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Mode conversion and resonant absorption in inhomogeneous materials with flat bands
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Mode conversion of transverse electromagnetic waves into longitudinal oscillations and the associated reso-
nant absorption of wave energy in inhomogeneous plasmas is a phenomenon that has been studied extensively in
plasma physics. We show that precisely analogous phenomena occur generically in electronic and photonic sys-
tems where dispersionless flat bands and dispersive bands coexist in the presence of an inhomogeneous potential
or medium parameter. We demonstrate that the systems described by the pseudospin-1 Dirac equation with two
dispersive bands and one flat band display mode conversion and resonant absorption in a very similar manner to
p-polarized electromagnetic waves in an unmagnetized plasma by calculating the mode conversion coefficient
explicitly using the invariant imbedding method. We also show that a similar mode conversion process takes
place in many other systems with a flat band such as pseudospin-2 Dirac systems, continuum models obtained
for one-dimensional stub and sawtooth lattices, and two-dimensional electron systems with a quadratic band and
a nearly flat band. We discuss some experimental implications of mode conversion in flat-band materials and
metamaterials.
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I. INTRODUCTION

Recently, there has been growing interest in the electronic
and photonic systems displaying a dispersionless flat band in
the band structure [1–3]. For the modes belonging to the flat
band, the particle energy or wave frequency does not depend
on the momentum or wave vector and the group velocity van-
ishes. This has a strong effect on the behavior of quasiparticles
and waves and can cause many interesting phenomena by
greatly amplifying the effects of various perturbations such as
interactions and disorder [4–9]. Examples include supercon-
ductivity in magic-angle twisted bilayer graphene, flat-band
ferromagnetism, and anomalous Landau levels [10–17].

Many models having one or more flat bands have been
studied theoretically. Two-dimensional (2D) lattices such as
the Lieb, dice, and kagome lattices and one-dimensional (1D)
lattices such as the stub, sawtooth, and diamond lattices
are among the examples [18–21]. The low-energy physics
of the aforementioned 2D lattices can be described by two
Dirac cones intersected by a flat band and modeled by the
pseudospin-1 Dirac equation in 2D [22–26]. There also have
been many recent attempts to realize flat-band systems exper-
imentally [27–32].

In this paper, we show that there exists another interesting
phenomenon which has avoided the attention of researchers
until now, though it should occur generically in all flat-band
systems unless forbidden by symmetry. In plasma physics,
the phenomenon termed (somewhat ambiguously) as mode
conversion has been known for a long time and has played
a crucial role in explaining a variety of processes, including
the heating of solar corona and fusion plasmas and the sudden
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appearance or disappearance of specific wave modes in space
plasmas [33–42]. The simplest example is as follows. In an in-
homogeneous unmagnetized plasma where the plasma density
n varies smoothly along the z direction, the plasma frequency
ωp (=

√
4πne2/m), where m and e are the mass and charge of

an electron, is also a function of z. Let us consider a situation
where a p-polarized electromagnetic (EM) wave of frequency
ω is obliquely incident on this plasma and propagates within
it. If there exists a resonant region where ω is matched to the
local plasma frequency, then the local dielectric permittivity
vanishes and the transverse wave excites a longitudinal plasma
oscillation there. Since the group velocity for the plasma
oscillation mode is zero, the energy of the incident wave
is continuously converted into that of the plasma oscillation
mode and is accumulated at the resonant region. Ultimately
this energy will be dissipated as heat and contribute to the
heating of the plasma.

We point out that the plasma oscillation mode is an ex-
ample of flat band. In an inhomogeneous plasma where this
band crosses the dispersive band describing EM waves, the
energy can flow from the (fast) dispersive mode to the (slow)
flat-band mode. We will demonstrate that a precisely anal-
ogous phenomenon occurs in the systems described by the
pseudospin-1 Dirac equation. Furthermore, we will show that
similar phenomena take place in many other systems with
flat bands including pseudospin-2 Dirac systems, continuum
models derived for 1D stub and sawtooth lattices, and a 2D
model with a nearly flat band.

II. PSEUDOSPIN-1 DIRAC EQUATION

The effective Hamiltonian that describes massive
pseudospin-1 Dirac particles moving in the 2D xy plane
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in a 1D scalar potential U = U (x) takes the form

H = vF (Sx px + Sy py) + UI + MV, (1)

where vF is the Fermi velocity and M (= mvF
2) is the mass

energy. The x and y components, Sx and Sy, of the pseudospin-
1 operator are represented by

Sx = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, Sy = 1√

2

⎛
⎝0 −i 0

i 0 −i
0 i 0

⎞
⎠, (2)

and I is the 3 × 3 unity matrix. The x and y components of the
momentum operator, px and py, are

px = h̄

i

d

dx
, py = h̄ky, (3)

where ky is the y component of the wave vector. We assume
that the mass energy M is a constant. The mass term MV de-
scribes the generation of the band gap between the conduction
and valence bands and the position of the flat band. For the
matrix V , we choose

V =
⎛
⎝1 0 0

0 −1 0
0 0 1

⎞
⎠. (4)

Then the flat band is located at the bottom of the conduction
band if M > 0 and at the top of the valence band if M < 0
[24]. The size of the band gap is 2|M|.

