossing between levels in distinct eigenspaces of τ3.

II. TYPE-II LANDAU-DIRAC POINTS

While the (X = 0) hypersurface is the E = 0 plane, (X =
π j) hypersurfaces are increasingly dispersive for larger | j|.
With sufficient dispersion, the conical axis tilts away from the
energy axis, such that the diabolo [centered at (Ē , k̄z, B̄−1 )]
intersects the E = Ē plane on open lines; such a type-II
Landau-Dirac point occurs if and only if ac < 0 on any seg-
ment of a circle encircling the diabolical point. A type-II point
lying on the X = 6π hypersurface is illustrated in Fig. 2(e).

An isolated, type-I point is distinguishable from type II
by the Fermi-level density of states (DOS). The intersection
of a magnetic band with the Fermi level defines a Landau-
Fermi surface in (1/B, kz ) space; in the type-I case, the
Landau-Fermi surface is deformable to a circle, and can be
parametrized by a multivalued function B−1(kz ) with two
extrema. At each extremum, the DOS has a van Hove sin-
gularity that is left-right asymmetric, being proportional to
[±(B−1−B−1

0 )]-1/2 on one side of the singularity but not the
other. (Such left-right asymmetry is routinely measurable in
thermodynamic and galvanomagnetic experiments [54–56].)
Figure 1 illustrates that the inverse-square-root “tails” (in
a type-I scenario) trail toward each other, resembling
the helm of Batman; conversely, type-II tails trail apart,
like anti-Batman. For our minimal model in Eq. (1), we plot

FIG. 3. For a k · p model [57] of CaP3 without spin-orbit cou-
pling, we plot (a) the Fermi surface, (b) Landau-Fermi surface, and
(c) Landau-level dispersion at kz = 0 and B parallel to z. Panel
(d) shows the dispersion of a specific Landau-Dirac point, for B
tilted within the xz plane by angles θB = 0◦, 0.15◦, 0.21◦, with the
electron density fixed throughout. Inset of panel (c) illustrates a
spin-split Landau-Dirac point.

the DOS in the right panels of Figs. 2(d) and 2(e), with the
correspondence between Batman peaks and type-I Landau-
Fermi surfaces [resp. anti-Batman and type II] indicated by
red dashed lines in Fig. 2(d) [resp. Fig. 2(e)]. Unlike conven-
tional peaks in Schubnikov–de Haas–van Alphen oscillations,
Batman peaks associated to quantum tunneling are generally
nonperiodic in 1/B; the width of the Batman helm is likewise
not attributable to the area of any k loop in the graph.

III. MATERIAL CASE STUDIES

The Landau-Dirac phenomenology potentially manifests
in a number of topological-metallic candidates: CaAs3 [58],
CaP3 [57], SrP3 [57], and Ca3P2 [59,60], each of which has
a Fermi surface enclosing a single, circular nodal line—just
like our minimal model. For concreteness, we pick P1̄-
symmetric [61] CaX3 (X = As, P) for our final case study.
Its point group is generated solely by the spatial inversion
i. CaX3’s nodal line is predicted [57,58] to be centered at an
inversion-invariant wavevector on the BZ boundary, and encir-
cles an area �1/50 the areal dimension of the BZ—this allows
for an accurate description by an effective-mass Hamiltonian
H (k) = ∑3

i=0 di(k)τi, with τ0 being the identity matrix; the
two-by-two matrix structure reflects our (present) ignorance
of the weak spin-orbit interaction.

Our effective-mass parameters (detailed in the Supplemen-
tal Material [62]) are chosen such that the Fermi surface
consists of four interconnected pockets (two electron-like
and two hole-like), as has been predicted for CaX3 [57,58].
Owing to i symmetry [τ3H (k)τ3 = H (−k)] and time-reversal
symmetry (represented by complex conjugation), momentum
coordinates can be chosen such that the interpocket connec-
tions lie in the kz = 0 plane [cf. Fig. 3(a)] and [H (kx, ky, kz =
0), τ3] = 0. This U (1) × U (1) symmetry encodes the nonmix-
ing of orbitals indexed by 〈τ3〉 = ±1.

The corresponding Landau levels (restricted to kz = 0) are
plotted in Fig. 3(c), with blue (red) lines indicating 〈τ3〉 = 1
(〈τ3〉 = −1). For either 〈τ3〉, the i eigenvalue alternates be-
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tween adjacent levels [23], as illustrated by alternating solid
(i-even) and dashed (i-odd) lines. Half of the Landau-Dirac
points in Fig. 3(c) are i-protected crossings between solid and
dashed lines; the other half are protected by U (1) × U (1)
symmetry but not by i. For small kz = 0, the four sausage
links in Fig. 3(a) disconnect; electron dynamics in the vicinity
of the four disconnected links is again of the Landau-Zener
type, with tunneling probability exp(−2πμ). The resultant
Landau-Fermi surface form closed lobes encircling the type-I
Landau-Dirac points at kz = 0, as shown in Fig. 3(b).

Though our analysis has assumed a specific field orienta-
tion, half the crossings in Fig. 3(c) are perturbatively stable
against tilting of the field, because i symmetry is maintained
for any field orientation; the other half that relies on U (1) ×
U (1) symmetry will destabilize.

We have thus far neglected spin in the CaX3 study. Because
the intrinsic Zeeman and spin-orbit interactions maintain
i symmetry, each spin-degenerate Landau level perturba-
tively splits in energy, converting a single, spin-degenerate,
i-protected Landau-Dirac point into four, spin-nondegenerate,
i-protected Landau-Dirac points, as illustrated in Fig. 3(c).
Nonperturbatively, we expect the Landau-Dirac cones to per-
sist so long as the spin-orbit energy is less than the dispersion
bandwidth of the nodal line [cf. �E below Eq. (1)]; this is the
regime where quantum tunneling remains relevant.

