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Fractional hinge and corner charges in various crystal shapes with cubic symmetry
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Higher-order topological insulators host gapless states on hinges or corners of three-dimensional crystals.
Recent studies suggested that even topologically trivial insulators may exhibit fractionally quantized charges
localized at hinges or corners. Although most of the previous studies focused on two-dimensional systems, in
this work, we take the initial step toward the systematic understanding of hinge and corner charges in three-
dimensional insulators. We consider five crystal shapes of vertex-transitive polyhedra with the cubic symmetry
such as a cube, an octahedron, and a cuboctahedron. We derive real-space formulas for the hinge and corner
charges in terms of the electric charges associated with bulk Wyckoff positions. We find that both the hinge and
corner charges can be predicted from the bulk perspective only modulo certain fractions depending on the crystal
shape, because the relaxation near boundaries of the crystal may affect the fractional parts. In particular, we show
that a fractionally quantized charge 1/24 mod 1/12 in the unit of elementary charge can appear in a crystal with a
shape of a truncated cube or a truncated octahedron. We also investigate momentum-space formulas for the hinge
and corner charges. It turns out that the irreducible representations of filled bands at high-symmetry momenta
are not sufficient to determine the corner charge. We introduce an additional Wilson-loop invariant to resolve
this issue.
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I. INTRODUCTION

Topological insulators are characterized by a bulk band
gap and topological invariants formulated in terms of the
Bloch wave functions [1,2]. The bulk-boundary correspon-
dence [3–6] then implies the presence of gapless excitations
localized at the boundaries of topological insulators. Three-
dimensional topological insulators usually feature gapless
modes on their two-dimensional surfaces [7–10]. When all
the surfaces are gapped but hinges or corners are gapless, the
insulator is said to possess a higher-order topology [11–27].

In contrast, the electronic excitation spectrum of topo-
logically trivial insulators is completely gapped including
hinges and corners. Electrons in these insulators occupy expo-
nentially localized Wannier orbitals, which usually resemble
atomic orbitals. Thus topologically trivial insulators are also
called atomic insulators (AIs). Recent studies found that the
boundaries of AIs are not completely featureless; some AIs
feature fractionally quantized charges on their corners. Most
of the previous studies of fractional corner charges have been
limited to two-dimensional systems, except for Refs. [18,24]
in which the fractional corner charge of a cubic crystal has
been investigated.

The fractional corner charges of two-dimensional systems
have been understood in terms of a filling anomaly [23]. In the
presence of a point-group symmetry such as inversion sym-
metry and n-fold rotation symmetry, the possible positions
of ions and electronic Wannier orbitals obey some symme-
try constraints. If some Wannier orbitals of filled states of

AIs are not located at ionic positions, the AI is classified as
an obstructed atomic insulator (OAI), which is characterized
by charge imbalance associated with each Wyckoff position
[28–31]. When the point-group symmetry is strictly required
including its boundary, a finite crystal of an OAI under an
open boundary condition cannot be electrically charge neutral
because of the mismatch between the total number of elec-
trons and ions in the system. This charge imbalance is called
a filling anomaly. The fractional charge localized at a corner
can be deduced by dividing the filling anomaly by the number
of corners, which are related by symmetry [18–25,27].

In two dimensions, formulas for the corner charge are
expressed in terms of irreducible representations of the little
group at high-symmetry momenta [20,22]. These formulas
predict the fractional parts of the corner charges from the bulk
band structure without referring to the details of the surface
termination. Therefore they can be interpreted as the bulk-
corner correspondence of topologically trivial insulators. In
other words, the fractional parts of the corner charges in two-
dimensional insulators are insensitive to possible relaxations
of electronic states and ions near the boundary, which cannot
be inferred from the bulk band structure alone.

There are two main sources of complications in extend-
ing the above results to three-dimensional insulators. One
complication comes from the existence of various distinct
crystal shapes for the same point-group symmetry in three
dimensions. This is different from two-dimensional cases,
where a regular n-polygon is basically the unique shape which
preserves the n-fold rotation symmetry (n = 3, 4, 6) and has
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FIG. 1. (a)–(e) Five crystal shapes considered in this work, all
of which are vertex-transitive polyhedra. Their center is placed at
Wyckoff position 1a. (a) Type I: A cube. (b) Type II: A regular
octahedron. (c) Type III: A truncated cube. (d) Type IV: A cuboc-
tahedron. (e) Type V: A truncated octahedron. The surfaces S1 and
S2 have Miller index {100} and {111}, respectively. The hinge L1 is
an intersection of two {100} surfaces. The hinge L2 is an intersection
of two {111} surfaces. The hinge L3 is an intersection of a {100}
surface and a {111} surface. (f) Wyckoff positions in the space group
P432. The points with the same colors belong to the same Wyckoff
positions. 1a, 1b, one of 3c, and one of 3d are positioned at (0,0,0),
a1+a2+a3

2 , a1+a2
2 , and a1

2 , respectively. The blue cube represents the
unit cell.

straight edges. In this work, we focus on the systems preserv-
ing the point-group symmetry O, corresponding to the space
group P432 (No. 207). We discuss five different crystal shapes
for this symmetry: a cube, an octahedron, a truncated cube, a
cuboctahedron, and a truncated octahedron [see Figs. 1(a)–
1(e)]. These shapes are vertex-transitive polyhedra, in which
all the corners are related by the point-group symmetry. This
property is a necessary condition for the quantization of the
corner charge.

The other complication comes from the charge neutrality
conditions at the boundary. To define the corner charge un-
ambiguously for three-dimensional crystals, not only the bulk
and the surfaces but also the hinges must be charge neutral. In
the studies so far [19,24], the hinge charges have been calcu-
lated as the corner charge of the two-dimensional layer which
constitutes the three-dimensional crystal. In this paper, we
derive formulas for the hinge charge of the three-dimensional
systems, including those which cannot be formed by stacking
of two-dimensional layers such as an octahedron.

In this work, we first derive formulas for the hinge and cor-
ner charges in terms of the charge imbalance at each Wyckoff
position in the bulk. We discuss five crystal shapes mentioned
above. Our strategy is to determine the filling anomaly of the
system by counting the total numbers of electrons and ions
given the positions of ions and Wannier centers of the elec-
trons. From the formula of the filling anomaly, we can extract
formulas of the hinge charge and corner charge. Next, we
identify ambiguities of the hinge and corner charges originat-

ing from the relaxation of electronic states and ionic positions
near the boundary. We also explore momentum-space formu-
las for the hinge and corner charges. We obtain a formula for
the hinge charge written in terms of the irreducible represen-
tations (irreps) at high-symmetry momenta in the Brillouin
zone (BZ) based on the elementary band representation (EBR)
matrix method developed in Refs. [21,31]. However, we find
that this approach fails to determine the corner charge because
the information on the irreps at high-symmetry momenta is
not sufficient to fix the electronic Wannier centers of occupied
bands. We resolve this problem by introducing an additional
Wilson-loop invariant.

This paper is organized as follows. In Sec. II, we summa-
rize charge neutrality conditions for the bulk and surfaces with
cubic symmetry in terms of the occupation numbers of each
Wyckoff position in the bulk. In Sec. III, we derive real-space
formulas for the hinge and corner charges. In Sec. IV, we
reformulate the results obtained in the previous sections in
terms of the EBR matrix and a Wilson-loop invariant. Our
conclusion is given in Sec. V.

II. CHARGE NEUTRALITY CONDITIONS FOR
THE BULK AND SURFACES IN TERMS
OF THE BULK WYCKOFF POSITIONS

For our final goal of calculating the hinge charge and the
corner charge in cubic systems in terms of the charge imbal-
ance at each Wyckoff position in the bulk, in this section,
we derive the charge neutrality conditions for the bulk and
surfaces for finite-sized crystals. There are 32 point groups
in three dimensions and we consider the cubic point-group
symmetry O, which is the point group for the space group
P432. In particular we consider five crystal shapes, types I–V,
illustrated in Figs. 1(a)–1(e). We assume that the systems we
consider are topologically trivial in the sense that they are adi-
abatically connected to an atomic limit. We also assume that
the excitation energy spectrum of the system is completely
gapped including the boundaries.

To calculate the corner charge, we note that electric charges
in insulators can be assigned to either ions or Wannier orbitals
of occupied electronic bands. An ion is made of a nucleus and
core electrons, and the ionic charge is given by the sum of
their electric charges, which, by definition, is integral. Note
that the ionic charge defined in this way is different from the
effective charge of the ions in ionic crystals; such an effec-
tive charge is usually nonintegral. Moreover, in topologically
trivial insulators, Wannier orbitals are exponentially localized,
and the integral charge of electrons in the Wannier orbital can
be assigned to the Wannier center.

