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Recent Raman scattering experiments have revealed a quasielastic peak in FeSe1−xSx near an Ising-nematic
quantum critical point (QCP) [Zhang et al., PNAS 118, 20 (2021)]. Notably, the peak occurs at subtemperature
frequencies, and softens as T α when temperature is decreased toward the QCP, with α > 1. This temperature
dependence is inconsistent with an impurity scattering scenario, and suggests that quantum critical fluctuations
play an important role. In this work,we incorporate these effects in the framework of a memory matrix approach.
The quasielastic peak is associated with the relaxation of an Ising-nematic deformation of the Fermi surface. We
identify the dynamical scattering rate τ−1 of this deformation as the product of the quasielastic peak frequency
� and the Ising-nematic thermodynamic susceptibility χ . Over a broad temperature regime, we find that τ−1(T )
exhibits a quasilinear dependence on temperature, in qualitative agreement with experiments. This behavior
reflects a crossover from quantum critical scaling to a regime where the lifetime is governed by scattering from
quasielastic thermal fluctuations. At frequencies larger than the temperature, we find that the Raman response is
proportional to ω1/3, consistently with earlier theoretical predictions.

DOI: 10.1103/PhysRevB.105.045137

I. INTRODUCTION

Many unconventional superconductors, such as the iron-
based superconductors and hole-doped cuprates, host an
Ising-nematic phase where the discrete crystalline rotational
symmetry (C4) is spontaneously broken [1–6]. Upon doping
or pressure, the nematic transition temperature is suppressed
to zero, pointing to a putative Ising-nematic quantum crit-
ical point (QCP), where the nematic susceptibility diverges
[7–9]. Interestingly, close to the QCP, novel non-Fermi liquid
behaviors have been observed, while the critical tempera-
tures for superconductivity are also often enhanced. These
observations point to the crucial role played by the critical
Ising-nematic fluctuations in such systems [10–22].

Due to the presence of gapless quasiparticles near the
Fermi surface, the dynamical properties of the critical fluctua-
tions are strongly modified compared to those of an insulator.
In the quasistatic and long wavelength limit (ω � |vF q|) the
dynamics is governed by Landau damping, i.e., the decay
of critical fluctuations into collective electron-hole excita-
tions near the Fermi surface. The purely dynamical limit
(ω � |vF q|) is much less studied. Raman scattering experi-
ments in FeSe1-xSx, which probe the dynamics in the latter
regime, reveal [23] a pronounced quasielastic peak (QEP,
see Fig. 1) near the Ising-nematic phase transition. The peak
height grows proportionally to the thermodynamic nematic
susceptibility, and displays a Curie-Weiss behavior as a func-
tion of temperature. More interestingly, the peak occurs at a
frequency smaller than temperature, and softens as T α where
α > 1.

Theoretically, Raman response in the vicinity of an Ising-
nematic phase has been studied previously. For example,
Ref. [24] showed that a QEP can occur in the presence of
impurity scattering. Reference [25] expanded the work by
generalizing to a two-orbital model, and notably showed that a
depletion of low-frequency Raman spectral weight inside the
Ising-nematic phase can be attributed to orbital polarization.
However, both have concluded that the QEP frequency scales
as the inverse Ising-nematic thermodynamic susceptibility
on the disordered side, inconsistent with the experimental
findings alluded to earlier. On the other hand, two recent
theoretical works [26,27] studied the nematic dynamical re-
sponse at zero temperature in the presence of electron-electron
scattering from critical fluctuations, and predicted an ω1/3 be-
havior in the low-frequency range, as illustrated by the black
dashed line in Fig. 1. However, these studies inevitably missed
the QEP feature, which is a finite-temperature phenomenon
occurring at ω < T .