The time-independent Dirac equation in 2D for the three-
component vector wave function ψ [= (ψ1, ψ2, ψ3)T] is

Hψ = Eψ, (5)

where E is the particle energy. We can eliminate ψ1 and ψ3

using the equations

ψ1 = − i√
2

h̄vF

E − M − U

(
d

dx
+ ky

)
ψ2,

ψ3 = − i√
2

h̄vF

E − M − U

(
d

dx
− ky

)
ψ2, (6)

and obtain a single wave equation for ψ2 of the form

d

dx

(
h̄vF

E − M − U

dψ2

dx

)

+
[

E + M − U

h̄vF
− h̄vF ky

2

E − M − U

]
ψ2 = 0. (7)

We assume that a plane wave described by ψ2 is incident
obliquely from the region x > L where U = 0 onto the
nonuniform region in 0 � x � L where U = U (x) and then
transmitted to the uniform region x < 0 where U = Ut . Then
the wave number k and the negative x component of the wave
vector, p, in the incident region and the constant of motion ky

are given by

k =
√

E2 − M2

h̄vF
, p = k cos θ, ky = k sin θ, (8)

where we assume that E > M � 0 and θ is the incident angle.
A sketch of the configuration considered here is shown in
Fig. 1.

FIG. 1. Sketch of the configuration considered in Sec. II. A plane
wave is incident at an angle θ from the region x > L where U = 0
onto the nonuniform region in 0 � x � L where U = U (x) and then
transmitted at an angle θt to the uniform region x < 0 where U = Ut .
If the wave is evanescent in the region x < 0, then the transmittance
T vanishes and the angle θt is undefined.

We introduce the dimensionless parameters ε and μ de-
fined by

ε = 1 − U

E − M
, μ = 1 − U

E + M
, (9)

which are equal to each other in the massless case. In the in-
cident region, we have ε = μ = 1. In terms of the parameters
ε and μ, the wave equation, Eq. (7), can be written as

d

dx

(
1

ε

dψ2

dx

)
+ k2

(
μ − sin2 θ

ε

)
ψ2 = 0. (10)

We notice that if we replace ψ2, ε, and μ with the z component
of the magnetic field Hz, the dielectric permittivity, and the
magnetic permeability, then this equation has precisely the
same form as the wave equation for p-polarized EM waves
propagating in the xy plane. In Table I, we make a comparison
between the pseudospin-1 Dirac equation and the p wave
equation in a plasma.

We solve the wave equation in the presence of an arbitrary
potential using the invariant imbedding method [43–45]. In
this method, we first calculate the reflection and transmission
coefficients r and t defined by the wave functions in the
incident and transmitted regions:

ψ2(x, L) =
{

eip(L−x) + r(L)eip(x−L), x > L,

t (L)e−ip′x, x < 0,
(11)

where p′ is the negative x component of the wave vector in
the region x < 0 and r and t are regarded as functions of L.
Following the procedure described in Ref. [45], we derive the
exact differential equations for r and t :

1

k

dr

dl
= − i cos θ

2
ε(r − 1)2

+ i

2 cos θ

(
μ − sin2 θ

ε

)
(r + 1)2,

1

k

dt

dl
= − i cos θ

2
ε(r − 1)t

+ i

2 cos θ

(
μ − sin2 θ

ε

)
(r + 1)t . (12)

For any functional form of U and for any values of kL and
θ , we can integrate these equations from l = 0 to l = L using
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TABLE I. Comparison between the pseudospin-1 Dirac equation and the p wave equation in a plasma.

ε μ Flat band Local oscillation

Pseudospin-1 Dirac equation 1 − U
E−M 1 − U

E+M E = U + M Compact localized states

p wave equation in a plasma 1 − ωp
2

ω2 1 ω = ωp Plasmon

the initial conditions

r(0) = ε2 cos θ − p̃

ε2 cos θ + p̃
, t (0) = 2ε2 cos θ

ε2 cos θ + p̃
, (13)

where

p̃ =
{

sgn(ε2)
√

ε2μ2 − sin2 θ if ε2μ2 � sin2 θ,

i
√

sin2 θ − ε2μ2 if ε2μ2 < sin2 θ,

ε2 = 1 − Ut

E − M
, μ2 = 1 − Ut

E + M
, (14)

and obtain r(L) and t (L). The reflectance R and the transmit-
tance T are obtained using

R = |r|2, T =
{ p̃

ε2 cos θ
|t |2 if ε2μ2 � sin2 θ,

0 if ε2μ2 < sin2 θ.
(15)

In the absence of dissipation and mode conversion, the iden-
tity R + T = 1 is satisfied.

The initial conditions r(0) and t (0) are the reflection and
transmission coefficients for the case where there is no inho-
mogeneous layer (that is, L = 0), and therefore the incident
region with ε = μ = 1 and the transmitted region with ε = ε2

and μ = μ2 have a single interface at l = 0. They are derived
from the continuity of ψ2 and ε−1dψ2/dx at the interface and
are nothing but the well-known Fresnel coefficients. In the
simplest case where the incident and transmitted regions have
the same potential, the initial conditions are trivially given by
r(0) = 0 and t (0) = 1.

We point out that the invariant imbedding equations,
Eq. (12), become singular at the resonance point xr where
ε = 0, which corresponds to E = M + U (xr ). This singular-
ity causes mode conversion in a very similar manner to that
of transverse EM waves to longitudinal plasma oscillations in
an inhomogeneous unmagnetized plasma. When a wave de-
scribed by ψ2 with finite group velocity is incident obliquely
on the inhomogeneous layer in 0 � x � L, it propagates up
to the resonance point x = xr , where the dispersive wave
mode is strongly and resonantly coupled to the local flat-band
state and the wave energy flows to the latter. Since the group
velocity associated with the flat-band state is zero, the energy
is accumulated locally and is ultimately converted into heat. In
the steady state, a finite fraction of the energy of the incident
wave is converted into that of the flat-band state.

