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Full versus quasiparticle self-consistency in vertex-corrected GW approaches
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Using seven semiconductors and insulators with band gaps covering the range from 1 to 10 eV we sys-
tematically explore the performance of two different variants of self-consistency associated with the famous
Hedin system of equations: the full self-consistency and the so-called quasiparticle approximation to it. The
pros and cons of these two variants of self-consistency are sufficiently well documented in the literature for
the simplest GW approximation to the Hedin equations. Our study, therefore, aims primarily at the level of
theory beyond GW approximation, i.e., at the level of theory which includes vertex corrections. Whereas
quasiparticle self-consistency has certain advantages at the GW level (a well-known fact), the situation becomes
quite different when vertex corrections are included. In the variant with full self-consistency, vertex corrections
(both for polarizability and for self-energy) systematically reduce the calculated band gaps making them closer
to the experimental values. In the variant with quasiparticle self-consistency, however, an inclusion of the same
diagrams has a considerably larger effect and calculated band gaps become severely underestimated. Different
effects of vertex corrections in two variants of self-consistency can be related to the Z-factor cancellation which
plays a positive role in quasiparticle self-consistency at the GW level of theory but appears to be destructive
for the quasiparticle approximation when higher-order diagrams are included. The second result of our study is
that we were able to reproduce the results obtained with the QUESTAAL code using our FLAPWMBPT code when
the same variant of self-consistency (quasiparticle) and the same level of vertex corrections (for polarizability
only, static approximation for screened interaction, and Tamm-Dancoff approximation for the Bethe-Salpeter
equation) are used.
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I. INTRODUCTION

Reproducibility of results in computational material sci-
ence is an important issue. In the field of electronic structure
calculations, the issue is considered to be resolved at the
level of density functional theory (DFT) calculations [1].
The general consensus is that modern electronic struc-
ture codes, however, employ different basis sets [linearized
augmented plane wave (LAPW), linear muffin tin orbitals
method (LMTO), projector augmented wave (PAW), etc.], and
upon convergence they demonstrate quite similar electronic
structure of materials. When one goes beyond the DFT ap-
proximation (for instance if one uses Hedin’s GW approach
[2]) the number of setup parameters in the calculation in-
creases. Convergence of the results now depends not only on
the occupied one-electron states which have to be represented
accurately, but also on a number of excited (unoccupied)
states, which brings considerable difference in the results if
excited states are represented differently or if their number
(those which are included in the calculation) varies. Besides
that, the appearance of two-point bosonic functions (such as
polarizability P and screened interaction W ) requires effi-
cient basis sets to represent them. For example, the so-called
product basis (PB) set [3,4] was designed specifically for
this purpose. Greater complexity of GW approximation (as
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compared to DFT) unavoidably brings more differences in
implementations which makes the reproducibility of results
at the level of GW a more serious issue. Nevertheless, as
it was shown in non-self-consistent (G0W0) calculations for
100 molecular systems [5], the reproducibility of the molecu-
lar electronic structure, though not perfect, is still acceptable
in many cases. Namely, by comparing the G0W0 approach
implemented in the three different codes FHI-AIMS [6,7],
BERKELEYGW [8], and TURBOMOLE [9,10], the authors of
Ref. [5] concluded that at convergence, the highest occupied
molecular orbital (HOMO) and lowest unoccupied molecular
orbital (LUMO) levels agree on the order of 200 meV. In the
process of their work, the authors of Ref. [5] also identified
two crucial aspects that control the accuracy of the G0W0
quasiparticle energies: the size of the basis set and the treat-
ment of the frequency dependence.

Vertex-corrected (diagrammatically) GW calculations for
realistic materials now only begin to appear [11–22]. Their
increased complexity (even comparative to G0W0) as well
as their relatively recent introduction to the field make the
reproducibility of results an open and important issue. Addi-
tional (as compared to GW) setup parameters for the methods
which diagrammatically go beyond the GW approximation
are the following: (i) specific sets of diagrams beyond GW and
(ii) details of implementation of these high-order diagrams.
Thorough investigation of the effects of using different sets
of diagrams as well as the details of implementation are far
beyond the scope of a single study. The objective of this
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work is more specific and it was motivated by recent vertex-
corrected GW calculations of the band gaps in semiconductors
performed with the FLAPWMBPT code [18] and with the
QUESTAAL code [12].

In both studies [12,18], it is concluded that vertex cor-
rections provide the biggest numerical improvement of the
results obtained with fully self-consistent GW (scGW [18]) or
with quasiparticle self-consistent GW (QSGW [12]). The au-
thors of work [12] also include the effect of electron-phonon
interaction (for polar semiconductors) but this effect quantita-
tively is smaller than vertex corrections in most cases. What
is important for the present study is the fact that inclusion
of electron-phonon interaction always reduces the calculated
band gaps as it is evident not only from Ref. [12] but also
from earlier works [23–26]. The list of materials studied in
Ref. [12] is slightly different (and also longer) than the cor-
responding list in Ref. [18]. But the remarkable tendency of
improvements of scGW (or QSGW) results is unmistakable
in both studies. Only one noticeable exception is the case of
CuCl in Ref. [12] where vertex correction worsens the QSGW
result (the band gap becomes seriously underestimated). What
is surprising (and which is one of the motivations for the
present study) is the fact that similar (and good) results were
obtained with quite different variants of vertex corrections
applied in two studies.