Let w (= a, b, c, d ) be one of the maximal Wyckoff po-
sitions in the cubic unit cell of the cubic lattice as shown
in Fig. 1(f). Let nw denote the number of Wannier functions
centered at a Wyckoff position w in the bulk, and mw denote
the total charge of ions measured in the unit of elementary
charge e (> 0) at a Wyckoff position w in the bulk. We then
define �w to be the difference between them:

�w = nw − mw. (1)

By definition, �w is always an integer. Here, the space group
P432 allows Wyckoff positions 1a, 1b, 3c, 3d , 6e, 6 f , 8g,
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12h, 12i, 12 j, and 24k, and we can restrict ourselves to the
maximal ones, 1a, 1b, 3c, and 3d , because the others can be
reduced to the maximal ones via continuous transformations.
Throughout this work, we assume that the center of a crystal
is at Wyckoff position 1a unless otherwise stated.

In order to derive a corner charge formula, we review the
definition of the filling anomaly [23]. In some bulk insulators,
we cannot make the system charge neutral as long as the sys-
tem preserves the required symmetry. In such cases, we have
to add or remove electrons from charge neutrality to make the
system insulating including the boundaries. This number of
extra electrons is called the filling anomaly. Since the total
charge of ions measured in the unit of elementary charge is
equal to the number of electrons under charge neutrality, we
can express the filling anomaly ηn of the finite-sized crystal as

ηn = Nelectron
n − N ion

n , (2)

where Nelectron
n is the total number of electrons in the finite-

sized crystal preserving O(432) symmetry, and N ion
n is the

total charge of all the ions measured in the unit of elementary
charge in the same setup. Here, the parameter n characterizes
the system size (e.g., the number of unit cells along one hinge
of the crystal).

To proceed, let us focus on type I and type II crystals, in
which all faces and hinges are equivalent (i.e., related to each
other by the point-group symmetry O). We tentatively assume
that there is no surface reconstruction so that the periodicities
of the hinge and the surface reflect that of the bulk. This
implies that the crystal shape should have straight hinges and
flat surfaces. Under this assumption, the filling anomaly for
a finite-sized crystal with n hinge periods [see Figs. 1(a) and
1(b)] can be expanded in a power of n:

ηn = α3n3 + α2n2 + α1n + α0. (3)

The terms on the right-hand side can be interpreted as con-
tributions from the bulk, surfaces, hinges, and corners. The
coefficients α3 and α2 are, respectively, related to the bulk
charge density ρbulk (per bulk unit cell) and the surface charge
density σsur (per surface unit cell) via α3 = α′

3ρbulk/(−e) and
α2 = α′

2σsur/(−e), where α′
3 = α′

2 = 1 for type I and α′
3 = 4

3
and α′

2 = 4 for type II. When both the bulk and surfaces are
charge neutral, we can proceed to the hinge and corner charges
encoded in α1 and α0, as we discuss in detail in the next
section. In the remainder of this section, we derive the charge
neutrality conditions for the bulk and surfaces.

First of all, the bulk charge density is identified as (�a +
�b + 3�c + 3�d ) × (−e) by counting charges on the Wyck-
off positions included in the bulk unit cell as shown in
Fig. 1(f). Thus, the charge neutrality condition for the bulk
is given by

ρbulk = −e(�a + �b + 3�c + 3�d ) = 0. (4)

This is equivalent to assuming α3 = 0 in Eq. (3).
Next let us investigate the surface charge. According to the

modern theory of polarization [25,32], the bulk polarization is

given by

Pbulk = −e

2a3
(�b + �d )(a1 + a2 + a3)

(
mod

e

a3
R

)
. (5)

Here, a1, a2, and a3 are primitive lattice vectors in the cubic
unit cells: a1 = ax̂, a2 = aŷ, and a3 = aẑ, where a is the
lattice constant. R = ∑

i=x,y,z miai (mi ∈ Z) is a lattice vector.
The surface charge density σsur with its normal vector n is
given in terms of the bulk polarization as

σsur = Pbulk · n ssur (mod e), (6)

where ssur is the area of the surface unit cell. For example,
the type I crystal shown in Fig. 1(a) has {100} surfaces. The
surface charge density is given by substituting n = (1, 0, 0)
and ssur = a2 to Eq. (6):

σsur = −�b + �d

2
e (mod e). (7)

Thus, the charge neutrality condition for the surface is

�b + �d ≡ 0 (mod 2). (8)

On the other hand, the type II crystal in Fig. 1(b) has {111}
surfaces. The surface charge density, obtained by substituting
n = (1, 1, 1)/

√
3 and ssur = √

3a2 to Eq. (6), turns out to be
the same as Eq. (7). Actually, the charge neutrality condition
for surfaces is the same in all the five crystal shapes considered
in this paper as shown later.

Note that even when Eq. (8) is satisfied, the surface charge
density can still be nonzero and may be an integer multiple of
e. If it is nonzero, we always introduce charges to the surface
that precisely cancel the surface charge density. In this way,
we assume α2 = 0 in Eq. (3), guaranteeing that the hinge
charge is well defined.

III. HINGE CHARGE AND CORNER CHARGE FORMULAS
IN TERMS OF THE BULK WYCKOFF POSITIONS

In this section, we derive formulas for the hinge charge
density and the corner charge in 3D cubic systems in terms of
the bulk Wyckoff positions for five crystal shapes illustrated
in Figs. 1(a)–1(e).

Before discussing each type of a crystal, we outline how to
calculate the hinge and corner charges in types I and II. Hence-
forth, we assume the charge neutrality in the bulk [Eq. (4)] and
on the surfaces [Eq. (8)]. These assumptions make the first and
second terms on the right-hand side in Eq. (3) vanish:

ηn = α1n + α0. (9)

This expression can be interpreted as a sum of the total hinge
charge α1n and the total corner charge α0, because the extra
charge exists only on hinges with n periodicities and corners
under the assumptions. Let λhinge be the hinge charge density
(per hinge unit cell). Since there are equivalent twelve hinges
both in type I and type II, the total hinge charge is 12λhingen.
Thus, we get

λhinge = −α1

12
e, (10)
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TABLE I. The real-space formulas for the hinge and corner charges in the five crystal shapes. NLi
hinge represents the number of the Li hinges

in each type of the crystal (i = 1, 2, 3). Ncorner represents the number of the corners in each type of the crystal.

Type λL1 λL2 λL3 NL1
hinge NL2

hinge NL3
hinge Qcorner Ncorner

I −�a+�d
4 e (mod e) 12 �a

8 e (mod e
4 ) 8

II �a+�d
2 e (mod e

3 ) 12 �a
6 e (mod e

3 ) 6

III −�a+�d
4 e (mod e) �a+�d

4 e (mod e
6 ) 12 24 �a

24 e (mod e
12 ) 24

IV �a+�d
4 e (mod e

6 ) 24 �a
12 e (mod e

6 ) 12

V �a+�d
2 e (mod e

3 ) �a+�d
4 e (mod e

6 ) 12 24 �a
24 e (mod e

12 ) 24

for type I and type II crystals. The hinge charge density in the
other types of crystals can be calculated by using this result as
discussed later.

The corner charge is well defined only when the hinges
are charge neutral, in addition to the bulk and surfaces, i.e.,
α1 = 0. Given that all the corners are related by point-group
symmetry, the excess charge is eventually distributed equally
on each corner under these conditions. Thus, the charge local-
ized at a single corner Qcorer is given by

Qcorner = − α0

Ncorner
e, (11)

where Ncorner is the number of symmetry-related corners in
the crystal, which depends on the crystal shape. The values of
Ncorner for the crystal types I–V are listed in Table I.

What remains to be done is to calculate α0 and α1 for each
type of a crystal. We begin with the simplest case of perfect
crystals that comprise exactly identical unit cells with bulk
electronic states and ionic positions even near the boundaries,
as illustrated in Fig. 2. We calculate the filling anomaly for
perfect crystals of type I and type II and derive the formu-
las for the hinge charge density and the corner charge in
Secs. III A and III B.

Note that perfect crystals are only the special cases belong-
ing to these types of crystals. Generally, crystals in the same
shape can have different electronic states and ionic positions
near the boundaries, even when the crystals share the same
bulk ones. Such difference cannot be fixed from the bulk
perspective, but it modifies the values of α0, α1, and α2 in
the filling anomaly formula in Eq. (3). This fact should be

FIG. 2. Perfect crystals for (a) the type I (n = 9) and (b) the
type II (n = 5) shapes. The red, blue, green, and purple spheres
represent Wyckoff positions 1a, 1b, 3c, and 3d , respectively. The
areas enclosed by the red lines represent surface unit cells.

understood as a limitation of predicting the surface, hinge,
and corner charges from the bulk charge distribution. In the
following, we refer to the part of the boundary charge that
is affected by surface reconstruction as the ambiguity of the
boundary charge. For example, the ambiguity of the surface
charge density is its integer part (in the unit of e) as in Eq. (6)
from the modern theory of polarization [25,32]. We derive
the ambiguities of the hinge and corner charges in Sec. III C.
Making use of these results, we also derive the hinge charge
density and the corner charge for type III, type IV, and type
V in Secs. III D–III F, respectively. We note that the choice of
perfect crystals is not unique, and the hinge charge densities
and corner charges depend on the choice of perfect crystals.
This dependence is a part of the ambiguity of the boundary
charge discussed above.