To regularize the singularity, we introduce a small imag-
inary part of ε, εI (>0), in Eq. (12) when calculating r and
t . We find numerically that the absorptance A (= 1 − R − T )
converges to a finite value in the limit εI → 0, if there exists a
value of x such that Re ε(x) = 0 in the region 0 � x � L. We
emphasize that this kind of absorption is not due to dissipation
but due to the conversion of a propagating wave mode into a
local oscillating mode associated with the flat band. From now
on, we will call A as the mode conversion coefficient.

A clear signature of mode conversion is the occurrence of
a singularity in the invariant imbedding equations, such as the
(sin2 θ )/ε term in Eq. (12). In the systems with no flat band,
there appears no singularity in those equations and mode
conversion does not occur. In the case of the pseudospin-1/2
Dirac equation in the presence of inhomogeneous scalar and
vector potentials, which describes single-layer graphene and
does not have a flat band in its spectrum, the invariant imbed-
ding equations have been derived previously in Ref. [46]. It
has been verified that there appears no singularity and there-
fore no mode conversion.

To illustrate the mode conversion phenomenon, we con-
sider a simple linear configuration of the potential

U (x)

U0
=

⎧⎨
⎩

1, if x < 0,

1 − x
L , if 0 � x � L,

0, if x > L.

(16)

The resonance occurs inside the region 0 � x � L if the en-
ergy satisfies M < E < U0 + M. In Fig. 2(a), we plot A versus
θ when M/U0 = 0.2 and E/U0 = 0.4, 0.7, 1. The thickness of
the inhomogeneous slab satisfies ζ ≡ U0L/(h̄vF ) = 20. For
the chosen values of the energy, the resonance occurs within
the inhomogeneous region and substantial absorption (that is,
mode conversion) arises in a wide range of the incident angle.

The efficiency of mode conversion is affected by the rate
of the spatial change of the potential near the resonance point,
which is measured by the parameter ζ . For a fixed value of U0,
ζ is proportional to L and therefore is inversely proportional

FIG. 2. Mode conversion coefficient A obtained by solving
Eq. (12) for the configuration given by Eq. (16) plotted versus in-
cident angle θ , (a) when ζ ≡ U0L/(h̄vF ) = 20, M/U0 = 0.2, and
E/U0 = 0.4, 0.7, 1 and (b) when E/U0 = 0.4, M/U0 = 0.2, and
ζ = 1, 10, 100, 1000. In all calculations, εI is chosen to be 10−8.

045136-3



KIHONG KIM AND SEULONG KIM PHYSICAL REVIEW B 105, 045136 (2022)

FIG. 3. Color graph of the mode conversion coefficient A ob-
tained by solving Eq. (7) for the configuration given by Eq. (8) as
a function of θ and (E − M )/U0, when M/U0 = 0.2, ζ = 20, and
εI = 10−8. A vanishes for all θ if (E − M )/U0 > 1.

to the slope of the potential curve. In Fig. 2(b), we plot A
versus θ for the values of ζ equal to 1, 10, 100, and 1000,
when E/U0 = 0.4 and M/U0 = 0.2. We find that the mode
conversion becomes weaker for both small and large values of
ζ and is strongest for some intermediate value of ζ .

In Fig. 2, we observe that A always vanishes at θ = 0. This
is because normally incident waves cannot couple to the local
flat band mode in the present model. In the equivalent case of
mode conversion in an unmagnetized plasma, it has been well-
known that normally incident transverse waves cannot excite
longitudinal plasma oscillations. To provide a broader view
of the mode conversion in pseudospin-1 systems, we show a
color graph of the mode conversion coefficient as a function
of the incident angle and the particle energy when M/U0 =
0.2 and ζ = 20 in Fig. 3. As it has been expected, when the
energy satisfies 0 < (E − M )/U0 < 1, there appears a wide
range of the incident angle in which the mode conversion is
substantially strong.

III. PSEUDOSPIN-2 DIRAC EQUATION

The band structure of pseudospin-N Dirac systems with
N a positive integer consists of 2N dispersive bands (that is,
Dirac cones) and one flat band [18]. Therefore, we expect
all of these systems to display mode conversion. We consider
here the case of pseudospin-2 Dirac systems [47]. The Hamil-
tonian that describes massless pseudospin-2 Dirac particles in
2D in a 1D scalar potential U = U (x) has a similar form as
Eq. (1), but with M = 0 and Sx and Sy given by

Sx = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2 0 0 0

2 0
√

6 0 0

0
√

6 0
√

6 0

0 0
√

6 0 2

0 0 0 2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Sy = i

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −2 0 0 0

2 0 −√
6 0 0

0
√

6 0 −√
6 0

0 0
√

6 0 −2

0 0 0 2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

In the uniform case where the potential U is constant, the
eigenvalues of the Hamiltonian are given by

E = U,

E = U ± h̄vF

√
kx

2 + ky
2, (18)

E = U ± 2h̄vF

√
kx

2 + ky
2.

