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Topological micromotion of Floquet quantum systems
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The Floquet Hamiltonian has often been used to describe a time-periodic system. Nevertheless, because the
Floquet Hamiltonian depends on a micromotion parameter, the Floquet Hamiltonian with a fixed micromotion
parameter cannot faithfully represent a time-periodic system, which manifests as the anomalous edge states.
Here we show that an accurate description of a Floquet system requires a set of Hamiltonian spanning all
values of the micromotion parameter, and this micromotion parameter can be viewed as an extra synthetic
dimension of the system. Therefore we show that a d-dimensional Floquet system can be described by a d + 1-
dimensional static Hamiltonian, and the advantage of this representation is that the periodic boundary condition
is automatically imposed along the extra dimension, which enables a straightforward definition of topological
invariants. The topological invariant in the d + 1-dimensional system can ensure a d − 1-dimensional edge state
of the d-dimensional Floquet system. We show two examples where the topological invariant is defined as the
three-dimensional Hopf invariant.
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I. INTRODUCTION

Studying periodically driven quantum systems, which are
also referred to as Floquet systems, has become a major
research topic in the frontier of quantum matters [1–4]. Pe-
riodic driving can be realized, for instance, by illuminating
a solid-state material with an electromagnetic wave [5–8]
or by modulating optical lattices depth [9–12] or interaction
strengths [13–18] in ultracold atomic gases. Floquet engineer-
ing can simulate synthetic gauge fields [16,19–30], and create
novel phases such as topologically nontrivial states [31–38]
and discrete time crystals [39–43]. It can also realize interest-
ing quantum dynamics such as prethermalization [43–53] and
many-body echo [54–56].

The Floquet Hamiltonian is a popular tool to describe
a periodically driven system. The key idea of the Floquet
Hamiltonian is to effectively describe a time-periodic system
by a time-independent Hamiltonian [2,3,57,58]. Considering
a time-periodic Hamiltonian Ĥ (t ) with Ĥ (t ) = Ĥ (t + T ), we
can define a Floquet effective Hamiltonian ĤF as (h̄ = 1)

e−iĤF(α1 )T = T̂ e−i
∫ (2π+α1 )/ω
α1/ω Ĥ (t )dt

, (1)

where ω = 2π/T , T̂ is the time-ordering operator, and α1/ω

is the initial time. Therefore, if an observer only makes obser-
vations at integer periods of time t = ( α1

2π
+ n)T , this observer

cannot distinguish whether the evolution is governed by Ĥ (t )
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or ĤF(α1). In Floquet engineering, one can properly design the
driving scheme so that the Floquet Hamiltonian can display
intriguing properties, such as exhibiting nontrivial topology
and novel dynamics.

However, if another observer makes observations at a dif-
ferent set of times t = ( α2

2π
+ n)T , the corresponding time

evolution should be governed by

e−iĤF(α2 )T = T̂ e−i
∫ (2π+α2 )/ω
α2/ω Ĥ (t )dt

. (2)

Now let us use Û (α2, α1) to denote an unitary transformation

Û (α2, α1) = T̂ e−i
∫ α2/ω

α1/ω Ĥ (t )dt
, (3)

it is easy to see that

e−iĤF(α1 )T = Û †(α2, α1)e−iĤF(α2 )T Û (α2, α1). (4)

Therefore ĤF(α) with different α are equivalent up to a unitary
transformation, i.e.,

ĤF(α1) = Û †(α2, α1)ĤF(α2)Û (α2, α1). (5)

The Û (α2, α1) connects observations at two time slots within
one period T , and is also known as the micromotion [2,3].
That is to say, although ĤF(α) with different α share the
same set of eigenenergies, their eigenstates differ by an uni-
tary transformation Û (α2, α1). Hence, the conclusion is that
Ĥ F(α) with a fixed α cannot provide a faithful representation
of this time-periodic system. As a physical manifestation of
this statement, there exists situations that ĤF(α) is topologi-
cally trivial but the system exhibits topologically stable edge
states, which are known as the anomalous edge states. Such
anomalous edge states have been explained in terms of the
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winding numbers of the evolution operator [59–61] and higher
order topology [62], and have been experimentally realized in
various systems [63–65].