Whereas both works formally are based on exact Hedin
equations [2], the details of the applied approximations
differ a lot. In Ref. [18], vertex corrections are used to
improve both polarizability and self-energy �. The authors
of Ref. [12] use vertex correction only for polarizability.
Further, all vertex corrections in Ref. [18] (for P and for
�) use fully frequency-dependent screened interaction W (ν),
whereas vertex correction to P in Ref. [12] is evaluated with
frequency-independent (taken at zero frequency) W (ν = 0).
Also, the Tamm-Dancoff (TD) approximation [27] was used
in Ref. [12]. There are also some differences in the basis
set (see below). But the most important and dramatic (as it
will be shown below) difference consists in using a full or
quasiparticle Green’s function in the evaluation of diagrams.
In Ref. [18] all vertex-corrected calculations are performed
with full self-consistency applied to Green’s function G. At
the same time, the authors of Ref. [12] use additional [the
so-called quasiparticle (QP)] approximation which is not in-
tended in Hedin’s equations. The validity of the quasiparticle
approximation is well justified at the level of the GW method
(without vertex corrections). It is known that the QSGW ap-
proach usually is more accurate than the fully self-consistent
scGW method [18,28]. The success of the QP approximation
at the GW level of theory is based on the so-called Z-factor
cancellation which was clearly explained in the pioneer work
on QSGW in Ref. [29]. Briefly, the essence of the trick is
that diagrams should be evaluated either with full Green’s
function (no QP approximation) and including the vertex part
or with the QP Green’s function but excluding the vertex
part. Therefore, if one excludes the vertex part (GW level of
theory) then it is of advantage to use the QP approximation.
Alternatively, if one intends to apply vertex corrections, the
QP approximation for G should not be used and one has to
use full G in the evaluation of diagrams instead. Thus, from
the point of view of Z-factor cancellation, the simultaneous

use of vertex corrections and QP approximation for G should
be questioned for consistency. Some results on the inadequacy
of quasiparticle self-consistency were published a few years
ago using a Hubbard-dimer model as an example [30].

The wish to understand deeper the reason why two seem-
ingly different approximations used in Refs. [12,18] lead to
similar results was the main motivation for the present work.
In order to accomplish the goal we first answer the question
whether one can reproduce the results obtained in Ref. [12]
(with the QUESTAAL code) using the same approximations
as in Ref. [12] but running a different code (FLAPWMBPT).
Second, we extend both studies [12,18] by performing the
calculations which are intended to trace step by step the dif-
ferences in the results obtained with full self-consistency and
with quasiparticle self-consistency when approximate forms
of vertex corrections are applied. The reason for doing this is
the following: whereas full vertex correction to QSGW [i.e.,
for both polarizability and self-energy and with full W (ν)]
should be expected to be destructive (because of the unphys-
ical 1/Z factor [29]), a partial vertex correction to QSGW
(like the one applied in Ref. [12]) can be useful. Therefore,
experimenting with approximate forms of vertex correction
and with both forms of self-consistency can be instructive
for future prospects of vertex-corrected GW calculations. In
order to accomplish the above goal, we conduct two sets of
calculations. In the first set of calculations (for each material
considered) we start with scGW, then we add vertex correc-
tion to polarizability but with W (ν = 0) in the corresponding
diagrams, then we apply vertex correction again to P only
but with full W (ν), and finally we add vertex correction to
self-energy to mimic the full approximation used in Ref. [18].

The second set of calculations consists of exactly the
same steps but all calculations in the second set are supple-
mented with the QP approximation for the Green’s function.
In this case the variant with vertex correction to P only and
with static W (ν = 0) mimics the level of approximation ac-
cepted in Ref. [12]. As the authors of Ref. [12] also used
the Tamm-Dancoff approximation [27] in their evaluation of
vertex correction to polarizability, the calculations with QP
self-consistency [and with static W (ν = 0) approximation] in
the present work were performed in both ways: with Tamm-
Dancoff approximation and without it. In this respect, all
calculations with full self-consistency were performed with-
out using the Tamm-Dancoff approximation. Additional steps,
i.e., vertex correction to P with full W (ν) and, finally, with
inclusion of vertex correction to �, represent the steps which
the authors of Ref. [12] mention as possible ways to improve
their results but they do not perform these steps. However,
as it will be shown below, inclusion of these steps in the
calculations with the QP approximation for G, in fact, worsens
the QP-based results considerably and, therefore, cannot be
considered as a valid improvement for calculations with QP
self-consistency.

As it is shown below, the calculations performed at a
similar level of approximations result in very similar results
when one uses the QUESTAAL code or FLAPWMBPT code. At
the same time, it is also shown below that a few omissions
(or rather “constraints”) accepted in Ref. [12], namely, (a) the
Tamm-Dancoff approximation, (b) insufficient basis set (num-
ber of unoccupied states included in vertex corrections), (c)
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vertex corrections that are applied to polarizability only, but
not to self-energy, and (d) a static approximation for screened
interaction with its value taken at zero frequency, when re-
moved, all result in reduction of the calculated band gaps.
Therefore, with the above constraints removed (with QP self-
consistency), the obtained band gaps demonstrate a dramatic
level of underestimation of the corresponding experimental
values. When all constraints are lifted, the calculations even
become unstable for small-gap semiconductors (when QP
self-consistency is used).