Therefore, the spectrum consists of two pairs of Dirac cones
with different slopes which are intersected at the common
apex by the flat band. We now allow for the x dependence
of the potential U . Starting from the pseudospin-2 Dirac
equation for the five-component vector wave function ψ [=
(ψ1, ψ2, ψ3, ψ4, ψ5)T], we can eliminate ψ1, ψ3, and ψ5 and
derive two coupled wave equations for ψ2 and ψ4 of the form

d

dx

(
A

d�

dx
+ B�

)
+ C

(
A

d�

dx
+ B�

)
+ D� = 0, (19)

where

� =
(

ψ2

ψ4

)
, A = 1

ε

(
1 0
0 1

)
,

B = ky

4ε

(
1 3

−3 −1

)
, C = ky

8

(
7 9

−9 −7

)
,

D = εk0
2

8

(
5 −3

−3 5

)
+ 3ky

2

2ε

(−1 1
1 −1

)
,

ε = 1 − U

E
, k0 = E

h̄vF
. (20)

In the uniform region where U is constant, there are four
solutions for the x component of the wave vector, p, obtained
from Eq. (19), which are

p = ±
√

k0
2ε2 − ky

2, p = ±
√

1

4
k0

2ε2 − ky
2. (21)

The ± signs represent the direction of the phase velocity. We
notice that there are two orthogonal eigenmodes obtained as
linear combinations of ψ2 and ψ4, which are associated with
the inner and outer cones and called here as a and b modes,
respectively. These modes are characterized by different effec-
tive refractive indices ε and ε/2 and the system is birefringent.
The a and b modes can alternatively be called as h = 1 and
h = 2 modes, respectively, where h refers to the helicity. The
effect of the flat band is absorbed into the coefficients of
Eq. (19). In inhomogeneous media, a and b modes interact
with each other and with the local flat band mode.

In the uniform region, we can show that there exists a linear
proportionality relation between ψ2 and ψ4, which is different
for a and b modes and for the left-moving and right-moving
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waves. We obtain

ψ4
(la) = ηlaψ2

(la), ψ4
(lb) = ηlbψ2

(lb),

ψ4
(ra) = ηraψ2

(ra), ψ4
(rb) = ηrbψ2

(rb), (22)

where

ηla = − k0
2ε2(

−
√

k0
2ε2 − ky

2 − iky

)2 ,

ηlb =
1
4 k0

2ε2(
−

√
1
4 k0

2ε2 − ky
2 − iky

)2 ,

ηra = − k0
2ε2(√

k0
2ε2 − ky

2 − iky

)2 ,

ηrb =
1
4 k0

2ε2(√
1
4 k0

2ε2 − ky
2 − iky

)2 . (23)

The wave function is expanded in terms of a and b modes as

� =
(

ψ2

ψ4

)
=

(
ψ2

(la) + ψ2
(lb) + ψ2

(ra) + ψ2
(rb)

ψ4
(la) + ψ4

(lb) + ψ4
(ra) + ψ4

(rb)

)

= Nl

(
ψ2

(la)

ψ2
(lb)

)
+ Nr

(
ψ2

(ra)

ψ2
(rb)

)
, (24)

where

Nl =
(

1 1
ηla ηlb

)
, Nr =

(
1 1

ηra ηrb

)
. (25)

Since there are two propagating wave modes, we need to
define the reflection and transmission coefficients r and t
as 2 × 2 matrices. In our notation, r21 (r11) is the reflection
coefficient when the incident wave is a mode and the reflected
wave is b (a) mode. Similarly, r12 (r22) is the reflection coef-
ficient when the incident wave is b mode and the reflected
wave is a (b) mode. Similar definitions are applied to the
transmission coefficients.

Following the procedure given in Ref. [45], we derive the
invariant imbedding equations for r and t :

dr

dl
= Nri

−1
{−A−1B + i(Nli + Nrir)

(
AiNliPi + AiNriPiNri

−1Nli
)−1[−(

iAiNriPiNri
−1 + Bi

)
A−1B + D

]}
(Nli + Nrir)

+ Nri
−1

{
A−1 + i(Nli + Nrir)

(
AiNliPi + AiNriPiNri

−1Nli
)−1[(

iAiNriPiNri
−1 + Bi

)
A−1 + C

]}
× [iAi(−NliPi + NriPir) + Bi(Nli + Nrir)],

dt

dl
= it

(
AiNliPi + AiNriPiNri

−1Nli
)−1{[−(

iAiNriPiNri
−1 + Bi

)
A−1B + D

]
(Nli + Nrir)

+ [(
iAiNriPiNri

−1 + Bi
)
A−1 + C

]
[iAi(−NliPi + NriPir) + Bi(Nli + Nrir)]

}
, (26)

where Ai, Bi, Nli, and Nri are the values of A, B, Nl , and Nr in the incident region obtained by setting ε = εi = 1 in Eqs. (20) and
(23). These equations are integrated using the initial conditions of the form

r(0) = (
AiNriPi + At Nlt Pt Nlt

−1Nri − iBiNri + iBt Nri
)−1(

AiNliPi + AiNriPiNri
−1Nli

) − Nri
−1Nli,

t (0) = (
AiNriPiNri

−1Nlt + At Nlt Pt − iBiNlt + iBt Nlt
)−1(

AiNliPi + AiNriPiNri
−1Nli

)
, (27)

where At , Bt , and Nlt are the values of A, B, and Nl in the
transmitted region obtained by setting ε = εt in Eqs. (20) and
(23). The matrices Pi and Pt in Eqs. (26) and (27) are defined
by

Pi =
(

pai 0
0 pbi

)
, Pt =

(
pat 0
0 pbt

)
, (28)

where

pai =
√

k0
2εi

2 − ky
2, pbi =

√
1

4
k0

2εi
2 − ky

2,

pat =
√

k0
2εt

2 − ky
2, pbt =

√
1

4
k0

2εt
2 − ky

2. (29)

These initial conditions have been obtained following the pro-
cedure and using Eq. (18) given in Ref. [45]. If the incident
and transmitted regions have the same potential, they reduce
to very simple 2 × 2 matrices r(0) = 0 and t (0) = I .