A. Type I: Cube

Here we discuss a crystal in the shape of a cube with
n unit cells along each hinge, as shown in Fig. 1(a). From
direct calculation, we obtain the filling anomaly for the perfect
crystal of type I as shown in Fig. 2(a):

ηperfect, type I
n = (�a + �b + 3�c + 3�d )n3

+ 3(�b + �d + 2�c)n2

+ 3(�b + �c)n + �b. (12)

The first and second terms on the right-hand side can be
dropped when the charge neutrality conditions for the bulk
and surfaces [Eqs. (4) and (8)] are satisfied. Thus, from
Eq. (10), we obtain the hinge charge density:

λ
type I
hinge = −�b + �c

4
e

= −�a + �d

4
e (mod e). (13)

Hence, the charge neutrality condition for the hinge is

�a + �d ≡ 0 (mod 4). (14)

When Eq. (14) is satisfied in addition to Eqs. (4) and (8), we
find the corner charge from Eq. (11):

Qtype I
corner = −�b

8
e = −�a

8
e

(
mod

e

4

)
. (15)

Here we used the relation �a ≡ �b ≡ �c ≡ �d (mod 2)
under Eqs. (4), (8), and (14).
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Let us rationalize the ambiguities of e and e/4 in Eqs. (14)
and (15). They originate from possible relaxation of elec-
tronic states and ionic positions near the boundaries, which
may be understood as decoration of boundaries with lower-
dimensional objects in a symmetric manner without affecting
the bulk of the crystal. Here, for simplicity, we consider the
ambiguities of the hinge and corner charges by a special
approach where lower-dimensional systems respecting the
required symmetry are attached to the boundaries of the three-
dimensional system. It turns out that the resulting ambiguities
are the same with those obtained from general discussions in
Sec. III C. For example, each hinge in the cube is an inter-
section of two C4-symmetric squares. We can attach a single
layer of C4-symmetric squares with a quantized polarization
P ≡ (m/(2a), m/(2a))e (mod e/a) on every surface (m: an
integer), which changes the hinge charge by me. Similarly,
the corner charge is affected by attaching C4-symmetric 2D
systems on surfaces, C2-symmetric 1D systems on hinges,
and 0D systems at corners. In particular, 2D systems with
fractionally quantized corner charge me/4 change the corner
charge by 3me/4. These explain the ambiguity in Eqs. (14)
and (15).

These results for the type I reproduce the corner charge
formula for a cube-shaped crystal derived in Ref. [24]. Fur-
thermore, the fractional corner charge ±e

8 in sodium chloride
found in Ref. [18] can be supported by our results as follows.
Sodium chloride has a charge ±e at Wyckoff positions 1a and
3c and the opposite charge at Wyckoff positions 1b and 3d
in the primitive unit cell. Thus, Eqs. (4), (8), and (14) are
satisfied and we determine the corner charge to be ±e

8 from
Eq. (15).

B. Type II: Regular octahedron

Here we consider a crystal in the shape of a regular octahe-
dron with n unit cells along each hinge, as shown in Fig. 1(b).
We can easily calculate the filling anomaly for one of the
perfect crystals of type II as shown in Fig. 2(b):

ηperfect, type II
n = 4

3 n3(�a+�b+3�c+3�d )+2n2(�a+3�c)

+ 2
3 n(4�a − 2�b + 3�c + 3�d ) + �a.

(16)

Again, the first and second terms can be dropped when the
bulk and surfaces are charge neutral. Thus, from Eq. (10), we
find

λ
type II
hinge = 4�a − 2�b + 3�c + 3�d

18
× (−e)

= �a + �d

2
e

(
mod

e

3

)
, (17)

where we used Eqs. (4) and (8). The charge neutrality condi-
tion for the hinge is thus

�a + �d ≡ 0 (mod 2). (18)

Assuming Eq. (18) additionally and using Eq. (11), we find
the corner charge for type II:

Qtype II
corner = −�a

6
e

(
mod

e

3

)
. (19)

The ambiguity of the hinge charge in Eq. (17) and the
corner charge in Eq. (19) for type II crystals can be understood
in the same way as in type I. By attaching C3-symmetric
triangles with polarization charge me/3 (mod e) per period
along the hinge on each surface, the hinge charge density is
changed by an integer multiple of e/3 without affecting the
bulk. Similarly, when the attached triangles have the corner
charge me/3 (mod e), the corner charge of the octahedron is
changed by 4

3 me.
Finally, there is an important point to note. While our

results so far are derived when the center of the crystal is
at Wyckoff position 1a, they remain valid even when the
center is at Wyckoff position 1b instead. This is because the
change of the center from 1a to 1b is equivalent to exchanging
Wyckoff positions 1a and 1b, and 3c and 3d . Our formulas in
Eqs. (17) and (19) are invariant under these exchanges, as long
as the charge neutrality conditions are fulfilled.

C. Ambiguities in hinge charges and corner charges

In this subsection, we identify the ambiguities in the hinge
charge density and the corner charge for the type I and type
II crystals due to possible relaxation of electronic states and
ionic positions near the boundaries, while the bulk electronic
states and ionic positions are fixed in order to prove the
“modulo” parts of Eqs. (13), (15), (17), and (19). We have
already outlined how to obtain these ambiguities at the ends
of Secs. III A and III B; in this section we give more details to
support their validity. We assume that all localized electronic
states and ions in the crystal preserve the 432(O) symmetry,
and that the periodicities along surfaces and hinges reflect
those of the bulk.

First of all, we begin with an ambiguity of the hinge charge
for the type II. In Sec. III B, we consider a perfect crystal of
type II and we get λL2 = �c+�d

2 e + �b
3 e under Eq. (4). Mean-

while, if we consider type II with possible relaxation, hinge
charges may be modulated from those of the perfect crystal.
The deviation of the hinge charge is generally expressed in
multiples of some unit. We call this unit of the deviation of the
hinge charges from those of the perfect crystal as an ambiguity
of the hinge charge in the similar way to Ref. [20].

From the definition of this ambiguity, we divide the total
filling anomaly, Qtot, into two parts, one of which is from
the region (i) and the other is from region (ii) as shown in
Fig. 3(a): Qtot = Qi + Qii. The junctures of the region (i) and
the region (ii) are taken so that the regions (i) and (ii) can
be roughly regarded as surface and bulk regions, respectively,
and the thickness of region (i), dB, is taken to be large enough
so that electronic states and ionic positions in the region (ii)
are the same as those in the bulk. In this paper, we impose
an additional condition not included in Ref. [20] that dB is
independent of the size parameter n, in order to identify the
order of n in calculating the filling anomaly.

Given the charge neutrality conditions for the bulk and
surfaces, the term proportional to n in Qtot is evidently
12λtype IIn/(−e). We now evaluate Qtot (= Qi + Qii ) for the
regions (i) and (ii) separately. First, the term proportional to n
in Qii is (−�c+�d

2 − �b
3 )12n as shown in Sec. III B, since we

take the region (ii) to be regarded as a perfect crystal. Next,
in order to consider the filling anomaly Qi, we further divide
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FIG. 3. Conceptual pictures of the region division for (a),
(b) type II and (c), (d) type I. (a) The region (ii) is the inner octa-
hedron. The region (i) is the remaining region. dB is taken to be large
enough to regard region (ii) as a perfect crystal with n periodicity.
(b) A green regular triangular prism represents the region (i-A). The
yellow region represents the region (i-B). The purple region repre-
sents the region (i-C). (c), (d) For the cube, each region is defined in
the same way as in (a) and (b).

the region (i) into three new regions (i-A), (i-B), and (i-C). We
note that electronic states and ionic positions in the region (i)
can be different from those in the bulk.

