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Modified Matthiessen’s rule: More scattering leads to less resistance
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We study the breaking of integrability by a finite density of dilute impurities, specifically the emerging
diffusive transport. Provided the distance between impurities (localized perturbations) is large, one would expect
the scattering rates to be additive, and therefore, the resistivity to be proportional to the number of impurities
(the so-called Matthiessen’s rule). We show that this is, in general, not the case. If transport is anomalous in the
original integrable system without impurities, the diffusion constant in the nonintegrable system at low impurity
density has a nontrivial power-law dependence on the impurity density, with the power being determined by the
dynamical scaling exponent of anomalous transport. We also find a regime at high impurity density in which,
counterintuitively, adding more impurities to an already diffusive system increases transport rather than decreases
it.
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I. INTRODUCTION

A kinetic Drude model of transport [1,2] has been proved
again and again to be a rather useful picture despite its “car-
toonish” simplicity (or, perhaps, precisely because of it). The
electric current J (or a current of any other conserved quan-
tity) is given by J = nev, where en = eN/V is the density
of the conserved charge and v is a “characteristic velocity.”
The Drude model explains finite conductivity σ as being due
to rare scattering events that perturb an otherwise ballistic
motion of electrons. With τ being the scattering, i.e., the relax-
ation time, the velocity an electron initially at rest will reach
in time τ under a uniform acceleration eE/m is v = eEτ/m,
resulting in J = ne2τ

m E . In other words, in the Drude model the

conductivity depends on the single parameter τ as σ = ne2τ
m .

While the above is not much more than a dimensional anal-
ysis, the question one has to answer for a particular situation
is what determines v, or, equivalently, τ ; for example, does
it actually correspond to a velocity of any real excitation?
Nevertheless, it does highlight the crucial role played by a
characteristic time (velocity) in such a ballistic picture.

Now imagine a material in which several different types of
scatterings can occur, each characterized by its own scattering
time τk . Provided scattering events are separated, one would
argue that they are independent, and therefore, one can just
add the individual scattering rates to obtain the total rate 1/τ

as
1

τ
=

∑

k

1

τk
. (1)

The above additivity principle, being equivalent to saying that
in Fermi’s golden rule we have to add probabilities instead of
amplitudes, means that if we have K impurities each causing
scattering with rate 1/τ0, we will have τ = τ0/K . Therefore,
the conductivity will scale as

σ ∝ 1

K
, (2)

or, equivalently, resistivity will be linearly proportional to the
number of impurities K .

Matthiessen’s rule [1–4], Eqs. (1) and (2), can be, for
instance, observed in metals at low temperatures where the
phonon scattering is negligible and impurities dominate,
resulting in the resistivity being proportional to the concen-
tration of impurities. Matthiessen’s rule is rather natural—it
predicts that if one adds twice as many impurities to a clean
metal, the resistivity will be twice as large. We will show that
this textbook fact is, in fact, not correct if the clean material
without impurities is not ballistic. In such a case the rule has
to be modified to

σ ∝ 1

K2−z
, (3)

where z is the dynamical (transport) exponent of the clean
system (e.g., a ballistic system has z = 1, diffusive z = 2,
subdiffusive z > 2). Therefore, resistivity is, in general, not
proportional to K . Interestingly, for z > 2 one can even have
a regime where adding more impurities will actually increase
conductivity.

We note that while violations of Matthiessen’s rule have
been observed before [5,6], e.g., due to nonisotropic scat-
tering, they are rather small. Here we present a mechanism
for a complete and conceptually new breakdown of the rule.
The idea was already put forward recently in Ref. [7], where
it was demonstrated for the isotropic Heisenberg model at
high temperature which is superdiffusive with z = 3/2. In the
present work we shall verify the modified rule for a continuous
set of anomalous transport coefficients z.

The type of model that we address is sketched in Fig. 1;
the main result that we verify is in Eq. (8), with the supporting
data in Fig. 5 below.