We assume that the incident waves are propagating waves
with a real-valued wave vector. The effective refractive index
associated with the a mode is twice as large as that of the
b mode. When an a mode wave is incident from the region
where εi = 1, pai is real and the incident angle θ is related
to ky by ky = k0 sin θ . In this case, if θ is greater than 30◦,
then we note that pbi becomes imaginary and the reflected b
wave is evanescent, while the reflected a wave is propagative.
However, when a b mode wave is incident, the incident angle θ

is related to ky by ky = (k0 sin θ )/2. Then pai is always real re-
gardless of the incident angle and both reflected a and b waves
are propagative. The other quantities pat and pbt can be either
real or imaginary depending on the value of Ut . For instance,

when pat is imaginary, we use pat = i
√

ky
2 − k0

2εt
2 instead

of the expression in Eq. (29). A sketch of the configuration
considered in this section is shown in Fig. 4.

Finally, from the consideration of the probability cur-
rents, we obtain the expressions for the reflectance and
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FIG. 4. Sketch of the configuration considered in Sec. III. The
medium described by the pseudospin-2 Dirac equation is bire-
fringent, and in general there exist two reflected waves and two
transmitted waves for each of the incident a and b mode waves.
For the parameter values where some of the transmitted waves are
evanescent, the corresponding transmittances vanish. When an a
mode wave is incident at an angle greater than 30◦, the reflectance
R21 also vanishes.

transmittance matrices Ri j and Ti j (i, j = 1, 2), which are
applicable when pbi, pat , and pbt are real:

R11 = |r11|2, R22 = |r22|2,
R21 = 4pbi

pai
|r21|2, R12 = pai

4pbi
|r12|2,

T11 = |εi|pat

|εt |pai
|t11|2, T22 = |εi|pbt

|εt |pbi
|t22|2,

T21 = 4|εi|pbt

|εt |pai
|t21|2, T12 = |εi|pat

4|εt |pbi
|t12|2. (30)

If pat (pbt ) is imaginary, we have to set T11 and T12 (T21

and T22) to be identically zero. If pbi is imaginary, then
we have to set R21 to zero and the mode conversion coef-
ficient A2 (see below) is undefined. With these definitions,
if there is no dissipation or mode conversion, then the law
of energy conservation R11 + R21 + T11 + T21 = R12 + R22 +
T12 + T22 = 1 should be satisfied. When the mode conversion
occurs, the mode conversion coefficients A1 and A2 are defined
by

A1 = 1 − R11 − R21 − T11 − T21,

A2 = 1 − R12 − R22 − T12 − T22. (31)

In Fig. 5, we plot the mode conversion coefficients A1 and
A2 versus θ , when ζ = 15 and E/U0 = 0.3, 0.6, 0.9. A1 (A2)
is obtained by calculating the absorptance when the incident
wave is a (b) mode. We find that there exists a wide range
of the incident angle in both A1 and A2 curves in which the
mode conversion is substantially strong. Since there are two
propagating modes interacting with the local flat band mode,
these curves display multiple peaks and cusps associated with
various cutoffs. Inside the inhomogeneous layer, the a and b
modes are coupled to each other. When an a mode wave is
incident, it can propagate directly to the resonance region and
convert to flat-band state or it can take an indirect route, first
converting to b wave and then converting to flat-band state
at the resonance region. Since the mode conversion coeffi-
cient obtains the maximum at different parameter values in
these two cases, the curves of A1 often show two peaks as
a function of the incident angle or the energy, as illustrated
in Fig. 5(a). The case where a b mode wave is incident is

FIG. 5. Mode conversion coefficients (a) A1 and (b) A2 for
massless pseudospin-2 Dirac particles in the configuration given by
Eq. (16) plotted versus incident angle θ , when ζ = 15, εI = 10−8,
and E/U0 = 0.3, 0.6, 0.9. A1 (A2) is obtained by calculating the
absorptance when the incident wave is the a (b) mode.

significantly different. Since the refractive index associated
with the a mode is twice as large as that of the b mode, the a
wave converted from the incident b wave propagates at a much
smaller angle with respect to the x axis than the incident angle.
Mode conversion is not efficient for small propagation angles
and therefore this indirect process does not contribute greatly
to mode conversion. Therefore, when a b wave is incident,
mode conversion is dominated by the direct conversion from
b wave to flat-band state and one usually obtains a single
peak for A2 as shown in Fig. 5(b). In addition, the occurrence
of various cutoffs makes cusps to appear in the curves. For
example, the cusp at θ = 30◦ in Fig. 5(a) comes from the
cutoff condition that the reflected b wave becomes evanescent.