In this work, we present a detailed study of the dynamical
nematic susceptibility Dnem(q ≈ 0, ω) at finite temperatures
when a two-dimensional electronic system is driven toward
an Ising-nematic QCP. Following earlier works [22,28], in
a broad finite-temperature regime of experimental interest,
the thermally excited electrons are predominantly coherent
(coherent electron regime) and the self-energy effects can
be neglected. This is the kinetic regime where the electron-
electron interaction effects are incorporated into the Landau
Fermi liquid parameters and the collision integral. We use a
memory matrix approach developed recently [28] to formu-
late such a kinetic theory. It is an alternative method to the
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FIG. 1. Schematic plot of the imaginary part of the dynamical
nematic susceptibility in the vicinity of an Ising-nematic QCP, fea-
turing a low-frequency quasielastic peak, and ω1/3 dependence at
frequencies higher than temperature. The Fermi energy EF is taken
to be much larger than temperature.

Kubo linear response theory, and is excellent at dealing with
systems, which exhibit a clear separation of timescales [29].

The main result is sketched in Fig. 1. We argue that the
QEP reflects the slow relaxation of an Ising-nematic deforma-
tion of the Fermi surface, analogous to the Drude peak in the
optical conductivity (which is associated with the slow decay
of the current). The frequency of QEP, �(T ), depends on
both dynamical and thermodynamic properties. The frequency
�(T ) vanishes at the onset of the Ising-nematic order, where
an Ising-nematic deformation of the Fermi surface becomes
energetically favorable. This is reflected as �(T ) ∝ χ−1

Q̂,Q̂
,

the inverse Ising-nematic susceptibility. The Ising-nematic
deformation of the Fermi surface is relaxed by a combina-
tion of impurity scattering and the long wavelength quantum
critical fluctuations (with ω � |vF q|). As we will see, it is
natural to define the Ising-nematic dynamical scattering rate
as τ−1(T ) ≡ �(T )χQ̂,Q̂(T ). Whereas in the impurity scatter-
ing dominated regime, τ−1(T ) is temperature independent
[24,25], in the regime governed by critical fluctuations, it
reflects a momentum diffusion process due to small-angle
scattering. Finally, at frequencies higher than the temperature,
we find that the dynamical susceptibility scales as ω1/3, con-
sistently with earlier work [26].

The content is organized as follows. In Sec. II we briefly
introduce the memory matrix approach. In Sec. III we discuss
a simple model describing the metallic Ising-nematic quantum
critical phenomena, and justify the coherent electron regime at
a broad finite temperature window above the quantum critical
point. In Sec. IV we perform a calculation of the Raman
susceptibility using the memory matrix approach, and make
comparisons with recent experimental findings.

II. MEMORY MATRIX APPROACH

We begin with a brief introduction to the memory matrix
approach, following the discussions laid out in Refs. [29,30].
It is an exact reformulation of the Kubo linear response theory,
and is extremely powerful for studying the low-frequency
dynamics for quantum many-body systems where there is a
separation of timescales.

We define a dynamical response function for any two Her-
mitian operators A and B:

CAB(t ) = T
∫ β

0
dτ 〈[A(t ) − 〈A〉][B(iτ ) − 〈B〉]〉. (1)

Here β = 1/T is inverse temperature, and 〈. . . 〉 denotes ther-
mal averaging. The time evolution of the Hermitian operators
in the Heisenberg picture is given by:

A(t − iτ ) = eiH (t−iτ )A(0)e−iH (t−iτ )

≡ eiL(t−iτ )A(0), (2)

where L ≡ [H, ·] is the quantum Liouvillian operator. The
dynamical response function is related to the usual definitions
of thermodynamic susceptibilities χAB and retarded response
functions GR

AB(t ) as follows:

χAB = 1

T
CAB(t = 0), (3)

GR
AB(t ) = − 1

T
�(t )∂tCAB(t ). (4)

It is convenient to rewrite Eq. (1) as the inner product of
two vectors:

CAB(t ) ≡ (A(t )|B) = (A|e−iLt |B), (5)

where we have introduced an operator Hilbert space: H =
{|Ai ), i = 1, . . . }. It is straightforward to check that:

P ≡ 1

T

∑
i j

|Ai )χ
−1
AiA j

(Aj |, Q = I − P (6)

satisfy the definitions of projection operators. P|Ai ) = |Ai )
projects onto the subset of operator manifold H, whereas
Q|Ai ) = 0 projects to the exterior.