The paper begins with a discussion of the approximations
used in this study (Methods). The discussion of convergence
issues and of setup parameters is provided next. The principal
results obtained in this work are presented in the Results
section. The conclusions are given afterwards.

II. METHODS

All calculations in this study formally are based on the
Hedin equations [2]. For convenience, we remind the reader
about how Hedin’s equations could be solved self-consistently
in practice.

Suppose one has a certain initial approach for Green’s
function G and screened interaction W . Then one calculates
the following quantities (integration over arguments that ap-
pear on the right-hand side but not on the left is implied): the
three-point vertex function from the Bethe-Salpeter equation,

�α (123) = δ(12)δ(13)

+
∑

β

δ�α (12)

δGβ (45)
Gβ (46)�β (673)Gβ (75), (1)

where α and β are spin indices, and the digits in the brackets
represent space–Matsubara’s time arguments; polarizability,

P(12) =
∑

α

Gα (13)�α (342)Gα (41); (2)

screened interaction,

W (12) = V (12) + V (13)P(34)W (42); (3)

and the self-energy,

�α (12) = −Gα (14)�α (425)W (51). (4)

In Eq. (3), V stands for the bare Coulomb interaction. A
new approximation for the Green’s function is obtained from
Dyson’s equation,

Gα (12) = Gα
0 (12) + Gα

0 (13)�α (34)Gα (42), (5)

where G0 is the Green’s function in Hartree approximation.
G0 depends on the Hartree potential which depends on the
electronic density (i.e., on full G) from the previous iteration
and, therefore, G0 is updated in the course of iterations. Equa-
tions (1)–(5) comprise one iteration. If convergence is not yet
reached one can go back to Eq. (1) to start the next iteration
with renewed G and W .

The system of Hedin’s equations formally is exact, but one
has to introduce certain approximations when solving Eq. (1)
for the vertex function �α (123) in order to make the solving
of the system manageable in practice. Approximations which

FIG. 1. Ladder sequence of diagrams for the vertex correction to
polarizability.

we use in this study are dictated by the goals of the work. In
order to justify their choice, let us summarize the goals again:

(i) Reproduce the results of Ref. [12].
(ii) Check the validity of speculations made in Ref. [12]

about the possibility to improve QSGW-based results by tak-
ing into account the frequency dependence of W when solving
the Bethe-Salpeter equation (BSE) and adding vertex correc-
tion to self energy.

(iii) Compare full self-consistency with QP self-
consistency.

Guided by the goals, we conducted two sets of calculations
(for each material studied) which were already sketched in
the Introduction. The starting point for the first set is the
scGW approximation, whereas the second set of calculations
has the QSGW approach as a starting point (as in Ref. [12]).
In the scGW method, vertex function (1) is approximated by
its trivial part �α (123) = δ(12)δ(13). In QSGW, we use an
additional approximation related to the self-energy in Eq. (5);
namely, we linearize the frequency dependence of self-energy
around zero frequency (see details in Refs. [31,32] or in
Appendix D). In this respect, our construction of QSGW
differs from Ref. [12] where the approximation for self-energy
in Eq. (5) consists in taking its Hermitian part. As it will
be shown below, however, numerical results obtained with
the above two variants of QSGW are pretty much similar
for the majority of materials. Concerning the vertex part, all
vertex-corrected calculations included the solution of the BSE
for polarizability with screened interaction W as a kernel of
the BSE [ δ�α (12)

δGβ (34) ≈ δαβδ(13)δ(24)W (12)]. A corresponding
diagrammatic representation for the vertex correction to P is
shown in Fig. 1. At this level, we conducted a few variants
of calculations in order to explore approximations made by
authors of Ref. [12], namely, the Tamm-Dancoff approxima-
tion and the use of frequency-independent W (ν = 0). Finally,
our most sophisticated calculations included vertex correction
to self-energy of second order (second term in Fig. 2). This
approximation for self-energy corresponds to expansion of
the vertex function in Eq. (1) up to the first order in W . As
one can easily notice, the above-described vertex-corrected
variants assume different approaches for the vertex function
when it is used in the expression for polarizability, Eq. (2),
and in the expression for self-energy, Eq. (4), and, as a

FIG. 2. Diagrammatic representation of self-energy up to the
second order in screened interaction W .
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FIG. 3. Diagrammatic representation of the � functional which
includes the simplest nontrivial vertex. The first diagram on the
right-hand side stands for the scGW approximation, whereas total
expression corresponds to the sc(GW + G3W2) approximation.

result, they are not conserving in the Baym-Kadanoff defi-
nition [33] (i.e., corresponding P and � cannot be obtained
from the same functional). In order to check the effect of
using a scheme which is conserving, we also included vertex-
corrected calculations (with full self-consistency only, not
QP) where the vertex correction to polarizability consists of
the first only term shown in Fig. 1 and the vertex correction
to self-energy consists of the second term in Fig. 2. This
approach, sc(GW + G3W2), as well as scGW, can also be
defined using the �-functional formalism of Almbladh et al.
[34] and, therefore, is conserving in the sense of Baym and
Kadanoff [33]. The corresponding � functional which in-
cludes vertex corrections is shown in Fig. 3. In Fig. 3, the
first diagram corresponds to the GW approximation, whereas
the sum of the first and the second diagrams represents the
sc(GW + G3W2) approximation. Diagrammatic representa-
tions for irreducible polarizability (Fig. 4) and for self-energy
(Fig. 2) in sc(GW + G3W2) follow from the chosen approxi-
mation for the � functional.

