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BaBiO3 compound is known as an archetype example of a three-dimensional Holstein model with the
realization of the charge-density wave state at half filling and the superconducting state when doped. Al-
though many works are devoted to the study the electron–phonon interaction in BaBiO3, the influence of the
electron–electron Hubbard interaction on the electronic structure in this system is still under investigation. In
our work, we obtain analytical expression for the screened Coulomb potential, and along with the basis of ab
initio-computed maximally localized Wannier orbitals, we quantitatively estimate the magnitude of the effective
on-site Hubbard potential scrutinizing the effects of distortion of the crystal lattice. We show that a proper
inclusion of the electron–electron interactions into the Holstein model significantly lowers the value of the
underlying electron–phonon coupling. Finally, we find that the amplitudes of the repulsive electron–electron
potential and its attractive counterpart mediated by the electron–phonon coupling are rather comparable. This
may open a way for a realization of the intermediate phase of BaBiO3 in terms of the Holstein-Hubbard model.
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I. INTRODUCTION

Perovskite compounds are of particular interest because
of a large variety of physical phenomena they exhibit. A
high degree of chemical functionalization and structural flex-
ibility in combination with an inhomogeneous distribution
of partially filled d states lead to a coexistence of several
interactions that operate on spin, charge, lattice, and or-
bital degrees of freedom. Their mutual interplay generates
a wide range of physical properties and functional capabili-
ties counting colossal magnetoresistance [1,2], ferroelectricity
[3], superconductivity in cuprates [4] and bismuthates [5,6],
metal–insulator transition [7], ferromagnetism [8], topologi-
cal insulators [9], etc.

Properties of many ABX3-type perovskites—where A is a
large cation, usually an alkaline earth or rare earth element, B
is relatively small ion of 3d-, 4d-, or 5d-transition metal, and
X are anions, usually oxygen atoms that form the octahedral
environment of the B ion; see Fig. 1(a)—are extremely sen-
sitive to distortion, rotation, and tilting of the BX6 octahedra.
These structural modifications and distortions control hopping
amplitudes and exchange interactions through the lengths and
angles of the octahedral B–X–B bonds and consequently,
the underlying electronic and magnetic properties of the per-
ovskites compounds [10,11].

BaBiO3 is a remarkable representative of the perovskite
class as it realizes high-temperature superconductivity while
it does not include transition metal ions [6]. In normal condi-
tions, BaBiO3 is characterized by anomalously high amplitude
of phonon oscillations leading to pronounced breathing and
tilting distortions of the crystal structure [12]. The breathing
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distortion is caused by a tunneling of electron pairs and sub-
sequent charge transfer between the neighboring octahedra;
as a consequence, Bi-O bonds change their lengths and the
octahedral pattern dynamically alters its proportions along
three crystallographic directions [5,13,14]. Recently, it was
established that the distortion amplitude in BaBiO3 may be
controlled by a strong laser pulse, which drives the system
from insulating to metallic state with no distortions [15].

From a theoretical point of view, BaBiO3 serves as an
archetypal lattice model [6,16,17] for studying electron–
phonon phenomena in perovskites as its electronic properties
are defined mostly by a single effective orbital—the molecular
Bi-O hybrid. The majority of recent works aimed to focus
on the Holstein-like models [15,18–20], though some early
reports found also a negative Hubbard-U parameter by em-
ploying first-principles calculations [21] or phenomenological
considerations [22]. The use of the Holstein-like models in
the above-mentioned studies put forward suggestions that
the electron–phonon coupling dominates other interactions in
BaBiO3. Also, in a recent work [23] it was shown that by
taking into account the screened Coulomb potential at the
level of GW approximation [24] it can significantly increase
the electron–phonon coupling in BaBiO3. The central aim
of this work is to demonstrate that the Coulomb interaction
in BaBiO3 is of considerable strength and affects the main
electronic properties of the compound including the electron–
phonon coupling itself, so the Coulomb repulsion should not
be neglected. Also, we propose a certain modification of the
Coulomb interaction on the model level taking into account
an influence of the large distortions of the crystal lattice of
BaBiO3 with the electrons’ pair tunneling among the neigh-
boring octahedra.