In Fig. 6, we show color graphs of A1 and A2 as a function
of the incident angle and the particle energy when ζ = 15.
When the energy satisfies 0 < E/U0 < 1, there appear wide
ranges of the incident angle in which the mode conversion is
substantially strong in both graphs. The observation that there
are two clusters in which the mode conversion is strong in
Fig. 6(a) has the same reason as that explained in the previous
paragraph.

IV. 1D MODELS WITH FLAT BANDS

There have been many studies on the lattice models ex-
hibiting one or more flat bands in 1D, including the stub,
sawtooth, diamond, 1D pyrochlore, and 1D Lieb lattices
[7,9,20]. We have derived continuum wave equations from
these models by linearizing them in the vicinity of the band
edge and solved the wave equations in the presence of an
inhomogeneous scalar potential. All models contain one or
more flat bands in addition to dispersive bands. In order for an
incident wave to induce mode conversion, it has to couple to
the local flat band mode. We have found that this coupling
is possible only in the models with no up-down inversion
symmetry such as the stub and sawtooth lattices (shown in
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FIG. 6. Color graphs of the mode conversion coefficients (a) A1

and (b) A2 for massless pseudospin-2 Dirac particles as functions
of θ and E/U0, when ζ = 15 and εI = 10−8. A1 (A2) is obtained by
calculating the absorptance when the incident wave is the a (b) mode.
Both A1 and A2 vanish for all θ if E/U0 > 1.

Fig. 7), but is not possible in the symmetric models such as the
diamond and 1D pyrochlore lattices. These latter cases have a
close similarity to the absence of mode conversion at normal
incidence in the pseudospin-1 Dirac equation.

The tight-binding equations for the stub lattice at energy E
can be written as

EψA
n = vA

n ψA
n + τψB

n−1 + τψB
n + τψC

n ,

EψB
n = vB

n ψB
n + τψA

n + τψA
n+1,

EψC
n = vC

n ψC
n + τψA

n , (32)

where A, B, and C indicate the sublattice sites A, B, and C
shown in Fig. 7(a) and vA

n , vB
n , and vC

n are the potentials at each
site. All hopping integrals between the nearest-neighbor sites
are assumed to have the same value τ . In the homogeneous
case with no potential, the spectrum of this model is given by
the eigenvalues of the matrix⎛

⎝ 0 1 + e−iqa 1
1 + eiqa 0 0

1 0 0

⎞
⎠, (33)

FIG. 7. Sketches of the (a) stub, (b) sawtooth, (c) 1D pyrochlore,
and (d) diamond lattices. In panels (a), (c), and (d), all hopping
parameters between the connected sites are the same. In panel (b), the
hopping parameters associated with the black and green lines are τ

and
√

2τ , respectively. The 1D pyrochlore and diamond lattices have
up-down inversion symmetry, or equivalently, mirror symmetry with
respect to the dotted line, whereas the stub and sawtooth lattices have
no such symmetry. In one dimension, mode conversion occurs only
in the models derived from the lattices with no up-down inversion
symmetry.

where q is the wave vector and a is the lattice constant. We
find that the spectrum consists of one flat band at E = 0 and
two dispersive bands satisfying E/τ = ±√

3 + 2 cos(qa). We
linearize this model in the neighborhood of the band edge,
where q ≈ π/a. Finally, we replace q̃ (= q − π/a) with the
operator −id/dx and reintroduce the scalar potential U (x).
We obtain

EψA = UψA + τa
dψB

dx
+ τψC,

EψB = UψB − τa
dψA

dx
, (34)

EψC = UψC + τψA.

We eliminate ψA and ψC and obtain a wave equation of the
form

a2 d

dx

(
ε

ε2 − 1

dψB

dx

)
+ εψB = 0, (35)

where a is the lattice constant and ε = [E − U (x)]/τ . τ is
the hopping parameter between the neighboring sites and ψB

describes the wave function at the B sites in Fig. 7(a). We ap-
ply the invariant imbedding method to the wave equation and
derive the equations for the reflection and transmission coef-
ficients of the form

dr

dl
= 2ip

ε1(ε2 − 1)

ε(ε1
2 − 1)

r + ip

2

[
ε

ε1
− ε1(ε2 − 1)

ε(ε1
2 − 1)

]
(1 + r)2,

dt

dl
= ip

ε1(ε2 − 1)

ε(ε1
2 − 1)

t + ip

2

[
ε

ε1
− ε1(ε2 − 1)

ε(ε1
2 − 1)

]
(1 + r)t,

(36)

where ε1 [= (E − U1)/τ = E/τ ] is the value of ε in the
incident region and p (=

√
ε1

2 − 1/a) is the wave number of
the incident wave. These equations are integrated using the
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initial conditions

r(0) = pε1
(
ε2

2 − 1
) − p′ε2

(
ε1

2 − 1
)

pε1
(
ε2

2 − 1
) + p′ε2

(
ε1

2 − 1
) ,

t (0) = 2pε1
(
ε2

2 − 1
)

pε1
(
ε2

2 − 1
) + p′ε2

(
ε1

2 − 1
) , (37)

where ε2 [= (E − U2)/τ ] is the value of ε in the transmitted
region and p′ (=

√
ε2

2 − 1/a) is the wave number of the
transmitted wave. The reflectance R and the transmittance T
are given by

R = |r|2, T =
{ |ε2|

√
ε1

2−1

|ε1|
√

ε2
2−1

|t |2 if ε2
2 > 1,

0 if ε2
2 � 1,

(38)

We notice that the invariant imbedding equations, Eq. (36),
have a singularity at ε = 0, which corresponds to E = U .