Therefore a proper description of the anomalous edge
states requires complete information beyond ĤF(α) with a
fixed α. Previous approaches involve the evolution operator
Û (t ) at all time instead of integer periods of time, and Û (t ) is
defined as

Û (t ) = T̂ e−i
∫ t

0 Ĥ (t )dt . (6)

However, it is easy to see that, although Ĥ (t ) is periodic
in t , Û (t ) is not. In other word, Û (0) �= Û (T ) and the
evolution operator is not periodic along the time direction.
Hence, an extra operation is designed to impose periodicity
in t such that the topological invariant can be well defined
[59–61].

In this work, we propose an alternative scheme that,
instead of studying ĤF(α) with a fixed α or Û (t ), an effec-
tive Hamiltonian set {Ĥ F(α), α ⊂ [0, 2π ]} provides complete
information for a time-periodic system. Intuitively, this is
because for a given α, the Hamiltonian ĤF(α) correctly re-
produces observations made at t = ( α

2π
+ n)T . Hence, with

all α ⊂ [0, 2π ], observations made at any time t can be
properly captured. Moreover, the advantage of our scheme
is that Ĥ (α) is naturally periodic in terms of the parameter
α. As one can easily see from Eq. (1), ĤF(0) = ĤF(2π ).
Therefore the topological invariant can be straightforwardly
defined. Here we will utilize this view to characterize the
topology of a noninteracting band, and we will show that
this description can properly capture the anomalous edge
states.

II. GENERAL THEORY.

Let us consider a d-dimensional time-periodic Hamiltonian
Ĥ (k1, . . . , kd , t ), and the corresponding effective Hamiltonian
set is {ĤF(k1, . . . , kd , α), α ⊂ [0, 2π ]}. Since the effective
Hamiltonian is periodic in α, it is therefore quite natural to
consider α as an extra momentum component denoted by
kd+1. Thus this Hamiltonian set is replaced by a Hamiltonian
in (d + 1) dimension as Ĥ (k1, . . . , kd , kd+1), as shown
in Fig. 1(a). Now we denote kR as {k2, . . . , kd+1}, and
their corresponding real-space coordinates are denoted by
R = {R2, . . . , Rd+1}. When we apply an open boundary
condition along R1, and keep periodic boundary condition
along other directions, R spans the surface on the edge of the
system, as shown in Fig. 1(b). The bulk-edge correspondence
states that, if the Hamiltonian Ĥ (k1, . . . , kd+1) possesses
a nontrivial topological invariant, the system hosts in-gap
surface states localized in the surfaces spanned by R,
and the dispersion of the in-gap states as a function of
the good quantum number kR is schematically shown in
Fig. 1(c). A specific feature is that the dispersion is flat
along kd+1 direction, since the Hamiltonians with different
kd+1 (i.e., α) are equivalent up to unitary transformations.
Thus, if such surface states exist, their dispersion in terms
of {k2, . . . , kd} should be identical for arbitrary fixed
kd+1. That is to say, the Floquet Hamiltonian ĤF(α) with
a fixed α also displays in-gap edge states when taking
open boundary condition along R1. This discussion shows

FIG. 1. (a) The Hamiltonian set {ĤF(k1, . . . , kd , α), α ⊂ [0, 2π ]}
can be viewed as a Hamiltonian in Ĥ (k1, . . . , kd , kd+1) in (d + 1) di-
mension. Here kR denotes {k2, . . . , kd+1}. (b) A real-space geometry
for the (d + 1)-dimensional system, with open boundary condition
in one of the spatial dimension denoted by R1 and periodic boundary
condition in the rest dimensions denoted by R = {R2, . . . , Rd+1}.
(c) Schematic of energy dispersion for systems shown in (b), as a
function of good quantum numbers k2, k3, . . . , kd+1. This dispersion
is flat along kd+1 direction.

that the topological invariant in the (d + 1)-dimensional
Hamiltonian Ĥ (k1, . . . , kd+1) can protect (d − 1)-
dimensional edge states in the d-dimensional time-periodic
Hamiltonian Ĥ (k1, . . . , kd , t ). Since the physical meaning
of the extra dimension comes from the micromotion of the
Floquet system, we term it as “topological micromotion.”