The dynamical response function CAB(t ) can be interpreted
as a matrix element of the superoperator Ĉ(t ) ≡ e−iLt . Below
we present a reformulation of the superoperator with respect
to H. We define a Laplace transform:

Ĉ(z) =
∫ ∞

0
dteiztĈ(t ) = i

z − L
. (7)

Here z is defined in the upper half of the complex plane. The
expression can be equivalently written as follows:(

z − PLP −PLQ
−QLP z − QLQ

)
·
(
PĈP PĈQ
QĈP QĈQ

)
=

(
iP 0
0 iQ

)
.

(8)
As a result, the matrix elements of Ĉ projected on to the
operator subspace P is given by:

(Ai|Ĉ(z)|Aj ) = T

[
χ̂

1

N̂ + M̂(z) − izχ̂
χ̂

]
i j

(9)

where we have defined :

χ̂i j ≡ 1

T
(Ai|Aj ), (10)

N̂i j ≡ i

T
(Ai|L|Aj ), (11)

M̂i j (z) ≡ i

T

(
Ai|LQ 1

z − QLQQL|Aj

)
. (12)
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Equation (9) is the memory matrix formalism for dynam-
ical response functions. So far the expressions are exact, and
we have not made assumptions about slow and fast operators.
If we treat L|Ai ) ∼ O(h) as a small parameter (i.e., P projects
onto the slow operator Hilbert space), we have:

M̂i j (z) ≈ 1

T
(Ȧi|Ĉ(z)|Ȧ j ) + O(h3), (13)

where Ȧi ≡ iL|Ai ). By invoking an assumption about the
Hilbert space of slow operators, the dynamical response func-
tions can be calculated with a knowledge of {N̂, χ̂} as well as
a perturbative treatment of the memory matrix M̂(z).

III. METALLIC ISING-NEMATIC QUANTUM CRITICAL
PHENOMENA

To set the stage we consider a simple boson-fermion model
in two dimensions that realizes an Ising-nematic QCP, given
by the action:

S =
∫ 1/T

0
dτ

[∑
kσ

c†
kσ (∂τ + εk )ckσ + λ√

N

∑
q

φqQ̂−q

]

+
∫ 1/T

0
dτ

∑
q

1

2
[1 + (qξ0)2]|φq|2. (14)

Here ckσ annihilates an electron with momentum k and spin
σ . N = 2 is the number of spin components (below, we shall
generalize the problem to an arbitrary N). For simplicity
we consider a parabolic dispersion εk = |k|2/2m − μ. The
bosonic field φq represents the Ising-nematic fluctuations.
The bare nematic propagator is parametrized by the bare
correlation length ξ0. φ couples linearly to the fermionic bi-
linear Q̂−q = ∑

kσ ϕk,k+qc†
kσ ck+qσ , with a coupling strength

λ. ϕk,k+q is the Ising-nematic form factor that changes sign
under 90-degree in-plane rotation. For simplicity we have
used the definition ϕk,k′ ≡ (cos 2θk + cos 2θk′ )/2, where θ is
the angle with respect to the kx axis. Note that λ2 has unit
of energy. We consider an electronically driven nematic QCP
due to the coupling term, and set the bare correlation length
ξ0 = k−1

F , the Fermi wave number. This is a strong coupling
instability λ2

c ∝ EF analogous to the Stoner instability for
ferromagnetism.

The properties of low-energy excitations near the QCP
have been studied extensively in the literature, and here
we merely quote the results. The long wavelength φ

fluctuations gain dynamics via Landau damping. In the
limit ω < |vF q| � EF , it is described by the following
propagator:

D−1(q, ω) ≈ r(T ) + (qξ0)2 − iγqω, (15)

where γq ∝ γ kF
q cos 2θq is the Landau-damping coefficient.

A one-loop approximation gives γ = 1
2π

λ2

(mvF )2 (the approx-
imation is formally justified over a finite range of energies
in the large N limit). Within the same approximation, the
renormalized mass satisfies r(T ) ∝ T 2. However, it has
been shown from both field theoretical methods [31] and
numerical simulations [32] that r(T ) ∝ T instead (up to
a log T correction). Throughout this paper, we will as-
sume r(T ) = T without a fully self-consistent calculation,

while keeping the one-loop form for the Landau damping
coefficient.