II. FIBONACCI MODEL

We would like to study transport in a model with anoma-
lous transport to which local perturbations (impurities) are
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FIG. 1. We study transport in the system shown in (c), which has
dilute integrability-breaking impurities (red wiggles). It is obtained
by taking (a) an integrable system with anomalous transport and
adding (b) interaction at every λth bond. As shown in (c), this
results in diffusive transport with the diffusion constant D and the
conductivity σ scaling as λ2−z with distance λ between impurities
(the additivity-based Matthiessen’s rule predicts D, σ ∼ λ).

added. We are, in particular, interested in the limit where the
distance λ between impurities is large (see Fig. 1). While the
limit λ � 1 represents a rather special type of perturbation,
which will allow for simple theory, it is very much the rele-
vant limit for high-purity materials. For instance, in cuprates
researchers have studied [8–10] the influence of diagonal or
off-diagonal disorder with concentrations 1/λ ≈ 10−2–10−4

on heat conductivity. We remark that we are interested in
the thermodynamic limit (TDL) while keeping λ fixed, i.e.,
a finite density of impurities that will always result in normal
diffusive (Ohmic) transport as opposed to, for instance, the
case of a single impurity [11–13], which, while it changes
an integrable system to a chaotic one according to standard
criteria, does not modify the system’s transport [12]. We also
do not focus on details of how the broken integrability leads
to finite diffusion constants (see, e.g., Refs. [14–24]).

We study a one-dimensional interacting Fibonacci model.
Taking a one-dimensional spin-1/2 chain will allow for an
efficient numerical assessment of spin transport at an infinite
temperature. The Fibonacci model, which in its noninteract-
ing version with Vj ≡ 0 will serve as our unperturbed clean
model, is described by the Hamiltonian

H =
L−1∑

j=1

σ x
j σ

x
j+1 + σ

y
j σ

y
j+1 + Vjσ

z
j σ

z
j+1 +

L∑

j=1

h j σ
z
j . (4)

The on-site fields are given by the Fibonacci potential of
amplitude h, h j = h{2 f (β j) − 1}, where β = (

√
5 − 1)/2

and f (x) = [x + β] − [x], with [x] being an integer part
of x. For instance, the beginning of the sequence is hj =
h(+1,−1,+1,+1,−1, . . .). Because f (x) is periodic and
β is irrational, the on-site potential is quasiperiodic. In the
noninteracting model in which all interactions Vj are zero this
allows for nontrivial transport properties that are intermediate
between the ballistic transport one would have for a periodic
potential and localization for random hj . Namely, the nonin-
teracting Fibonacci model is critical [25–28] for any h and

displays a continuously varying anomalous transport [29], go-
ing from ballistic (z = 1) at h = 0 to localized (z = ∞) in the
limit h → ∞. Due to its interesting physical and mathemat-
ical [30] properties the noninteracting Fibonacci model has
been much studied [25–29], including for transport [31,32],
and has been realized in experiments [33,34].

The interacting Fibonacci model is less understood [31,35–
38]. We shall focus on a particular case of dilute interactions;
that is, we will have nonzero interaction equal to Vj = 1 at
every λth site (see Fig. 1). For such perturbation transport will
always be diffusive in the TDL; as long as one has average
λ � 1, none of our results, like Eq. (8), should depend on
the precise form of a localized perturbation and the fact that
perturbed sites are exactly λ sites apart. While we shall use
spin language and calculate the spin diffusion constant D,
we could equivalently use the Jordan-Wigner transformation
and use the language of spinless fermions and speak about
conductivity σ (σ and D are trivially proportional to each
other).

