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Doping-dependent metal-insulator transition in a disordered Hubbard model
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We study the effect of disorder and doping on the metal-insulator transition in a repulsive Hubbard model
on a square lattice using the determinant quantum Monte Carlo method. First, with the aim of making our
results reliable, we compute the sign problem with various parameters such as temperature, disorder, on-site
interactions, and lattice size. We show that in the presence of randomness in the hopping elements, the metal-
insulator transition occurs and the critical disorder strength differs at different fillings. We also demonstrate that
doping is a driving force behind the metal-insulator transition.
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I. INTRODUCTION

Metal-insulator transitions are an interesting topic of in-
tense activity in modern physics. In general, there are three
kinds of insulators. Systems in which the valence band is
completely filled are called band insulators [1,2]. The stag-
gered potential, in which the on-site energies are different,
can also produce band insulators with a spectral gap in cold
atom experiments [3,4]. In real materials, disorder weakens
the constructive interference and affects quantum transport.
Disorder-induced localization, which was proposed more than
half a century ago as the Anderson insulator, has inspired nu-
merous efforts to explore the metal-insulator transition [5–7].
In addition to these systems, when electron correlations are
considered, a metallic system can become an insulator, in-
duced by the competition between the energy gap and the
kinetic energy; the electrons in the narrow bands near the
Fermi energy become localized, and the system becomes a
Mott insulator [8,9].

In past decades, the nature of the disorder-driven metal-
insulator transition in two dimensional (2D) interacting
system has been discussed intensively [10–16]. The existence
of a metal state at zero magnetic filed was first predicted by
Finkelstein [10,11] and Castellani et al. [12], and the possi-
bility of metallic behavior and metal-insulator transition was
later confirmed in Refs. [13,14]. By perturbative renormaliza-
tion group methods, the combined effects of interactions and
disorder were studied, and a quantum critical point was iden-
tified to separate the metallic phase stabilized by electronic
correlation from insulating phase where disorder prevails over
the electronic interactions [15]. For reviews, see Ref. [16] and
references therein. To understand the metal-insulator transi-
tion, it is now believed that we must consider both electronic
correlation and disorder on the same footing because disorder
and interactions are both present in real materials [17–19].
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From a theoretical point of view, this is difficult. When both
disorder and interactions are strong, perturbative approaches
usually break down [12,20], and quantum Monte Carlo simu-
lations may be affected by the “minus-sign problem.”

In the context of Quantum Monte Carlo (QMC) simula-
tions, various interesting metal-insulator transitions have been
reported in different physical systems [21–23]. By studying
the disordered Hubbard model on a square lattice at quar-
ter filling, it was shown that repulsion between electrons
can significantly enhance the conductivity, which provides
evidence of a phase transition, in a two-dimensional model
containing both interactions and disorder [24]. The effects
of a Zeeman magnetic field on the transport and thermo-
dynamic properties have also been discussed [25]; it was
argued that a magnetic field enhances localized behavior
in the presence of interactions and disorder and induces a
metal-insulator transition, in which the qualitative features of
magnetoconductance agree with experimental findings. In a
two-dimensional system of a honeycomb lattice that features
a linearly vanishing density of states at the Fermi level, a
novel disorder-induced nonmagnetic insulating phase is found
to emerge from the zero-temperature quantum critical point,
separating a semimetal from a Mott insulator [26]. The au-
thenticity of the insulating phase has also been studied, and
false insulating behavior originates in closed-shell effects
[27].

However, due to the limitation of the minus-sign prob-
lem in QMC simulations, most studies have focused on
the half-filled case [28–31] or some fixed electronic filling
[32,33]. Experimentally, transport measurements of effec-
tively two-dimensional (2D) electron systems in silicon
metal-oxide-semiconductor field-effect transistors provided
evidence that a metal-insulator transition can occur, where the
temperature dependence of the conductivity σdc changes from
that typical of an insulator at lower density to that typical of
a conductor as the density increases above a critical density
[19,34,35]. In a two-dimensional Mott insulator, there is also
an observed transition from an anomalous metal to a Fermi
liquid by doping [36]. Thus, doping is also an important
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physical parameter to tune the phase transition, while deter-
mining the doping-dependent metal-insulator transition is a
subtle and largely understudied problem. A study reported
that cold atom-based quantum simulations offer remarkable
opportunity for investigate the doping problem [37].