The feedback of the critical fluctuations on single-electron
properties is captured by a self-energy term: �(k, ω) ∝
iEF
N |γω|2/3 cos2 2θk. The self-energy term becomes dominant

in the hot regions below an energy scale �NFL ∝ λ4E−1
F N−3,

defined as �(�NFL) = �NFL. Below this energy scale, the
naive large N approximation breaks down [13]. The strong
dependence on the fermion flavor number suggests that the
non-Fermi liquid scale can be parametrically suppressed by
going to the large-N limit [28,33]. This will be assumed to
be true throughout this paper, and the physics below the non-
Fermi liquid scale is left to future studies.

Although our results are obtained within a simple one-
band electronic model described in Eq. (14), the qualitative
results on the Raman response due to quantum critical
Ising nematic fluctuations, in particular its temperature de-
pendence, remain unchanged for more realistic models. A
two-pocket model analysis is carried out in Appendix for
comparison.

IV. DYNAMICAL RAMAN RESPONSE IN COHERENT
ELECTRON REGIME

In the coherent electron regime (�NFL � T � EF ) the
dynamical properties can be described using a kinetic equa-
tion approach, where the effects of critical fluctuations are
incorporated into Fermi liquid parameters and the collision in-
tegral. In an earlier work [28], we have shown that the kinetic
equation can be derived microscopically using the memory
matrix formalism discussed in the previous section [29,34],
where we treat the electron occupation numbers in the mo-
mentum space {n̂kσ ≡ c†

kσ ckσ } as the Hilbert space of slow
operators.

The dynamical nematic susceptibility is defined via:

Dnem(ω) = i
∫ ∞

0
dt eiωt 〈[Q̂(t ), Q̂(0)]〉, (16)

where Q̂ ≡ Q̂q=0. Following Eq. (4), it is related to the dy-
namical response function Eq. (1) via:

Dnem(ω) = χQ̂,Q̂ + iω

T
CQ̂,Q̂(ω). (17)

where
CQ̂,Q̂(ω)

T
=

∑
kσ ;k′σ ′

χ̂Q̂,n̂kσ

[
1

M̂(ω) − iωχ̂

]
n̂kσ ,n̂k′σ ′

χ̂n̂k′σ ′ ,Q̂.

(18)
The non-frequency-dependent part N̂ = (nkσ |ṅk′σ ′ ) = 0 due
to time reversal and inversion symmetry. The memory matrix
M̂ is calculated as:

M̂n̂kσ ,n̂k′σ ′ (ω) ≈ 1

iω

[
GR

˙̂nkσ , ˙̂nk′σ ′ (ω) − GR
˙̂nkσ , ˙̂nk′σ ′ (0)

]
, (19)

where we have defined ˙̂nkσ = i[H, n̂kσ ], and H is the Hamilto-
nian that corresponds to the action in Eq. (14). In our system,
˙̂nkσ is given by:

˙̂nkσ = iλ√
N

∑
q

φq(ϕk,k−qc†
kσ ck−qσ − ϕk,k+qc†

k+qσ ckσ ).

(20)
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FIG. 2. Feynman diagrams for the thermodynamic susceptibility
χn̂k,n̂k′ . The double-wiggly line represents the dressed propagator for
nematic fluctuations.

The connection of Eq. (17) to a kinetic equation is made
by identifying the memory matrix as the linearized collision
integral, and the thermodynamic susceptibilities as the Fermi
liquid parameters [28].