Because we want to study spin transport in the limit of
large λ, it is crucial to have access to sufficiently large systems
such that L � λ � 1. To achieve that we will use an explicit
nonequilibrium driving setting where the driving is effectively
accounted for by boundary Lindblad operators. The evolution
of the system’s density operator ρ(t ) is therefore described by
the Lindblad master equation [39,40],

dρ

dt
= L(ρ) = i[ρ, H] +

∑

k

2LkρL†
k − {ρ, L†

k Lk}. (5)

To force a nonzero current through the system and effectively
describe driving we use four Lindblad operators Lk acting on
the boundary spins, L1 = √

(1 + μ) σ+
1 , L2 = √

(1 − μ) σ−
1

and L3 = √
(1 − μ) σ+

L , L4 = √
(1 + μ) σ−

L . After a long
time the solution of the Lindblad equation converges to a
nonequilibrium steady state (NESS) ρ∞. If the driving pa-
rameter is μ = 0, the steady state is a trivial ρ∞ ∝ 1 as
such driving represents equilibrium driving at infinite tem-
perature. For finite μ, however, there will be a nonzero
magnetization gradient and a current in the NESS. Specif-
ically, we are interested in the NESS expectation value
of the local spin, zk = tr(ρ∞σ z

k ), and of the spin current
J = 2tr[ρ∞(σ x

k σ
y
k+1 − σ

y
k σ x

k+1)]. Due to the continuity equa-
tion the current J is independent of the site k. We will use
μ = 0.1, which is in the linear regime in which zk and J are
proportional to μ. Such driving has been used many times [41]
in the last decade to study transport and is quite efficient,
sometimes enabling numerical calculation of the NESS ρ∞
for systems with L ∼ 103. For more numerical details see the
Appendix.

The main object of our study is the scaling of the NESS
current J with system size L and λ. Let us first recall the
definition of the dynamical scaling exponent z. In a closed
setting, that is, without reservoirs, we have the scaling relation
between distance and time x ∼ t1/z; for example, the variance
of a localized disturbance will grow as (δx)2 ∼ t2/z with time.
For instance, if one deals with diffusive transport, one will
have z = 2; if one has ballistic transport, then z = 1. In a
nonequilibrium situation in which one explicitly drives the
system the scaling exponent z will be, instead, reflected in the

045140-2



MODIFIED MATTHIESSEN’S RULE: MORE … PHYSICAL REVIEW B 105, 045140 (2022)

FIG. 2. Anomalous transport in the noninteracting Fibonacci
model, Eq. (4), with Vj ≡ 0. Dashed lines are ∼1/Lz−1 with the best
fitting powers z.

scaling of the steady-state current J with system size (see, e.g.,
the review in Ref. [41]). In the linear response regime, where
the current is proportional to the driving potential difference
μ, one has

J ∝ μ

Lz−1
. (6)

The power of the algebraic scaling of current with L therefore
defines the transport type. In the case of diffusion where z = 2
the proportionality coefficient D is the diffusion constant,

J = D
2μ

L
. (7)

To check the modified Matthiessen’s rule we need the dy-
namical scaling exponent z of the clean noninteracting model
with all Vj ≡ 0. This has been studied many times, beginning
with Ref. [29]; here for completeness we numerically calcu-
late z using the same Lindblad NESS driving that we then use
for the interacting case. In Fig. 2 we show these data. Because
the model is noninteracting, we can, in fact, avoid going
through the matrix product operator (MPO) ansatz and time-
dependent density matrix renormalization group (tDMRG) to
obtain ρ∞ and numerically treat very large systems (L > 104)
more directly [42]. However, we show only systems up to
L = 1597 as this is the largest size that we will be able to
simulate in the interacting model. Dynamical exponents z
obtained from a boundary-driven Lindblad setting reported in
Fig. 2 are within 5% of the exponents obtained from unitary
dynamics [43] in Ref. [36].

III. MODIFIED MATTHIESSEN’S RULE

We now study the interacting model for different values of
h and distances λ between sites with interaction Vj = 1. Ex-
pectedly, in all cases studied, transport is diffusive in the TDL.
An example of data demonstrating that is shown in Fig. 3. We
can see that for sufficiently large L one gets diffusive scaling
J ∼ 1/L. From the brown dashed curve that overlaps with
numerical points we can also see that a relative finite-size
correction behaves as ∼1/L, as is expected theoretically for
diffusive boundary-driven systems [44]. For the large λ = 128
shown, the correction ≈70/L is also rather large; one needs
L > 700 in order to be within 10% of the asymptotic J ∼

10-2

10-1

50 1597 100  1000

J

L

V=1
V=0

17.3/L
17.3(1-70/L)/L

FIG. 3. Scaling of the NESS current J with system size L in
the Fibonacci model with λ = 128 and h = 0.3. While the nonin-
teracting model is superdiffusive with z ≈ 1.2 (red pluses, the same
data as in Fig. 2), the interacting one (squares) is diffusive with
J ∝ 1/L. Dashed black and brown curves are the best-fitting leading
and subleading asymptotics.

