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We study a two-dimensional spin model obtained by “Higgsing” the rank-2 U(1) lattice gauge theory (LGT)
with scalar or vector charges on the Lx × Ly square lattice under the periodic boundary condition (PBC). There
are p degrees of freedom per orbital and three orbitals per unit cell in the spin model. The resulting spin model
is a stabilizer code consisting of three mutually commuting projectors that are, in turn, obtained by Higgsing
the mutually commuting Gauss’s law operators and the magnetic field operators in the underlying LGT. The
spin model thus obtained is exactly solvable, with the ground state degeneracy (GSD) D given by logpD = 2 +
(1 + δLx mod p,0 )(1 + δLy mod p,0 ) when p is a prime number. Two types of dipole excitations, pristine and emergent,
are identified. Both the monopoles and the dipoles are free to move, with restrictions on monopoles to hop
only by p lattice spacing along with certain directions. The monopole-monopole braiding phase depends on
the separation of the x or y coordinates of the initial monopole positions, making it distinct from the ordinary
anyon braiding statistics. The monopole-dipole braiding obeys the usual anyonic statistics. Despite the oddity, the
monopole-monopole braiding phase can be understood as the Aharonov-Bohm phase of some emergent vector
potentials.
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I. INTRODUCTION

Fractons have come to embody excitations in lattice mod-
els that are immobile on their own [1–4]. Many variations
of the fracton model such as Haah’s cubic code and X-cube
model have been proposed so far, and new ones continue to
show up [1,2]. A defining property common to all fracton
models is, besides its restricted mobility of quasiparticles,
the subextensive GSD, although recently a different kind of
fracton model with extensive GSD has been suggested [5].
Field-theoretic interpretations of the fracton physics have
been in development for some time [6–10] employing vari-
ous modifications of the Chern-Simons and/or BF theories.
Another line of thinking was initiated by Pretko [11,12], who
pointed out that the rank-2 U(1) gauge theory developed by
Xu and collaborators [13,14] offers an intuitive understanding
of the sub-dimensional motion of quasiparticle excitations in
fracton models.

In ordinary electrodynamics, charges are created as a
charge-neutral dipole and subsequently, each charge executes
a free motion. Such processes are allowed within the con-
straints of the rank-1 U(1) gauge theory and the charge
conservation (Gauss’s) law. A rank-2 U(1) gauge theory
[11,12] typically imposes both charge and dipole conserva-
tions, permitting the creation of a dipole-antidipole pair but
not the individual dipole. Subsequently, eaach dipole can
move freely but not the individual charge that comprise it. By
“Higgsing” the rank-2 U(1) LGT as was done in Refs. [7,8],
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the constraints become somewhat relaxed and the free motion
of the charge can take place as well.

In this paper, we revisit the Higgsing procedure and write
down an exactly solvable, stabilizer spin Hamiltonian in two
dimensions. The idea is, similar to previous works [7,8] and
in particular Ref. [8], to identify some operators in the parent
rank-2 U(1) LGT that commute with one another and then el-
evate them to mutually commuting spin operators through the
exponentiation procedure commonly known as “higgsing.” In
short, the higgsing procedure converts the rank-2 U(1) LGT,
well known to be unstable to the proliferation of instanton
in two dimensions [8,11,14] into a gapped Zp spin model
with p chosen to be some prime number. The case of p = 2
and even-by-even lattice dimensions Lx × Ly was explored
in Ref. [8]. The spin model obtained in this manner will be
dubbed ‘rank-2 toric code (R2TC)’ as it is obtained from
Higgsing the rank-2 U(1) gauge theory. The well-known toric
code is obtained by Higgsing the rank-1 U(1) LGT instead and
warrants the classification as the rank-1 toric code (R1TC).

The nature of elementary quasiparticles in the R2TC model
consisting of monopoles and dipoles and their mutual statis-
tics are analyzed in detail. Whereas the charge excitations in
the rank-2 LGT are completely immobile due to the constraint
of dipole moment conservation, monopole excitations in the
R2TC can move in any direction due to the relaxation of
the constraint. The quasiparticles of R2TC are not as free
as the anyonic quasiparticles of the R1TC, though, in that
they are bound to hop only by p lattice spacings in certain
directions. Such restriction is however lifted when the two
monopoles combine to form a dipole, whose motion is com-
pletely free. Most surprisingly, the braiding statistics between
a pair of monopoles in our R2TC model is not that of ordinary
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abelian anyons. Rather, the braiding phase depends on the
separation of x or y coordinates of the initial monopole posi-
tions. Such feature is distinct from path-independent anyonic
braiding statistics in R1TC. The braiding of a dipole round a
monopole, on the other hand, does exhibit the familiar anyonic
statistics. The dipole-dipole braiding statistics is bosonic. In
addition, we show that the GSD of the R2TC depends on the
(mod p) linear system sizes Lx and Ly.

We begin by reviewing how the Higgsing procedure trans-
forms the rank-1 U(1) LGT into the well-known toric code in
Sec. II. Afterward, we review the rank-2 U(1) LGT in Sec. III
and construct the rank-2 toric code by applying the Higgsing
procedure in Sec. IV. Although the Higgsing recipe itself
works for both two and three dimensions, detailed analyses
are performed for two-dimensional models only due to the
difficulty of analyzing three-dimensional models to the same
depth. We work out GSD of the R2TC in Sec. V and all
the related logical operators in Sec. VI, both of which turn
out to depend on the mod p parity of the linear dimensions
Lx, Ły of the square lattice under the PBC. After identifying
all the monopole as well as dipole quasiparticle excitations
of the model in Sec. VII, we work out their mutual braiding
statistics in Sec. VIII. In Sec. IX, we show that the position-
dependent phase of the mutual statistics of the monopoles can
be described by the integral of the magnetic field. Summary
of our work is given in Sec. X.

II. TORIC CODE FROM HIGGSING THE RANK-1 U(1) LGT

In this section, we review the rank-1 U(1) LGT in two-
dimensional square lattice and show how the “Higgsing”
procedure transforms it to the well-known R1TC. The rank-1
U(1) LGT is defined in terms of a pair of canonical variables -
the compact gauge field Aa

i and the electric field Ea
i (a = x, y)

assigned on the links (labeled by i) of the square lattice. The
two fields obey the canonical commutation relation,[

Aa
i , Eb

j

] = iδi, jδa,b. (1)

The compactness comes from the gauge field being an angular
variable Aa

i ∈ [0, 2π ). Consequently, Ea
i ∼ −i∂/∂Aa

i takes on
integer eigenvalues.

On a two-dimensional square lattice, the magnetic field Bi

of an elementary plaquette in the rank-1 U(1) LGT is defined
by

Bi = Ay
i+x̂ − Ay

i − Ax
i+ŷ − Ax

i (2)

as illustrated in Fig. 1(a). The local change of the gauge field
is implemented as the unitary transformation

Aa
i → e−i

∑
j f j (∇·E ) j Aa

i ei
∑

j f j (∇·E ) j

= Aa
i + fi+â − fi, (3)

where fi is an arbitrary scalar field at the link i. The generator
for the gauge transformation is

(∇ · E )i ≡ Ex
i − Ex

i−x̂ + Ey
i − Ey

i−ŷ, (4)

which is often known as Gauss’s law.
Note that Gauss’s law (∇ · E )i and the magnetic field Bj

commute:

[(∇ · E )i, Bj] = 0. (5)

FIG. 1. (a) Magnetic field Bi and Gauss’s law (∇ · E ) j of rank-1
U(1) LGT. (b) bi and aj operators of the rank-1 toric code. Higgs-
ing procedure transforms Bi and (∇ · E ) j into bi and aj operators,
respectively, of the toric code.

Such commutativity of the magnetic field and Gauss’s law is
general in gauge theories, both discrete and continuous, as
it comes from the fact that Gauss’s law is the generator of
the relevant gauge transformation and the magnetic field is a
quantity which, by definition, is invariant under such gauge
transformation. A simple recipe emerges for constructing a
family of exactly solvable spin models based on the com-
muting elements of the parent LGTs. The idea is to exploit
the commutative nature of Gauss’s laws and the magnetic
fields of the parent LGT to construct mutually commuting spin
operators, and from there, some exactly solvable models in the
form of the stabilizer Hamiltonian [15–17].

The first step in the construction is to define the local Zp

Hilbert space consisting of states: |g〉 = |0〉, |1〉, . . . , |p −
1〉. Next, one exponentiates the two fields (A, E ) in the rank-1
U(1) LGT as

X = eiA, Z = e2π iE/p. (6)

The canonical commutation [A, E ] = i gives rise to the
algebra

X |g〉 = |g + 1〉, Z|g〉 = ωg|g〉, and ZX = ωXZ, (7)

where ω = ei2π/p and all additions are mod p. The basis states
|g〉 are naturally given as eigenstates of Z .