A. Quasielastic peak

To see that Dnem(ω) contains a QEP, we treat for simplicity
Q̂ as the only slow operator (a more rigorous treatment will
follow). We arrive at a memory function expression:

Dnem(ω) ≈ MQ̂,Q̂(ω)χQ̂,Q̂

MQ̂,Q̂(ω) − iωχQ̂,Q̂

. (21)

We write the memory function as MQ̂,Q̂(ω) = M ′(ω) +
iM ′′(ω). At low frequencies and finite temperatures, the real
part can be approximated by its ω → 0 value, which van-
ishes as a power law of temperature [28]. The imaginary part
is approximately linear in frequency, and renormalizes the
strength of the two-particle response. This renormalization
is nonsingular and subleading in 1/N , and hence we neglect
it. As a result, ImDnem(ω) contains a low-frequency peak at
ω ≈ M ′

Q̂,Q̂
(ω = 0)/χQ̂,Q̂, with a peak height of χQ̂,Q̂/2.

B. Diagrammatic calculation of χ̂ and M̂

We perform a diagrammatic calculation of both the mem-
ory matrix and the thermodynamic susceptibility to leading
order in 1/N , equivalent to the random phase approximation
(RPA). The leading-order Feynman diagrams for the ther-
modynamic susceptibilities are shown in Fig. 2, where the
double-curly line represent the dressed bosonic propagator
in Eq. (15), and we have introduced a shorthand notation:
ϕk ≡ ϕk,k. We consider the limit when temperature is much
smaller than the Fermi energy, and hereby work with the
following approximation:

χn̂kσ ,n̂k′σ ′ ≈ δkσ,k′σ ′δ(εk ) + λ2

N

1

r(T )
ϕkϕk′δ(εk )δ(εk′ ). (22)

The presence of the δ functions indicates that the main contri-
bution comes from the vicinity of the Fermi surface.

The RPA diagrams for the memory matrix [Eq. (19)] are
shown in Figs. 3(a)–3(d). A distinction compared to tradi-
tional RPA diagrams for, e.g., compressibility, is that here the
memory matrix M̂n̂kσ ,n̂k′σ ′ depends explicitly on the fermionic
momenta. This leads to two classes of RPA diagrams shown in
Figs. 3(c)–3(d), where the external momentum indices (k, k′)
are colored in red. In Matsubara frequencies, the memory

FIG. 3. Feynman diagrams for the memory matrix M̂n̂kσ ,n̂k′σ ′ ,
adapted from Fig. 1 of Ref. [28]. (a) The vertex function for ṅkσ (ω).
The empty (solid) circle at the vertex denotes an incoming (outgoing)
frequency ω. (b)–(d) Class I and II Feynman diagrams under random
phase approximation. The external momentum indices (k, k′) are
colored red.

matrix is given by:

M̂ (1)
n̂kσ ,n̂k′σ ′ (i�n) = δσσ ′

λ2T

N�n

∑
q,νn

Dq,νn+�n

×
∑
ζ=±1

(δk−k′,ζq − δk,k′ )ϕ2
k,k′Rk,k′,ζ νn ,

(23)

M̂ (2)
n̂kσ ,n̂k′σ ′ (i�n) = − λ4T

N2�n

∑
q,νn

Dq,νn Dq,νn+�n

×
∑

ζ ζ ′=±1

ζ ζ ′ϕ2
k,k+ζqϕ

2
k′,k′+ζ ′qRk,k+ζq,ζ νn

× [Rk′,k′+ζ ′q,ζ ′νn − Rk′,k′+ζ ′q,ζ ′(νn+�n )].
(24)

Here Rk,k′,νn is the polarization bubble summed over the
fermionic Matsubara frequencies:

Rk,k′,νn = nF (εk′ ) − nF (εk )

εk − εk′ + iνn
, (25)

where nF (ε) is the Fermi-Dirac distribution.
A high-frequency expansion [i.e., ωχ � M̂(ω)] of

Eq. (17) shows that the two classes of diagrams correspond
to the Maki-Thompson and Density of State [Fig. 3(b)], and
Aslamazov-Larkin [Figs. 3(c)–3(d)] diagrams. In the low-
frequency limit, Eq. (17) is equivalent to the quantum Boltz-
mann equation described in the Kadanoff-Baym-Keldysh
framework. Below we consider two limiting cases where
either ω � T � EF (quasielastic limit) or T � ω � EF (in-
termediate frequencies).
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C. Quasielastic limit