First, from 432(O) symmetry, we can define eight equiv-
alent regions along the surfaces called regions (i-A) in the
shape of a regular triangular prism preserving the C3 symme-
try, twelve equivalent regions along the hinges called regions
(i-B), and the remaining six equivalent regions around the cor-
ners called regions (i-C) as shown in Fig. 3(b). Here, we assign
localized electronic orbitals and ions to each region so that
their numbers are integers and they preserve the 432(O) sym-
metry. Given the charge neutrality condition for the surfaces,
the charge included in region (i-A) is maximally in the n1 or-
der. Here, the region (i-A) can be regarded as a C3-symmetric
two-dimensional system with thickness dB. In general, it is
known that the bulk polarization for two-dimensional Wannier
representable insulators with C3 symmetry [23] is quantized to
an integer multiple of e

3s (a1 + a2) (mod e
s a1,

e
s a2), where s is

the area of the unit cell, and a1 and a2 are primitive lattice
vectors. Therefore, its edge charge density is also quantized
to an integer multiple of e/3. We conclude that the filling
anomaly proportional to n included in the eight equivalent
regions (i-A) is M

3 × n × 3 × 8 = 8Mn where M is an integer.
Second, since the region (i-B) has O(n) periodicity along

the hinge, and each unit cell along the hinge in the region
(i-B) contains an integer number of charge, the filling anomaly
proportional to n within the regions (i-B) is 12M ′n where M ′
is an integer. Finally the region (i-C) has no charge to the n1

order. Thus, to summarize, the term proportional to n in Qi

is 8Mn + 12M ′n. Therefore, we conclude that λtype II/(−e) =
(−�c+�d

2 − �b
3 ) + 2M

3 + M ′. The first and second terms on
the right-hand side of this equation comes from the bulk while

the third and fourth terms can be an arbitrary integer multiple
of 1/3. Thus, the hinge charge density can be determined
modulo e/3 only from the bulk and then λtype II = −(�c +
�d )e/2 − �be/3 ≡ (�a + �d )e/2 (mod e/3) holds.

Finally, we consider the ambiguity of the corner charge for
the type II under charge neutrality conditions for the bulk, sur-
faces, and hinges. The numbers of localized electronic orbitals
and ions in region (i) are generally even integers by 432(O)
symmetry. Therefore, we get 6Qcorner/(−e) = η

perfect
n + 2M,

where M is an integer. This means we can determine the
corner charge modulo 2e/6 = e/3 only from the bulk infor-
mation. Thus, the ambiguity of the corner charge for type II is
modulo e/3.

We briefly explain the ambiguities for the type I with refer-
ence to Figs. 3(c) and 3(d). The filling anomaly proportional
to n coming from the region (i-A) is Mn

2 × 4 × 6 = 12Mn (M:
integer) because the bulk polarization for two-dimensional
Wannier representable insulators with C4 symmetry is quan-
tized to an integer multiple of (e/(2a), e/(2a)) (mod e

a ).
Furthermore, the filling anomaly proportional to n coming
from the region (i-B) is M ′n × 12 = 12M ′n (M ′: integer).
Therefore, to summarize, the term proportional to n in the
region (i) is 12(M + M ′)n leading to (M + M ′)e ∈ Ze am-
biguity for the hinge charge density. Thus, the ambiguity of
the hinge charge density for type I is modulo e. The numbers
of localized electronic orbitals and ions in the region (i) are
generally even integer by 432(O) symmetry. Thus, the corner
charge in type I can be determined modulo 2

8 e = 1
4 e only from

the bulk information.

D. Type III: Truncated cube

So far, we have discussed the hinge and corner charges
including their ambiguities in type I and type II. Based on
these results, we can determine those for types III–V including
their ambiguities. In this subsection, we consider a crystal in
the shape of a truncated cube as shown in Fig. 1(c). There
are two types of surfaces marked S1 and S2 and two types
of hinges marked L1 and L3. The surface charge densities of
S1 and S2 are clearly the same as those of type I and type
II, respectively. Thus, the charge neutrality condition for the
surfaces is still Eq. (8). The L1 hinge is equivalent to that of
type I as long as the system size is large enough. Thus, the
charge neutrality condition for the L1 hinge is still Eq. (14).

The remaining question is to derive the charge density for
the L3 hinge. To this end, we arrange eight crystals of type III
which are exactly the same so that their surfaces touch each
other as shown in Fig. 4. Then, there is a hollow space with an
octahedral shape of type II at the center.

By filling this hollow space with a crystal of type II and
by locally modulating the electronic states and ionic positions
near the boundaries of this type II if needed, one can make the
electronic states and ionic positions to be fully identical with
those for the bulk of the original type III. We may need to add
(or remove) electrons and ions at the interfaces, but this is al-
ready included in the ambiguities of the surface/hinge/corner
charges. Since the bulk is charge neutral, the sum of the
charges on the 24 equivalent L3 hinges and on the 12
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FIG. 4. A schematic used for calculating the hinge and corner
charges for type III. Eight equivalent type III crystals touch each
other. The central green octahedron inside the entire system is a
hollow space.

equivalent L2 hinges is zero: 24λL3 + 12λL2 = 0. Then, we get

λL3 = −�a + �d

4
e ≡ �a + �d

4
e

(
mod

e

6

)
. (20)

Thus, the charge neutrality condition for the hinges in type
III is �a + �d ≡ 0 (mod 4) [same as Eq. (14)]. Similarly, the
corner charge for type III is obtained by noting that the sum of
the charges on the 24 equivalent corners in type III and on the
6 equivalent corners in type II is zero: 24Qtype III

corner + 6Qtype II
corner =

0. Therefore, we get

Qtype III
corner = �a

24
e ≡ −�a

24
e

(
mod

e

12

)
, (21)

under Eqs. (4), (8), and (14).

E. Type IV: Cuboctahedron

In this subsection, we consider a crystal in the shape of a
cuboctahedron as shown in Fig. 1(d). Just as in the discussion
in Sec. III D, the charge neutrality conditions for surfaces and
hinges in type IV is Eqs. (8) and (14), respectively. One can
also easily calculate the corner charge from an observation
that one corner of type IV can be regarded as a limit of
merging two corners of type III together. Thus, we get

Qtype IV
corner = 2Qtype III

corner = �a

12
e ≡ −�a

12
e

(
mod

e

6

)
, (22)

under Eqs. (4), (8), and (14).

F. Type V: Truncated octahedron

In this subsection, we consider a crystal in the shape of
a truncated octahedron as shown in Fig. 1(e), by combining
the results in Secs. III B and III D. Just as before, the charge
neutrality condition for the surfaces in type V is still Eq. (8)
and the charge neutrality condition for L2 and L3 hinges in
type V is still Eq. (14). We note that the corner charge can
be determined as Qtype V

corner = − ηn

24 e (mod e
12 ) from Eq. (11)

under Eqs. (4), (8), and (14), and the filling anomaly can be
calculated only modulo 2 as a bulk quantity since the numbers
of the electronic orbitals and ionic positions in the finite-sized
crystal vary by any multiple of two except for those on the
center of the crystal by possible relaxation preserving 432(O)

symmetry. Therefore, we get ηn = �a (mod 2) and

Qtype V
corner = −�a

24
e

(
mod

e

12

)
, (23)

under Eqs. (4), (8), and (14).
Finally, we summarize the real-space formulas for the

hinge and corner charges in the five crystal shapes in Table I.

IV. FORMULATION IN TERMS OF
TOPOLOGICAL INVARIANTS

In this section, we derive the hinge charge and corner
charge formulas in terms of bulk band topology. Here, we first
study spinless systems without time-reversal symmetry (TRS)
in detail, and later systems with TRS and spinful systems.

To this end, we use the method of the elementary band
representation (EBR) matrix according to Refs. [21,31]. The
EBR matrix A is an integer matrix with its columns rep-
resenting an EBR and rows representing irreps of the k
group of a high-symmetry point (HSP) in the BZ. Based on
the above definition, we can connect the momentum-space
representations of electronic states with those in real-space
representations, since a group of topologically trivial bands
can be expressed as a linear combination of EBRs. We can
write

v = Añ, (24)

where v is the column vector with its ith entry vi indicating
the number of the ith irrep of the k group of a HSP in the
filled bands and ñ is the column vector with its ith entry ñi

indicating the number of the ith irrep ρi of the site-symmetry
group of a Wyckoff position in the filled bands.

In order to obtain the number of Wannier orbitals localized
at each Wyckoff position for a given band structure, we need
to solve Eq. (24) backward; that is, our aim is to calculate
ñ from a given v through Eq. (24). The Smith normal form
is useful to achieve this goal as shown in Refs. [21,31]. The
Smith normal form of A is given by

A = U −1DV −1, (25)

where D is an integer matrix in the form of Di j = diδi j [di:
positive integer (i = 1, . . . , M)], and U , V are integer matrices
invertible over integers. It is known that the most general
solution of Eq. (24) is

ñ = V DpUv + V ñ0, (26)

where ñ0 is any vector in the null space of D, i.e., the first
M entries of ñ0 are zero so that Dñ0 = 0, and Dp is the pseu-
doinverse matrix of D which is made by transposing D and
then inverting the nonzero elements. Thus, given a particular
v, ñi can be determined only modulo gcd{Vi j | j>M}, where
gcd indicates the greatest common divisor. When we need
to calculate nw, i.e., a sum of some ñi’s where ρi is at the
Wyckoff position w, we use

nw =
∑
i∈w

dim(ρi )(V DpUv)i

×
⎛
⎝mod gcd

{∑
i∈w

dim(ρi )Vi j

}
j>M

⎞
⎠. (27)
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FIG. 5. HSPs in momentum space with space group P432.
The points with the same color belong to the same k-vector star.
	 = (0, 0, 0), X = b3

2 , M = b1+b2
2 , and R = b1+b2+b3

2 , where b1 =
(π/a, 0, 0), b2 = (0, π/a, 0), and b3 = (0, 0, π/a) are reciprocal lat-
tice vectors. The blue cube represents the Brillouin zone.