The next step is the exponentiation of Gauss’s law and the
magnetic field themselves according to the recipe in Eq. (6):

ai ≡ exp

(
2π i

p
(∇ · E )i

)
= Z1,iZ

−1
1,i−x̂Z2,iZ

−1
2,i−ŷ,

bi ≡ exp(iBi ) = X1,iX2,i+x̂X −1
1,i+ŷX −1

2,i . (8)

The connection between the gauge theory operators and
the spin operators through the exponentiation procedure is
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illustrated in Fig. 1. Note that we are using subscript 1 (2) for
the spin operators at the horizontal (vertical) links. Gauss’s
law in Eq. (4) is the directed sum of the E field operators at
the four links emanating from a vertex. When exponentiated,
it becomes the ai operator, a product of Z’s and Z−1’s on the
four links as shown in Fig. 1. This is one of the operators one
can use to construct the stabilizer. The magnetic field, on the
other hand, is the directed sum of the gauge field operators A
around an elementary plaquette which, upon exponentiation
and applying Eq. (6), becomes the bi operator consisting of
the product of X ’s and X −1’s. This becomes the second set of
stabilizers. The Hamiltonian is then given as the sum of the
two types of stabilizers. We refer to the mapping of Gauss’s
laws and the magnetic field into corresponding spin operators
as the “Higgsing” of the lattice gauge theory in accordance
with the nomenclature in the recent literature [7,8,18]. Once
the Higgsing procedure is complete, one can do away with the
parent LGT and focus on the analysis of various interesting
properties of the resulting spin model.

The commutativity [(∇ · E )i, Bj] = 0 of the parent LGT is
inherited as that of the spin operators, [ai, b j] = 0. Mutually
commuting projectors are then constructed:

Ai = 1

p

p−1∑
j=0

(ai )
j, Bi = 1

p

p−1∑
j=0

(bi )
j . (9)

One can prove their projector properties, A2
i = Ai, etc. The

Hamiltonian H = −∑
i(Ai + Bi) obtained in this way is none

other than the Zp toric code. The Higgsing scheme makes
transparent the fact that the exact solvability of the toric code
originates from the commuting relation of Gauss’s law and
the magnetic field in the parent LGT. It is also clear that the
scheme will generalize to other LGTs to generate new, exactly
solvable spin models.

III. RANK-2 U(1) LGT IN TWO DIMENSIONS

The rank-2 U(1) LGT [13] can be defined on a
two-dimensional square lattice with compact gauge fields
Aab

i (a, b = x, y) assigned on vertices (Axx
i and Ayy

i ) as
well as on centers of the plaquettes (Axy

i = Ayx
i ) as de-

picted in Fig. 2(a). There are altogether three gauge fields
(Axx

i , Axy
i , Ayy

i ) per vertex i. Note the slightly unconventional
assignment of Axx

i and Ayy
i on two different vertices as shown

in Fig. 2.
One can write down two kinds of rank-2 U(1) LGTs de-

pending on whether the scalar or the vector charge is assumed
[7,8,11,14]. In both cases, the gauge field Aab

i and the electric
field Eab

i obey the commutation relation,

[
Axx

i , Exx
j

] = [
Ayy

i , Eyy
j

] = [
Axy

i , Exy
j

] = iδi j . (10)

For the rank-2 U(1) LGT with scalar charge ρi, the magnetic
fields and Gauss’s law are given respectively by [8]

Bx
i ≡ m

(
Axy

i − Axy
i−x̂

) − n
(
Axx

i−x̂+ŷ − Axx
i−x̂

)
,

By
i ≡ n

(
Ayy

i+x̂−ŷ − Ayy
i−ŷ

) − m
(
Axy

i − Axy
i−ŷ

)
, (11)

FIG. 2. (a) Arrangement of the gauge fields for a rank-2 U(1)
LGT on square lattice. Two circles at lattice site and one circle on the
center of plaquette represent three types of gauge fields, respectively.
In particular, the fields labeled by the vertex i, Axy

i , Axx
i and Ayy

i ,
are represented by the black circles. The spin operators (b) ax

i , ay
i ,

and (c) bi obtained from Higgsing Gauss’s laws and the magnetic
field in the rank-2 U(1) LGT with vector charge. Corresponding
quasiparticle excitations are shown as filled squares. Operators with
subscript 0 are defined at the plaquette, and those with subscripts 1,
2 at the vertices.

and

(DE )i = m
(
Exx

i−2x̂ − 2Exx
i−x̂ + Exx

i + Eyy
i−2ŷ − 2Eyy

i−ŷ + Eyy
i

)
+ n

(
Exy

i−x̂−ŷ − Exy
i−ŷ − Exy

i−x̂ + Exy
i

) ≡ ρi (12)

with (m, n) integers. The “tensor divergence” (DE )i general-
izes the vector divergence (∇ · E)i of the rank-1 U(1) gauge
theory.

Vital to the later construction is their commutativity
[(DE )i, Bx

j] = [(DE )i, By
j] = 0, which can be checked explic-

itly from their respective definitions in Eqs. (11) and (12). The
local gauge transformation rule for the rank-2 U(1) LGT with
scalar charge is

Aab
i → e−i

∑
j f j (DE ) j Aab

i ei
∑

j f j (DE ) j

= Aaa
i − m( fi+2â − 2 fi+â + fi ) (a = b),

= Aab
i − n( fi+â+b̂ − fi+â − fi+b̂ + fi ) (a �= b). (13)

One can readily check that the magnetic fields (Bx
i , By

i ) in
Eq. (11) are invariant under this transformation.
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FIG. 3. Gauss’s laws and magnetic fields in the rank-2 U(1) LGT with (first row) scalar charge and (second row) vector charge. (a) Gauss’s
law. The scalar charge ρi is defined at the vertex i. [(b) and (c)] Two magnetic fields Bx

i and By
i . [(d) and (e)] Two Gauss’s laws associated with

the two vector charges (ρx
i , ρ

y
i ). The vector charges ρx

i and ρ
y
i are defined on the links. (f) Magnetic field Bi of the rank-2 U(1) LGT with vector

charge.

For the rank-2 U(1) LGT with vector charge, there is one
component of the magnetic field

Bi ≡ n
(
Axx

i−x̂−ŷ − 2Axx
i−x̂ + Axx

i−x̂+ŷ + Ayy
i−x̂−ŷ − 2Ayy

i−ŷ + Ayy
i+x̂−ŷ

)
− m

(
Axy

i − Axy
i−ŷ − Axy

i−x̂ + Axy
i−x̂−ŷ

)
, (14)

and the two Gauss’s laws

(DE )x
i = m

(
Exx

i+x − Exx
i

) + n
(
Exy

i+y − Exy
i

) ≡ ρx
i ,

(DE )y
i = m

(
Eyy

i+y − Eyy
i

) + n
(
Eyx

i+x − Eyx
i

) ≡ ρ
y
i , (15)

with commutation [(DE )x
i , Bj] = [(DE )y

i , Bj] = 0. The local
U(1) transformation in the vector charge theory reads

Aab
i → e−i

∑
j,c[ f c

j (DE )c
j ]Aab

i ei
∑

j,c[ f c
j (DE )c

j ]

= Aaa
i − m

(
f a
i+â − f a

i

)
(a = b),

= Aab
i − n

(
f b
i+â − f b

i + f a
i+b̂

− f a
i

)
(a �= b), (16)

which leaves Bi invariant.
These two types of rank-2 U(1) LGTs have been discussed

in the past [8,11,12]. In particular, Gauss’s laws of the rank-2
U(1) LGT enforce the restricted mobility of the monopole
excitations associated with ρi, ρx

i , and ρ
y
i , qualifying them

as fractons (ρi ) and lineons (ρx
i and ρ

y
i ) [14,19]. The dipolar

quasiparticles formed as a pair of oppositely charged fractons
or lineons, on the other hand, are not restricted by Gauss’s law
and can move freely.

In fact, the vector and the scalar charge theories are dual
to each other in two dimensions and, as a result, only one
theory (e.g. vector charge theory) needs to be analyzed in

detail. In Fig. 3, Gauss’s laws and the magnetic fields of scalar
and vector charge rank-2 U(1) LGT models are depicted. By
comparing them one can easily recognize a definite relation
between Gauss’s laws and the magnetic fields in one theory
with those in the other. Specifically, the mapping(

mExx
i , nAxx

i

)
s ↔ (

nAyy
i+x̂−ŷ,−mEyy

i−ŷ

)
v
,(

mEyy
i , nAyy

i

)
s ↔ (

nAxx
i−x̂+ŷ,−mExx

i−x̂+ŷ

)
v
,(

nExy
i , mAxy

i

)
s
↔ ( − mAxy

i , nExy
i

)
v
, (17)

between the operators in the scalar (subscript s) and the vector
(subscript v) charge theories converts Gauss’s law for ρi and
the magnetic field (Bx

i , By
i ) in the scalar theory to the mag-

netic field Bi and the charges (ρy
i ,−ρx

i ) in the vector theory,
respectively. The duality applies only in two dimensions.

IV. RANK-2 TORIC CODE

We exploit the Higgsing procedure detailed in Sec. II to
construct the stabilizer spin Hamiltonian out of Gauss’s law
and the magnetic field of the parent rank-2 U(1) LGT with
vector charge given in Eqs. (14) and (15). The final result is
the rank-2 analog of the toric code, which we call the rank-2
toric code, or R2TC for short.