17.3/L. The diffusion constant can be read from the prefactor
and is therefore equal to D ≈ 17.3/(2μ) ≈ 86.

Let us derive the theoretical prediction for the scaling of
the diffusion constant (or, equivalently, of conductivity) with
λ. In Fig. 4 we show the NESS magnetization profile and the
current for one set of parameters. The NESS current is, apart
from noisy fluctuations due to finite MPO size χ homoge-
neous. The size of the fluctuations is one way of estimating
the error of J (about 5% in this case; see Table I). More telling
is the spin profile. We can see that in between the sites with
scattering the profile is reminiscent of one in an anomalous
model. The jump in the magnetization (i.e., in the driving
potential) across a segment with resistance R is JR. The total
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FIG. 4. NESS expectation value of (a) local spin and (b) local
spin current for L = 1597, λ = 128, and h = 0.3. In (a) we can see a
repeating pattern of noninteracting sections of length λ separated by
bonds with impurities.
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TABLE I. MPO size χ , convergence times t∞ to the NESS, and
the estimated error of the steady-state current J for a couple of system
sizes L, distances between impurities λ, and on-site fields h. Not all
L used in Fig. 5 are shown.

h λ L χ t∞ Error J (%)

0.3 8 233 100 7 × 102 1
610 100 2 × 103 3

128 610 100 5 × 103 5
1597 100 4 × 103 5

0.5 32 233 80 3 × 102 2
610 50 7 × 102 7

128 610 200 8 × 102 4
1597 100 2 × 103 13

1.0 8 233 150 8 × 102 3
610 200 2 × 103 2

32 144 100 1 × 103 6
233 200 2 × 103 10

1.8 8 233 100 1 × 104 10
610 100 5 × 103 7

32 233 200 5 × 103 10
987 100 1 × 104 20

jump in magnetization across the whole chain, which is 2μ

in our case, is simply a sum of jumps at the impurity sites
and jumps across the noninteracting segments. For a localized
perturbation, in our case a single bond, we can assume that
it has a finite resistance R0. The jump in magnetization at
each site with perturbation will therefore scale as ∼JR0 and
will in the TDL go to zero for all systems with z > 1 be-
cause J ∼ 1/Lz−1. Therefore, in the TDL all magnetization
drop occurs in the scattering-free noninteracting segments
of length λ. There are K = L/λ such segments, so that in
each magnetization will change by 	z = 2μ/K . Looking at
a noninteracting segment of length λ that is described by the
scaling exponent z, we can conclude that the current should
be J = 	z/λz−1. This brings us to the final result [7] that in
the TDL one has J ∼ 2μλ/(Lλz−1), giving diffusion constant
scaling for large λ,

D ∝ 1

λz−2
. (8)

This is the modified Matthiessen’s rule. Only for the ballis-
tic clean model does one recover the standard scaling D ∼
λ ∼ 1/K from Eq. (2). Because the derivation is completely
general, with the only ingredient being a defining relation of
anomalous transport in a clean model, Eq. (6), it is expected to
hold in the limit λ → ∞ for any system that has anomalous
transport and to which one adds dilute impurities at average
linear distance λ.