Furthermore, we can get na + nb + 3nc + 3nd in terms of the
symmetry indicators with a modulo

gcd

{∑
i∈a

dim(ρi )Vi j +
∑
i∈b

dim(ρi )Vi j

+ 3
∑
i∈c

dim(ρi )Vi j + 3
∑
i∈d

dim(ρi )Vi j

}
j>M

. (28)

We can get nb + nd and na + nd in terms of symmetry indica-
tors in the same way.

In the following, we calculate the number of Wannier or-
bitals localized at each Wyckoff position [shown in Fig. 1(a)]
from a given band representation with the space group P432.
The site-symmetry groups of 1a and 1b are isomorphic to the
point group 432(O) and those of 3c and 3d are isomorphic
to the point group 422(D4). In momentum space, there are
four kinds of HSPs 	, R, M, X (shown in Fig. 5) in the space
group P432. The little groups at 	 and R are isomorphic to
the point group O and those at M and X are isomorphic to
the point group D4. The irreps of O and D4 are listed in
Tables II and III, respectively. Since the band representations
induced from the other nonmaximal Wyckoff positions such
as 6e, 6 f , and so on can be decomposed to direct sums of
EBRs induced from maximal Wyckoff positions, we need to
consider only the band representations induced from maximal
Wyckoff positions.

TABLE II. Character table of the point group 432 (O).

432 (O) E C4z C2x C3 (111) C2 (110)

A1 1 1 1 1 1
A2 1 −1 1 1 −1
E 2 0 2 −1 0
T1 3 1 −1 0 −1
T2 3 −1 −1 0 1

Each band representation is expressed as a vector v in the
basis (

A	
1 , A	

2 , E	, T 	
1 , T 	

2 , AR
1 , AR

2 , ER, T R
1 , T R

2 , AM
1 ,

AM
2 , BM

1 , BM
2 , EM , AX

1 , AX
2 , BX

1 , BX
2 , EX

)t
, (29)

where ρ� indicates the number of times the irrep ρ appears
in the given band representation at the HSP �. Each group of
topologically trivial bands can be written as a linear combina-
tion of EBRs with integer coefficients. The coefficients form
a vector ñ in the basis(

Aa
1, Aa

2, Ea, T a
1 , T a

2 , Ab
1, Ab

2, Eb, T b
1 , T b

2 ,

Ac
1, Ac

2, Bc
1, Bc

2, Ad
1 , Ad

2 , Bd
1 , Bd

2

)t
, (30)

where ρw indicates the number of times the EBR induced
from the irrep ρ of the site-symmetry group of the Wyckoff
position w appears in the linear combination. It is important to
note that Ec and Ed are not included in Eq. (30), because both
the band representations induced from Ec and Ed are compos-
ite; i.e., those can be continuously deformed into direct sums
of T b

1 ⊕ T b
2 and T a

1 ⊕ T a
2 via nonmaximal Wyckoff positions

6 f and 6e, respectively. In this basis, we construct the EBR
matrix for the space group P432 according to the method of
the band representation [28,29,31,33] or by using Topological
Quantum Chemistry in the Bilbao Crystallographic Server

TABLE III. Character table of the point group 422 (D4). Here,
the z axis is taken as the main fourfold rotational axis.

422 (D4) E C2z C4z C2x C2 (110)

A1 1 1 1 1 1
A2 1 1 1 −1 −1
B1 1 1 −1 1 −1
B2 1 1 −1 −1 −1
E 2 −2 0 0 0
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[34] as follows:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0
0 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0
0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0
0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1
0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0
0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0
1 0 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1
0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1
0 0 0 1 0 0 1 1 0 0 0 1 1 1 0 1 0 0
0 0 0 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1
0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 1 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0
0 1 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1
0 0 0 1 0 1 0 1 0 0 1 1 1 0 1 0 0 0
0 0 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0
0 0 0 1 1 0 0 0 1 1 0 1 0 1 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (31)

Here, the (i, j) component of A indicates the number of times the ith irrep of the momentum space appears in an EBR induced
from the jth irrep in the real space. For example, the (1,1) component of A, i.e., “1”, means that the irrep A1 of the little group
of the 	 point appears once in the band representation induced from the irrep A1 on the Wyckoff position 1a.

We can obtain the matrices U , D, and V in Eq. (25) by applying Smith decomposition to this EBR matrix A as follows:

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 1 −1 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 −1 −1 0 0 −1 1 0 0 0 0 1 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 1 0 0 0 −1 0 −1 0 0 0 0

−1 0 0 0 −1 0 0 −1 0 0 1 0 0 1 0 0 0 0 0 0
0 −1 0 −1 0 0 0 −1 0 0 0 1 1 0 0 0 0 0 0 0

−1 −1 0 −1 0 0 1 −1 0 0 0 0 1 0 0 1 0 0 0 0
−1 0 0 0 −1 1 0 0 1 0 0 0 −1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 1 −1 0 0 0 0 −1 1 −1 0 0 0 0
1 0 1 1 1 0 0 0 −1 0 0 0 0 −1 0 −1 0 0 0 0
0 −1 0 0 0 0 0 −1 −1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 −1 0 0 0 0 −1 0 0 0 1 0 0
1 0 0 1 0 0 0 1 0 0 0 0 −1 −1 0 −1 0 0 1 0
0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (32)

d1 = · · · = d9 = 1, (33)
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V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 −1 1 1 0 0 −1 0 0 0
0 1 0 0 0 0 0 0 0 −1 1 1 −1 1 −1 1 −1 0
0 0 1 0 0 0 0 0 0 0 −1 −1 0 −1 0 −1 0 −1
0 0 0 1 0 0 0 0 0 −1 0 0 −1 0 −1 0 0 0
0 0 0 0 1 0 0 0 0 −1 0 0 0 −1 0 0 0 −1
0 0 0 0 0 1 0 0 0 1 −1 −2 1 −1 1 −1 1 −1
0 0 0 0 0 0 1 0 0 1 −1 −1 0 −1 1 −1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 −1 1 0 1 −1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 −1 1 −1 1 −1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (34)

We find from Eq. (34) that the exact number of Wannier
orbitals localized at each Wyckoff position, nw, cannot be
determined because the modulo part of Eq. (27) becomes 1.
Meanwhile, we can determine na + nb + 3nc + 3nd with no
ambiguity which comes from Eq. (34) by using Eqs. (27) and
(28) as follows:

na + nb + 3nc + 3nd = −A	
1 + A	

2 + T 	
1 + T 	

2

+ 2T R
1 + 2BM

2 + 2AX
1 . (35)

In a similar way, we can get

nb + nd = A	
1 + 4T 	

1 + ER − 5T R
1 + BM

1 − AX
1

= A	
1 + ER + T R

1 + BM
1 + AX

1 (mod 2), (36)

na + nd = A	
1 + A	

2 + 4T 	
2 + 2ER + 4T R

1 − BM
1 − BM

2

= A	
1 + A	

2 + 2ER − BM
1 − BM

2 (mod 4). (37)

Equations (35)–(37) give the electronic contributions to the
bulk, surface, and hinge charges. Therefore, the bulk, surface,
and hinge charge density can be obtained only from the sym-
metry indicators calculated from the occupied bands and ionic
positions for the bulk under each ambiguity. In particular, the
hinge charge formulas are

λL1 = e

4

{
ma + md − (

A	
1 +A	

2 + 2ER − BM
1 − BM

2

)}
(mod e),

(38)

λL2 = e

2

{
ma + md − (

A	
1 + A	

2 + 2ER

− BM
1 − BM

2

)}(
mod

e

3

)
, (39)

λL3 = e

4

{
ma + md − (

A	
1 + A	

2 + 2ER

− BM
1 − BM

2

)}(
mod

e

6

)
. (40)

On the other hand, we cannot determine the corner charge
only from them, since we cannot determine nw modulo 2.

Namely, each of the last four columns of the matrix V shows
that two systems with different Wyckoff positions of Wannier
orbitals by an odd integer share the same irreps at all the
HSPs. We note that two such systems cannot be continuously
deformed into each other via nonmaximal Wyckoff positions.
We can distinguish those cases by using Wilson loops just as
a similar approach is taken in two-dimensional systems [22].
Here, we derive the momentum-space formulas for the corner
charges by introducing the Wilson-loop invariants and then
incorporating their values into the EBR matrix. In this paper,
we define the Wilson loop [35–37] as

W γ = Pexp

(
i
∫

γ

dk · A(k)

)
, (41)

where P represents the path-ordered product and we define the
Berry connection [38] to be [A(k)]mn = i 〈um(k)| ∇k |un(k)〉
and |un(k)〉 to be a Bloch wave function with band index n for
occupied bands. The superscript γ represents integral loops,
X -	-X line, or R-M-R line along the kz direction in the BZ.
Here, the HSPs 	, X , M, and R represent (0,0,0), (0, 0, π ),
(π, π, 0), and (π, π, π ) in the BZ, respectively.