Following Eq. (6), we convert the canonical variables Aab
i

and Eab
i into spin operators as

X0,i = eiAxy
i , Z0,i = e2π iExy

i /p,

X1,i = eiAxx
i , Z1,i = e2π iExx

i /p,

X2,i = eiAyy
i , Z2,i = e2π iEyy

i /p. (18)
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The two indices 1 and 2 represent the two orbitals assigned on
the vertices and the index 0 the orbital on the plaquette center.
The second step is the exponentiation of Gauss’s law and the
magnetic field in Eqs. (14) and (15) according to the recipe in
Eq. (6):

ax
i ≡ exp

(
2π i

p
ρx

i

)
= Z−m

1,i Zm
1,i+x̂Zn

0,iZ
−n
0,i−ŷ,

ay
i ≡ exp

(
2π i

p
ρ

y
i

)
= Z−m

2,i Zm
2,i+x̂Zn

0,iZ
−n
0,i−x̂,

bi ≡ exp(iBi)

= X n
2,i−x̂X −2n

2,i X n
2,i+x̂X n

1,i−ŷX −2n
1,i X n

1,i+ŷ

× X m
0,iX

−m
0,i−x̂X −m

0,i−ŷX m
0,i−x̂−ŷ. (19)

They are illustrated in Fig. 2(b). The commutativity among
(ρx

i , ρ
y
i , Bi ) is inherited now as that of spin operators

(ax
i , ay

i , bi ). This property allows us in turn to construct a
stabilizer Hamiltonian as

Ax
i = 1

p

p−1∑
j=0

(
ax

i

) j
, Ay

i = 1

p

p−1∑
j=0

(
ay

i

) j
,

Bi = 1

p

p−1∑
j=0

(bi )
j, H = −

∑
i

(
Ax

i + Ay
i + Bi

)
. (20)

This completes the construction of the R2TC — the ex-
actly solvable stabilizer model from the underlying rank-2
U(1) LGT. The ground state(s) is characterized by Ax

i |GS〉 =
Ay

i |GS〉 = Bi|GS〉 = |GS〉.

V. GROUND STATE DEGENERACY

Calculation of the GSD for exactly solvable spin models is
based on the general formula [5,15,20]

logp D = No − Ns = Nlo, (21)

where D, p, No, Ns, and Nlo represent the GSD, the local
Hilbert space dimension, the number of orbitals, the number
of independent stabilizers, and the number of independent
logical operators, respectively. There are three orbital degrees
of freedom, two at the site and one at the dual lattice site, for
No = 3LxLy on a Lx × Ly square lattice with PBC.

We consider the case of p being a prime number in this
work due to the extra complication caused by nonprime inte-
ger p. For example, if p mod m = 0 in the (m, n) vector charge
theory, we have the identity

(
ax

i

(
ay

i

)−1(
ax

i−x̂

)−1
ay

i−ŷ

)p/m = 1. (22)

This identity, which holds for every site i of the lattice, creates
constraints that will have to be taken into account when we
later try to count the number of independent stabilizers. Fur-
thermore, operators such as Z p/m

0,i , X p/m
1,i , and X p/m

2,i commute
with the Hamiltonian and act as local symmetry generators,
which vastly affect the ground state structure. For these rea-
sons, p is a prime number in the remainder of the paper.

The integers (m, n) are, of course, only meaningful mod
p, since the p-th power of either X or Z operator is an
identity. This is also the meaning of “Higgsing”, by which

the strict charge conservation of the underlying rank-2 U(1)
LGT relaxes to the mod p conservation. So far, the pair of
integers (m, n) were kept general. Keeping them was helpful
in identifying the duality relation between scalar and vector
charge theories in Sec. III. In the following, however, we
restrict ourselves to the case (m, n) = (1, 1) in enumerating
the GSD and for other analyses of the model. We believe
the essence of the subsequent arguments and analyses remain
insensitive to the choice of (m, n).

The GSD of the R2TC calculated for the Lx × Ly square
lattice under the PBC turns out to depend on whether Lx or Ly

is a multiple of p. The following products of operators prove
useful in counting the GSD:

Hjy (O) =
Lx∏

jx=1

Ojxx̂+ jy ŷ,

Vjx (O) =
Ly∏

jy=1

Ojxx̂+ jy ŷ,

M(O) =
Lx∏

jx=1

Ly∏
jy=1

Ojxx̂+ jy ŷ. (23)

Here, O is an operator in the R2TC model. As one can see,
Hjy (O) is a product of O’s along the jyth row, and Vjx (O) the
product of O’s along the jxth column. M(O) is referred to as
a membrane operation since it is the product of O’s over the
entire lattice.

In addition to the horizontal and the vertical operators
defined above, some diagonal operators can be defined by

Dxy
i (O) ≡

Ll∏
j=1

Oi+ j(x̂+ŷ),

Dxȳ
i (O) ≡

Ll∏
j=1

Oi+ j(x̂−ŷ). (24)

They are the products of O’s along the (1,1) or (1,−1)
direction starting from the site i. The site coordinates are
labeled modulo (Lx, Ly) under the PBC. The product over j
in the above diagonal operators spans 1 � j � Ll where Ll =
lcm(Lx, Ly) is the least common multiple of Lx and Ly. Note
that Ll is the smallest number for which Oi+ j(x̂+ŷ) = Oi. There
are Lg distinct diagonal operators, where Lg = gcd(Lx, Ly )
stands for the greatest common divisor. Specifically, we have
Dxy

i (O), Dxy
i+ŷ(O), . . . , Dxy

i+(Lg−1)ŷ(O) in the (1,1) direction. In
total, due to LxLy = LgLl , every site appears exactly once in
the diagonal operator of a given direction.

At first there seem to be 3LxLy stabilizers, ax
i , ay

i , and bi,
for all i, on a Lx × Ly under the PBC. Some constraints readily
emerge amongst them:∏

i

ax
i = 1,

∏
i

ay
i = 1,

∏
i

bi = 1. (25)

The product
∏

i runs over all the sites, with the identity re-
maining valid regardless of the lattice size or the degree of
freedom p, suggesting that the number of independent stabi-
lizers would be Ns = 3LxLy − 3. Interestingly, several more
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identities arise among the stabilizers if Lx or Ly is a multiple
of the local Hilbert space dimension p.

To figure out what the extra identities are, first consider

Hjy (ax ) =
Lx∏

jx=1

Z0, jx x̂+ jy ŷZ−1
0, jx x̂+( jy−1)ŷ,

Vjx (ay) =
Ly∏

jy=1

Z0, jx x̂+ jy ŷZ−1
0,( jx−1)x̂+ jy ŷ. (26)

It is straightforward to show

Hjy (ax )
[
Hjy−1(ax )

]2

=
Lx∏

jx=1

Z0, jx x̂+ jy ŷZ0, jx x̂+( jy−1)ŷZ−2
0, jx x̂+( jy−2)ŷ,

and, in general,

p∏
jy=1

[
H− jy (ax )

] jy =
p∏

jy=1

Lx∏
jx=1

Z0, jx x̂− jy ŷ (27)

because the last factor Z p
0 = 1 vanishes from the product. In

the same way, we can show

p∏
jx=1

[
V− jx (ay)

] jx =
p∏

jx=1

Ly∏
jy=1

Z0,− jx x̂+ jy ŷ. (28)

When Lx and Ly are both multiples of p, we can extend both
of these products to cover the entire lattice and get

Ly∏
jy=1

[
H− jy (ax )

] jy =
Lx∏

jx=1

[V− jx (ay)] jx . (29)

This is the first of the extra identities as it relates the product
of ax stabilizers with those of the ay stabilizers. This identity
applies only when both Lx and Ly are multiples of p.

Additional extra identities arise from considering a product
of bi stabilizers:

p∏
jy=1

[
Hjy (b)

] jy =
Lx∏

jx=1

X1, jx x̂X −1
1, jx x̂+pŷ.

If Ly is a multiple of p, extending the product over jy over the
entire lattice gives the second identity:

Ly∏
jy=1

[
Hjy (b)

] jy = 1. (30)

This is the second extra identity, which holds only for
Lymodp = 0. Arguing along an analogous line gives

Lx∏
jx=1

[
Vjx (b)

] jx = 1, (31)

when Lx is a multiple of p. All told, the number of in-
dependent stabilizers is 3LxLy − 2 − (1 + δ0,Lx mod p) (1 +
δ0,Lymod p), leading to the GSD

logp D = 2 + (
1 + δ0,Lx mod p

)(
1 + δ0,Ly mod p

)
(32)

TABLE I. Independent logical Z operators.

Cases Lx mod p = 0 Lx mod p �= 0

Ly mod p = 0 Hjy (Z2), Vjx (Z1), Hjy (Z2), Vjx (Z1),
Hjy (Z0), Vjx (Z0), Hjy (Z0), V jx (Z1)
H jy (Z2), V jx (Z1)

Ly mod p �= 0 Hjy (Z2), Vjx (Z1), Hjy (Z2), Vjx (Z1),
Vjx (Z0), H jy (Z2) M(Z0)

according to the general formula, Eq. (21). The logp D varies
from 3 to 6, depending on the mod p parity of Lx and Ly. The
26 GSD for p = 2 in Ref. [8] misses the subtle variation taking
place with the system size.

VI. LOGICAL OPERATORS

In the previous section, we successfully counted the GSD
by utilizing Eq. (21) and working out the number of inde-
pendent stabilizers Ns and hence No − Ns explicitly. In this
section, we identify the logical operators and count their num-
bers, Nlo. We show, in accordance with the GSD obtained in
the previous section, the number of logical operators generat-
ing the different ground states also varies with respect to the
system sizes. The logical operators can be constructed either
as a product of Z’s or of X ’s. The construction of the two types
of logical operators is treated separately.

A. Logical Z operators

The number of independent logical operators made out of
the Z operators is

Nlo = 2 + (
1 + δ0,Lx mod p

)(
1 + δ0,Ly mod p

)
,

in accordance with Eq. (32). They are summed up in Table I.
Altogether one finds seven types of logical operators in

Table I: Hjy (Z2), Vjx (Z1), Hjy (Z0), Vjx (Z0), M(Z0), H jy (Z2),
and V jx (Z1). All of them consist of a product of Z’s and com-
mute with the Hamiltonian. They will be collectively referred
to as Z-logical operators.