Here we should note that the possible topological phase in
Ĥ (k1, . . . , kd+1) is strongly constrained by the fact that the
Hamiltonians with different kd+1 are connected by unitary
transformations and the band dispersion is flat along kd+1.
This constraint rules out the edge states of Ĥ (k1, . . . , kd+1)
being Dirac type.

III. TOPOLOGICAL HOPF MICROMOTION

Here we consider a two-dimensional two-band time-
periodic system Ĥ (k1, k2, t ), and the Floquet effective
Hamiltonian is given by ĤF(k1, k2, α). Viewing α as k3,
the eigenstates of the three-dimensional Hamiltonian are
generally written as |ϕk〉 with ĤF(k)|ϕk〉 = εk|ϕk〉, where
k =(k1, k2, k3). We can then introduce a pseudo-spin di-
rection n(k) = 〈ϕk|σ |ϕk〉. Therefore we define a mapping
from the three-dimensional momentum space k to the Bloch
sphere n, f : k → n. The topology of such a mapping can
be classified by the homotopy group π3(S2) = Z , and the
corresponding topological invariant can be described by the
Hopf invariant [66–68]. Considering two different directions
in the Bloch sphere denoted by n1 and n2, the inverse im-
ages f −1(n1) and f −1(n2) are respectively two trajectories in
the three-dimensional momentum space. The Hopf invariant
can actually be described by the linking number of these
two trajectories, and this linking number is independent of
the choices of n1 and n2. More details of the definition and
the calculation of the Hopf invariant is presented in the Ap-
pendix. A nontrivial Hopf invariant can protect edge states in
the two-dimensional surface of a three-dimensional insulator,
known as the Hopf insulator [66–68]. With the general theory
discussed above, we will show that the Hopf invariant of the
three-dimensional Floquet Hamiltonian ĤF(k1, k2, α) can also
protect one-dimensional edge states in the two-dimensional
time-periodic system Ĥ (k1, k2, t ).
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IV. EXAMPLES

Below, we demonstrate this result with two examples. Es-
pecially, we will show that in these two cases, ĤF(k1, k2, α)
with a fixed α is always a topologically trivial Hamiltonian,
but can still process in-gap edge states with open boundary
condition. Thus the edge states in these cases are the anoma-
lous edge states. In both cases, we see a definite correlation
between the Hopf invariant in ĤF(k1, k2, k3) and the presence
of stable edge states in time-periodic system Ĥ (k1, k2, t ).

Example I. In the first example, we consider a time-periodic
two-band Hamiltonian

Ĥ =
{

Ĥ1, nT < t � nT + t0
Ĥ2, nT + t0 < t � (n + 1)T

. (7)

The two-band Hamiltonian can be written as h(k) · σ , where
hx = sin kx, hy = sin ky, and hz = μ + cos(kx ) + cos(ky) +
cos(kx ) cos(ky). We take Ĥ1 = h(k) · σ with μ < −3 or
μ> 1, such that Ĥ1 is always topologically trivial. Ĥ2 is cho-
sen as ε0h(k) · σ/|h(k)|, such that the band dispersion of Ĥ2

is always flat. For Ĥ2, we can choose the parameter μ to make
Ĥ2 either topologically trivial or nontrivial. However, since Ĥ2

has a flat band dispersion, and by choosing ε0 = π/(T − t0),
Ĥ2 always contributes an identity to the evolution operator
after one time period. Thus the effective Hamiltonian is de-
termined by Ĥ1 along, and it is easy to see that, for α = 0,
the Floquet Hamiltonian is always given by ĤF(0) = t0Ĥ1/T ,
which is definitely a trivial one. This also means that all ĤF are
topologically trivial because they are equivalent up to unitary
transformations.