For this purpose, we calculate electronic band structure,
perform wannierization, and compute matrix elements of
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FIG. 1. The breathing distortion in BaBiO3 and its effect on the
electronic band structure. Bi ions are displayed in blue, O in red, and
Ba in green. Panels (a) and (b) show schematically undistorted and
distorted lattice structures with large and small octahedra parameter-
ized by the length of Bi-O bond; yellow arrows indicate changes in
their lengths and x stands for the corresponding distortion amplitude.
Large octahedra host an additional pair of electrons, while the small
ones have a pair of holes; the sizes of octahedra are exaggerated
for clarity. Panels (c) and (d) show, correspondingly, the electronic
band structures of undistorted and distorted x = 0.1 Å lattices; black
lines correspond to ab initio calculations, while the red lines come
from the effective tight-binding model (wannierization) that covers
two bands near the Fermi level. A direct gap exists for any nonzero
distortion, while the indirect one opens for the distortions above
0.1 Å.

the Coulomb interaction in the basis of ab initio-computed
maximally localized Wannier orbitals—all that for different
distortion amplitudes. Based on these calculations we estimate
strengths of the underlying Holstein g and Hubbard U param-
eters that enter the effective lattice model. In this work, we
restrict ourselves to the breathing mode displayed in Fig. 1,
since the tilting distortions do not change significantly the
electronic properties of BaBiO3 [25].

The main difficulty associated with calculating the
Coulomb matrix elements is of a technical nature: The cal-
culation of the screened Coulomb potential requires exact
convergence in many parameters, such as k mesh and the
number of conduction bands [26–33]. To overcome this obsta-
cle, we use a model of the dielectric function for calculating
the screened Coulomb potential. Model dielectric functions
were used to describe many-body effects in three-dimensional
semiconductors long before the development of computer
modeling of materials [34–37]; in recent years, this ap-
proach has gained relevance in the study of low-dimensional
materials, in particular graphene [38], graphane [39], two-
dimensional heterostructures [40], monolayers of transition
metal dichalcogenides [41], etc. In this work we use the
model dielectric function introduced by Cappellini et al. [37]
and generalize it to account for nonlocal effects. It turns out
that the integral for the screened Coulomb potential can be
calculated analytically in the three-dimensional isotropic case

after which calculation of the Hubbard U becomes a relatively
simple task.

The paper is organized as follows: Section II provides
a theoretical basis for the methods employed in the sequel
of the work; Section III presents details of the calculations
and as well discusses the obtained results; finally, Section IV
summarizes the work and outlines some perspectives.

II. MODEL

A. Model formulation—rationals

BaBiO3 compound is used widely [19,22,42,43] as a text-
book example of the Holstein model with the Hamiltonian

HH = Hel + Hph + Hel−ph (1)

that takes into account electronic and phononic degrees of
freedom and also a strong electron–phonon interaction cou-
pling them. The effective model Hamiltonian HH operates
on the single-orbital cubic lattice (at half filling) formed by
Bi sites, since therein-centered Wannier orbitals dominate the
BaBiO3 band structure around the Fermi level; see the bold
red bands mainly along the W-L and X-W paths in Figs. 1(c)
and 1(d). Particular terms of HH have the following structures
(from now on we omit the Planck constant h̄):

Hel = −
∑
i jσ

ti j (c
†
jσ ciσ + c†

iσ c jσ ), (2)

Hph = ωph

∑
i

b†
i bi, (3)

Hel−ph = g
∑

iσ

(b†
i + bi )niσ . (4)

Here c(†)
iσ are the electron operators annihilating (creating) an

electron with spin σ at site i, ti j are the underlying hopping
integrals, and niσ = c†

iσ ciσ are the corresponding number op-
erators. Moreover, we consider a single phonon mode with
frequency ωph, which makes the main contribution to the
electronic properties of the compound [25,44] and ascribe it
at each lattice site i phononic annihilation (creation) operators
b(†)

i . This mode represents the optical breathing distortion in
BaBiO3. Down-to-earth, oxygen octahedra around the Bi sites
“breath,” i.e., they compress and expand in time varying their
volumes around some average (site independent) value V0.
Denoting for each Bi site i the corresponding instantaneous
octahedral volume as Vi, one can define for each i the scalar
quantity xi = 3

√
Vi − V0, which can in turn be expressed as a

linear combination of the above defined on-site bosonic oper-
ators, i.e., xi ∼ b†

i + bi . We ascribe to the latter kinetic energy,
Eq. (3), and couple them with the electron density, see Eq. (4),
via the Holstein-like on-site electron–phonon coupling g. Its
explicit value in terms of DFT data is given below along with
other interaction constants. Although it is widely accepted
that the Holstein model describes systems sufficiently well,
in our work we would like to go beyond it and consider addi-
tional interactions to the Holstein Hamiltonian HH , Eq. (1).
Particularly, we study the on-site Hubbard interaction HU

and its associate on-site Hubbard–phonon interaction HU−ph

triggered by the action of the optical breathing phonon mode:

HU = U
∑

i

ni↑ni↓, (5)
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HU−ph = γ
∑

i

(b†
i + bi )ni↑ni↓. (6)

Consequently, we term U as the on-site Hubbard coupling
and γ as the on-site Hubbard–phonon coupling. Although
the role of the Hubbard term is clear, it is worth saying
why we care to introduce the Hubbard–phonon term. The
breathing distortion in BaBiO3 is accompanied by a tunnel-
ing of the electron/hole pairs and hence a substantial charge
transfer between the neighboring Bi-centered octahedra. For
that reason we expect in our “poor-man extension” of the
Holstein–Hubbard model also a certain coupling between the
phonons and the pair-density operator, i.e., ni↑ni↓-term (a sort
of “back-(re)action” the electron-pairs leave on phonon sub-
system). However, integrating out phonon degrees of freedom,
we can down-fold HU−ph and Hel−ph Hamiltonians into effec-
tive on-site electron–electron interactions of the Hubbard-type
but with dynamical dependence on ω:

HU−ph(ω) = γ 2 2ωph

ω2 − ω2
ph

∑
i

ni↑ni↓, (7)

Hel−ph(ω) = g2 2ωph

ω2 − ω2
ph

∑
i

ni↑ni↓. (8)

It is clear from the above expressions that bringing back
phonon degrees of freedom their sum would behave as a sole
electron–phonon interaction with the renormalized electron–
phonon coupling strength:

g∗ =
√

g2 + γ 2. (9)

Thus, we can conclude that the fluctuations of the on-site
Hubbard potential U enhance the electron–phonon coupling
constant g. It is obvious that the presence of electron–electron
interactions has a significant impact on the underlying elec-
tronic structure of the system and its phase diagram—it is
known that the Holstein–Hubbard model, HH + HU —leads
to a different phase diagram as that predicted by its less-
interactive Holstein ancestor [45–57]. In this regard, the
electron–electron repulsive interaction can contra act the at-
tractive interaction mediated by electron–phonon coupling,
lowering its strength and possibly even turning the attraction
into an effective repulsion. The aim of our work is to estimate
magnitudes of ti j , g, U , and γ using ab initio calculations and
analytical results about screening.

B. Estimation of the model parameters: Conceptuals

The starting point is the ab initio calculation of the
electronic band structure of BaBiO3 subjected to different
distortion amplitudes of the frozen breathing mode; see Fig. 1
for the structure visualization and its electronic band structure.
We have calculated electronic band structures for several rep-
resentative breathing distortions starting from the undistorted
system; for more details, see Section III.

Since we aim to capture physics around the Fermi level we
focus on two closest bands in its vicinity—the central bands
evolving mainly along the W-L and X-W paths in Figs. 1(c)
and 1(d) spanning roughly the energy window from −2 to

FIG. 2. Schematic mapping of the single-orbital tight-binding
Hamiltonian onto the interacting Holstein–Hubbard model. (a) The
effective single-orbital tight-binding model Hamiltonian is defined
on a cubic lattice with the nonequivalent s and L nearest-neighbor
Bi sites with different on-site energies μs and μL. The hopping
integrals ti are taken into account up to the fourth coordination
number. In reality this picture dynamically evolves in time and hence
s and L octahedra occupy different lattice sites. To visualize a fact
that the large octahedra host extra electron pairs, the L sites (with
on-site energy μL) are displayed as pair occupied. (b) The inter-
acting Holstein–Hubbard model is defined on a cubic lattice with
equivalent sites but varying electron occupancies. Singly occupied
sites give rise to the Holstein electron–phonon interaction with the
coupling strength g, while the doubly occupied sites interact also
via the Hubbard and the Hubbard–phonon interactions parameterized
by U and γ . Kinetic part of the Holstein–Hubbard model involving
single-electron hoppings ti is the same as in panel (a), phonons are
displayed as concentric blue-brown wave echos around Bi sites.

2 eV. These two bands are further subjected to the wan-
nerization procedure that gives us an effective single-orbital
tight-binding model Hamiltonian HTB acting on the cubic
lattice with two nonequivalent nearest-neighbor Bi sites; see
Fig. 2. This is quite reasonable since the two neighboring Bi
atoms within BaBiO3 are surrounded by two spatially differ-
ent octahedra and hence different charge environments. We
call the Bi sites surrounded by the small (compressed) and
large (expanded) octahedra the small and large sites, reserving
for them the subscripts “s” and “L;” correspondingly, when
necessary, we talk also about the “s” and “L” sublattices of
the cubic crystal. The effective tight-binding Hamiltonian HTB

stemming from the wannierization is parameterized by the
hopping integrals ti j and the on-site energies μs and μL,