For convenience, we list here all variants of approxima-
tions used in this study together with the purpose and with
the corresponding abbreviations. The first set of calcula-
tions includes scGW, sc(BSE0 : P@GW), sc(BSE : P@GW),
sc(BSE : P@GW + G3W2), and sc(GW + G3W2).

scGW. This is used primarily to generate the initial ap-
proximation to start vertex-corrected calculations and, by
doing this, to reduce the number of iterations with vertex
corrections. We also compare the scGW results with the ones
obtained with QSGW.

sc(BSE0 : P@GW ). The part after the symbol @ stands
for diagrammatic representation of self-energy, whereas the
part before the symbol @ says that polarizability is evaluated
from the BSE with static screened interaction taken at zero
frequency [W (ν = 0)] as the kernel of BSE. The goal of this
variant is to assess the quality of static approximation for W in
BSE, as well as to compare this variant with the same variant
but based on QP self-consistency.

sc(BSE : P@GW ). One uses fully frequency-dependent
W (ν) in the BSE. The goal of this variant is to assess the

FIG. 4. Diagrammatic representation of irreducible polarizabil-
ity in the simplest conserving vertex-corrected scheme sc(GW +
G3W2).

quality of the static approximation for W in the BSE [by
comparing results with sc(BSE0 : P@GW)] and also to com-
pare this variant with the same variant but based on QP
self-consistency.

sc(BSE : P@GW + G3W 2). Diagrammatic representa-
tion of self-energy includes a second-order (in W ) diagram.
All diagrams in this variant (for P and for �) use fully
frequency-dependent W (ν). The goal of this variant is to as-
sess the effect of inclusion of vertex correction to self-energy
and also to compare this variant with the same variant but
based on QP self-consistency.

sc(GW + G3W 2). This variant is conserving in the Baym-
Kadanoff definition. Only a diagrammatic definition of
self-energy (GW + G3W2) is needed to be specified in this
case. Diagrammatic representation for P, G2 + G4W1, fol-
lows if ones uses the same first-order vertex function (as for
self-energy) in Eq. (2). All diagrams in this variant (for P and
for �) also use fully frequency-dependent W (ν). The goal of
this variant is to assess the effect of applying the conserving
approximation.

The second set of calculations includes QSGW,
QS(BSE0TD : P@GW), QS(BSE0 : P@GW),
QS(BSE:P@GW), and QS(BSE:P@GW+G3W2).

QSGW. QSGW is used to compare the results with the ones
obtained in Ref. [12] at the same level of theory.

QS(BSE0T D : P@GW ). The part in brackets before the
symbol @ says that polarizability is evaluated from the
BSE with static screened interaction taken at zero frequency
[W (ν = 0)] as the kernel of the BSE. Plus, the Tamm-Dancoff
approximation is assumed. The basis size for the BSE is taken
exactly as in Ref. [12]. Initial symbol “QS” stand for quasipar-
ticle self-consistency. The goal of this variant is to compare
the results with the ones obtained in Ref. [12] at the same
level of theory and to assess the effect of the Tamm-Dancoff
approximation.

QS(BSE0 : P@GW ). This is the same as sc(BSE0 :
P@GW) but with QP self-consistency instead of full. The goal
of this variant is to assess the effect of the Tamm-Dancoff
approximation and of the differences in size of the basis set
for the BSE.

QS(BSE : P@GW ). This is the same as sc(BSE : P@GW)
but with QP self-consistency instead of full. The goal of this
variant is to assess the quality of the static approximation
for W in the BSE [by comparing results with QS(BSE0 :
P@GW) in the case of QP self-consistency).

QS(BSE : P@GW + G3W 2). This is the same as sc(BSE :
P@GW + G3W2) but with QP self-consistency instead of
full. The goal of this variant is to assess the effect of inclusion
of vertex correction to self-energy when one uses QP self-
consistency.