A relevant question is, How common are such anomalous
systems in which the rule has to be modified? One might argue
that it is rather special; typically, one expects to have either
a ballistic transport (z = 1) in integrable models [45], like
in homogeneous free fermions, or a diffusive one (z = 2) in
the case of generic interacting systems. While the Fibonacci
potential is clearly special, one can note that in noninter-
acting models one can, in general, engineer the system’s
properties [46]. Recently, it has become clear that anomalous
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FIG. 5. Dependence of the spin diffusion constant D on the dis-
tance λ between impurities. Straight lines are ∼λα , with powers α

being equal to theoretical α = 2 − z, with z from Fig. 2. The modi-
fied Matthiessen’s rule (8) holds for large λ > 30, whereas for small
λ and large h = 1.8 (circled points), where the rule is not expected
to hold, one has a regime where more impurities produce larger D
(“more is less”: more scattering at smaller λ causes less resistance).

transport, however, is not limited to only noninteracting quan-
tum systems. Specifically, superdiffusive z = 3/2 behavior
can be found in interacting systems like the isotropic Heisen-
berg model [47] relevant for real materials [8–10], as well as
in other integrable isotropic [48] systems [49–54], including
classical ones [55–57]. Another case, which is not completely
resolved, is a possible more generic superdiffusion emerg-
ing from effective theories at low temperature [54,58,59].
Anomalous transport can also be engineered in stochastic
models [60].

What is the crux that leads to the modified rule in which
the resistivity is not simply proportional to the number of
impurities? It is the clean sections without impurities that
for large λ and in the TDL cannot be neglected. While the
extensive number of scattering sites causes diffusive scaling
of current J ∼ 1/L, the anomalous parts in between determine
the value of D. If one were to just add resistances of all K
scattering sites and K anomalous segments, one would get
a total chain resistance KR0 + Kλz−1 = Lλz−2(R0/λ

z−1 + 1),
so that for z > 1 and large λ one could neglect the scattering
term with R0. Because the clean sections are subballistic, they
are not negligible; in fact, they dominate over scattering on
impurities. We can say that in a way additivity still holds
if we understand it correctly: it should be applied to the
anomalous parts instead of only summing up the scattering
rates on impurities. We can also see that having large λ while
keeping the scattering sections at a fixed length (fixed R0) is
crucial. If we were also to increase the length of the scattering
sections with L, we would recover the original Matthiessen’s
rule where D ∼ λ.

Let us now verify whether the modified Matthiessen’s
rule (8) indeed holds for any value of z, not just z = 3/2,
which was already checked in Ref. [7]. Creating plots like in
Fig. 3, we calculate D for a range of λ and four different values
of the on-site field amplitude h, thereby tuning the value of z in
the noninteracting clean model without impurities. Results are
shown in Fig. 5. We can see that for all superdiffusive cases,
h = 0.3, 0.5, 1.0, and for large enough λ (about λ > 30) we
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indeed get the modified scaling D ∼ λ2−z with theoretical z
from Fig. 2. Unfortunately, for subdiffusive h = 1.8, where
we would expect D to decrease with λ at a sufficiently large λ,
the numerics gets very hard, and we could not get sufficiently
precise results at larger λ (errors are large, and we have data
for only λ � 32, which is likely not yet in the true asymptotic
regime of large λ; see the Appendix). Nevertheless, data for
h = 1.8 in Fig. 5 are compatible with the expected asymptotic
D ∼ 1/λ0.1.

There is, however, one other interesting behavior visible at
smaller λ, where the modified Matthiessen’s rule (8) does not
yet hold. For h � 1.0 we can see (Fig. 5) that for such small λ

(say,λ = 4–10) we have the expected behavior: putting more
impurities in our system, i.e., decreasing λ, the diffusion con-
stant decreases. Heuristically, we can explain this decrease in
diffusion as being due to increased scattering. However, for
h = 1.8 and λ ≈ 4–16 the diffusion constant instead increases
as we decrease λ (a small effect of a similar kind is visible
also for h = 1.0). For instance, at λ = 16 we have diffusion
constant D ≈ 0.05; adding, then, twice as many impurities,
resulting in λ = 8, we would expect that D would decrease,
but instead, it increases to D ≈ 0.12. In this regime more
scattering results in less resistivity. We could argue that this
is, indeed, in line with Eq. (8) for subdiffusive clean systems
with z > 2; however, we stress that the rule is not yet expected
to hold at such small λ. Also, the decrease in D is much larger
than would be predicted by Eq. (8). It is true, however, that the
origin of this effect could be similar to that for the modified
Matthiessen’s rule, but with a more complicated dependence
on λ because λ is not yet asymptotic. We also note that the
effect is similar in spirit to various noise (dephasing) assisted
enhancements of transport observed in, e.g., Refs. [32,61–63].