HTB = −
∑
i jσ

ti j (c
†
jσ ciσ + c†

iσ c jσ )

+ μs

∑
i∈s,σ

c†
iσ ciσ + μL

∑
i∈L,σ

c†
iσ ciσ , (10)

whose values are summarized in Table I for different distor-
tion strengths x. The sum in the first (kinetic) term of HTB

runs over the first up to the fourth-nearest neighbors, and the
corresponding hopping integrals among them are denoted as
t1, . . . , t4 in Table I. As a comment, due to the nonequivalent
“s” and “L” sites, the cubic unit cell of the tight-binding model
is twice as large as the corresponding cubic unit cell of the
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TABLE I. Effective model parameters for BaBiO3 compound
subjected to various amplitudes of the breathing distortion parame-
terized by x. Tight-binding model stemming from the wannierization,
Eq. (10), involves the on-site energies μs and μL at two nonequiva-
lent Bi sites and the hoppings integrals ti, i = 1, ..., 4, ranging among
the corresponding ith nearest neighbors within the underlying cubic
lattice; for a schematic, see Fig. 2. On-site energies μ’s scale linearly
with x, while ti’s are only mildly fluctuating at second decimal place.
To keep the table concise we only show data for a limited set of x;
the values for remaining μ’s can be easily interpolated.

x [Å] μs [eV] μL [eV] t1 [eV] t2 [eV] t3 [eV] t4 [eV]

0.000 −0.088 −0.088 −0.514 −0.130 −0.056 0.078
0.100 0.758 −0.808 −0.542 −0.151 −0.049 0.085
0.125 0.972 −1.000 −0.539 −0.170 −0.063 0.083
0.150 1.199 −1.125 −0.532 −0.177 −0.061 0.088
0.175 1.401 −1.256 −0.524 −0.187 −0.062 0.097

Holstein model. For the latter the breaking of the sublattice
symmetry appears dynamically as a result of the electron–
phonon coupling with the breathing optical phonon mode.

Since the hoppings integrals entering HTB, Eq. (10), are rel-
atively weakly dependent on the distortion x, we can naturally
identify the kinetic part of the Holstein model, Hamiltonian
Hel, Eq. (2), with the kinetic part of the wannerization-
generated tight-binding model, i.e.,

Hel = kinetic term of HTB. (11)

Contrary, the on-site energies μs and μL are very strongly
distortion dependent, meaning the electron–phonon coupling
with the breathing mode in BaBiO3 is sufficient. On the level
of the Holstein model such coupling is governed by the Hamil-
tonian Hel−ph, Eq. (4), where the coupling constant g can be
estimated as follows:

g = ∂μ

∂x

√
1

2MOωph
, (12)

where μ = (μs − μL)/2 is the (interpolated) difference (func-
tion) of two on-site energies entering HTB, MO is the oxygen
mass, ωph = 70 meV [58,59] is the optical phonon energy and
x is the amplitude of the breathing distortion.

The second outcome of the wannierization are maximally
localized Wannier orbitals wi,s and wi,L centered on different
“s” and “L” lattice sites. In what follows we pick up two
neighboring sites and use the centered Wannier orbitals—we
denote them as ws and wL—for the calculation of the Hubbard
and Hubbard–phonon coupling strengths. For the iso-surface
visualization of ws and wL for the undistorted and distorted
lattice, see Figs. 4(a) and 4(b).

Calculating the matrix elements of the Coulomb interaction
in terms of the tight-binding model based on the ab initio

calculation is a computationally complex problem, since it
requires calculation of the screened Coulomb potential by the
random-phase approximation method [24,26,28,36]. To get
rid of this problem, we use the model dielectric function from
Ref. [37],

ε(q, r) = 1 +
[

1

ε∞ − 1
+ α

q2

q2
TF(r)

+ q4

4m2ω2
p(r)

]−1

, (13)

where ε∞ is the long-wave length (q = 0) limit of the dielec-
tric constant specific for each material, and qTF(r) and ωp(r)
are, correspondingly, the Thomas–Fermi wave vector and the
plasma frequency that are explicit functions of the valence
electron density ρ(r), q2

TF = 4(3ρ(r)/π )1/3, ω2
p = 4πρ(r).

The only dimensionless fitting parameter α was obtained in
Ref. [37] by employing ab initio calculations. Moreover, it
turned out that α is practically independent on the choice
of material. In our work, we therefore use a rather universal
value of α = 1.563 originally estimated in Ref. [37]. The
above choice of the dielectric function is because of its rel-
ative simplicity, analytical possibility of deriving the screened
potential explicitly, and physically appropriate description of
the screening on both long and short ranges.