All calculations in this work were performed using the
code FLAPWMBPT [35]. Technical details of the GW part
were described in Refs. [31,32]. Detailed accounts of the
implementation of vertex-corrected schemes can be found
in Refs. [17–20]. Figure 5 presents the flowchart of the
calculations (for three selected approximations) which gives
a general idea of how the calculations are organized. The
flowchart in Fig. 5 corresponds to full self-consistency. In
the case of quasiparticle self-consistency, the formal change
consists only in the fact that instead of Dyson’s equation (G =
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FIG. 5. Flowchart of scGW, sc(GW + G3W2), and sc(BSE :
P@GW + G3W2) calculations. All equations are presented using
symbolic notations. In the expressions for polarizability, the first
equation corresponds to scGW, the second equation is used in
sc(GW + G3W2), and the third one in sc(BSE : P@GW + G3W2).
In the expressions for self-energy, the first equation corresponds to
scGW, and the second one to both sc(GW + G3W2) and sc(BSE :
P@GW + G3W2). G0 stands for the Green’s function in Hartree
approximation. Any calculation begins with self-consistent DFT it-
erations where the basis set is formed and the initial approach for G
is generated. Iterations of the scGW method use this initial Green’s
function as an input in order to start. During scGW iterations, G is
updated and screened interaction W is generated. Both G and W
serve as inputs to start iterations of sc(GW + G3W2) or sc(BSE :
P@GW + G3W2) approaches. sc(BSE : P@GW + G3W2), being
computationally most demanding, can be run after a few iterations
of sc(GW + G3W2), which can save computer time.

G0 + G0�G), a special construction for G is used as it is
described in Refs. [31,32]. The diagrammatic (GW and the
diagrams beyond GW) parts of the FLAPWMBPT code take
full advantage of the fact that certain diagrams can more
efficiently be evaluated in reciprocal (and frequency) space
whereas other diagrams are easier to evaluate in real (and
time) space. As a result, the GW part of the code scales as
NkNωN3

b where Nk is the number of k points in the Brillouin
zone, Nω is the number of Matsubara frequencies, and Nb

stands for the size of the basis set. The vertex part of the code
scales as N2

k N2
ωN4

b . For comparison, if one uses naive (all in
reciprocal space and frequency) implementation then the GW
part scales as N2

k N2
ωN4

b (i.e., exactly as the vertex part when
the implementation is efficient), and the vertex part scales
as N3

k N3
ωN5

b . Besides of efficiency of the implementation, we
have to mention two more factors which make the use of the
diagrams beyond GW feasible. First is the fact that the higher-
order diagrams converge much faster than the GW diagram
with respect to the basis set size and to the number of k points
[17,18]. Second is that the higher-order diagrams are very well
suited for massive parallelization.

III. CALCULATION SETUPS AND
CONVERGENCE CHECKS

Let us now specify the setup parameters used in the cal-
culations. First of all, our selection of materials for this study
was dictated by the following constraints: (i) band gaps of the
selected compounds should cover (approximately uniformly)

TABLE I. Setup parameters of the solids studied in this work.
Lattice parameters are in angstroms. NGW

bnd is the number of band
states used as a basis set for evaluation of the GW part. NV RT

bnd

represents the corresponding number for the vertex part.

Solid Space group Lattice parameter NGW
bnd NV RT

bnd

Si 227 5.43 160 20
AlP 216 5.451 185 14
CuCl 216 5.64 260 24
C 227 3.57 160 14
MgO 225 4.217 110 16
NaCl 225 5.62 150 16
LiCl 225 5.13 120 16

a broad range of energies (1–10 eV); (ii) selected materials
should be taken from the list studied in Ref. [12] (only AlP
does not fit in this constraint); and (iii) selected materials
should be sufficiently simple as our vertex-corrected calcu-
lations which use full frequency dependence of W are rather
time consuming. In order to make presentation more compact,
the list of selected compounds, their principal structural pa-
rameters, and the size of basis sets have been collected in
Table I. All calculations have been performed for the elec-
tronic temperature 600 K (Matsubara’s formalism is used
throughout the work). Whereas specific electronic tempera-
ture is not very critical for materials with a band gap, its
value establishes certain minimal values for the numbers of
Matsubara’s time and frequency points which one can use in
the calculation. Figure 6 shows the dependence of the MgO
band gap as a function of the corresponding numbers for two
temperatures, 300 and 600 K. As it was explained in Ref. [31],
we use inhomogeneous grids of points on both the imaginary
time interval [0 : 1/T ] (T is temperature) and Matsubara’s
frequency interval [0 : ∞]. The functions are evaluated and
stored only at these inhomogeneous grids of points. In our
calculations we used the same number of time or frequency
points. This choice is reasonable because it ensures that accu-
racy of representation of functions on the time or frequency
interval is similar. As one can see from Fig. 6, the essential
difference between 300 and 600 K is that stable calculation
can be performed at a somewhat smaller minimal number

 8.22

 8.23

 8.24

 8.25

 8.26

 8.27

 8.28

 8.29

 8.3

 20  30  40  50  60  70  80  90  100

B
an

d 
G

ap
 (e

V)