IV. EXPERIMENTAL DIAGNOSTICS

The experimental observation of Batman peaks in the mag-
netoresistance would be suggestive but not conclusive of a
type-I Landau-Dirac cone. One must further demonstrate that
both peaks originate from a single Landau-Fermi surface that
is topologically equivalent to a circle in (1/B, kz ) space [cf.
Fig. 1(b)]. This relies on our ability to map out the entire
Landau-Fermi surface, which we propose to accomplish by
angle-dependent ultrasound attenuation. Our proposal gener-
alizes existing ultrasound methodology [54,63,64] to measure
“giant quantum oscillations” [65] in the (1/B)-dependent
attenuation coefficient, for which the angle between sound
wave vector and B field remains fixed. We propose here to
ignore these oscillations and instead track individual peaks
by varying both the B magnitude and the sound-wave vector
orientation, with fixed B orientation.

When an electronic quasiparticle in a magnetic energy
band [with dispersion En(kz, B)] absorbs an acoustic phonon
[with typical wavenumber |q| ≈ (5 μm)−1], inter-Landau-
level transitions are forbidden for B large enough that |En+1 −
En| > 0.1 meV. This inequality holds assuming that the mag-
netic velocity in the Taylor expansion

En(kz + qz, B) = En(kz, B) + vn(kz, B)qz + q2
z

2mn(kz, B)
+ · · ·

satisfies |vn| � c/100, and the magnetic mass mn > me/1000
with me being the free-electron mass. Energy-momentum
conservation requires that resonant sound absorption occurs
only if the electron “rides the surf” of the sound-wave
fronts [54,64], i.e., the q-parallel component of the magnetic
velocity (vnB/|B|) equals the sound speed s:

vn(kz, Bn) cos(θ ) ≈ s(q/|q|), cos θ = B
|B| · q

|q| . (6)

FIG. 4. For the highest equienergy contours of Figs. 1(a)–1(c),
we plot 1/B vs the field-parallel Fermi velocity vn = dEn/dkz in
panels (a)–(c), respectively. The color of the plotted lines indicate
the direction cosine cos(θ ) ∈ [−1, 1] (of sound wave vector relative
to B field) where resonant, ultrasound absorption occurs. We have
assumed an isotropic sound speed s satisfying s/ max(|vn|) = 1/100.

Pauli’s exclusion principle requires that we evaluate vn

at B = Bn where the nth Landau level crosses the Fermi
level. Fixing B = Bn and varying θ , resonant absorption oc-
curs at an angle-dependent electronic wave number kz;n =
kz(cos θ, Bn, s) satisfying Eq. (6). By varying θ ∈ [0, π ], kz;n

covers essentially the entire Landau-Fermi surface; only a tiny
fraction (∼s/ max(|vn|) � 10−2) of the surface is missed for
kz values where vn � s, and Eq. (6) cannot be satisfied. In
practice, θ is varied by gluing piezoelectric transducers [63] to
multiple crystal facets cut by wire or focused ion beam [66],
with the facet orientation determined by x-ray diffraction.
Figure 4 illustrates how this technique is able, in principle,
to distinguish the Landau-Fermi surfaces associated to free
electrons, type-I and type-II Landau-Dirac cones: The recon-
structed surfaces over (1/B, vn) are topologically equivalent
to the Landau-Fermi surfaces over (1/B, kz ).

We have assumed in Fig. 4 the generic scenario in which
the Landau-Dirac point lies away from the Fermi level. Oth-
erwise, inter-Landau-level transitions may occur with Eq. (6)
failing to hold. Two tunable parameters are needed to bring an
i- or rz-protected Landau-Dirac point to the Fermi level, e.g.,
by tuning B−1, the two Landau levels (closest to the Fermi
level) can be made to cross; by tuning the B-tilt angle θB, such
crossing can be brought to the Fermi level, as illustrated in
Fig. 3(d) for the CaX3 model.

To directly diagnose a Landau-Dirac point, we propose
that the frequency onset of optical absorption linearly evolves
to zero as a function of θB. Such an optical transition be-
tween Landau levels of distinct i representations is allowed
by the dipole selection rule [67]. Optical experiments in the
far-infrared, submillimeter-wavelength regime [68–70] have a
penetration depth λ ≈ 100 nm in many metals [71] λ greatly
exceeding the magnetic length [25 nm/

√
B (T )] for B ≈ 10 T

allows for optical excitations to directly reflect bulk, inter-
Landau-level transitions.

V. DISCUSSION

We have shown how the diabolical point in solid-state,
magnetic energy levels originates from quantum tunneling;
an individual Landau-Dirac point is topologically irre-
movable if certain magnetic space-group symmetries are
preserved. Topological nodal-line metals provide an ideal ex-
perimental platform to realize Landau-Dirac points. Ab init io
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calculations have predicted that CaX3 is either a band-inverted
topological metal, or can be band inverted under lattice com-
pression [57,58,72]. The existence of a nodal line in CaAs3

is as yet inconclusive, but would be corroborated by ob-
serving the Landau-Dirac phenomenology proposed in this
work.

Future investigations would determine if a similar phe-
nomenology exists for two other topological-nodal-line mate-
rial candidates, which host more complicated Fermi surfaces
than the present study: (a) SrAs3 has an experimentally evi-
denced [73–75], nodal-line degeneracy, and (b) the square-net
compound ZrSiS is known to undergo magnetic break-
down [76]. While SrAs3 is chemically similar to CaAs3, the
former has an additional, twofold rotational symmetry that
protects nodal-line degeneracies in (B−

1,kz ) space, if the field
is oriented along the twofold axis.
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