The matrix elements of the screened Coulomb interaction
between two Wannier orbitals wn and wm (n, m run through
{s, L}) are expressed as

Wnm = 1

2

∫
drdr′|wn(r)|2W(r − r′, ρ(r))|wm(r′)|2

+ 1

2

∫
drdr′|wn(r)|2W(r − r′, ρ(r′))|wm(r′)|2,

(14)

where W = ε−1 V is the screened Coulomb potential by
means of the above dielectric function. Within this approach,
the matrix elements Wnm can be calculated without significant
computational costs. This is because the difference between
the screened, W , and the bare V Coulomb interaction, the
so-called correlated Coulomb potential, Wc = W − V , can
be represented in the explicitly analytical form. Performing
Fourier transformation of Wc [24],

Wc(r) = 1

(2π )3

∫
d3q

4πe2

q2

[
1

ε(q, ρ(r))
− 1

]
eiqr, (15)

one arrives in the case of spherical symmetry at the final
expression that counts just material parameters and the mag-
nitude of spatial distance r = |r|:

Wc(r) = − e2

2r

(
1 − 1

ε∞

)
Re

{
2 − 1 + A

A
e−κr

√
1−A

+ 1 − A

A
e−κr

√
1+A

}
, (16)

or

Wc(r) =
⎧⎨
⎩

− e2

2r

(
1 − 1

ε∞

)[
2 − 1+A

A e−κr
√

1−A + 1−A
A e−κr

√
1+A

]
; ζ < 1,

− e2

r

(
1 − 1

ε∞

)[
1 − e−κra

(
cos κrb + 1

A sin κrb
)]

; ζ > 1, a =
√√

ζ+1
2 , b =

√√
ζ−1
2

(17)
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with

A =
√

|1 − ζ |, κ = (2α)1/2π2/3

31/6
ρ(r)1/3. (18)

Here ζ is the dimensionless parameter,

ζ = ξ

a0ρ(r)1/3
, (19)

where a0 is the Bohr radius and

ξ = 4 · 32/3

π5/3α2

ε∞
ε∞ − 1

. (20)

The detailed derivation of Eq. (17) is presented in the
Appendix.

The matrix elements Wnm are then obtained as the sum
of the matrix elements of the correlated Coulomb potential,
Wc,nm, and those of the bare Coulomb interaction,

Vnm =
∫

drdr′|wn(r)|2V(r − r′)|wm(r′)|2. (21)

As a comment, Wnm depends on the distortion x, since the
latter affects “shapes” of the Wannier orbitals wn and wm,
see Fig. 4, and also the charge distribution ρ(r) entering the
dielectric function ε, Eq. (13).

In the next step, the self-screening issues should be prop-
erly taken into account. An electron cannot screen itself,
which makes calculations using the random phase approxi-
mation inappropriate. Therefore, it is conceptually erroneous
to estimate the Hubbard U parameter in terms of the
fully screened Coulomb potential W . To avoid the double
screening, one usually uses the constrained random-phase
approximation (cRPA) [26], which is a sort of the unscreening
procedure that takes fully screened Coulomb matrix elements
Wnm and provides their partly unscreened-representatives,
W r

nm, facilitated for the bands defined by the effective tight-
binding model. Within cRPA, the matrix elements of the
Coulomb interaction, W r

nm, can be expressed in the following
way [26–28,32,60]:

W r = W [I + Pd W ]−1, (22)

where W represents the fully screened Coulomb interaction,
Eq. (14), and Pd is the band subspace polarization specified by
entries of the effective tight-binding model. Down to earth, the
band subspace polarization can be calculated as [24,26,33,35]

Pd
nm = gs

N2
k

∑
kq,αβ

fβ (k) − fα (k + q)

Eβ (k) − Eα (k + q)

× Cn,β (k)C∗
n,α (k + q)C∗

m,β (k)Cm,α (k + q), (23)

where gs = 2 is the spin degeneracy factor, Nk is the num-
ber of k points in the Brillouine zone, n, m ∈ {s, L}, sum
over α and β runs over the valence and conduction bands
of the underlying tight-binding model, Eα (k) is the tight-
binding single-particle energy, fα (k) is the corresponding
Fermi–Dirac occupation, and Cn,α (k) is the probability am-
plitude giving contribution of the nth Wannier orbital to the
αth Bloch-band state with momentum k. Finally, equipped
with the partly screened Coulomb matrix elements W r

nm, we
calculate [32,60] the optimal values of the on-site Hubbard U

parameter and the Hubbard–phonon coupling γ :

Us = W r
ss − W r

sL, UL = W r
LL − W r

sL, (24)

U = 1

2
〈Us + UL〉x, (25)

γ = ∂U

∂x

√
1

2MOωph
. (26)

As a comment, Us/L and U are understood as the interpolated
functions of the distortion x that is entering W r

nm and from
them derived quantities. Symbol 〈A〉x represents an average
value of the quantity A taken over the range of crystal lattice
distortions.