Number of time/frequency points

300 K
600 K

FIG. 6. Convergence of the MgO band gap obtained in the
sc(GW + G3W2) approximation with respect to the number of time
or frequency points used. See the text for more details.
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of time or frequency points when the temperature is higher.
Also, general convergence is achieved faster at 600 K. In
order to obtain all below-presented results we used 62 time or
frequency points. As one can judge from Fig. 6 it ensures the
convergence of the calculated band gap at about 0.002 eV. The
commonly used setup parameter RK max for LAPW-based
calculations was set to 8.0 in all calculations of this work.
The sampling of the Brillouin zone for the GW part (i.e.,
excluding vertex correction diagrams) was 12 × 12 × 12 in all
cases. Evaluation of the diagrams associated with the vertex
part (i.e., all diagrams in Fig. 1 and the second diagram in
Fig. 2) was performed with 3 × 3 × 3 sampling. As Table I
shows, the number of band states used in the evaluation of the
vertex part also was considerably smaller than the number of
band states included in the evaluation of the GW part of the
diagrams. The fact, that the diagrams representing the vertex
part require a smaller basis set and coarser sampling of the
Brillouin zone was discussed before in Refs. [17,18], so the
choice of these two setup parameters for the present study is
justified (see, for instance, Table I in Ref. [18]). At the same
time, one can notice that the basis set for the BSE part used
in Ref. [12] is smaller than ours by almost a factor of 2 (our
basis sets for the vertex part shown in Table I are the sums of
valence and conduction bands included). This fact was the rea-
son that we performed our QS(BSE0TD@GW) calculations
with the basis set (for the vertex part) exactly corresponding
to the basis set used in Ref. [12]. Therefore, the difference
between the band gaps obtained with QS(BSE0@GW) and
QS(BSE0TD@GW) is, in fact, a total effect of the TD approx-
imation and of the basis set mismatch. In most cases, however,
the effect of the TD approximation was prevailing.

It is well known that the LAPW basis set has to be supple-
mented with a sufficient number of high-energy local orbitals
(HELOs) in order to ensure the convergence of calculated
band gaps in GW-based approximations (see, for instance,
Refs. [36–40]). Therefore, for all studied materials, we ex-
tended the standard LAPW basis set by including three or four
(per atom) HELOs of s type, two or three HELOs of p and d
type, one or two HELOs of f type, and also one HELO of
g type. In this respect, our additional basis set (HELOs) was
also larger than the additional local orbital basis set used in
Ref. [12] (see Table I there) which can be another reason for
small differences in results at the QSGW level (besides the
different way to introduce the quasiparticle approximation).

In most of our vertex-corrected calculations [excluding
QS(BSE0TD@GW)], the BSE is solved iteratively [17] which
especially is needed when one uses frequency-dependent
W (ν). Referring to Fig. 1, one iteration in this case means
adding one more term in the infinite sequence of ladder dia-
grams. In practice, the infinite sequence has to be truncated.
In this study we used six terms as a cutoff parameter for the
iterative solution of the BSE. As we did show before (see
Fig. 7 in Ref. [18]), this choice of the cutoff means that the
contribution of the rest of ladder diagrams (i.e., those which
are not included) could be only 1/50 to 1/100 of the first
term contribution. In fact, our checks with eight terms have
demonstrated that the addition of two more ladder diagrams
changes the calculated band gaps by less than 0.005 eV.

Our QS(BSE0TD@GW) approach which serves to repro-
duce the results obtained in Ref. [12] was implemented similar
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FIG. 7. Band gaps as obtained with full self-consistency. Po-
sitioning of the data for each compound relative to the x axis
corresponds to the experimental band gap of the specific compound
[29,44–46]. The y axis represents the deviations of the calculated
band gaps from the experimental ones. Calculated results do not
include electron-phonon interaction. G0W0 results are shown for the
purpose of reference.

to that described in Ref. [12]. Namely, we solved the BSE
directly (not iteratively as in all other our approaches) using
a k-dependent product basis for electron-hole pairs. Details
of this basis set specific to the LAPW implementation can
be found in Ref. [41]. The Tamm-Dancoff approximation,
therefore, was implemented by neglecting the antiresonant
part and keeping only the resonant part of the transition
space [41].

As it will be shown later in this work, the approximation
of fully frequency-dependent W (ν) by the static function
W (ν = 0) gives qualitatively (but not quantitatively) correct
results for vertex corrections to polarizability. However, as it
was discussed before [17], a similar replacement of W (ν) by
W (ν = 0) in the vertex correction for self-energy gives even
qualitatively incorrect results. Namely, the vertex correction
to the band gaps evaluated with static W (ν = 0) is positive
(band gaps increase) whereas correct evaluation of the corre-
sponding diagrams [with full W (ν)] always reduces the gaps.
This observation also collaborates with the increase in the
calculated band gaps obtained by Grüneis et al. in Ref. [11],
where static W (ν = 0) was used. By this reason, self-energy
vertex corrections in this work were always evaluated with
fully frequency-dependent W (ν).

IV. RESULTS

Principal results of this work are presented in Figs. 7 and
8 where the band gaps obtained with full self-consistency
(Fig. 7) and with QP self-consistency (Fig. 8) are shown.
For the purpose of reference, we also provide quasiparticle
energies for high-symmetry points in the Brillouin zone for
two materials, Si and NaCl, in Appendix E. Let us start our
discussion with the full self-consistency. First, we observe that
calculations without vertex corrections (scGW) severely over-
estimate the calculated band gaps (by 0.5–1.5 eV). Second,
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FIG. 8. Band gaps as obtained with quasiparticle
self-consistency. Positioning of the data for each compound
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deviations of the calculated band gaps from the experimental ones.
Calculated results do not include electron-phonon interaction.
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materials where the self-consistency iterations are stable.