Firstly, we consider the two types of logical operators:
Hjy (Z2) and Vjx (Z1). These two operators are well defined
regardless of the linear system size. The following identi-
ties place stringent restrictions on the independence of these
operators:

Hjy (ay) = [
Hjy−1(Z2)

]−1
Hjy (Z2),

Vjx (ax ) = [
Vjx−1(Z1)

]−1
Vjx (Z1). (33)

Since the ground states satisfy ax
i |GS〉 = ay

i |GS〉 = |GS〉, the
action of Hjy (ay) or Vjx (ax ) on |GS〉 is an identity, implying
Hjy−1(Z2)|GS〉 = Hjy (Z2)|GS〉. As a result there is really only
one independent logical operator among the Hjy (Z2)’s. Simi-
larly, only one independent operator exists among Vjx (Z1)’s.
We conclude that there are at least two logical operators
Vjx (Z1) and Hjy (Z2) regardless of the linear dimensions of the
lattice.

The next type of logical operators consists of a product of
Z0’s: Hjy (Z0), Vjx (Z0), and M(Z0). They turn out to have a
rather complicated dependence on one another. For starters,
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M(Z0) can only be defined when both linear dimensions
are incommensurate with p: Lx mod p �= 0 and Ly mod p �= 0.
When one of these conditions fails, for instance Ly mod p = 0,

the identity
∏Ly

jy=1[H− jy (ax )] jy = M(Z0) holds and one gets
M(Z0)|GS〉 = |GS〉. Similarly, when Lx mod p = 0, the iden-
tity

∏Lx
jx=1[V− jx (ay)] jx = M(Z0) shows M(Z0) is trivial. In all,

M(Z0) is a meaningful logical operator only if neither of
Lx, Ły is commensurate with p.

For counting the number of independent logical operators
amongst Hjy (Z0) and Vjx (Z0), we note the identities

Hjy (ax ) = [
Hjy−1(Z0)

]−1
Hjy (Z0),

Vjx (ay) = [
Vjx−1(Z0)

]−1
Vjx (Z0). (34)

Accordingly, there appear two independent logical operators,
one from Hjy (Z0) and one from Vjx (Z0). However, some ad-
ditional identities arise among them when Ly mod p �= 0 or
Lxmodp �= 0. Take Lymodp �= 0, for instance, and we can
always find l that satisfies l pmodLy = 1 since p is a prime
number. For the smallest such l , we have

l p∏
k=1

[
Hk+ jy (ax )

]−k = Hjy (Z0) [M(Z0)](l p−1)/Ly , (35)

where the site coordinates are labeled modulo Ly un-
der the PBC. Such relation implies that Hjy (Z0)|GS〉 =
[M(Z0)](1−l p)/Ly |GS〉, where (l p − 1)/Ly is an integer smaller
than p by its definition. This implies none of the Hjy (Z0)
logical operators are independent for Lymodp �= 0 since they
can be always constructed in terms of ax

i , ay
i , and M(Z0).

We conclude that Hjy (Z0) is an independent operator only if
Lymodp = 0. Following a similar procedure, we can show
that there is one independent logical operator Vjx (Z0) only
if Lxmodp = 0, and none otherwise. In all, the number of
independent logical operators amongst M(Z0), Hjy (Z0) and
VjX (Z0) is 1 + δLx mod p,0δLy mod p,0.

Finally, we have two additional types of logical operators
given by

H jy (Z2) ≡
Lx∏

jx=1

(
Z2, jx x̂+ jy ŷ

) jx
,

V jx (Z1) ≡
Ly∏

jy=1

(
Z1, jx x̂+ jy ŷ

) jy
. (36)

Note that we have the exponents jx and jy on the right-hand
sides of Eq. (36), which makes H jy (Z2) and V jx (Z1) distinct
from Hjy (Z2) and Vjx (Z1) defined previously. Since (Z2)p = 1,
we can decompose H jy (Z2) into blocks, each block consisting
of multiplication of Z2 with ascending exponents from 0 to
p − 1. Each block consisting of Z2’s with ascending exponents
corresponds to what we will define as Zx,i later in Eq. (47),
which creates a pristine dipole, to be defined in Sec. VII A.
When Lxmodp = 0, H jy (Z2) can be fully decomposed into
blocks of Zx,i and Therefore each pristine dipole created by
Zx,i is annihilated by the subsequent operation of Zx,i′ , leaving
no residual monopoles. Hence the operator H jy (Z2) commutes
with the R2TC Hamiltonian and can become a logical opera-

TABLE II. Independent logical X operators.

Cases Lx mod p = 0 Lx mod p �= 0

Ly mod p = 0 Hjy (X1), Vjx (X2), Hjy (X1), Vjx (X2),
Hjy+1(X1), Vjx+1(X2), Hjy+1(X1), M(X0)

Dxy
i , Dxȳ

i

Ly mod p �= 0 Hjy (X1), Vjx (X2), Hjy (X1), Vjx (X2),
Vjx+1(X2), M(X0) M(X0)

tor, only if Lxmodp = 0. Similarly, V jx (Z1) can be a logical
operator only when Ly mod p = 0.

The following identities need to be invoked while count-
ing the number of independent logical operators amongst
H jy (Z2)’s and V jx (Z1)’s:

Lx∏
jx=1

(
ay

jx x̂+ jy ŷ

) jx = [
H jy (Z2)

]−1[
Hjy (Z0)

]−1
H jy+1(Z2),

Ly∏
jy=1

(
ax

jx x̂+ jy ŷ

) jy = [
V jx (Z1)

]−1[
Vjx (Z0)

]−1
V jx+1(Z1). (37)

The first equality holds only if Lxmodp = 0, in which case
H jy (Z2) becomes a valid logical operator. The left-hand side
of the first equality above becomes an identity when acting on
the ground state, implying that the action of the logical opera-
tor H jy+1(Z2) is equivalent to the combined action of H jy (Z2)
in the neighboring row and Hjy (Z0). Recall that Hjy (Z0) was
already taken into consideration earlier as a logical operator.
As a result, we conclude that there is only one independent
logical operator among the H jy (Z2)’s. Whether Hjy (Z0) is an
independent logical operator or not (depending on Lymodp)
does not affect the conclusion. Similarly, one can show that we
have one independent operator amongst V jx (Z1)’s only when
Lymodp = 0, and none otherwise. Therefore the number of
independent operators amongst the H jy (Z2)’s and V jx (Z1)’s
become δ0,Lx mod p + δ0,Ly mod p. Summing up all the arguments
thus far gives the correct number for Nlo.

All of the logical operators are defined on a noncontractible
loop except M(Z0) in Table I. However, in cases where M(Z0)
does serve as a logical operator it becomes equivalent to
Hjy (Z0) and Vjx (Z0), both of which are the logical operators
defined on noncontractible loops.

B. Logical X operators

Similar to the discussion of the logical Z operators in the
previous section, we begin by listing their explicit forms in
Table II below. Here one finds five types of logical X opera-
tors: Hjy (X1), Vjx (X2), M(X0), Dxy

i , and Dxȳ
i .

Firstly we consider M(X0), which is a logical operator ex-
cept for both Lx and Ly are multiple of p. This is in contrast to
M(Z0), which becomes a logical operator only when both Lx

and Ly are incommensurate with p. First consider the identity

p∏
jx, jy=1

[
b(1+ jx )x̂+(1+ jy )ŷ

] jx jy =
p∏

jx, jy=1

X −1
0, jx x̂+ jy ŷ. (38)
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When Lx and Ly are both multiples of p, we can extend the
product to cover the entire lattice,

Lx∏
jx=1

Ly∏
jy=1

[
b(1+ jx )x̂+(1+ jy )ŷ

] jx jy = M
(
X −1

0

)
. (39)

Since the ground states obey bi |GS〉 = |GS〉, Eq. (39) shows
that M(X0)−1|GS〉 = |GS〉 and hence M(X0)|GS〉 = |GS〉 fails
to generate new ground states. However, it is impossible to
express M(X0) in terms of the product of bi’s as above when
either Lx or Ly is not a multiple of p, and M(X0) becomes a
true logical operator. The number of M(X0) logical operator is
1 − δLxmod p,0δLymod p,0.

The next type of logical operators to consider are Hjy (X1)
and Vjx (X2). In counting the number of independent Hjy (X1)’s,
we invoke the identity

p∏
jy=1

[
Hjy (b)

] jy = H0(X1)Hp
(
X −1

1

)
(40)

showing that Hjy (X1)|GS〉 = Hjy+p(X1)|GS〉. For Lymodp �=
0, continued application of such equivalence relation implies
Hjy (X1)|GS〉 = Hj′y (X1)|GS〉 for all j′y, leading to only one
independent logical operator Hjy (X1).