In this model, it can be shown that when Ĥ2 is topologically
trivial or nontrivial, the corresponding ĤF(k) respectively has
a zero or nonzero linking number in the three-dimensional
momentum space, and such examples are shown in Figs. 2(a)
and 2(c). This is because, according to Eq. (5), ĤF(α) with dif-
ferent α are connected by a unitary transformation Û †(α2, α1),
and therefore, the eigenstates of ĤF(α) with different α are
also connected by the same unitary transformation. In this
case, it maps the problem to a dynamical quench problem un-
der Hamiltonian either Ĥ1 or Ĥ2. It is known from the previous
studies of the quench problem that whether a linking number
exists depends on whether Ĥ2 is topologically nontrivial or not
[69].

In Figs. 2(b) and 2(d), we compute the spectrum of the two-
dimensional effective Hamiltonian with open boundary condi-
tions along R1 direction. We can see that when a nontrivial Ĥ2

leads to a nonzero linking number in the three-dimensional
space, the edge states are present along the one-dimensional
edge of the Floquet system. The edge states are present in
both the energy window around zero and around π/T . At
the same edge, two edge states at different energies have the
same chirality. Therefore back-scattering is forbidden at the
same edge, which ensures the stability of these edge states.

In this model, it is also interesting to ask how the physics
recovers the limit t0 → T . On one hand, as long as Ĥ2 is
nontrivial, the above discussion always results in a nonzero
linking number, which is independent of the choice of t0,
and this further leads to the conclusion that the edge states
are always present for any 0 < t0 < T . On the other hand,
taking the limit t0 → T , the Floquet system returns to a

FIG. 2. Linking number [(a) and (c)], spectrum [(b) and (d)],
and edge states [(e) and (f)] of model I. [(a) and (c)] The inverse
images of the south (blue straight lines) and the north (red circle)
poles of the three-dimensional Hamiltonian ĤF(k1, k2, k3). [(b) and
(d)] Spectrum for two-dimensional Floquet effective Hamiltonian
ĤF(k1, k2, α) with a fixed α. Here we have fixed μ = −10 in Ĥ1

for all plots. We have chosen μ = −5 for Ĥ2 such that Ĥ2 is a
topologically trivial case in (a) and (b), and μ = −2 such that Ĥ2

is a topologically nontrivial case for (c) and (d). [(e) and (f)] The
real-space distribution of the edge states correspond to the in-gap
states shown in (d), with quasienergies located at zero-energy (e) and
energy π/T (f), respectively. Here, t0 is chosen as 0.1.

time-independent system governed by a topologically trivial
Hamiltonian Ĥ1 and no edge state should exist. To resolve this
paradox, we find that the localization length of the edge states
increases as t0 increases. Eventually, when t0 → T , states
localized at two opposite edges meet in the bulk and gap out
each other.

Example II. In this example, we consider a time-dependent
Hamiltonian

Ĥ = h(k) · σ + σz cos(ωt ), (8)

where h(k) is the same as described in example I and is
time-independent. Here we can also choose different μ such
that h(k) · σ can be either trivial or nontrivial, and this
time-independent part gives rise to two static band disper-
sions ε±(k) = ±|h(k)|. The σz cos(ωt ) term couples the static
dispersions to the Floquet sidebands, which shifts ε±(k) by
±ω as ε±(k) ∓ ω.

045139-3



PENG XU, WEI ZHENG, AND HUI ZHAI PHYSICAL REVIEW B 105, 045139 (2022)

FIG. 3. Linking number [(a) and (c)], spectrum [(b) and (d)], and
edge states [(e) and (f)] of model II. [(a) and (c)] The inverse images
of the south (blue straight lines) and the north (red circle) poles
of the three-dimensional Hamiltonian ĤF(k1, k2, k3). [(b) and (d)]
The spectrum for two-dimensional Floquet effective Hamiltonian
ĤF(k1, k2, α) with a fixed α. Here we have chosen μ = −10 and
ω = 12 in (a) and (b), and μ = −2 and ω = 4 for (c) and (d). [(e) and
(f)] The real-space distribution of the edge states correspond to the
in-gap states shown in (d), with quasienergies located at zero energy
(e) and energy π/T (f), respectively.