In this paper, we evaluate the doping-dependent sign prob-
lem and then select several doping levels to examine the
doping-dependent metal-insulator transition of the disordered
Hubbard model on a square lattice. We then examine whether
this model also has a universal value of conductivity. In
simulations, the sign problem is minimized by choosing off-
diagonal values rather than diagonal disorder because, at
least at half-filling, there is no sign problem in the former
case, and consequently, simulations can be pushed to signif-
icantly lower temperatures. We show that the sign-problem
behavior worsens with increasing parameter strength, such as
on-site interaction; however, the sign-problem behavior also
decreases in the presence of bond disorder [38]. For results
away from half-filling, we choose some points where the sign
problem is less severe compared to other densities and show a
phase diagram of the critical disorder strength determined by
repulsion and doping in a disordered Hubbard model, going
beyond previous results [24].

II. MODEL AND METHOD

The Hamiltonian for a disordered Hubbard model on a
square lattice is defined as

Ĥ = −
∑
ijσ

tijĉ
†
iσ ĉjσ + U

∑
i

n̂i↑n̂i↓ − μ
∑

iσ

n̂iσ , (1)

where tij and U represent the hopping amplitude between the
nearest-neighbor electrons and on-site repulsive interaction,
respectively, and μ denotes the chemical potential, which
can control the electron density of the system. ĉ†

iσ (ĉiσ ) is the
creation (annihilation) operator with spin σ at site i, and n̂iσ =
ĉ†

iσ ĉiσ is the number operator. Disorder is introduced by taking
the hopping parameters tij from a probability P(tij) = 1/� for
tij ∈ [t − �/2, t + �/2] and zero otherwise. � is a measure
of the strength of the disorder [24]. We set t = 1 as the default
energy scale. The number of disorder realizations used in the
present work is 20, which is enough to obtain reliable results
(see the Appendix for details).

We use the determinant Quantum Monte Carlo (DQMC)
method [39] to investigate the phase transitions in the model
defined by Eq. (1) numerically. DQMC is a nonperturbative
approach, providing an exact numerical method to study the
Hubbard model under a finite temperature. First, the partition
function Z = Tre−βH is regarded as a path integral discretized
into �τ functions in the imaginary time interval (0, β ). The
kinetic term is quadratic, and the onsite interaction term can
be decoupled into a quadratic term by a discrete Hubbard-
Stratonovich (HS) field; then, by analytically integrating the
Hamiltonian quadratic term, Z can be converted into the prod-
uct of two fermion determinants, where one is spin up and
the other is spin down. The Metropolis algorithm is used to
stochastically update the sample, and we set �τ = 0.1, lead-
ing to sufficiently small errors in the Trotter approximation.

To study the phase transitions of the system, we computed
the T -dependent dc conductivity, which can be obtained from

FIG. 1. Average sign as a function of electron filling for (a) dif-
ferent temperatures, (b) different interactions, (c) different disorder
strengths, and (d) different lattice sizes.

the momentum q− and imaginary time τ -dependent current-
current correlation function �xx(q, τ ) [40,41]:

σdc(T ) = β2

π
�xx

(
q = 0, τ = β

2

)
. (2)

Here, �xx(q, τ ) = 〈 ĵx(q, τ ) ĵx(−q, 0)〉, β = 1/T , where
ĵx(q, τ ) is the Fourier transform of time-dependent current
operator ĵx(r, τ ) in the x direction:

ĵx(r, τ ) = eHτ/h ĵx(r)e−Hτ/h, (3)

where ĵx(r) is the electronic current density operator, defined
in Eq. (5):

ĵx(r) = i
∑

σ

ti+x̂,i(c
+
i+x̂,σ ciσ − c+

iσ ci+x̂,σ ). (4)

The validity of Eq. (2) has been examined, and this equa-
tion has been used for metal-insulator transitions in the
Hubbard model in many studies [21,24,41].

III. RESULTS AND DISCUSSION

At half-filling, due to the particle-hole symmetry, un-
der the transformation c†

iσ → (−1)iciσ , the Hamiltonian is
unchanged, and the simulation can be performed without con-
sidering the sign problem [42]. When far from half-filling, the
system may have a sign problem; thus, in a doped Hubbard
model on a square lattice, the notorious sign problem prevents
exact results at lower temperatures, at higher interactions, or
with larger lattices. To ensure the reliability of the data in
our simulation, we first present the average sign in Fig. 1,
which is shown as a function of electron filling for (a) different
temperatures, (b) different interactions, (c) different disorder
strengths, and (d) different lattice sizes along with the Monte
Carlo parameters after 30 000 iterations. The average sign
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decays exponentially both with increasing inverse temperature
and lattice size [38].