For Lymodp = 0, such argument breaks down and one can
have as many as p independent logical operators. However,
one must deal with another identity

Hjy (b) = Hjy−1(X1)Hjy

(
X −2

1

)
Hjy+1(X1), (41)

which holds regardless of the system size. Since Hjy (b)|GS〉 =
|GS〉, the left-hand side of the identity acting on the ground
state is the same ground state, the action of Hjy+2(X1) on
the ground state is equivalent to the consecutive actions of
Hjy (X1) and Hjy+1(X1) on the same state. There are then at
most two logical operators of this type. Since there is no
identity relation connecting Hjy (X1) to the neighboring op-
erator Hjy+1(X1), it can be conclude that there are actually
two independent logical operators of the type Hjy (X1) when
Lxmodp = 0. The number of independent horizontal logical
operators can be summarized as 1 + δ0,Lymodp. Following a
similar procedure, the number of vertical logical operators
Vjx (X2) is 1 + δ0,Lxmod p.

Finally, we have two types of logical operators Dxy
i and Dxȳ

i
along the diagonal directions (1,1) and (1,−1), defined as

Dxy
i ≡ Dxy

i (X0)Dxy
i (X1)Dxy

i (X2),

Dxȳ
i ≡ Dxȳ

i−ŷ

(
X −1

0

)
Dxȳ

i (X1)Dxȳ
i (X2), (42)

irrespective of Lx and Ly. The diagonal operators appearing on
the right-hand side, namely, Dxy

i (X0), Dxy
i (X1), and Dxy

i (X0),
do not commute with the Hamiltonian individually but their
product as given above does. There are Lg = gcd(Lx, Ly) dis-
tinct operators one can write down for each of the diagonal
operators on the right-hand side (see discussion in Sec. V),
which result in Lg distinct diagonal operators Dxy

i and Dxȳ
i on

the left-hand side of Eq. (42). Most importantly, Dxy
i and Dxȳ

i
do commute with the Hamiltonian, making them eligible as
logical operators.

Now one must count how many of the Dxy
i and Dxȳ

i opera-
tors are truly independent. For that, we start with the identity

p∏
jy=1

[
Dxy

i+ jy ŷ(b)
] jy = Dxy

i

[
Dxy

i+pŷ

]−1
,

p∏
jy=1

[
Dxȳ

i+ jy ŷ(b)
] jy = Dxȳ

i

[
Dxȳ

i+pŷ

]−1
, (43)

similar to Eq. (40) for the horizontal logical operators.
The first identity shows that Dxy

i |GS〉 = Dxy
i+pŷ|GS〉. For

Lgmodp �= 0, then, every diagonal operator Dxy
i becomes

equivalent, leaving only one independent logical operator
Dxy

i . Similarly, there is only one independent Dxȳ
i when

Lgmodp �= 0.
The argument breaks down for Lgmodp = 0, and one must

consider another kind of identities

Dxy
i (b) = Dxy

i−ŷ

[
Dxy

i

]−2
Dxy

i+ŷ,

Dxȳ
i (b) = Dxȳ

i−ŷ

[
Dxȳ

i

]−2
Dxȳ

i+ŷ. (44)

Since Dxy
i (b)|GS〉 = Dxȳ

i (b)|GS〉 = |GS〉, one can express one
of the diagonal operators on the right-hand side of Eq. (44) in
terms of the other two. There are thus only two independent
logical operators among Dxy

i ’s and also among Dxȳ
i ’s when

Lgmodp = 0.
Since p is a prime number, the condition Lg mod p =

0 is equivalent to Lx mod p = Ly mod p = 0. It then seems
the number of independent Dxy

i and Dxȳ
i operators are 2 +

2δ0,Lx mod pδ0,Ly mod p. However, there exist additional identities
constraining the independence of logical operators:

M(X0)
Ly∏

jy=1

Hjy (X1)
Lx∏

jx=1

Vjx (X2) =
Lg∏

jy=1

Dxy
jyŷ,

M
(
X −1

0

) Ly∏
jy=1

Hjy (X1)
Lx∏

jx=1

Vjx (X2) =
Lg∏

jy=1

Dxȳ
jy ŷ. (45)

These identities apply irrespective of Lx and Ly. Hjy (X1) and
Vjx (X2) are valid logical operators for all values of Lx, Ly. Ac-
cording to the argument given at the beginning of the section,
M(X0) is a logical operator when Lx or Ly is incommensurate
with p, but acts as an identity operator when both Lx, Ly are
commensurate with p. In either case, the two relations given
in Eq. (45) place constraints on Dxy

i and Dxȳ
i and reduce their

degrees of freedom each by one, making the total number of
diagonal operators equal to 2δ0,Lx mod pδ0,Ly mod p.

Gathering all the statements, we once again arrive at
the number of logical operators given by Nlo = 2 + (1 +
δ0,Lx mod p) (1 + δ0,Ly mod p).

VII. EXCITATIONS

The qusiparticle excitations in the R2TC model are
monopoles and dipoles. The monopole quasiparticles can
be efficiently characterized with the help of the following
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FIG. 4. Monopole quasiparticles in R2TC (q, px, py ). The p-hop
process refers to hopping by p lattice spacing. The q quasiparticle can
only execute p-hops in both x and y directions. The px (py) monopole
hops by one lattice spacing in the x (y) direction and by p spacing in
the y (x) direction. The p-hop processes are forbidden in the parent
rank-2 U(1) LGT but are allowed now due to the relaxed constraint
provided by Higgsing.

operators

Ax
i ( j) = 1

p

p−1∑
k=0

(
ω− jax

i

)k
,

Ay
i ( j) = 1

p

p−1∑
k=0

(
ω− jay

i

)k
,

Bi( j) = 1

p

p−1∑
k=0

(
ω− jbi

)k
, (46)

where j ∈ Z. They are defined in such a way that the
eigenstates of ax

i , ay
i , bi with eigenvalues equal to ω j are

automatically the eigenstates of Ax
i ( j), Ay

i ( j), and Bi( j), re-
spectively, with the eigenvalue +1. The integer j (mod p)
serves as the charge of the monopole excitation at the site
i. We use px, py, and q in subsequent discussions to denote
the monopole charges associated with Ax

i (px ), Ay
i (py), and

Bi(q), respectively. We will also refer to them as Ax,Ay, and
B excitations.

An intuitive way to think about the q, px, py quasiparti-
cles in the R2TC is to view them as Higgsed version of the
fracton (ρi) and lineon (ρx

i , ρ
y
i ) excitations in the rank-2 U(1)

LGT. The strict constraint on the fracton or the lineon mo-
tion becomes relaxed into p-hops in the previously forbidden
direction thanks to the Higgsing process. The allowed mo-
tions of quasiparticles in R2TC are summarized graphically
in Fig. 4.

The other type of quasiparticle excitation is the dipole
consisting of two monopoles of opposite charges. For in-
stance, two Bi monopoles with charges ±q separated by 
d =
dxx̂ + dyŷ and carrying the dipole moment q 
d is denoted �q, 
d .
Similarly, �px, 
d (�py, 
d ) refers to the dipole consisting of two

Ax
i (Ay

i ) monopoles with charges ±px (±py) and the dipole
moment px 
d (py 
d). All these dipoles are free to move in
any direction by one lattice spacing at a time. Recall that the
dipoles in the parent LGT were also free.

In the parent rank-2 U(1) LGT, dipoles are always created
as a dipole and an anti-dipole pair. While such quadrupole

creation is possible in the R2TC, there is the additional pos-
sibility of creating a single dipole without the accompanying
pair. They are referred to as pristine (single dipole creation)
and emergent (dipole pair creation) dipoles. Their respective
creation processes will be discussed in the following sections.

A. B excitations

The B excitations refer to eigenstates of Bi( j) for j �= 0,
characterized by nonzero charges q. For instance, the action
of Z1,i or Z2,i operator on the ground state results in the
creation of two q = −1 monopoles and one q = 2 monopole
along either vertical or horizontal direction, altogether form-
ing a quadrupole excitation as shown in the leftmost panels of
Figs. 5(a) and 5(b). On the other hand, the action of Z0,i on a
plaquette creates a quadrupole with two q = −1 charges and
two q = 1 charges placed at the four vertices of a plaquette
as shown in the leftmost panel of Fig. 5(c). One can view a
quadrupole as a pair of emergent dipoles.

Each emergent dipole can subsequently be moved through
the lattice. For instance, the middle (rightmost) panel of
Fig. 5(a) shows the horizontal (vertical) displacement of an
emergent dipole by the action of quadrupole creation oper-
ator Z−1

0,i (Z1,i+ŷ) on an existing quadrupole. In essence, the
quadrupole creation operator acts also as the hopping oper-
ator of a dipole. Similarly, the emergent dipole created in
the leftmost panel of Fig. 5(b) can move horizontally (ver-
tically) through the action of the quadrupole operator Z2,i+x̂

(middle panel) [Z0,i (rightmost panel)]. Finally, the emergent
dipole movement in Fig. 5(c) is executed horizontally by Z0

and vertically by Z1, as shown in the middle and rightmost
panels. In conclusion, emergent dipoles can freely execute
the center-of-mass movement after their creation by judicious
application of the quadrupole opreators Z0, Z1, and Z2. The
same cannot be said of the rotation of emergent dipoles.

The pristine dipoles can be created singly without its part-
ner. Figure 5(d) illustrates the action of the p-local operator
(meaning it acts on p consecutive sites at once)

Zx,i =
p∏

jx=1

[
Z2,(ix+ jx )x̂+iy ŷ

] jx (47)

giving rise to one q = 1 and one q = −1 excitations with the
lattice spacing p between them, but no other accompanying
dipole. This is the creation operator of a pristine dipole. Sim-
ilarly,

Zy,i =
p∏

jy=1

[
Z1,ix x̂+(iy+ jy )ŷ

] jy (48)

creates a vertically oriented pristine dipole with the lat-
tice spacing of p between the q = ±1 charges as shown in
Fig. 5(e). The net dipole moment is px̂ or pŷ, equivalent to
0 under the mod p consideration. This is, in essence, why
one can create such a dipole singly, since the dipole moment
associated with it is zero mod p. The pristine dipoles are
illustrated as orange lines extending over the p lattice sites
in Figs. 5(d) and 5(e).