The tight-binding equations for the sawtooth lattice at en-
ergy E are written as

EψA
n = vA

n ψA
n + τψA

n−1 + τψA
n+1 + τ ′ψB

n−1 + τ ′ψB
n ,

EψB
n = vB

n ψB
n + τ ′ψA

n + τ ′ψA
n+1, (39)

where A and B indicate the sublattice sites A and B shown
in Fig. 7(b) and vA

n and vB
n are the potentials at each site. In

order for this model to have a flat band, the hopping integral τ ′
should be fine-tuned to satisfy τ ′ = √

2τ . In the homogeneous
case with no potential, the spectrum of this model consists of
a flat band at E/τ = −2 and a dispersive band E/τ = 2[1 +
cos(qa)]. Following a similar procedure as that for the stub
lattice, it is straightforward to derive

a2 d

dx

(
ε + 2

ε

dψA

dx

)
+ (ε + 2)ψA = 0, (40)

where ψA describes the wave function at the A sites in
Fig. 7(b). We apply the invariant imbedding method to it
and obtain the equations for the reflection and transmission
coefficients:

dr

dl
= 2ip

ε(ε1 + 2)

ε1(ε + 2)
r + ip

2

[
ε + 2

ε1 + 2
− ε(ε1 + 2)

ε1(ε + 2)

]
(1 + r)2,

dt

dl
= ip

ε(ε1 + 2)

ε1(ε + 2)
t + ip

2

[
ε + 2

ε1 + 2
− ε(ε1 + 2)

ε1(ε + 2)

]
(1 + r)t,

(41)

where ε1 [= (E − U1)/τ = E/τ ] is the value of ε in the
incident region and p (= √

ε1/a) is the wave number of the
incident wave. These equations are integrated using the initial
conditions

r(0) = pε2(ε1 + 2) − p′ε1(ε2 + 2)

pε2(ε1 + 2) + p′ε1(ε2 + 2)
,

t (0) = 2pε2(ε1 + 2)

pε2(ε1 + 2) + p′ε1(ε2 + 2)
, (42)

where ε2 [= (E − U2)/τ ] is the value of ε in the transmitted
region and p′ (= √

ε2/a) is the wave number of the transmit-
ted wave. The reflectance R and the transmittance T are given

FIG. 8. Mode conversion coefficient A obtained by solving
(a) Eq. (35) corresponding to the stub lattice when L/a = 25 and
U0/τ = 50 and (b) Eq. (40) corresponding to the sawtooth lattice
when L/a = 25 and U0/τ = 250 plotted versus normalized energy
E/τ .

by

R = |r|2, T =
{√

ε1(ε2+2)√
ε2(ε1+2) |t |2 if ε2 > 0,

0 if ε2 � 0.
(43)

We notice that the invariant imbedding equations, Eq. (41),
have a singularity at ε = −2, that is, E = U − 2τ .

In Fig. 8(a), we plot the mode conversion coefficient A
obtained by solving Eq. (35) when L/a = 25 and U0/τ =
50 versus normalized energy E/τ . In Fig. 8(b), we plot A
obtained by solving Eq. (40) when L/a = 25 and U0/τ =
250. The configuration of the potential is given by Eq. (16)
in both cases. In Fig. 8(a), A is nonzero in the range 1 <

E/τ < U0/τ (= 50), since the wave number of the incident
wave is real when E/τ > 1 and the resonance point exists
when 0 < E/τ < U0/τ . When E/τ > 49, the wave number
in the transmitted region becomes imaginary and the wave
gets strongly reflected, which causes a sharp peak to occur
in the region 49 < E/τ < 50. Except for this region, A is
almost a constant approximately equal to 0.5. In Fig. 8(b), A
is nonzero in the range 0 < E/τ < 248, since the resonance
point exists when 0 < E/τ < (U0/τ ) − 2. A is approximately
equal to 0.49 in the entire nonzero range. We also remind
that the continuum models used in our calculation have been
derived using the assumption that the wavelength, which is
inversely proportional to the energy, is sufficiently larger than
the lattice constant a. Therefore, we expect that our results are
quantitatively valid in the low energy region.

V. 2D MODEL WITH A NEARLY FLAT BAND

Mode conversion can also occur when a dispersive band
coexists with a nearly flat band with a small group velocity. An
example in plasma physics is the conversion of a transverse
EM wave into an electron plasma wave in a warm plasma
at nonzero temperature [40]. Here we consider the 2D model
with a singular flat band studied in Ref. [48], the Hamiltonian
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for which is given by

H =
(

τa2kx
2 + U (x) � − iτa2kxky

� + iτa2kxky τa2ky
2 + U (x)

)
, (44)

where τ and a are the energy and length scales of the model
and kx (= −id/dx) is a differential operator. When the pa-
rameter � and the potential U are zero, the model has a
quadratic dispersive band touching a flat band with E = 0 at
kx = ky = 0. As � increases from zero, a gap is opened and
the flat band becomes increasingly warped.