The average sign is determined by the ratio of the integral
of the product of up and down spin determinants to the integral
of the absolute value of the product [43]:

〈S〉 =
∑

X detM↑(X ) detM↓(X )∑
X | detM↑(X ) detM↓(X ) | , (5)

where X is the HS configurations composed of the spatial
sites and the imaginary time slices; and Mσ (X ) is defined as
each spin specie matrix. As shown in Fig. 1(a), we evaluate
the variation in the sign problem with density for various
inverse temperatures. The average sign decreases quickly as
the system is doped from n = 1.0 to n = 0.9. The average sign
is small when 0.68 < n < 0.98, with a value below 0.2 due
to the disappearing signal-to-noise ratio in the data, making
DQMC simulations nearly impossible. As n decreases from
0.68, the average sign increases and then decreases from
n = 0.64 until n = 0.56, after which the average sign con-
tinuously increases with decreasing density. Thus, the sign
problem is acceptable only at some specific densities, which is
correlated with the closed-shell effects. Moreover, comparing
various temperatures, the sign problem becomes worse as T
decreases. Figure 1(b) shows the effect of the on-site interac-
tion on the sign problem and indicates that the sign problem
is more serious with increasing interaction; in other words,
the interaction plays a negative role in the average sign. The
influence of the bond disorder on the sign problem is shown
in Fig. 1(c). By raising the disorder strength, the sign problem
improves, fundamentally differing from local site disorder,
which breaks the particle-hole symmetry [44] and enhances
the sign problem. Figure 1(d) shows that lattice size also
affects the sign problem, and the average sign is smaller for
L = 10, 12 than for L = 8.

Based on these results, longer runs are required to make
the results more reliable. We thus perform simulations where
L = 8 and U = 4.0, in which the sign problem is mild for
the DQMC method and does not prohibit obtaining accurate
results. In general, in the absence of disorder and frustra-
tion, the ground state of the square lattice at half-filling is
sensitive to interactions, and the system becomes an antifer-
romagnetic (AF) insulator for any finite value of interaction
U > 0 due to the perfect nesting in the Fermi surface. Pre-
vious studies demonstrated that when considering disorder
at half-filling for U = 4.0, the insulating behavior at low
temperatures persists to much larger bond disorder strengths
[24]. According to previous studies, a basic question arises:
On a square lattice with repulsive interactions, in addition to
half filling, how are the transport properties at other carrier
concentrations affected by disorder? To answer this question,
we take advantage of the temperature-dependent dc con-
ductivity σdc(T ) to distinguish between an insulator and a
metal. Figure 2 shows σdc(T ) measured on the square lat-
tice across several disorder � values at different densities
n = 0.3, 0.4, where the sign problem has little effect on the
results. In the low-temperature regime, the behavior of σdc

shows that a transition from metallic to insulating behavior
occurs with increasing disorder. For example, when L = 8,
n = 0.3, T � 0.2, and � = 0.0, the dc conductivity grows
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FIG. 2. Conductivity σdc as a function of temperature at U = 4.0
for different � at [(a), (c)] n = 0.3 and [(b), (d)] 0.4. Top panel is
about L = 8, and lower panel is about L = 12.

as the temperature decreases (i.e., dσdc/dT < 0), which
indicates that the system is metallic, and the error bars stem
from the statistical fluctuation of disorder sampling. Con-
versely, at � = 4.0, the dc conductivity falls with decreasing
temperature (i.e., dσdc/dT > 0) and approaches zero as T →
0, which is characteristic of insulating behavior. Therefore, it
can be deduced from the above figure that hopping disorder
decreases the dc conductivity. The transition from metallic to
insulating clearly occurs at �c = 1.5–2.0. In the same way, by
changing the carrier density n, the critical disorder strength at
n = 0.4 is about �c = 2.5, indicating the occurrence of the
metal-insulator transition in the presence of disorder at other
densities, which differs from the half filling case. Figures 2(c)
and 2(d) show the results of L = 12. Even though the values
of dc conductivity have not been saturated at L = 12, the
values of critical disorder strength are roughly the same for
L = 8 and L = 12. Our further data in Fig. 3(a) show that
the dc conductivity itself tends to converge at L = 20, while
simulations on such lattice cost huge computer processing
times. Through the shift in the maximum dc conductivity, one
can infer that the mobility gap increases as the bond disorder
increases.

In addition, we ascertain that the occurrence of a phase
transition results from the bond disorder rather than the sys-
tem size being smaller than a localization length. Figure 3(a)
shows that as the lattice size increases, the dc conductivity will
converge to a finite value under various conditions, although
the convergence speed is affected by parameter sets (such as
σdc in the insulating phase converges more quickly than in the
metallic phase, or σdc in system at n = 0.4 converges more
quickly than n = 0.3).