Because the X -	-X line and R-M-R line are invariant
under C4z rotation, we can define the Wilson loop as a block-
diagonal form in terms of C4z eigenvalues: W γ = ⊕

α W γ
α ,

where α = 1,−1,+i,−i is a C4z eigenvalue. Since the Wilson
loops are unitary, their eigenvalues are in the form of ei2πθ

γ
α, jα ,

where a phase θ
γ

α, jα
is real and jα represents the jαth eigen-

value of W γ
α . Then, we define ξ

γ
α as a sum of phases of the

Wilson-loop eigenvalues for a particular C4z eigenvalue α:

ξγ
α = 1

2π i
tr Log W γ

α =
∑

jα

θ
γ

α, jα
, (42)

where Log means taking a principal value between − 1
2 <

θ
γ
α, j � 1

2 . The physical meaning of this value is the total sum
of the z components of the positions of Wannier centers of
occupied Wannier orbitals with C4z = α [27]. We can distin-
guish between any two topologically distinct band structures,
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originating from the last four columns of the V matrix, by
using the following indicator:

� = (
ξ	X
+i + ξ	X

−i + ξMR
+i + ξMR

−i

)
(mod 2). (43)

This new indicator � has two important properties: (i) �

is quantized to 0 or 1 modulo 2 (the proof of this property is
shown in Appendix A); (ii) we can eliminate the ambiguities
of nw which come from the last four columns of the matrix
V by using � (see Appendix B). In addition, the property (i)
implies that � is constant through the continuous deforma-
tions via nonmaximal Wyckoff positions between two systems
with Wannier orbitals localized at different Wyckoff positions.
For example, a system with electrons at the Wyckoff position
6e including an electron with C4z = +i at (0, 0, x) has ξ	X

+i =
ξMR
+i = x, ξ	X

−i = ξMR
−i = −x, and � = 0. This system can be

continuously deformed via x → 0 to that with six electrons at
the Wyckoff position 1a with its representation as T a

1 ⊕ T a
2 .

Then, we get ξ	X
+i = ξMR

+i = ξ	X
−i = ξMR

−i = 0 and � = 0. On
the other hand, it can be also continuously deformed via x →
1
2 to that with two electrons per each Wyckoff position 3d with
an irrep Ed . Then, we get ξ	X

+i = ξMR
+i = ξ	X

−i = ξMR
−i = 1

2 and
� = 0 (mod 2). Therefore, � remains constant through this
continuous deformation via a nonmaximal Wyckoff position.

Then we found that nw can be determined modulo 2 by
incorporating the indicator � into the EBR matrix A. We
define a pseudo-EBR matrix Ã from the EBR matrix A, by
adding one row representing values of � modulo 2 calculated
for each atomic insulator in the form of Eq. (30). Then, we
apply the Smith decomposition to this pseudo-EBR matrix Ã
and calculate nw just as before. As a result, we can determine
each nw (mod 2) as expected (see Appendix C). In particular,
we get a simple result nc = � (mod 2). Then, the corner
charge formulas in terms of bulk band structures and bulk
ionic positions are

Qtype II
corner = mc − �

6
e

(
mod

e

3

)
, (44)

Qtype I
corner = mc − �

8
e

(
mod

e

4

)
, (45)

Qtype IV
corner = mc − �

12
e

(
mod

e

6

)
, (46)

Qtype III
corner = Qtype V

corner = mc − �

24
e

(
mod

e

12

)
. (47)

We note that there are various equivalent ways to express
the corner charges, because �a = �b = �c = �d (mod 2)
under the charge neutrality conditions for the bulk, surfaces,
and hinges in the types I–V.

From here, we consider spinless systems where TRS is
imposed. According to Topological Quantum Chemistry in
the Bilbao Crystallographic Server [34], all the band repre-
sentations in the space group P432 with TRS are the same
as those without TRS. The only difference is that the decom-
posable band representations Ec and Ed become elementary
band representations. By using the new EBR matrix made by
incorporating new columns corresponding to Ec and Ed into

Eq. (31) and then applying the Smith decomposition to the
new EBR matrix, we can obtain

na + nb + 3nc + 3nd = A	
1 + A	

2 + 2E	 + 3T 	
1 + 3T 	

2 ,

(48)

nb + nd = A	
1 − E	 + 3T 	

1 − AR
1 + ER − 5T R

1 + 2BM
1

= A	
1 + E	 + T 	

1 + AR
1 + ER + T R

1 (mod 2), (49)

na + nd = A	
2 + 3T 	

2 + AR
1 + 2ER + 5T R

1 − 2BM
1

= A	
2 − T 	

2 + AR
1 + 2ER + T R

1 + 2BM
1 (mod 4). (50)

Furthermore, while ξ
γ

+i = ξ
γ

−i follows due to the additional
TRS, � is not constrained by it (see Appendix D). We also
find that the four pairs of the topologically distinct systems
sharing the same irreps in the BZ are unchanged even if TRS
is additionally imposed, and that there are no additional pairs
like them in the new matrix V . Thus, we can determine n′

ws
(mod 2) by incorporating the � defined by Eq. (43) into the
new EBR matrix. As before, we can get nc = � (mod 2)
which is the same result as that without TRS. Therefore, the
corner charge formulas, Eqs. (44)–(47), are unchanged if TRS
is added.

Next, we discuss spinful systems. The double group of
O has two two-dimensional irreps Ē1 and Ē2 and a four-
dimensional irrep F̄ . The double group of D4 has two
two-dimensional irreps Ē1 and Ē2. As before, we can make
the EBR matrix for spinful systems by using these irreps and
then apply the Smith decomposition to it. Accordingly we get

na + nb + 3nc + 3nd = 2Ē	
1 + 2Ē	

2 + 4F̄	, (51)

nb + nd = 2
(
Ē	

1 − ĒR
1

) = 0 (mod 2), (52)

na + nd = 2ĒR
1 + 2Ē	

2 + 4F̄	 = 2ĒR
1 + 2Ē	

2 (mod 4). (53)

These results hold both with and without TRS.
Furthermore, in the spinful case, all the irreps of the dou-

ble group of O and D4 have even dimensions regardless of
the TRS. Therefore, all nw are even numbers and the corner
charge is given by dividing ma by the number of corners.
Namely, we get

Qcorner = ma

Ncorner
e

(
mod

2e

Ncorner

)
, (54)

for spinful systems both with and without TRS. Thus, the cor-
ner charge has no electronic contribution for spinful systems.

Here we comment on different choices of definitions for
the modulus for time-reversal symmetric systems with the
spin-orbit coupling. This modulus, i.e., the ambiguity of the
boundary charges, comes from a degree of freedom for the
attached lower-dimensional systems, and a set of the allowed
lower-dimensional systems is different between literatures. In
Ref. [22], the total number of electrons is doubled due to
the Kramers degeneracy, and each ionic charge is even by
including the spin-orbit coupling. Therefore, the modulus is
doubled. In contrast, in the present paper, as already discussed
in Ref. [24], the total number of electrons is doubled but the
ionic charge can be odd or even. Because the ionic charges
of the materials can be an odd number in the unit of the
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elementary charge (i.e., the atomic number can be an odd
number), we adopt the latter convention, and the modulus is
not doubled even when the spin-orbit coupling is included.

V. CONCLUSION

In this paper, we derived the hinge charge and the corner
charge formulas for the five crystal shapes of vertex-transitive
polyhedra such as a cube, an octahedron, and a cuboctahedron
with cubic symmetry in terms of both bulk Wyckoff positions
and bulk band structures. In their derivation, we showed that
there are ambiguities depending on the finite-sized crystal
shapes due to possible relaxation of electronic states and ionic
positions near the boundaries for the same bulk electronic
states and ionic positions. The hinge charges and the corner
charges are determined as bulk quantities within these ambi-
guities. The strong dependence of boundary charge signatures
and their ambiguities on the crystal shape is an interesting
feature not found in two-dimensional systems.

We took the method of the EBR matrix to obtain the hinge
charge and the corner charge formulas in terms of irreps at
HSPs. While the hinge charge formulas can be constructed
solely from the symmetry indicators, we find that the corner
charges cannot even without time-reversal symmetry. This is
because some band structures with different Wyckoff posi-
tions share the same irreps at all the HSPs in the BZ. To
solve this problem, we proposed a Wilson-loop invariant �.
By incorporating this invariant �, we constructed the corner
charge formulas in terms of bulk band structures.