The memory matrix in the quasielastic limit (ω → 0) de-
scribes the scattering processes in the vicinity of the Fermi
surface. It has been worked out in Ref. [28], and here we
merely quote the results:

M̂ (1)
n̂kσ ,n̂k′σ ′ ≈ δσσ ′

2πλ2

N

∑
q

Vq(T )ϕ2
k,k+q

× (δk,k′ − δk′−k,q)δ(εk )δ(εk+q), (26)

M̂ (2)
n̂kσ ,n̂k′σ ′ ≈ −2π2λ4

N2

∑
q

Vq(T )

γq
ϕ2

k,k+qδ(εk )δ(εk+q)

×
∑

ζ ′=±1

ζ ′ϕ2
k′,k′+ζ ′qδ(εk′ )δ(εk′+ζ ′q), (27)

where

Vq(T ) =
∫ ∞

−∞

dω

π
ωD′′(q, ω)

(
−∂nB(ω)

∂ω

)
. (28)

It is convenient to work in the angular momentum basis
M̂nσ,mσ ′ = ∑

kk′ e−i(mθk−nθk′ )M̂n̂kσ ,n̂k′σ ′ , where the memory ma-
trix has a simple form:

M̂nσ,mσ ′ ≈ πλ2

N

∑
kk′

f ∗
n,kk′ fm,kk′Vk−k′ (T )ϕ2

k,k′δ(εk )δ(εk′ )

×
[
δσσ ′ − 1

N

1 − (−1)n

2

1 − (−1)m

2

]
, (29)

where fm,kk′ = eimθk − eimθk′ .
Since ϕk,k′ has even parity, M̂nσ,mσ ′ hybridizes angular

harmonics (n, m) of the same parity. For a given pair of (n, m),
M̂nσ,mσ ′ has a simple matrix structure in the spin (flavor) basis.
For even-parity modes such as Q̂, M̂nσ,mσ ′ ∝ δσ,σ ′ is diagonal
in the spin (flavor) space, and nonzero corresponding to a
finite decay lifetime. However, for odd-parity modes, the diag-
onal matrix elements are 1 − 1

N , and the other entries are − 1
N .

This leads to one zero mode with eigenvector 1√
N

(1, 1, . . . ).
Hence, odd parity deformations of the Fermi surface are long
lived. This dichotomy of even-odd parity modes is unique to
two-dimensional electronic systems, and has been discussed
previously in Ref. [35,36].

In the angular harmonics basis, Eq. (17) has a simpler
expression, given by:

Dnem(ω) ≈ χQ̂,Q̂ + iωχ2
Q̂,Q̂

[
1

M̂(ω) − iωχ̂

]
Q̂,Q̂

. (30)

This simplification is due to the fact that χ̂n,m ∝ δn,m ac-
cording to Eq. (22). Note that there is a crucial difference
compared to Eq. (21). Here the matrix in the square brackets is
first inverted before taking the overlap with the Ising-nematic
form factor. Due to the hybridization of different angular har-
monics [see Eq. (29)], two expressions may give qualitatively
different results.

We first present a qualitative analysis for the temperature
dependence of the QEP frequency. Since critical fluctuations
give rise to small-angle scattering, we expect that the decay
of an Ising-nematic deformation of the Fermi surface to be
governed by momentum diffusion, which leads to a decay rate

FIG. 4. (a) Imaginary part of the dynamical nematic suscepti-
bility showing a quasielastic peak feature for various temperatures.
(b) QEP peak frequency �(T ) as a function of temperature. Inset
is the log-derivative plot α ≡ d ln �/d ln T showing the temperature
variation of the power-law exponent. The dashed lines correspond
to T 2χ−1 (Fermi liquid behavior) and T 4/3χ−1. (c) Inverse of the
QEP peak height A(T ) (red circle) compared the thermodynamic
susceptibility (blue solid line).