principal improvement comes from the vertex correction to
polarizability as it is evidenced in sc(BSE : P@GW) calcula-
tions. It is important to point out, however, that in order to get
quantitatively correct results one has to use fully frequency-
dependent W (ν) when solving the BSE which is used to
obtain vertex correction to polarizability. Using static W (ν =
0) in BSE can only give a qualitatively correct correction to
P, but quantitatively it underestimates the correction by 20–
50 % [compare sc(BSE0 : P@GW) with sc(BSE : P@GW)].
Third, vertex correction to self-energy always reduces the cal-
culated band gaps [compare sc(BSE : P@GW) with sc(BSE :
P@GW + G3W2)]. It needs to be pointed out that we al-
ways use fully frequency-dependent W (ν) in the evaluation
of the self-energy vertex correction (as we already mentioned
before). As it was discussed in Ref. [17], the use of static
W (ν = 0) results in a qualitatively incorrect correction to
band gaps: they are increasing instead of decreasing when one
uses full W (ν). The effect of vertex correction to self-energy is
smaller than the effect of vertex correction to polarizability but
it still is important as the total result [band gaps as obtained in
sc(BSE : P@GW + G3W2)] is very close to the experimental
band gaps with the remaining discrepancy mostly attributed
to the electron-phonon interaction which was not included
in the present study. For instance, the biggest discrepancy in
the band gap of 0.5 eV (the case of carbon) can be nicely
accounted for by considering the corresponding electron-
phonon band reduction (∼0.4 eV [23,42,43]). Finally, Fig. 7
also includes the band gaps evaluated with conserving (in
Baym-Kadanoff [33] definition) approach sc(GW + G3W2).
This approach has the merit of not only being conserving but
also of being more computationally efficient because only one
diagram (of first order) in the sequence of Fig. 1 has to be eval-
uated for polarizability vertex correction. As one can judge
from Fig. 7, the sc(GW + G3W2) approach is especially use-

ful for small-gap semiconductors where the corresponding
band gaps are close to the band gaps calculated with sc(BSE :
P@GW + G3W2). For large-gap insulators, however, solving
of the full BSE for polarizability vertex correction is essential.

Let us discuss now the results obtained with QP self-
consistency which are presented in Fig. 8. As one can
conclude, our results confirm that at the GW level, quasipar-
ticle self-consistency works better than full self-consistency.
It is especially noticeable for small-gap (1–3 eV) materi-
als. The next important observation from Fig. 8 is that our
QS(BSE0TD : P@GW) results are not only in qualitative but
also in quantitative agreement with the corresponding results
obtained using the QUESTAAL code. Namely, the agreement
for the smaller-gap materials (up to carbon) is perfect and
the deviation of FLAPWMBPT gaps from the gaps obtained
using QUESTAAL code does not exceed 0.2 eV for larger-gap
insulators (i.e., it is at the level of the mismatch in the com-
parative test for 100 molecules [5]). Similar to Ref. [12], the
QS(BSE0TD : P@GW) approach implemented in the FLAP-
WMBPT code does a good job in bringing the calculated band
gaps in close agreement with experiments (especially if one
takes into account the electron-phonon correction, as the au-
thors of Ref. [12] demonstrate). Similar to the QUESTAAL

results, there is one notable exception, CuCl, where the band
gap calculated with QS(BSE0TD : P@GW) is severely un-
derestimated. Thus, we arrive at an important conclusion that
using the same approximation, QS(BSE0TD : P@GW), we
are able to reproduce the results obtained with the QUESTAAL

code in Ref. [12]. It is, therefore, interesting that partial vertex
correction [correction to only P, static W (ν = 0), TD approx-
imation] combined with quasiparticle self-consistency mimics
the total result [vertex corrections to both P and �, full W (ν),
no Tamm-Dancoff approximation] obtained with full self-
consistency. However, in disagreement with the speculations
made by the authors of Ref. [12] that results can be further
improved by using full W (ν) and also adding vertex correc-
tion to self-energy, we see from Fig. 8 that both speculated
“improvements” result in too big a reduction of the calcu-
lated band gaps, making them seriously underestimated. In
fact, when self-energy vertex correction is taken into account,
calculations become unstable for small-gap materials. Thus,
as it seems, the consideration about Z-factor cancellation
done by the authors of Ref. [29] works. But, in conjunction
with vertex corrections, it works in the negative direction,
essentially explaining the fact that QP self-consistency should
not be combined with vertex corrections. One more result,
which one can get from Fig. 8, is that the TD approximation
is of rather poor quality (especially for large-gap insulators)
when one uses it in the context of band-gap evaluation which
involves integration over the Brillouin zone. This finding cor-
roborates the finding made by the authors of Ref. [47] that
the TD approximation fails for finite momentum transfers.
Summarizing our observations of QP self-consistency, we can
state that this variant of self-consistency can only be combined
with vertex corrections if one makes additional (which are
not assumed in Hedin’s equations) approximations such as the
Tamm-Dancoff approximation, static W (ν = 0), and no self-
energy vertex correction. As it is now confirmed empirically
by two different codes (QUESTAAL and FLAPWMBPT), such
approximations still allow to improve QSGW band gaps but
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TABLE II. Computational cost (average wall time in seconds per
one iteration) of methods used in this study. The range corresponds
to the shortest and longest times among the materials studied. Only
timings for the approaches with full self-consistency are given. The
switch from full self-consistency to the quasiparticle one changes
the time very little. All calculations were performed using 192 MPI
(Message passing interface) processes. Therefore, in order to get full
CPU time per 1 MPI process (approximately) one has to multiply the
given number with 192.