IV. CONCLUSION

We studied how transport coefficients like conductivity
or the diffusion constant depend on the concentration of lo-
calized integrability-breaking perturbations: impurities. The
standard textbook argument would suggest that in the limit
of dilute impurities the diffusion constant will be inversely
proportional to the number of impurities, also known as
Matthiessen’s rule. We have demonstrated that this rule is,
in fact, true only in a special case when a system without
impurities is a ballistic conductor. In the generic situation of
anomalous transport the scaling instead has to be modified, so
that the diffusion constant has a nontrivial power-law depen-
dence on the impurity density, with the power being given by
the dynamical exponent. This modified rule has been verified
for spin transport at infinite temperature in the interacting
Fibonacci model. We also found an interesting nonasymptotic
regime in which adding more impurities can increase the
diffusion constant.

What we were not able to fully check is the case of
subdiffusion. Our numerical results are for a specific type
of impurities—interaction on every λth bond—and for a
particular conserved charge (spin). We expect the modified
Matthiessen’s rule to hold in general also if one were to start
with a clean anomalous nonintegrable system.
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APPENDIX: NUMERICAL DETAILS

The numerical method used to obtain the NESS ρ∞ of the
Lindblad equation is the same one that we used in our previous
works. Here we briefly repeat the essentials (for more details,
see, e.g., the references cited in Refs. [21,47,64]) and give the
representative parameters used.

The density operator ρ(t ) is expanded in the basis of prod-
ucts of Pauli matrices σα = σ

α1
1 · · · σαL

L as

ρ(t ) =
∑

α

cα (t )σα, (A1)

where σ
αk
k ∈ {σ x

k , σ
y
k , σ z

k ,1k}. Expansion coefficients are
written in terms of the product of (χ × χ )-dimensional ma-
trices M (MPO),

cα = 〈
M (α1 )

1 · · · M (αL )
L

〉
. (A2)

The time-dependent solution ρ(t ) is then obtained as ρ(t ) =
eLtρ(0) by evolving matrices M in time using small Trotter-
Suzuki time steps of length 	t = 0.05, using standard
procedures as in, e.g., pure-state tDMRG [65]. Note that be-
cause the local operator basis is of size 4, as opposed to 2
for a pure-state evolution of qubit chains, the complexity of
simulating ρ(t ) in an L-site qubit chain is the same as simu-
lating pure states in a ladder of length L (or a spin-3/2 chain of
length L). The NESS is, in our case, always unique, so one can
start with an arbitrary initial ρ(0), eventually converging to the
NESS after a long time. The crucial parameter is the matrix
size χ . Namely, the larger χ is, the smaller truncation errors
are; however, the complexity of each step grows as ∼χ3, and
therefore, simulations get very slow at larger χ . Even if we
start with a product initial density operator which requires
only χ = 1, evolution will cause the necessary χ to quickly
grow with time. Therefore, we simply keep the matrix size
constant and equal to χ from the very beginning. Because
the Lindbladian propagator is not unitary, the orthogonality
of the Schmidt eigenvectors is not preserved. To remedy that
we reorthogonalize our MPO representation of ρ(t ) every
few steps (typically, 10–20 steps, when we also calculate the
expectation values of the magnetization and the local current).