In Figs. 3(a) and 3(b), we consider the situation that the
static bands are topologically trivial, and we choose a large ω

such that the static bands do not overlap with the Floquet side-
bands. In this case, the Floquet bands are still topologically
trivial and there are no edge states. In Figs. 3(c) and 3(d),
we consider another situation that the static bands are topo-
logically nontrivial, and therefore, two bands with dispersion
±|h(k)| have opposite topological numbers. Then we choose
a proper ω such that a static band (say, band with disper-
sion |h(k)|) will overlap with another Floquet sideband (say,
band with dispersion −|h(k)| + ω). In this case, in-gap edge
states occur but the resulting Floquet bands are topologically
trivial, because the mixed two bands originally have opposite
topological numbers, and the band inversion will cancel their
topological invariants.

In Figs. 3(a) and 3(c), we show the linking numbers of
ĤF(k1, k2, k3). We can see that the linking number in the
three-dimensional space is respectively zero or nonzero for

the situations that the edge states are absent or present. Same
as example I, when the edge states are present, they appear in
both energy window around zero and around π/T and have
the same chirality at the same edge, as shown in Figs. 3(e)
and 3(f).

V. CONCLUSION AND DISCUSSION

In summary, we point out that the Floquet effective Hamil-
tonian of a d-dimensional system periodically depends on
a micromotion parameter α, and the effective Hamiltonian
set with all α faithfully presents all information of a Flo-
quet system. Taking α as another synthetic dimension, we
view the effective Hamiltonian set with α as a Hamiltonian
defined in (d + 1) dimension. For a noninteracting band insu-
lator, we show that the topological number of this (d + 1)-
dimensional Hamiltonian directly protects stable (d − 1)-
dimensional edge states of the d-dimensional Floquet system
[70]. Here we would like to highlight again the difference
between this work and the existing works on the Floquet
topology [59–61,71–74]. The difference is that here we clas-
sify the topology in k-α space and the existing works all
classify the topology in k-t space. As concrete examples, we
discuss the situations where a three-dimensional Hopf invari-
ant can lead to the anomalous edge states. We have explicitly
shown two examples and this theory can also be applied to
recent experiments on anomalous Floquet topological insula-
tor [65], where the anomalous edge states in the experimental
models can also be attributed to the Hopf invariant. We note
that the Hopf invariant is limited to two-band models, and
future works are needed for generalizing to higher band cases.
Finally, we expect that this (d + 1)-dimensional Hamiltonian
can also help us to understand other phenomena in Floquet
systems such as Floquet discrete time crystal.
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APPENDIX: THE DEFINITION OF THE HOPF INVARIANT

For a two-band model, the Hamiltonian can be written as

Ĥ = h(k) · σ . (A1)

The ground state of the Hamiltonian (A1) can be denoted as

ϕ(k) =
(

ϕ1(k)
ϕ2(k)

)
, (A2)

from which we can define a pseudo-spin direction n(k) =
ϕ(k)†σϕ(k). The Hopf invariant of the Hamiltonian (A1) can
be evaluated by the integral form [75]

Hopf = −
∫

d3k( j · A), (A3)

where the local current jμ = 1
8π

εμνλn · (∂νn × ∂λn), and A
satisfies ∇ × A = j. Note that Aμ is defined up to the gauge
freedom Aμ → Aμ − ∂μ�. Under the gauge choice ∂μAμ = 0,
we have Aμ = iϕ†∂μϕ. Numerically, we first calculate the
ground states ϕ(k) of the effective Floquet Hamiltonian
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ĤF(k = (k1, k2, α)) at each momentum k, with which n(k)
can be obtained. Secondly, we calculate the local current

jμ(k) and gauge field Aμ(k). Finally, the Hopf invariant can
be obtained directly according to the definition Eq. (A3).
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