Suppose we act with Zx,i or Zy,i on an existing dipole. The
net effect is the hopping of a charge q = 1 at one end of a
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FIG. 5. Graphical illustration of the B excitations. (a) Applying a Z1 operator to the ground state creates two q = −1 and one q = 2
excitations along the vertical direction. Ways to move a dipole horizontally or vertically through the application of Z−1

0 or Z1 operator are
illustrated in the subsequent panels. (b) Applying a Z2 operator creates two q = −1 and one q = 2 excitations along the horizontal direction.
Ways to move a dipole horizontally and vertically are illustrated. (c) Applying a Z0 operator creates two q = −1 and two q = 1 excitations
around a plaquette. Ways to move a dipole after their creation are illustrated. (d) Pristine dipole creation operators Zx and (e) Zy,i are shown
as orange lines with charges at either ends.

dipole by the lattice spacing p in either horizontal or vertical
direction. As a result, a single q monopole can move either
horizontally and vertically through the action of Zx or Zy, but
only by p lattice spacing at a time. The pristine dipole creation

operators act as monopole hopping operators by p lattice
spacing.

It is well known that logical operators in the toric code
have physical interpretation as the creation of an anyon pair,
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followed by their reannihilation after one of the anyons is
moved round the entire circumference of the torus. A similar
interpretation applies to the logical operators we have identi-
fied in the previous section. For example, after the quadrupole
creation shown in the leftmost panel of Fig. 5(a), one of the
dipoles can be moved vertically around the circumference of
the torus and be annihilated with the remaining dipole. The
operator that performs this operation is precisely Vjx (Z1)—one
of the logical operators identified in the previous section.
Likewise, the quadrupole configuration created in the left-
most panel of Fig. 5(b) will be reannihilated by the action
of another logical operator, Hjy (Z2). Finally, the quadrupole
configuration in the leftmost panel of Fig. 5(c) is annihilated
by Hjy (Z0) or Vjx (Z0). These four logical operators are the
analogues of the logical operators in the toric code, with the
difference that now the operators move the dipoles rather than
the monopoles (anyons). The last two operators, Hjy (Z0) and
Vjx (Z0), are actually dependent on each other since they both
are related with M(Z0) as pointed out in Eq. (35). Hence,
in this case, we have not four, but three linearly indepen-
dent logical operators doing the quadrupole creation and
reannihilation.

The creation and re-annihilation of a pristine dipole leads
to another set of logical operators. As mentioned, a pristine
dipole can be created by the action of the p-local operators
in Eqs. (47) and (48). Logical operators responsible for the
creation and reannihilation of a single pristine dipole must
be able to move a monopole round the circumference of the
torus and annihilate it with the remaining monopole pair.
The operators for these processes are precisely H jy (Z2) and
V jx (Z1) defined in Eq. (36). One can see that these operators
move a monopole by p lattice spacings at a time. In order to
encounter the partner monopole, the linear dimension Lx or
Ly needs to be a multiple of p, otherwise the monopole hop
would have to take place p times round the torus in order to
finally meet its partner. That, however, requires taking the pth
power of H jy (Z2) or V jx (Z1) which is a trivial identity and not
a logical operator. To conclude, logical operators associated
with the creation and re-annihilation of pristine dipoles only
exist if either Lx or Ly is commensurate with p. This is the
physical picture as to why the number of logical operators
and hence the GSD depends on the mod p parity of Lx

and Ly.
For both Lx and Ly commensurate with p, the two

quadrupole operators Hjy (Z0) and Vjx (Z0) become indepen-
dent operators as the constraint (35) is no longer meaningful.
In this case, we end up having six logical operators: four
quadrupole operators, Hjy (Z0), Vjx (Z0), Hjy (Z2), Vjx (Z1), and
two dipole operators H jy (Z2),V jx (Z1). Each logical operator
contributes to the degeneracy p of the ground state, hence, we
have p6 GSD. This result is consistent with the conclusion in
Ref. [8], where the GSD is given by 26 with p = 2 for even
values of Lx and Ly. The interpretation given by these authors
is that the model is three copies of Zp toric code when p = 2
and each toric code has its own horizontal and vertical logical
operators. Although their interpretation is insightful, it cannot
cover the case where Lx or Ly is not commensurate with p.
According to our interpretation, four of the logical operators
are rightfully interpreted as quadrupolar, and only two are

FIG. 6. Graphical illustration of the Ax (cyan square) and Ay

(gray square) excitations. [(a) and (b)] Pristine dipole creation oper-
ators X1,i and X2,i are illustrated. [(c) and (d)] Pristine dipoles created
by Xy,i and Xx,i are shown as navy lines.

dipolar. This interpretation fully covers the case where Lx or
Ly is incommensurate with p.

B. (Ax,Ay) excitations

While the Bi excitations were best viewed as residing at
the sites, the (Ax

i ,A
y
i ) excitations are best viewed as those at

the links. They are denoted as cyan and gray squares at the
corresponding links in Fig. 6. In the case of B excitations,
pristine dipoles were always of length p. This is no longer
the case for (Ax,Ay) pristine dipoles, which can be either of
length 1 or p.

The pristine px (py) dipole consisting of a pair of Ax
i (Ay

i )
excitations in the horizontal (vertical) direction can be formed
with any length. By applying X1,i (X2,i) on the ground state, we
can create a pristine dipole consisting of px = ±1 (py = ±1)
separated by one lattice site in horizontal (vertical) direction
of Ax

i (Ay
i ), as shown in Fig. 6(a) [Fig. 6(b)]. Since X1 and

X2 are pristine dipole creation operators, when we act X1(X2)
on an existing px(py) dipole, a px = −1(py = −1) monopole
will hop by 1 lattice spacing horizontally(vertically). By re-
peating the operation, the length of the pristine dipole can
be arbitrarily large. Moving the charge in a pristine dipole in
the direction orthogonal to the dipole moment will create an
additional dipole and increase energy.

The pristine px (py) dipole can be created along the vertical
(horizontal) direction as well, but it is only of length p. The
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creation operators of such dipoles are

Xx,i =
p∏

jx=1

[
X0,(ix+ jx−1)x̂+(iy−1)ŷX − jx

1,(ix+ jx )x̂+iy ŷX jx
2,(ix+ jx )x̂+(iy+1)ŷ

]
,

Xy,i =
p∏

jy=1

[
X0,(ix−1)x̂+(iy+ jy−1)ŷX

− jy
2,(ix−1)x̂+(iy+ jy )ŷX

jy
2,ix x̂+(iy+ jy )ŷ

]
.

(49)

Applying Xy,i (Xx,i) create a px(py) pristine dipole of length
p vertically [Fig. 6(c)] (horizontally [Fig. 6(d)].

The pristine px (py) dipole creation operators act as hop-
ping operators of px (py) monopoles. The X1 and Xy operators
are responsible for the Ax monopole movement in the hori-
zontal movement by one spacing and the vertical movement
by p spacing, respectively. Similarly, X2 and Xx operators
move the py monopole by one lattice spacing vertically and
p lattice spacing horizontally.

The quadrupole creation operators create emergent px or
py dipoles in pairs. They are defined as

X px,ŷ
y,i = X0,ix x̂+(iy−1)ŷX −1

0,ix x̂+iy ŷX −1
2,ix x̂+iy ŷX2,(ix+1)x̂+iy ŷ,

X py,x̂
x,i = X0,(ix−1)x̂+iy ŷX −1

0,ix x̂+iy ŷX −1
1,ix x̂+iy ŷX1,ix x̂+(iy+1)ŷ. (50)

As depicted in the leftmost panels of Figs. 7(a) and 7(b),
they create a pair of dipoles �px,ŷ = ±ŷ separated vertically
by one lattice spacing, and �py,x̂ = ±x̂ dipole pair separated
horizontally by one lattice spacing, respectively.

One can move the emergent dipole �px,ŷ in the vertical
direction by applying the dipole pair creation operator X px,ŷ

y,i
in succession, as shown in the rightmost panel of Fig. 7(a). As
shown in the middle panel of Fig. 7(a), the horizontal motions
of �px,ŷ are implemented by applying X1 or X −1

1 . Similarly,
the horizontal movement of the �py,x̂ dipole is done by apply-

ing the operator X py,x̂
x,i in succession, as shown in the bottom

panel of Fig. 7(b). Their vertical motions are implemented by
applying X2 or X −1

2 .
Whereas the operators in Eq. (50) create quadrupoles con-

sisting of two px dipoles or two py dipoles, the action by
X0,i on the ground state creates a quadrupole consisting of
one px dipole and one py dipole, as shown in the top left
panel of Fig. 7(c). Applying X1(X2) on a px(py) monopole
with charge 1(−1) in this configuration creates a horizon-
tal(vertical) monopole movement as explained previously. It
should be kept in mind that the continued operation of X0,i’s
will increase the number of px and py monopoles and the
energy as well. Applying X0,i on the quadrupole configuration
shown in the top left panel of Fig. 7(c) creates additional
px dipoles as illustrated in the top right panel of Fig. 7(c).
Similarly, applying X0,i−x̂+ŷ creates a py dipole in its wake as
shown in the bottom panel of Fig. 7(c).