Finally, we briefly discuss the application of our results to
real materials. To search for real materials with a nontrivial
corner charge based on our formulas, we need to evaluate the
Wilson-loop invariant, which cannot be incorporated into a
high-throughput material search. Meanwhile, in ionic crystals
one can easily see the Wyckoff positions of charges in real
space, by which the corner charge can be evaluated via our
formulas. As proposed in Ref. [18], NaCl gives a nontrivial
corner charge ±e/8 in a crystal with the shape of a cube.
It means that NaCl with other crystal shapes (types II–V)
also has nontrivial fractional corner charges. Nonetheless, the
most stable crystal shape of NaCl is a cube, and it might be
experimentally challenging to realize other crystal shapes with
types II–V. Furthermore, we expect that calcium fluorite CaF2

has a fractional hinge charge density e/2 (mod e) along the
L1 hinge. The crystal of CaF2 has four Ca2+ ions at Wyckoff
positions 1b and 3d , and eight F− ions at Wyckoff positions
8g in a unit cell. Thus, we get �a = 8 (or 0), �b = −2 (or
6), �c = 0, and �d = −2. In this case, Eqs. (4), (8), and (18)
are satisfied, which means the bulk is charge neutral and the
surfaces, L2 hinges, and L3 hinges can be charge neutral under
their respective ambiguities. Meanwhile, the L1 hinges have
fractional charge density λL1 = e/2 (mod e) from Eq. (13).
Another example with the same property is barium titanate
BaTiO3 with the perovskite structure.

Although the formulas we derived are for the five crystal
shapes with cubic symmetry, we expect that basically the same
derivation works for other vertex-transitive crystals, such as a
tetrahedron. Extending the analysis to other crystal shapes and
deriving formulas for them will certainly help identify more

material candidates. We leave this important development to
future work.
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APPENDIX A: PROOF OF THE QUANTIZATION OF �

In this Appendix, we will show that � defined in Eq. (43)
is quantized to an integer. For this purpose, we first consider
constraints for the Wilson loop due to the 432(O) symmetry.

First of all, we will show that we can define a Wilson
loop W γ

α for each C4z eigenvalue α. Here, the Wilson loop
is described in terms of the projection operator onto the filled
bands as follows:

[W γ ]mn =
〈

um
kz=π

∣∣∣∣∣
kz=π∏

kz=−π

P (kz )

∣∣∣∣∣ un
kz=−π

〉
, (A1)

where the projection operator onto the filled bands P (kz ) =∑
j∈OCC |u j

kz
〉 〈u j

kz
| (OCC: occupied states) and

∏kz=π

kz=−π
repre-

sents a path-ordered product from kz = −π to kz = π when
an appropriate mesh is taken. We take the path γ to be a C4z-
invariant line, either the 	X line (kx = ky = 0) or the MR line
(kx = ky = π ). Because the Bloch wave number k is on the
path γ , the Bloch Hamiltonian h(k) and the fourfold rotational
operator C4z around the z axis commute: [h(k),C4z] = 0.
Therefore, we can express the Wilson loop in a block-diagonal
form as follows:

W γ =

⎛
⎜⎜⎝

W γ

1
W γ

−1
W γ

i
W γ

−i

⎞
⎟⎟⎠, (A2)

where we define W γ
α as a Wilson loop within the C4z = α

sector. Since the Wilson loop is unitary, W γ
α is also unitary.

Next, we will show that the sets of the phases θ
γ
α, jα

of the
eigenvalues for W γ

α satisfy the following relations due to the
432(O) symmetry:∑

jα

θ
γ
α, jα

= M

2
(α = 1,−1), (A3)

∑
j+i

θ
γ

+i, j+i
+

∑
j−i

θ
γ

−i, j−i
= M ′, (A4)

where M and M ′ are integers. Henceforth, we omit γ if not
specifically stated.

Because of C2xh(kz )C−1
2x = h(−kz ) from C2x symmetry,

C2x |un
kz, αn

〉 is an eigenvector of h(−kz ), where |un
kz, αn

〉 is the
nth eigenvector of h(kz ) with the C4z eigenvalue αn. Then, we
can expand it by the Bloch eigenvectors of h(−kz ) as follows:

C2x

∣∣un
kz, αn

〉 =
∑

l∈OCC

[
BC2x (kz )

]
ln

∣∣ul
−kz, αl

〉
. (A5)
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By the orthonormality of the Bloch eigenstates, it is rewritten
as [

BC2x (kz )
]

mn = 〈
um

−kz, αm

∣∣C2x

∣∣ un
kz, αn

〉
. (A6)

Here, the matrix BC2x (kz ) is unitary and is called a sewing
matrix.

From C2xC4zC
−1
2x = C−1

4z , we derive

C4z
(
C2x

∣∣un
kz, αn

〉 ) = α∗
n

(
C2x

∣∣un
kz, αn

〉 )
. (A7)

By substituting Eq. (A5) to Eq. (A7), we derive

∑
l∈OCC

[
BC2x (kz )

]
ln(αl − α∗

n )
∣∣ul

−kz, αl

〉 = 0, (A8)

for any n ∈ OCC. By acting 〈um
−kz, αm

| for any m ∈ OCC
to Eq. (A8), we get [BC2x (kz )]mn(αm − α∗

n ) = 0. Thus, if
[BC2x (kz )]mn is nonzero, we get αm = α∗

n . Therefore, BC2x (kz )
can be described in the same basis with Eq. (A2) as follows:

BC2x (kz ) =

⎛
⎜⎝

B1,C2x

B−1,C2x

B−i,C2x

B+i,C2x

⎞
⎟⎠, (A9)

where the kz dependence is omitted. Since BC2x (kz ) is unitary,
we can show that Bα,C2x (kz ) is also unitary by using Eq. (A9).

Given a symmetry of the system which transforms k into
Okk, let O denote the matrix acting in the basis of the
Bloch Hamiltonian. Then, the Bloch Hamiltonian h(k) satis-
fies Oh(k)O−1 = h(Okk). In this case, as is well known [27],
the Wilson loop satisfies

BO(k)W γ (k)B†
O(k) = W Okγ (Okk). (A10)

By substituting Eqs. (A2) and (A9) to Eq. (A10), we can
derive

Bα,C2x (kz )W γ
α B†

α,C2x
(kz ) = W −γ

α = (
W γ

α

)†
, (A11)

for α = 1,−1, and

Bi,C2x (kz )W γ

i B†
i,C2x

(kz ) = W −γ

−i = (
W γ

−i

)†
. (A12)

Thus, the set of eigenvalues of W γ
α for α = 1,−1 is the

same as its complex conjugation because W γ
α and its own

Hermitian matrix are connected by a unitary transformation
via Eq. (A11). Therefore, we get{

θ
γ
α, jα

} = { − θ
γ
α, jα

}
, (A13)

for α = 1,−1 and for both of γ . Equation (A13) says θ
γ
α, jα

is

either constrained to 0, 1
2 or forming a pair {+θ

γ

α, jα
,−θ

γ

α, jα
},

so Eq. (A3) follows. In addition, the set of eigenvalues of W γ
i

is the same as the complex conjugation of that of W γ
−i because

W γ
i and (W γ

−i)
† are connected by a unitary transformation via

Eq. (A12). Thus we get{
θ

γ
+i, j

} = { − θ
γ

−i, j′
}
, (A14)

for both of γ . Therefore, we can derive Eq. (A4) from
Eq. (A14) if we note that the number of times 1

2 appears in
{θγ

+i, j} is the same as that in {−θ
γ

−i, j′ }.

TABLE IV. The values of ξγ
α and � for the irreps of the site

symmetry group of Wyckoff positions 1b, 3c, and 3d .

Irrep ξ	X
+1 ξMR

+1 ξ	X
−1 ξMR

−1 ξ	X
+i ξMR

+i ξ	X
−i ξMR

−i � (mod 2)

Ab
1

1
2 0 0 1

2 0 0 0 0 0

Ab
2 0 1

2
1
2 0 0 0 0 0 0

Eb 1
2

1
2

1
2

1
2 0 0 0 0 0

T b
1

1
2 0 0 1

2
1
2

1
2

1
2

1
2 0

T b
2 0 1

2
1
2 0 1

2
1
2

1
2

1
2 0

Ac
1

1
2 0 1

2 0 0 1
2 0 1

2 1

Ac
2 0 1

2 0 1
2

1
2 0 1

2 0 1

Bc
1

1
2 0 1

2 0 0 1
2 0 1

2 1

Bc
2 0 1

2 0 1
2

1
2 0 1

2 0 1

Ad
1

1
2

1
2 0 0 0 0 0 0 0

Ad
2

1
2

1
2 0 0 0 0 0 0 0

Bd
1 0 0 1

2
1
2 0 0 0 0 0

Bd
2 0 0 1

2
1
2 0 0 0 0 0

Finally, from the definition of � in Eq. (43), which is

� =
∑

j

(
θ	X
+i, j + θ	X

−i, j + θMR
+i, j + θMR

−i, j

)
, (A15)

it follows that � is quantized to an integer from Eq. (A4).