In this work, we consider a single-orbital tight-binding
model since it fully incorporates physics of the BaBiO3 near
the Fermi energy level. However, all of the above equations
and concepts can be naturally extended to involve multiorbital
models.

III. RESULTS AND COMPUTATIONAL DETAILS

The basis for estimating the model parameters entering
the Holstein, Eq. (1), and the Hubbard Hamiltonian, Eq. (5),
is built on the Wannier orbitals that were obtained from
the ab initio calculations using numerical packages Quan-
tum Espresso [61] and Wannier90 [62]. For bismuth, barium,
and oxygen atoms, the norm-conserving semirelativistic LDA
pseudopotentials from the Pseudo Dojo database [63] were
used and the energy cutoff for the plane-wave basis was set
at 120 Ry with convergence accuracy of 10−8. Frozen lattice
distortion due to the breathing mode leads to the doubling
(“s” and “L” sites) of the unit cell along the (111) direc-
tion owing to the underlying crystal the cubic face-centered
lattice. We have performed several calculations for represen-
tative values of the breathing distortion x starting from the
undistorted metallic system and continuing by varying x in
steps of 0.025 Å. For distortions below 0.1 Å the system is
metallic; see Figs. 1(c) and 1(d), and possesses a nonzero
direct gap; however, going above 0.1 Å it turns into an indirect
insulator—for the evolution of the direct and indirect gaps
with the distortion; see Fig. 3(a). Our findings are in good
agreement with the known experimental result [12] affirming
the BaBiO3 compound to be the indirect-gap insulator for
x = 0.1 Å.

To proceed further, the two bands in the vicinity of the
Fermi level, see Figs. 1(c) and 1(d), were subjected to the
wannerization procedure that provided us an effective single-
orbital (per Bi atom) tight-binding Hamiltonian HTB, Eq. (10),
reliable in the energy window from −2 to 2 eV. The obtained
electron hopping integrals t1, . . . , t4, Table I, and the derived
value of the electron–phonon coupling constant, Eq. (12),

g = 0.32 ± 0.01 [eV], (27)

agree well with the known results [25]. Wannierization
yielded us also Wannier orbitals ws and wL, whose iso-surface
plots are displayed for the undistorted and distorted cases in
Fig. 4. As it is seen, the Wannier orbitals are centered on
the Bi atoms and form molecular-hybrids counting s orbital
from the bismuth and p orbitals from the surrounding oxygens
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FIG. 3. Dependence of the direct and indirect band gaps, panel
(a), and long-range dielectric constant ε∞, panel (b), on the BaBiO3

breathing distortion amplitude x. The direct gap (circles) opens grad-
ually with the appearance of the distortion, while the indirect gap
(squares) is absent and emerges only for x above 0.1 Å. Corre-
spondingly, in the metallic state the system has an infinite dielectric
constant ε∞, which is then descending toward finite values—the
larger the indirect gap the more the insulating system behaves and
hence the smaller is ε∞.

(directed toward the Bi atoms). The spreads, �, of the Wannier
orbitals, defined as the expectation value � = 〈r2〉 − 〈r〉2,
were calculated using the procedure described in Ref. [64].
The spreads for two nonequivalent Wannier orbitals ws and
wL increase with the increased lattice distortion, but not iden-
tically. As it is clear from Fig. 5, the spread of wL increases
more significantly than that of ws, what affects a scaling of the
underlying Coulomb interaction with x.

Our goal is the calculation the Hubbard parameters Us and
UL, for which we need apart of the Wannier states discussed
above also the long-range dielectric constant ε∞; see Eqs. (13)
and (17). The values of ε∞ for the gapped systems, i.e., for
x > 0.1 Å, are obtained by the DFPT method built in the
numerical package Quantum Espresso [61]. The results are
shown in Fig. 3; with an increased amplitude of the lattice
distortion, the value of ε∞ decreases (pink dot symbols) while
the size of the indirect gap rises (orange square symbols);
obviously, as the system becomes more insulating, the dielec-
tric screening softens. In the metallic state, x < 0.1 Å, the
dielectric screening is strong (infinite).