τ−1 ∝ (q0/kF )2τ−1
0 , where τ−1

0 is the single-particle scatter-
ing rate, and q0 is the characteristic momentum transfer. q0 ∼
T 1/3 and τ−1

0 ∼ T 2/3 following quantum critical scaling. As
a result, the QEP frequency should scale as τ−1χ−1

Q̂,Q̂
∝ T 7/3

near the QCP.
In Fig. 4 we present a numerical solution for the low-

frequency Raman response for a clean system, replacing the
memory matrix by its ω → 0 limit. We choose λ2 = 2πNEF

(RPA instability) and N = 2. Figure 4(a) shows the response
for various temperatures. The spectral response clearly shows
the development of a low-frequency peak as temperature is
lowered toward the QCP. The temperature dependence of the
peak height and peak frequency are presented in Figs. 4(b)
and 4(c), respectively. As expected, the peak height tracks the
thermodynamic susceptibility, while the peak frequency soft-
ens toward the QCP. However, the temperature dependence
of the peak frequency cannot be fitted to a simple power
law governed by momentum diffusion. The log-derivative plot
[Fig. 4(b) inset] shows a smooth variation of the exponent as
temperature is lowered, saturating to T 3 at low temperatures.
Since the QEP is a weighted superposition of eigenmodes of
[M̂(ω) − iωχ̂ ]−1, there is not the notion of a single scatter-
ing time as discussed in the naive quantum critical scaling
previously. It is nonetheless useful to define τ−1 ≡ �(T )χQ̂,Q̂
to separate the dynamic component of the QEP. Figure 4
then implies that τ−1 ∝ T 2 as T → 0—analogous to that of
a Fermi liquid, despite being at the QCP.
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FIG. 5. (a) Imaginary part of the dynamical nematic susceptibil-
ity in the presence of impurity scattering (gimp = 0.1EF ). (b) QEP
peak frequency �(T ) as a function of temperature. Inset is the log-
derivative plot showing the temperature variation of the power-law
exponent α.

The apparent violation of the naive quantum critical scaling
at all temperatures can be understood as follows. At high
temperatures, Vq(T ) ∝ T γq

r(T )+q2 from Eq. (28). The typical
momentum transfer q0 ∼ kF � r(T ). As a result, Vq(T ) ∝
T γq0
r(T ) ∼ const, leading to a constant lifetime. At low tempera-

tures, the typical momentum transfer q0 ∼ kF (γ T )1/3 is small.
Furthermore, the Fermi surface is divided into four weakly
connected patches by the Ising-nematic cold spots, where the
form factors vanish by symmetry. Scattering across the cold
spots is the bottleneck for global equilibration. Evaluating the
memory matrix [Eq. (29)] near the cold spots, we get M ∝∫ q0

0 d2qq4Vq ∼ T 2. Compared to rate of momentum diffusion,
there is an additional factor of q2

0 due to the form factor.
Next, we consider how impurity scattering affects the prop-

erties of the QEP. For simplicity we assume the impurity
scattering only contributes to the memory matrix M(T ) =
Mnem(T ) + Mimp(T ) but does not modify the thermodynamic
properties. Now, the cold spots are no longer a bottleneck
for relaxation, and as a result �(T ) ∝ [τ−1

imp + τ−1
nem(T )]χ−1

Q̂,Q̂
.

At low temperatures impurity scattering is dominant, leading
to �(T ) ∝ T coming from the thermodynamic susceptibility.
This is the behavior discussed in Refs. [24,25]. At higher
temperatures, nematic fluctuations are more important, lead-
ing to a stronger temperature dependence. This behavior is
illustrated in Fig. 5.

D. Intermediate frequencies

We proceed to study the limit where the external frequency
is much larger than temperature. Here, the memory matrix
in Eq. (17) is always smaller than ωχQ̂,Q̂. As a result, the
approximate memory function expression in Eq. (21) holds.
It is straightforward to show that MQ̂,Q̂(ω) ∝ ω4/3 governed
by momentum diffusion. The imaginary part of the Raman
response is then given by:

ImDnem(ω) ≈ MQ̂,Q̂(ω)

ω
∝ ω1/3. (31)

FIG. 6. (a) Quasielastic peak frequency for FeSe1-xSx at dopings
x = 0.15 (orange) and x = 0.2 (magenta), extracted from Ref. [23].
The extrapolated Curie-Weiss temperature is zero at x = 0.15, and
negative at x = 0.2. EF is taken to be 30 meV. The dashed lines
are linear fits using a + 1.2T/EF , with a = 0.2 and 0.4, respectively.
(b) A replot of Fig. 5(b) with the y axis being �(T )/T .