VIII. BRAIDING STATISTICS

Various ways to move the monopole and dipole excitations
after their creation were discussed in the previous section.
Based on the knowledge one can move one quasiparticle
around the other and calculate the statistical phase resulting

FIG. 7. Pair creations of (a) �px ,ŷ and (b) �py,x̂ , and their sub-
sequent horizontal and vertical motions. (c) Illustration of various
actions of X0. See main text for details.

from such braiding. The phases of braiding statistics among
the monopoles and the dipoles are summarized in Table III.

We start with the case of monopole-monopole braiding.
To do that, one must prepare two monopoles to participate
in the braiding. This is done by first creating two pristine
dipoles, and then pushing one of the monopoles from each
dipole out to infinity, leaving a pair of monopoles for braiding.
There are three types of monopoles, labeled (q, px, py ), but it
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TABLE III. Braiding statistics among monopoles (q, px, py ) and
dipoles (�q, 
d , �px , 
d , �py, 
d ).

px py �px , 
d �py, 
d

q ωpxq(yx−yq ) ωpyq(xq−xy ) ωpxqdy ω−pyqdx

�q, 
d ω−pxqdy ωpyqdx 1 1

turns out only the (q, px ) and (q, py ) monopole pairs yield
nontrivial braiding phases. This is because, at the crossing
point of the path of two different monopoles, pristine dipole
creation operators for both monopoles, responsible for the
motions of each monopole, are acted. Then, the braiding
phase originates from the exchange of the operators. Since all
the operators responsible for the motion of px and py consist
of X ’s, their braiding phase is always trivial (+1) and the
statistic is bosonic.

The unusual aspect of the monopole-monopole braiding
phases, as shown in Table III is their dependence on the
relative separation as ωpxq(yx−yq ) or ωpyq(xq−xy ), where (xq, yq ),
(xx, yx ), (xy, yy ) refer to the initial positions of the q, px, and
py monopoles, respectively. The usual anyonic braiding, on
the other hand, gives a path-independent statistical phase. It
is important to point out that, despite the apparent depen-
dence on the initial positions of the quasiparticles, the braiding
phases retain some of the topological character in that changes
in the initial coordinates of the monopoles can only occur
in a manner that preserves the phase. Suppose a different
initial position yx of the px monopole had been chosen for
calculating the braiding phase. Due to the constrained motion
of the px quasiparticle analyzed in the previous section, the
new y coordinate can differ from old only in multiples of p,
meaning that the phase ωpxq(yx−yq ) remains invariant for the
new initial coordinate. The invariance of ωpyq(xq−xy ) under the
coordinate change can be argued in the same manner.

Table III also works out the braiding phase between an
emergent dipole and a monopole. They can be obtained
readily by employing the results of the monopole-monopole
braiding statistics since a dipole is nothing but a pair of
monopoles separated by distance d = | 
d|. Contrary to the
monopole-monopole braiding, the monopole-dipole braiding
phases have no dependence on the initial coordinates. In other
words, the emergent dipoles have an abelian anyonic braiding
character with respect to the monopoles. The braiding of a
pristine dipole with a monopole, on the other hand, always
results in the trivial phase +1, which endows it with the
bosonic character.

In the rest of this section, we examine the braiding statistics
of q monopole with respect to the px monopole when the
monopole charges are both +1. To obtain the statistical phase,
one can either (i) braid px round q or (ii) braid q round a fixed
px. Both will result in the same statistical phase.

A. Braiding px round q

In this section, we examine the statistical phase for braiding
px round q. As illustrated in Fig. 8(a), one can place an
isolated q monopole at (xq, yq ) and, starting from (xx, yx ), let
a px monopole travel counterclockwise around it. There are

three ways to prepare an isolated q, all of them resulting in
the same statistics. Although discussing all three methods in
detail may seem redundant, we press forward with it for the
sake of convincing the readers (and ourselves) that the rather
peculiar statistical phase between the monopoles is indeed
genuine to our model.

The first way of isolating q is illustrated in Fig. 8(b), where
q = 1 monopole is fixed at (xq, yq ) while its partner q = −1
is sent off to infinity along the orange-colored vertical line
by the repeated operation of Z−1

y . Now, px winds around
q counterclockwise along the navy-colored path in the right
panel of Fig. 8(b). The hopping of px in the −x direction is
implemented by applying X1’s along the navy line. Starting at
(xx, yx ), the y coordinate of px can change only in multiples
of p. From the definition of the Zy operator in Eq. (48), we
can see that the Z1 operator on the orange line is raised to
the power equal to the relative y coordinate with respect to
yq. At the point where the orange and the navy line cross,
X1 encounters Z−1

1 raised to the power yx − yq at the point
of intersection. Employing the commutation algebra of X and
Z operators, one gets

X1Z
yq−yx

1 = ωyx−yq Z
yq−yx

1 X1. (51)

The phase factor arising from the braiding of px = 1
monopole around the q = 1 monopole is ωyx−yq . For other
monopole charges, one merely adds multiplicative factors pxq
and finds the expression listed in Table III.

The second way of isolating a q = 1 monopole is illus-
trated in the top panel of Fig. 8(c), where a q = 1 monopole is
separated from its q = −1 partner through hopping of the lat-
ter along the horizontal orange line by repeated application of
the Z−1

x operator defined in Eq. (47). Afterwards, the px = 1
monopole moves along the navy line as in the bottom panel of
Fig. 8(c) and traverses the orange line by the repeated imple-
mentation of X−1

y defined in Eq. (49). As explained earlier, the
path of the px monopole in the y direction is best represented
as a line on a dual lattice, while its path in the x direction is
best represented as a line on the links in the original square
lattice [Figs. 6(a) and 6(c)]. There is no restriction on the
movement of the px monopole in the x direction, meaning that
the x coordinate of the sites at the intersection of the orange
and the navy paths can be arbitrary.

The Z−1
x operator we exploited in isolating the q monopole

consists of the product of Z2 operators raised to various
powers along the orange line. It implies that the navy line
representing the vertical path of the px monopole can be
positioned in the middle of two adjacent sites at which
the Z−1

2 operators in the orange line are raised to any suc-
cessive integers, say s and s − 1. Meanwhile, the hopping
of px along the −y direction is implemented by Xy. Upon
the examination of the definition of Xy we conclude that the
power of X2 on the left side of the navy line decreases by 1
along the y direction while it increases by 1 on the right side
of it. Therefore, at the sites located just to the left and the right
of the crossing, the powers of X2 become r and −r, where
r = yx − yq is the y coordinate difference of px and q at the
start of the braiding. As a result, X r

2 encounters Z−s
2 and X −r

2
encounters Z−s+1

2 in the process of braiding. Such encounter
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FIG. 8. Braiding of the px = 1 monopole around a q = 1 monopole. (a) A px monopole winds around an isolated q monopole counter-
clockwise. The q monopole is fixed at (xq, yq ) while the px monopole starts the braiding process from the position (xx, yx ). The braiding
statistics is given by ωyx−yq . [(b)–(d)] Three ways of isolating the monopole q are depicted in the first diagram of each figure. The orange lines
represent the path in which the partner monopole is expelled to infinity. The braiding path of the px monopole is shown by navy-colored lines.
The blue membrane in (d) represents the Z0 operation which pushes the other three monopoles of the quadrupole to infinity, leaving a single
monopole q in isolation.

produces the overall braiding statistics given by

X r
2 Z−s

2 = ωrsZ−s
2 X r

2 ,

X −r
2 Z−s+1

2 = ω−rs+rZ−s+1
2 X −r

2 . (52)

The combined phase ωrsω−rs+r = ωr = ωyx−yq is precisely
the phase we obtained from the first procedure.

Finally, a third way of isolating q = 1 monopole is by
the action of the quadrupole operator Z−1

0 over a quadrant of

the two-dimensional lattice with the monopole q at its apex
(xq, yq ), as illustrated in the left panel of Fig. 8(d). Operating
with Z−1

0 on all the plaquettes inside the quadrant pushes
three of the constituent monopoles in a quadrupole to infin-
ity, leaving behind one isolated monopole q = 1. Afterwards,
the px monopole can braid the isolated q by one horizontal
movement and one vertical movement since only the move-
ments of px that take place inside the quadrant contribute
to the braiding statistics while all other movements outside
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FIG. 9. Braiding of q around px . (a) A q = 1 monopole winds around an isolated monopole px = 1, held fixed at (xx, yx ). The initial
location of the q monopole is (xq, yq ). The braiding phase equals ωyx−yq . Two different ways of isolating the px = 1 monopoles are depicted
in the first panels of (b) and (c). In both figures, the partner monopole is sent off to infinity along the navy-colored line. The q monopole then
winds around px along the orange line.

the quadrant do not. The x movement of the px monopole
is carried out by X1, which commutes with all the Z0’s in
the quadrant. Therefore the only nontrivial contribution to
the braiding statistics comes from the vertical movement
of the px monopole shown as a navy-colored line in the right
panel of Fig. 8(d), implemented by repeated application of Xy.
Equation (49) shows that Xy involves X0 in its definition and,
by carefully counting how many powers of X0 appear inside
the quadrant, we arrive once again at the statistical phase
found previously.