Equipped with the dielectric constant ε∞ and the Wannier
orbitals ws and wL we are ready to calculate the bare and

FIG. 4. Iso surfaces of the underlying Wannier orbitals ws and
wL. Panels (a) and (b) show, correspondingly, the iso surfaces of the
undistorted, x = 0, and distorted, x = 0.175 Å, Wannier orbitals. In
panel (a) both iso surfaces coincide, while in panel (b) the upper
iso surface corresponds to wL and the lower for ws; all iso surfaces
are displayed for the same iso level. Positive and negative values are
shown in light blue and pink, respectively; the colors of atoms are
the same as in Fig. 1.

screened Coulomb matrix elements Vnm and W r
nm that are

needed for further estimation of the Hubbard parameters Us

and UL. Increased spread of the Wannier orbitals, Fig. 5,
lowers the magnitudes of the Hubbard parameters and also
counterbalances the screening in the system by decreasing the
dielectric constant. Summing up these two effects, we obtain
a slightly nonlinear dependence of the Hubbard parameters
on the amplitude of the crystal lattice distortion, Fig. 6(a).
However, the difference between local Hubbard parameters
Us − UL is strictly linear, Fig. 6(b), which is consistent with
the above Hamiltonian HU−ph Eq. (6).

FIG. 5. Spreadings, � = 〈r2〉 − 〈r〉2, of the Wannier functions
depending on the distortion. Red and blue colors correspond to ws

and wL Wannier states; dashed lines are guides to the eye.
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FIG. 6. Evolution of the Hubbard parameters Us and UL, panel
(a), and their difference Us − UL, panel (b), with distortion.

The values of the on-site Hubbard potential U and the on-
site Hubbard–phonon coupling γ that are naturally emerging
from the nonlocal screening and the coupling to the breathing
phonon mode can be estimated based on Eqs. (25) and (26).
Using obtained values of W r

nm(x) and the reference energy
of the breathing Raman mode, ωph = 70 meV [58,59], the
resulting values read

U = 〈
1
2

[
W r

ss + W r
LL

] − W r
sL

〉
x
= 1.21 ± 0.12 [eV]; (28)

γ = (1.63 ± 0.04) [eV/Å] × 0.043 [Å]

= 0.070 ± 0.002 [eV]. (29)

To estimate the error, we used the three sigma rule. Thus we
can calculate the correction to the electron–phonon coupling
constant as

g∗ =
√

g2 + γ 2 = 0.33 ± 0.01 [eV]. (30)

It is well known that the Hubbard and Holstein interactions—
parameterized by U and g couplings—act on an electronic
system at the half filling in the opposite way. The Hubbard
interaction tends to transfer the system into the Mott insulator
regime with a uniform charge distribution, while the Holstein
interaction strives to form a charge-density wave (CDW) with
a spatially nonuniform charge rearrangement. In the effect,
the repulsive Hubbard coupling triggered by the Coulomb
interaction gets contra acted by an attractive electron–electron
interaction resulting from the Holstein coupling of electrons
and phonons. The final on-site potential—in the antiadiabatic

approximation—can be quantified by the following expres-
sion [45,57]:

U ∗ := U − 2g∗2

ωph
= U − λD =: −λ∗D, (31)

where λ = 2g∗2/(ωphD) is the dimensionless strength of the
Holstein + Hubbard–phonon attraction and D is the effective
bandwidth, for our model D = 4 eV. The resulting on-site
electron–electron interaction U ∗ can be repulsive or attractive
giving rise to the Mott insulator or CDW physics. In the latter
case, the right-hand side of Eq. (31) defines an effective di-
mensionless “electron–phonon strength” λ∗ = λ + δλ = λ −
U/D < λ, whose value gets reduced by δλ = −U/D. The
final estimations give

U ∗ = U − 2g∗2

ωph
= (1.21 − 3.06) [eV] = −1.85 [eV] (32)

λ∗ = λ + δλ = 0.765 − 0.3025 = 0.4625. (33)

So, we conclude that taking into account the Hubbard re-
pulsion U , the effective on-site electron–electron interaction
U ∗ is significantly suppressed as compared to the Holstein
and Hubbard–phonon attractions λD = 2g∗2/(ωph ). Without
considering the Hubbard potential, we have λ = 0.765 and
with λ∗ = 0.4625. Comparing λ∗ with λ we see that such
suppression is about 40%. The frequency of the phonon
mode ωph = 70 meV is lower than the bandwidth D = 4 eV,
which means that the antiadiabatic approximation is not fully
valid. However, this sets the upper limit for estimating the
magnitude of the electron–phonon interaction constant. Our
conclusions partly contradict the recent results obtained by
GW approximation [23], which gives λ = 0.47 before and
λ∗ = 1.14 after taking into account the screened Coulomb
potential. A substantial difference is in the way the local
Hubbard interaction is taken into account when calculating
the effective constant of the electron–phonon interaction. At
the same time, our findings are in agreement with the re-
sults of Ref. [23], since we also observe an increase in the
electron–phonon coupling constant g∗ due to fluctuations of
the Hubbard potential.