The required convergence time t∞ until the NESS is
reached as well as the necessary χ for a given precision
greatly varies with the potential strength h and with sys-
tem size L. Some representative numbers can be found in
Table I. In particular, in line with previous studies of the
Heisenberg model with random fields [64], computational
complexity rapidly increases with growing h. For h large
enough that the clean noninteracting system is subdiffusive
(e.g., h = 1.8, where z ≈ 2.11 > 2), the convergence time
and the estimated errors at fixed χ , say, χ = 100, rapidly
increase. This means that we unfortunately could not re-
liably probe the case of large z and therefore a regime
of negative powers 2 − z. Solving a boundary-driven Lind-
blad equation with an MPO ansatz is therefore a very good
method at small h but becomes less efficient at larger on-site
fields [64].
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[7] M. Žnidarič, Weak Integrability Breaking: Chaos with Integra-
bility Signature in Coherent Diffusion, Phys. Rev. Lett. 125,
180605 (2020).

[8] T. Kawamata, N. Takahashi, T. Adachi, T. Noji, K. Kudo,
N. Kobayashi, and Y. Koike, Evidence for ballistic thermal
conduction in the one-dimensional S = 1/2 Heisenberg antifer-
romagnetic spin system Sr2CuO3, J. Phys. Soc. Jpn. 77, 034607
(2008).

[9] N. Hlubek, R. Saint-Martin, S. Nishimoto, A. Revcolevschi,
S.-L. Drechsler, G. Behr, J. Trinckauf, J. E. Hamann-Borrero, J.
Geck, B. Büchner, and C. Hess, Bond disorder and breakdown
of ballistic heat transport in the spin-1/2 antiferromagnetic
Heisenberg chain as seen in Ca-doped SrCuO2, Phys. Rev. B 84,
214419 (2011); A. Mohan, N. Sekhar Beesetty, N. Hlubek, R.
Saint-Martin, A. Revcolevschi, B. Büchner, and C. Hess, Bond
disorder and spinon heat transport in the S = 1

2 Heisenberg spin
chain compound Sr2CuO3: From clean to dirty limits, ibid. 89,
104302 (2014).

[10] N. Hlubek, X. Zotos, S. Singh, R. Saint-Martin, A.
Revcolevschi, B. Büchner, and C. Hess, Spinon heat trans-
port and spin-phonon interaction in the spin-1/2 Heisenberg
chain cuprates Sr2CuO3 and SrCuO2, J. Stat. Mech. (2012)
P03006.

[11] L. F. Santos, Integrability of a disordered Heisenberg spin-1/2
chain, J. Phys. A 37, 4723 (2004).

[12] M. Brenes, E. Mascarenhas, M. Rigol, and J. Goold, High-
temperature transport in the XXZ chain in the presence of an
impurity, Phys. Rev. B 98, 235128 (2018).

[13] L. F. Santos, F. Perez-Bernal, and E. J. Torres-Herrera, Speck of
chaos, Phys. Rev. Research 2, 043034 (2020).

[14] A. Rosch and N. Andrei, Conductivity of a Clean One-
Dimensional Wire, Phys. Rev. Lett. 85, 1092 (2000).

[15] P. Jung, R. W. Helmes, and A. Rosch, Transport in Almost
Integrable Models: Perturbed Heisenberg Chains, Phys. Rev.
Lett. 96, 067202 (2006).

[16] Y. Huang, C. Karrasch, and J. E. Moore, Scaling of electrical
and thermal conductivities in an almost integrable chain, Phys.
Rev. B 88, 115126 (2013).

[17] R. Steinigeweg, F. Heidrich-Meisner, J. Gemmer, K.
Michielsen, and H. De Raedt, Scaling of diffusion constants in
the spin-1/2 XX ladder, Phys. Rev. B 90, 094417 (2014).

[18] R. J. Sanchez, V. K. Varma, and V. Oganesyan, Anomalous and
regular transport in spin-1/2 chains: ac conductivity, Phys. Rev.
B 98, 054415 (2018).
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[62] M. Žnidarič and M. Horvat, Transport in a disordered tight-
binding chain with dephasing, Eur. Phys. J. B 86, 67 (2013).

[63] C. Chiaracane, A. Purkayastha, M. T. Mitchison, and J. Goold,
Dephasing-enhanced performance in quasiperiodic thermal ma-
chines, arXiv:2112.02035.
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