APPENDIX B: DETERMINATION OF THE AMBIGUITIES
OF NW BY USING THE VALUE OF �

In Sec. IV, we have seen that the corner charge cannot be
fully determined only from the EBR matrix, because nw can-
not be determined modulo 2. This ambiguity comes from the
last four columns of the matrix V . In this Appendix, we will
show that one can remove this ambiguity by using the value
of �. Namely, � takes different values modulo 2 between two
band structures which have the same irreps at every HSP in the
BZ but different Wyckoff positions for the localized electronic
states by an odd integer. These cases correspond to one of
the four columns of the matrix V . As an example of such
bands, the seventeenth column of the matrix V in Eq. (34)
means that the induced band representation from Aa

2 ⊕ Ac
1 and

that from Ab
1 ⊕ Bd

1 have the same irreps at every HSP in the
BZ. Nevertheless, they have distinct Wannier orbitals which
cannot be continuously deformed into each other through

TABLE V. The values of � for two band structures related to the
last four columns of the matrix V .

Column number of V A pair of BRs �

15
Aa

1 ⊕ Aa
2 ⊕ T a

1 ⊕ Ac
1 1

Ab
1 ⊕ Ab

2 ⊕ T b
1 ⊕ Ad

1 0

16
Ea ⊕ Ab

1 ⊕ Ab
2 ⊕ T b

1 0

Aa
2 ⊕ Ac

1 ⊕ Ad
2 1

17
Aa

2 ⊕ Ac
1 1

Ab
1 ⊕ Bd

1 0

18
Ea ⊕ T a

2 ⊕ Ab
1 0

Ac
1 ⊕ Bd

2 1
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nonmaximal Wyckoff positions. Here, we show that � takes
different values between these two cases.

First, we calculate the Wilson loop along both of the paths
γ for each C4z rotational eigenvalue to each atomic insulator
represented by Eq. (30). Their phases represent Wannier cen-
ters along z axis. First of all, all the Wannier centers for the
Wyckoff position 1a are zero, and thus � = 0. The Wannier
centers ξ

γ
α and � with respect to induced band representations

from irreps of the site symmetry group of the other maximal
Wyckoff positions 1b, 3c, and 3d are shown in Table IV.

Finally, we can show that � takes different values modulo
2 between two band structures related to the four columns of

the matrix V as shown in Table V, and thus we have removed
the ambiguity by introducing �.

APPENDIX C: SMITH NORMAL FORM OF THE
PSEUDO-EBR MATRIX Ã

As we explained in Sec. IV, we can introduce the pseudo-
EBR matrix Ã from the EBR matrix A by adding a row
(0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0). This new row represents
the values of � modulo 2 for each atomic insulator repre-
sented by Eq. (30) obtained from Table IV. The resulting
pseudo-EBR matrix Ã is

Ã =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0
0 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0
0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0
0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1
0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0
0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0
1 0 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1
0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1
0 0 0 1 0 0 1 1 0 0 0 1 1 1 0 1 0 0
0 0 0 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1
0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 1 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0
0 1 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1
0 0 0 1 0 1 0 1 0 0 1 1 1 0 1 0 0 0
0 0 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0
0 0 0 1 1 0 0 0 1 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C1)

We can obtain the matrices Ũ , D̃, and Ṽ in Ã = Ũ −1D̃Ṽ −1 by applying the Smith decomposition to this pseudo-EBR matrix Ã
in the following. Accordingly, we can determine nw modulo 2 from symmetry indicators and the value of �:

Ũ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 1 1 0 1 0 0 0 0 −1 −1 0 −1 0 0 0 0 1
1 1 0 1 1 0 0 1 0 0 0 0 −1 −1 0 −1 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 −1 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −1

−1 0 0 0 −1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
−1 0 0 1 −1 1 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 1 0 1 0 0 0 0 −1 0 0 −1 0 0 0 0 1

−1 0 0 0 −1 0 0 −1 0 0 1 0 0 1 0 0 0 0 0 0 0
0 −1 0 −1 0 0 0 −1 0 0 0 1 1 0 0 0 0 0 0 0 0

−1 −1 0 −1 0 0 1 −1 0 0 0 0 1 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 1 0 1 0 0 0 −1 0 −1 0 0 0 0 0
0 0 0 0 −1 1 0 1 0 0 0 0 −1 0 1 −1 0 0 0 0 0
0 0 1 1 0 1 0 0 0 0 0 0 −1 0 0 −1 0 0 0 0 0

−1 −1 0 0 −1 1 0 −1 0 0 0 0 0 1 0 0 1 0 0 0 0
−1 0 0 0 0 1 0 0 0 0 0 0 −1 0 0 0 0 1 0 0 0

1 0 0 1 0 0 0 1 0 0 0 0 −1 −1 0 −1 0 0 1 0 0
0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

−1 0 0 0 −1 1 0 0 1 0 0 0 −1 1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C2)
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d̃1 = · · · = d̃10 = 1, (C3)

Ṽ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 −1 1 −1 0 −1 −1 −1 0 −1
0 1 0 0 0 0 0 0 0 −1 1 −1 −1 0 −1 0 −1 −1
0 0 1 0 0 0 0 0 0 −1 −1 0 0 0 −1 −1 −1 −1
0 0 0 1 0 0 0 0 0 0 0 −1 −1 0 −1 0 0 0
0 0 0 0 1 0 0 0 0 −1 0 −1 0 −1 −1 −1 −1 −2
0 0 0 0 0 1 0 0 0 0 −1 1 1 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 −1 1 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 −1 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 −1 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C4)

APPENDIX D: PROOF OF THE RELATION OF ξ
γ

+i = ξ
γ

−i

FOR SYSTEMS WITH TRS

We show that ξ
γ
+i = ξ

γ
−i holds in spinless systems with

TRS in this Appendix. The derivation is similar to the one
in Appendix A.

First, we show a constraint for the Wilson loop due to TRS.
Using the relation �h(kz ) = h(−kz )� from the TRS, where �

is time-reversal operator, we can show that

�
∣∣un

kz, αn

〉 =
∑

l∈OCC

[V (kz )]ln

∣∣ul
−kz, αl

〉
, (D1)

where |un
kz, αn

〉 is the nth eigenvector of h(kz ) with the C4z

eigenvalue αn. By the orthonormality of the Bloch eigenstates,
it is rewritten as

[V (kz )]mn = 〈
um

−kz, αm

∣∣�un
kz, αn

〉
. (D2)

Here, the matrix V (kz ) is unitary and is called a sewing matrix
for TRS. We can show the following equation according to
Ref. [27]:

V (k)[W γ (k)]∗V †(k) = W −γ (−k) = [W γ (k)]†
. (D3)

The asterisk in the [W γ (k)]∗ in Eq. (D3) denotes complex
conjugation.

Second, we show a constraint for the sewing matrix V (k)
in terms of C4z eigenvalues. From Eq. (D1), we get

C4z�
∣∣un

kz, αn

〉 =
∑

l∈OCC

αl [V (kz )]ln

∣∣ul
−kz, αl

〉
, (D4)

where αl is the C4z eigenvalue of the Bloch eigenvector corre-
sponding to the lth band. From C4z� = �C4z, we can derive

the following relation:

C4z� |un
kz, αn

〉 = �C4z

∣∣un
kz, αn

〉
= �αn

∣∣un
kz, αn

〉
= α∗

n

∑
l∈OCC

[V (kz )]ln

∣∣ul
−kz, αl

〉
. (D5)

By comparing Eq. (D4) with Eq. (D5), we get∑
l∈OCC

[V (kz )]ln(αl − α∗
n )

∣∣ul
−kz, αl

〉 = 0, (D6)

for any n ∈ OCC. By acting 〈um
−kz, αm

| for any m ∈ OCC
to Eq. (D6), we can get [V (kz )]mn(αm − α∗

n ) = 0. Thus, if
[V (kz )]mn is nonzero, we get αm = α∗

n . This constraint is simi-
lar to the one on BC2x (kz ). Then, V (kz ) can be described in the
same basis with Eq. (A2) as follows:

V (kz ) =

⎛
⎜⎝

V1

V−1

V−i

V+i

⎞
⎟⎠, (D7)

where the kz dependence is omitted. Since V (kz ) is unitary,
Vα (kz ) is also unitary.

By substituting Eqs. (A2) and (D7) to Eq. (D3), we can
derive

Vi(kz )
(
W γ

i

)∗
V †

i (kz ) = W −γ
−i = (

W γ
−i

)†
. (D8)

Thus, the set of eigenvalues of (W γ
i )∗ is the same as the

complex conjugation of that of W γ
−i because (W γ

i )∗ and (W γ
−i )

†

are connected by a unitary transformation via Eq. (D8). Then,
we can derive {−θ

γ
+i, j} = {−θ

γ

−i, j′ }. Namely, we get{
θ

γ
+i, j

} = {
θ

γ

−i, j′
}
, (D9)

for both of γ . From Eq. (D9), we can also derive

ξ
γ
+i = ξ

γ
−i. (D10)
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