When the potential U is uniform, the eigenvalues of
Eq. (44) are given by

E = U + τa2k2

2
±

√(
τa2k2

2

)2

+ �2, (45)

where k2 = kx
2 + ky

2. When the parameter � is zero, the
spectrum corresponding to the minus sign in Eq. (45) is a
flat band with E = U . As � increases from zero, this band
becomes warped and dispersive, though the group velocity
remains small when � is sufficiently small. We assume that
the potential U is a function of x and replace kx with the
operator kx = −id/dx. We obtain

(E − U )ψ1 = −τa2 d2ψ1

dx2
+ �ψ2 − τa2ky

dψ2

dx
,

(E − U )ψ2 = �ψ1 + τa2ky
dψ1

dx
+ τa2ky

2ψ2, (46)

from which we derive the invariant imbedding equations for r
and t of the form

dr

dl
= − �

E − U
ky(r + 1) + E − U − τa2ky

2

E − U

[
E

E − τa2ky
2 ip(r − 1) + �

E − τa2ky
2 ky(r + 1)

]

+
[(

ip + �

E
ky

)
�

E − U
ky − E − U

τa2

E − τa2ky
2

E
+ 1

τa2

�2

E − U

E − τa2ky
2

E

]
1

2ip
(r + 1)2

+
[
−

(
ip + �

E
ky

)
E − U − τa2ky

2

E − U
+ �

E − U

E − τa2ky
2

E
ky

]
1

2ip
(r + 1)

×
[

E

E − τa2ky
2 ip(r − 1) + �

E − τa2ky
2 ky(r + 1)

]
,

dt

dl
=

[(
ip + �

E
ky

)
�

E − U
ky − E − U

τa2

E − τa2ky
2

E
+ 1

τa2

�2

E − U

E − τa2ky
2

E

]
1

2ip
t (r + 1)

+
[
−

(
ip + �

E
ky

)
E − U − τa2ky

2

E − U
+ �

E − U

E − τa2ky
2

E
ky

]
1

2ip
t

×
[

E

E − τa2ky
2 ip(r − 1) + �

E − τa2ky
2 ky(r + 1)

]
, (47)

where we have assumed that the potential U in the incident region vanishes and the wave number of the incident wave, p, is
given by

p =
√

E
(
E − τa2ky

2
) − �2

τa2E
. (48)

These equations are integrated using the initial conditions

r(0) =
(
ip − �

E ky
)E−Ut −τa2ky

2

E−Ut
+ (−ip′ + �

E−Ut
ky

)E−τa2ky
2

E(
ip + �

E ky
)E−Ut −τa2ky

2

E−Ut
+ (

ip′ − �
E−Ut

ky
)E−τa2ky

2

E

,

t (0) = 2ipE−Ut −τa2ky
2

E−Ut(
ip + �

E ky
)E−Ut −τa2ky

2

E−Ut
+ (

ip′ − �
E−Ut

ky
)E−τa2ky

2

E

, (49)

where Ut is the value of U in the transmitted region and the
wave number of the transmitted wave, p′, is given by

p′ =
√

(E − Ut )
(
E − Ut − τa2ky

2
) − �2

τa2(E − Ut )
. (50)

The reflectance R and the transmittance T are obtained using

R = |r|2,

T =
⎧⎨
⎩

p′
p

∣∣∣∣ (E−τa2ky
2 )(E−Ut )

(E−Ut −τa2ky
2 )E

∣∣∣∣|t |2 if p′ is real,

0 if p′ is imaginary.
(51)
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FIG. 9. Mode conversion coefficient A for the 2D model de-
scribed by Eq. (44) in the configuration given by Eq. (16) plotted
versus incident angle θ , when L/a = 10, U0/τ = 20, E/τ = 2, and
�/τ = 0, 0.1, 1, 1.8.

We notice that the invariant imbedding equations, Eq. (47),
have a singularity at E = U .

In Fig. 9, we plot the mode conversion coefficient ver-
sus incident angle, when the potential is given by Eq. (16)
and the parameters are L/a = 10, U0/τ = 20, E/τ = 2, and
�/τ = 0, 0.1, 1, 1.8. When � = 0, A is symmetric under the
sign change of θ . As �/τ increases towards 1, A becomes
increasingly asymmetric. As �/τ increases above 1, the mode
conversion becomes less and less efficient and A decreases
rapidly towards zero. We find that the overall behavior is
quite similar to the mode conversion of extraordinary waves
occurring in a magnetized plasma where the external magnetic
field is perpendicular to the directions of inhomogeneity and
wave propagation [42]. The parameter � plays the role of the

magnetic field strength. We conclude that the mode conver-
sion between a strongly dispersive band and a nearly flat band
can occur, but its efficiency decreases rapidly as the nearly flat
band becomes less and less flat.

VI. CONCLUSION

In this paper, we have demonstrated that mode conver-
sion and resonant absorption occur generically in all systems
where dispersive bands and flat bands coexist in the band
structure, unless forbidden by symmetry. Mode conversion
takes place as long as there exists a resonant region inside the
system, regardless of the shape of the potential. In electronic
materials, the inhomogeneous potential can be easily achieved
by applying an external electric field or strain. A slowly vary-
ing inhomogeneity in a medium parameter can be introduced
into photonic metamaterials by various methods, for instance,
by slowly varying the lattice constant in a certain direction.
The effects of mode conversion in metamaterials are mani-
fested in many properties, most obviously in the absorption of
the incident wave. In electronic systems, the mode conversion
effect will substantially influence many physical quantities
including the conductance and the shot noise. We will present
a detailed analysis on the consequences of mode conversion
in experimentally relevant systems in a future work.
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