These results show that by neglecting the Coulomb interac-
tion, the value of λ would be overestimated and hence also the
value of the band gap of BaBiO3 realizing the CDW phase.
Matrix elements of the Hubbard potential can show their
significance for the description of physics of the electronic
structure of BaBiO3 and for the analyses of the phase tran-
sitions in the Holstein–Hubbard model [46,48–50,53,55,57]
separating the antiferromagnetic ordering of the Mott insu-
lator from that of the CDW phase. Perhaps the interplay of
two interactions, an attractive electron–phonon and a repulsive
electron–electron with strengths close in magnitude, may lead
to the realization of the high-temperature superconductivity of
the BaBiO3 compound.

IV. CONCLUSIONS AND PERSPECTIVES

In our work, we estimated the magnitude of the on-site
Hubbard potential in the BaBiO3 using the analytical form of
the screened Coulomb potential and the basis of the ab initio-
computed maximally localized Wannier orbitals. Our results
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show that the magnitude of the repulsive electron–electron
Hubbard potential is comparable to the attractive potential of
the electron–phonon + Hubbard–phonon interactions. There-
fore, their effective dimensionless attractive constant λ∗ gets
lowered by 40%. This indicates a significant contribution of
the electron–electron interaction to the electronic structure
of BaBiO3. Although this modification of the Hubbard po-
tential is difficult to take into account in the framework of
the standard Migdal–Eliashberg theory [65], we assume a
possible implementation of quantum Monte Carlo methods
[47,54] taking into account these corrections. The electron–
phonon interaction and the electron–electron interaction have
the same order of magnitude in our calculations, which in-
dicates the possibility of the realization of an intermediate
phase between the antiferromagnetic ordering of the Mott
insulator and the band insulator phase of the CDW. This opens
the way for further research in the field of the origin of the
superconducting state in the BaBiO3 compound.
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APPENDIX: DERIVATION OF Wc

Below we describe the main steps in evaluating the follow-
ing integral:

Wc(r) = 1

(2π )3

∫
d3q

4πe2

q2

[
1

ε(q, ρ(r))
− 1

]
eiqr. (A1)

Since the integral is spherically symmetric it can be expressed
in the following way:

Wc(r) = − 1

γ

∫
d3q

1

q2

1

b + aq2 + q4
eiqr

= −2π

γ

∫ ∞

0
q2 dq

q2

1

b + aq2 + q4

∫ π

0
dθ sin θeiqr cos θ

= −4π

γ r

∫ ∞

0
dq

sin(qr)

q(b + aq2 + q4)
≡ −4π

γ r
I0(r), (A2)

where

γ =
2

4m2ω2
p

, b = 1

γ

(
1 + 1

ε∞ − 1

)
, a = 1

γ

α

q2
TF

. (A3)

Obviously, I0(r), as defined by Eq. (A2), is zero for r = 0. As
the next step we differentiate I0(r) with respect to r taken as
parameter and make use of the residue theorem by properly
closing contours in the complex plane:

I ′
0(r) ≡ d

dr
I0(r) =

∫ ∞

−∞
dq

cos(qr)/2

(b + aq2 + q4)

= Re

{
2π i

∑
res

eiqr/2

(b + aq2 + q4)

}

= Re

{
π

2

( e−r
√

χ1

√
χ1(χ2 − χ1)

− e−r
√

χ2

√
χ2(χ2 − χ1)

)}

(A4)

with

χ1,2 = a ± √
a2 − 4b

2
, (A5)

the complex branches of the square roots should be chosen
in such a way that Re[χ1,2] > 0. Integrating Eq. (A4) with
respect to r we arrive at

I0(r) =
∫ r

0
I ′
0(u)du

= Re

{
π

2(χ2 − χ1)

(
1 − e−r

√
χ1

χ1
− 1 − e−r

√
χ2

χ2

)}
.

(A6)

After backward substitutions we obtain

Wc(r) =− e2

2r

(
1− 1

ε∞

)
Re

{
2 − A+

A
e−κr

√
A− + A−

A
e−κr

√
A+

}
,

(A7)

where

A =
√

1 − 2q2
TF

ακ2

ε∞
ε∞ − 1

; (A8)

κ = (2α)1/2π2/3

31/6
ρ(r)1/3; A± = 1 ± A. (A9)
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