B. Braiding q round px

In this section, we examine the statistical phase for braiding
q round px. Figure 9(a) shows the braiding of q = 1 monopole
around the isolated px = 1 monopole in the counterclockwise
direction. There are two ways to isolate the px monopole. The
first is by sending its dipolar partner px = −1 off to infinity
through repeated operation of X1 in the x direction, along the
path highlighted as navy line in the first row of Fig. 9(b).
Afterwards, the q = 1 monopole winds around px along the

path depicted as orange-colored vertical line in the second row
of Fig. 9(b). The propagation of q by p lattice spacing along
the y direction is implemented by repeated Zy operation along
the orange line. We have the operator Zr

1 at the crossing point
of the orange and the navy lines, where r = yx − yq is the y
coordinate difference of the px and q monopoles at the start
of braiding. This implies that Zr

1 encounters X1 at the crossing
point, which yields the exchange operation

Zr
1X1 = ωyx−yq X1Zr

1 .

The second way of isolating px = 1 is by applying X−1
y op-

erator repeatedly along the navy-colored vertical line depicted
in the left panel of Fig. 9(c). Afterwards, the braiding path of
q traverses the navy line as depicted with the orange line in
the right panel of Fig. 9(c). The navy line is positioned at the
middle of two adjacent sites of which the distances from xq

are s and s + 1, where s = xq − xx. Note that the x-directed
propagation of q is implemented by the repeated operation of
Zx along the orange line, on which the power of Z2 equals
the relative x coordinate with respect to xq. Therefore Zs

2 and
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Zs+1
2 are applied to the sites just to the left and right of the

crossing point, respectively. In addition, during the propaga-
tion of px along the −y direction, the power of X2 on the left
side of the navy line decreases by 1, while the power of X2

on the right, the navy line increases by 1. As a result, at the
sites located just to left and right of the crossing point, Zs

2
encounters X −r

2 and Zs+1
2 encounters X r

2 , respectively, where
r = yx − yq. Hence, we have two exchange operations for
braiding statistics given by

Zs
2X −r

2 = ω−srX −r
2 Zs

2,

Zs+1
2 X r

2 = ωsr+rX r
2 Zs+1

2 .

The resulting combined phase is ω−srωsr−r = ωyx−yq . Follow-
ing an entirely similar procedure, one finds the braiding phase
ωxq−xy between q = 1 monopole and py = 1 monopole when
their initial positions are (xq, yq ) and (xy, yy).

IX. AHARONOV-BOHM PHASE

It must be admitted that the phase factors coming from the
(q, px ) and (q, py ) braiding are highly unusual. In this sec-
tion, we present some ways to understand these factors in the
framework of the conventional Aharonov-Bohm (AB) phase.
It is well known that the statistical phase can be understood as
an AB phase due to the magnetic flux tightly attached to the
quasiparticles. We can view the monopole-monopole braiding
phases as also arising from the magnetic flux localized at the
position of the monopole, which is experienced by the test
monopole. We regard the monopole q at rq = (xq, yq ) as the
one with the magnetic flux attached and the px or py monopole
as the test charge. The situation corresponds to px braiding
round q.

The magnetic flux attached to the monopole q is given by
Eq. (14) with (m, n) = (1, 1) which becomes, in the contin-
uum limit,

B = 1
2 (1 + δb,d )εabεcd∂a∂cAbd

= ∂2
x Ayy + ∂2

y Axx − ∂x∂yAxy. (53)

The localized magnetic field B(r) = (2πq/p)δ2(r − rq) in the
rank-2 U(1) gauge theory comes from the tensor potential
such as

Axx(r) = 2πq

p
(y − yq)δ(x − xq)θ (y − yq ),

Axy(r) = Ayy(r) = 0. (54)

One can indeed show that a localized magnetic flux is gen-
erated by this choice of the tensor potential using Eq. (53).
Other choices of tensor potential for the same magnetic field
are discussed in Appendix.

It is argued that the (q, px ) and (q, py) braiding phases φx

and φy obtained in the previous section are captured as area
integrals

φx = px

∫ x+

x−
dx

∫ y+

y−
dy

[∫ y

y0

B(x, y′)dy′
]
,

φy = −py

∫ x+

x−
dx

∫ y+

y−
dy

[∫ x

x0

B(x′, y)dx′
]
. (55)

The integration area is assumed to be a square [x−, x+] ×
[y−, y+], which reflects the braiding path used in the previous
section. The key difference from the conventional AB phase
integral is that the x or y integral of the B field is being
used as an integrand, instead of the B field itself. Performing
the integrals assuming the localized magnetic field B(r) =
(2πq/p)δ2(r − rq) gives

φx = 2πqpx

p
[(y+−yq ) − (y+−y−)θ (y0−yq )],

φy = −2πqpy

p
[(x+−xq ) + (x+−x−)θ (x0−xq )]. (56)

Depending on the choice of the integration constant y0, one
gets θ (y0 − yq) = 1 and φx = (2πqpx/p)(y− − yq), or θ (y0 −
yq) = 0 and (2πqpx/p)(y+ − yq). Recall further that the px

monopole can only hop by p lattice spacing along the y
direction, so that both y+ and y− are equal to yx, the initial
y-coordinate of the px monopole, up to multiples of p. As a
result,

φx = 2πqpx

p
(yx − yq) + 2πn (57)

where n ∈ Z, which matches the phase derived from the
lattice model (see Table III). The same consideration also
gives φy = (2πqpy/p)(xq − xy) mod 2π . Cast as integrals of a
gauge-invariant magnetic field, the two expressions in Eq. (55)
are manifestly gauge-invariant. In Appendix, we show how to
convert the area integrals in Eq. (55) to line integrals of some
emergent vector potentials.

X. DISCUSSION

We have carefully revisited the Higgsing process proposed
in Refs. [7,8] to come up with an easy-to-implement recipe
for constructing a stabilizer spin model from a given LGT. The
Higgsing procedure is applied to the rank-2 U(1) LGT defined
on a two-dimensional square lattice to obtain the rank-2 Zp

toric code. The monopole and dipole quatiparticles are the
elementary excitations of the R2TC. Allowed motions of both
monopoles and dipoles in the R2TC model were analyzed in
detail.

The GSD of R2TC model varies from p3 to p6 depending
on the commensurability of the lattice size with p, the local
Hilbert space dimension. The counting of GSD was performed
by examining the number of independent stabilizers as well as
the number of independent logical operators. Our interpreta-
tion of the logical operators in terms of monopole-pair and
dipole-pair creation and re-annihilation processes may shed
further light on previous reports on the system size depen-
dence of the GSD [7,8,21].

The braiding statistics between a pair of monopoles and
a monopole-dipole pair was worked out. We propose a new
integral formula capturing the braiding statistics, which in-
vites further field-theoretical investigation of the emergent
quasiparticle dynamics. Checking the stability of our spin
model remains as a future work, which can be done by pertur-
bative continuous unitary transformation method previously
exploited in the study of the phase diagram of the toric code
or fracton models [22,23].
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APPENDIX: AHARONOV-BOHM PHASES FOR
MONOPOLE-MONOPOLE BRAIDING

The following integral expressions for the statistical phases
were introduced in Sec. IX:

φx = px

∫ x+

x−
dx

∫ y+

y−
dy

[∫ y

y0

B(x, y′)dy′
]
,

φy = −py

∫ x+

x−
dx

∫ y+

y−
dy

[∫ x

x0

B(x′, y)dx′
]
. (A1)

It is possible to apply Stokes’ theorem and express the above
surface integrals as line integrals of some effective vector
potentials. First one writes the magnetic field B(x, y) in the
rank-2 U(1) gauge theory as the curl

B(x, y) = ∂xC
y(x, y) − ∂yC

x(x, y), (A2)

where C(x, y) = (Cx,Cy) is given by

Cx(x, y) = (1 − γ )∂xAxy(x, y) − ∂yAxx(x, y),

Cy(x, y) = ∂xAyy(x, y) − γ ∂yAxy(x, y) (A3)

for some arbitrary constant γ . Accordingly, one can write
∫ y

y0

B(x, y′)dy′ = ∂xα
y
x − ∂yα

x
x ,

∫ x

x0

B(x′, y)dx′ = ∂xα
y
y − ∂xα

x
y , (A4)

where

αx
x =

∫ y

y0

dy′[Cx(x, y′) − Cx(x, y0)],

αy
x =

∫ y

y0

dy′Cy(x, y′),

αx
y =

∫ x

x0

dx′Cx(x′, y),

αy
y =

∫ x

x0

dx′[Cy(x′, y) − Cy(x0, y)]. (A5)

Thus we obtain a pair of emergent vector potentials αx =
(αx

x , α
y
x ) and αy = (αx

y , α
y
y ) with which to express the AB

phases as line integrals

φx = px

∮
dr · αx, φy = −py

∮
dr · αy. (A6)

The gauge invariance of φx, φy under the transformation

Aab → Aab + ∂a f a (a = b)

→ Aab + ∂a f b + ∂b f a (a �= b) (A7)

follows readily.
One way to write down the tensor Aab for the localized

magnetic field B(r) = (2πq/p)δ2(r − rq) was suggested in
Eq. (54) in Sec. IX. Alternative ways of writing the tensor
potential for the same magnetic field are

A′xx(r) = A′yy(r) = 0,

A′xy(r) = −2πq

p
θ (x − xq)θ (y − yq), (A8)

and

A′′xx(r) = A′′xy(r) = 0,

A′′yy(r) = 2πq

p
(x − xq)θ (x − xq)δ(y − yq). (A9)
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