On the basis of Fig. 2, we plot σdc as a function of the
disorder strength in Fig. 4, to determine the critical point
accurately and the corresponding value of dc conductivity.
The intersection of four curves marks the critical point for
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FIG. 3. Conductivity σdc as a function of temperature for differ-
ent disorder strengths for U = 4.0 on the L = 8, 16, 20 lattices at (a)
n = 0.3 and (b) n = 0.4. In panel (a), the σdc curves of L = 20 and
L = 16 are almost coincident, which indicates that the dc conduc-
tivity tends to converge as L � 20, although the lower temperature
calculation at β > 6 is constrained by the DQMC simulations.

the metal-insulator transition. The ordinate of this intersection
describes the critical dc conductivity (i.e., at n = 0.3, σdc,crit =
0.30, and at n = 0.4, σdc,crit = 0.30). Here, the value of the
critical dc conductivity is determined to an accuracy of 0.01.
Comparing the results for these parameters sets (U = 4.0, n =
0.3 and U = 4.0, n = 0.4), it shows that the system has the
possibility of a universal value of the critical dc conductiv-
ity. To strongly support these findings, we present the same
plots for different interaction strength (U = 2.0, 3.0) shown
in Figs. 4(c) and 4(d): Although the critical disorder strength
is varied, the critical dc conductivity is still σdc,crit = 0.30. Be-
sides, we also compute other parameter sets, such as U = 4.0,

dc

1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8
=6
=8
=10
=12

(a) L=8 U=4.0 n=0.3

1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8
=6
=8
=10
=12

(b) L=8 U=4.0 n=0.4

c=2.50c=1.79

dc,crit 0.dc,crit 0.

dc
dc

1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6
=6
=8
=10

(c) L=8 U=3.0 n=0.3

dc

c=1.83

dc,crit 0.

2.0 2.5 3.0 3.5 4.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6
=6
=8
=10
=12

(d) L=8 U=2.0 n=0.4

c=2.63

dc,crit 0.

FIG. 4. Conductivity as a function of the disorder strength for
four temperature β = 6, 8, 10, 12 at (a) U = 4.0, n = 0.3; (b) U =
4.0, n = 0.4; (c) U = 3.0, n = 0.3; and (d) U = 2.0, n = 0.4. The
intersection determines the critical disorder strength, and the value
of the conductivity at the critical disorder is approximately 0.30.

FIG. 5. Top: conductivity σdc as a function of temperature at U =
4.0 for (a) � = 1.0 and (b) � = 2.0 with different fillings. Below:
critical disorder strength �c (c) as a function of U at different n and
(d) as a function of n at different U .

n = 0.5, �c = 2.77, σdc,crit = 0.30; U = 3.0, n = 0.6, �c =
2.70, σdc,crit = 0.26; U = 2.0, n = 0.5, �c = 2.91, σdc,crit =
0.29; and U = 1.0, n = 0.6, �c = 2.42, σdc,crit = 0.32. The
standard deviation equal to 0.02 is small enough to ensure
the clustering of the dc conductivity values around the mean
value, which confirms the existence of universal conductivity
(σdc,crit = 0.30 ± 0.01) [45] (the error 0.01 is computed by
estimating the arithmetic mean from the listed eight data sets)
and its independence with n, U , and �c. This property has also
been realized in the quantum σ model [15,46], and discussed
in both graphene [47] and integer quantum Hall effect [48].

To describe the role of doping in more details, we investi-
gate the change in σdc with different densities at fixed disorder
strength, as shown in Figs. 5(a) and 5(b). Increasing the elec-
tronic density shall enhance the dc conductivity, and when
� = 2.0, the system behaves as an insulator at n = 0.3. Con-
versely, at n = 0.4 and n = 0.5, the system behaves as a metal.
Thus, we deduce that doping can affect the metal-insulator
transition. We compile the results of �c in Figs. 5(c) and 5(d),
showing the relationship between critical disorder strength
and interaction strength U (or density n). The critical disorder
strength increases first and then decreases as U increases at
a fixed density, which is also reported in the ionic Hubbard
model [44,49]. The Coulomb repulsion enhances metallicity
when U < 3.0, and a larger U will make it more effective to
localize electrons to decrease σdc. On the other hand, in our
calculation, the effect of density on �c is nonmonotonous: �c

increases as the density increases from 0.3 to 0.5, and then
decreases as the density increases to 0.6. Although the sign
problem restricts us to calculate the large density, the current
results have provided strong support for the conclusion that
doping-dependent metal-insulator transition in a disordered
Hubbard model.
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FIG. 6. Spin susceptibility χ as a function of temperature (a) at
various interaction strengths U = 0.0, 4.0, disorder strengths � =
2.0, 4.0 and lattice sizes L = 8, 16 at fixed density n = 0.5 and (b) at
fixed interaction strength U = 4.0 and disorder strength � = 4.0
with different fillings on an N = 8 × 8 square lattice.