This behavior has also been obtained in earlier works us-
ing perturbative diagrammatic techniques at zero temperature
[26,27].

V. SUMMARY AND OUTLOOK

So far we have neglected the effects of acoustic phonons.
As argued in Ref. [20], the nematoelastic coupling shifts the
position of the Ising-nematic phase transition temperature.
Experimentally this is reflected in the difference between the
extrapolated Curie-Weiss temperature T� and measured tran-
sition temperature Ts [23]. Moreover, the coupling leads to
directional criticality at the QCP, where the correlation length
is divergent only along the diagonal directions of the Brillouin
zone. As discussed in Refs. [19,20,37,38], this can also lead
to a breakdown of quantum critical scaling, and recover Fermi
liquid behavior at low temperatures.

We proceed to compare our results to Raman scattering
experiments performed on FeSe1-xSx [23], where a putative
Ising-nematic QCP occurs at x ≈ 0.15. In Fig. 6(a) we plot
�(T )/(T − T�) as a function of T/EF for x = 0.15, 0.2,
extracted from the experiments. As discussed earlier, this
quantity represents the dynamical contributions to the QEP.
Above Ts(x), the data can be fitted using a functional form
a + bT , suggesting that the near-critical Ising-nematic fluctu-
ations give rise to a linear-in-T scattering rate. This behavior is
qualitatively captured from our calculation shown in Fig. 6(b),
a replot of Fig. 5(b), without fine tuning of parameters except
the strength of impurity scattering.

In summary, using a memory matrix approach, we studied
the dynamical nematic susceptibility for a two-dimensional
electronic system near an Ising-nematic quantum critical
point. Our results are qualitatively consistent with the Raman
scattering results for FeSe1-xSx. Interestingly, we find it useful
to separate the dynamical and thermodynamic contributions to
the quasielastic peak frequency �(T ) ∝ τ−1χ−1

Q̂,Q̂
. As a result,

a dynamical scattering rate τ−1 can be extracted directly from
experimental data via the product of the peak frequency with
the thermodynamic susceptibility.
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FIG. 7. Raman response for a two-pocket electronic model in the
clean limit. Compared to Fig. 4, here the quasielastic peak frequency
is reduced by a factor of 2 due to fermion band doubling, but the
power-law temperature dependence remains unchanged, showing a
universal behavior independent on band structure details.
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APPENDIX: MEMORY MATRIX CALCULATION
OF RAMAN RESPONSE IN A TWO-POCKET MODEL

We begin by noting that under RPA, the memory ma-
trix: M ∼ O(N0), and the thermodynamic susceptibility χ ∼
O(N ), and as a result, the quasielastic peak frequency: �(T ) ∼
O(1/N ).

In the regime governed by Ising-nematic quantum criti-
cal fluctuations, the qualitative features of the low-frequency
Raman response are insensitive to the microscopic band pa-
rameters except for the presence/absence of Ising-nematic
cold spots on the Fermi surface. To illustrate this, here we
present an analysis of a two Fermi-pocket model, with a
circular hole pocket centered at the � point and a circular
electron pocket centered at the M point of the Brillouin zone.
The dispersions are chosen as εh,k = k2

2m − μ and εe,k+Q =
−εh,k, where Q = (π/a, π/a). We choose m = 1, kF = 1.
The Ising-nematic QCP is achieved at λ2 = 4πNEF at the
RPA level, where N = 4 corresponding to two pockets and
two spin species. The Raman response in the clean limit is
illustrated in Figure. 7. A comparison with Fig. 4 of the main
text shows that while the quasielastic peak frequency �(T )
is suppressed, its temperature-dependent power-law exponent
[inset to Fig. 4(b)] remains qualitatively unchanged.
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