The spin dynamics of electrons are often discussed to-
gether with the localization transition, and we discuss the
correlation between the spin susceptibility and temperature
through χ = βS(q = 0), where S(q = 0) denotes the ferro-
magnetic structure factor [50]. Figure 6(a) shows that the
spin susceptibility χ increases as the temperature decreases
and as U increases (for U = 0.0 and U = 4.0), meaning that
interaction can enhance the ferromagnetic susceptibility. Ad-
ditionally, the spin susceptibility diverges as T → 0, implying
that magnetic order exists in both the metallic (� = 2.0) and
insulating phases (� = 4.0). The ferromagnetic susceptibility
reduces with increasing disorder in the presence of interaction
and hopping disorder, which is in accord with the Stoner
criterion for a ferromagnetic UN (EF ) > 1. N (EF ) represents
the density of states at the Fermi level. The Stoner criterion
estimates that the behavior of a ferromagnetic acts against
increasing disorder due to the reduction in the spectral density
at the Fermi level [51]. When we compare the results of
L = 8 with L = 16, we see that the spin susceptibility is little
affected by size effects. Additionally, we find that the density
plays a positive role in the ferromagnetic susceptibility, as
shown in Fig. 6(b).

IV. CONCLUSIONS

In summary, we have studied a disordered Hubbard model
on a square lattice away from half-filling by using the deter-
minant quantum Monte Carlo method. We find that the sign
problem emerges away from half-filling, accompanied by a
nonmonotonic behavior as the density varies, and that adding
hopping disorder can reduce the sign problem. The system
becomes metallic at finite U unlike with half-filling, and the
metal-insulator transition is affected by disorder. Although
the critical disorder strength nonmonotonically varies with
changing the electron density and repulsion, the critical dc
conductivity is independent of the parameter set, similar to
the site disorder case [45]. The behavior of spin susceptibility
suggests that under a range of densities, the insulating phase
is accompanied by local moments. The ferromagnetic suscep-
tibility tends to reduce with increasing bond disorder strength,
in line with the Stoner criterion.

At fixed disorder, we also demonstrate that the carrier
density n can be used as a tuning parameter for the occurrence

FIG. 7. (a) Conductivity σdc as a function of number of realiza-
tion at L = 8,U = 4.0, and � = 2.0. The error bars are derive from
DQMC simulation. (b) The corresponding variance of the data in
the insert. Insert: The averaged dc conductivity as a function of the
number of groups. N represents the number of disorder realizations
in a group.

of the phase transition, which can be explained as follows:
Varying the intensity of disorder � at a fixed density n can
be regarded as adjusting the mobility boundary via the Fermi
energy and is similar to varying the carrier concentration n at
a fixed disorder strength �, which can be thought of as a shift
in the Fermi energy [24].
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APPENDIX: CONCERNING THE NUMBER
OF DISORDER REALIZATIONS

In general, the required number of disorder realizations
must be determined empirically, and is a complex interplay
between “self-averaging” on sufficiently large lattices, the
strength of the disorder, and the location in the phase diagram.
In Fig. 7, we show the change of the average dc conduc-
tivity with the number of random disorder realizations. For
any given density n, there no change in the average σdc for
realization numbers larger than 10. It justifies our usage of 20
realizations in the main text.

We also use the variance to justify our choice of the number
of disorder realizations. In the inset of Fig. 7(b), we calculated
the average values of several groups of data whose realizations
are 5, 10, 20, and 30 respectively, and performed 20 times.
It can be seen that the average values of each group with
N = 5 vary greatly and the curve fluctuates violently, means
that N = 5 cannot eliminate the random error well. When
the number in a group increased to 10, fluctuations were
significantly suppressed; increased to 20, the curve tends to
be stable. This phenomenon is also shown in Fig. 7(b) in the
form of variance of each curve. The variance curve shows
good convergence. As the number in a group increases to be
20, the variance has decreased to a value close to 0. That is,
20 times is large enough as the number of realization.
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