Approach Shortest time Longest time

scGW 540 1470
sc(BSE0:P@GW) 670 1710
sc(BSE:P@GW) 6110 24380
sc(BSE:P@GW+G3W2) 7920 27110
sc(GW+G3W2) 2030 4920

at the same time allow one to avoid the destructive effect of
Z-factor cancellation when full vertex corrections are used in
connection with QP self-consistency.

Table II shows how computational time (per one iteration)
depends on the approximation in use. As one can see, eval-
uation of the vertex correction to polarizability with static
W increases the scGW time only by about 20%. This is be-
cause the vertex corrections are evaluated on coarse grids of
k points and with considerable reduction in the basis set size
(see the section Calculation Setups and Convergence Checks).
However, when we consider fully frequency-dependent W ,
the time increases considerably (more than by a factor of
10 as compared to scGW), even with the above-mentioned
reductions in the basis set size and in the number of k points.
Vertex correction to self-energy takes (very roughly) about
the same time as one iteration of BSE (with fully frequency-
dependent W ) and, therefore, is a few times cheaper than
the full BSE solution. In general, the computation time per
iteration varies considerably from one approximation to an-
other. Therefore, in order to reduce the total computational
time we used a restart option and iterated the most time-
consuming approaches starting from less expensive variants.
For instance, for each material we always used scGW to
start with. It takes 12–20 iterations to converge scGW for
the materials studied. Converged scGW provides initial G
and W for vertex-corrected schemes and allows to reduce
number of iterations with vertex corrections by about fac-
tor of 2 as compared to if one starts with vertex-corrected
iterations from local density approximation (LDA). In or-
der to reduce the number of iterations in the two most
computationally expensive approaches, sc(BSE:P@GW)
and sc(BSE:P@GW+G3W2), even more, we began them
from converged sc(BSE0:P@GW) and sc(GW + G3W2),
correspondingly.

V. CONCLUSIONS

The study conducted in the present work resulted in two
principal conclusions. The first one, which clearly represents
a positive achievement, is that two codes (QUESTAAL and
FLAPWMBPT) produce similar band gaps in vertex-corrected
QSGW calculations for a number of materials provided

that vertex corrections are evaluated similarly [correction
to only polarizability, static W (ν = 0), and Tamm-Dancoff
approximation for the BSE]. The second conclusion is that
when one adds diagrams (beyond GW) in self-consistent cal-
culations one should use a full self-consistency approach.
Namely, the Green’s function has to be properly evaluated
from Dyson’s equation without referring to the quasiparti-
cle approximation. As it is shown in this study, combining
the vertex-corrected calculations with QP self-consistency as
it is advocated in Refs. [12–14] can only be successful if
vertex corrections are evaluated with a number of restrictive
approximations or “constraints” such as a polarizability-
only correction, static W (ν = 0) in vertex diagrams, and the
Tamm-Dancoff approximation when solving the BSE. From
this point of view, quasiparticle self-consistency combined
with a vertex-corrected GW approach can be considered as an
ad hoc theory where one imposes specific constraints on the
vertex part in order to avoid too large (and destructive for the
final result) an effect. Nevertheless, the approach still can be
useful from a practical point of view allowing one to quickly
estimate the possible effect of vertex corrections before ad-
dressing the problem with full vertex and full self-consistency.

The second conclusion, as it seems, is in contradiction
with our previous advocating for the combination of QSGW
and dynamical mean-field theory (QSGW + DMFT [48,49]).
Formally, the addition of DMFT to QSGW can be consid-
ered as a vertex correction and, according to the discussion
above, cannot be a valid approximation. However, similar
to the approach used in Refs. [12–14], our implementation
of QSGW + DMFT also uses “constraints” for the vertex
(DMFT) part: (i) only one iteration which includes DMFT is
used (a one-shot type of DMFT correction performed on top
of QSGW) and (ii) an effective interaction in the DMFT part is
not evaluated from a proper DMFT self-consistency condition
[50], but is provided by constrained random-phase approxi-
mation (cRPA [51]). Specifically, the second constraint (using
the cRPA) can clearly be considered as an ad hoc part where
the setup parameters of the cRPA are adjusted in order to
get reasonably effective interaction. Thus, the success of our
QSGW + DMFT calculations can also be attributed to the use
of constraints in the vertex part.
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APPENDIX A: SELF-CONSISTENT GW METHOD

In this Appendix we outline the steps which are per-
formed when one uses the scGW approximation. The details
were published before in Refs. [31,32,52,53]. In the follow-
ing, we provide the most important steps of the algorithm,
giving references for more details. In references, we differen-
tiate, if necessary, between the fully relativistic formulation
of the scGW approach [31] and its non(scalar)-relativistic
approach [32].

(1) Perform self-consistent LDA calculation. The basis of
band states is obtained here [52,53].
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(2) Construct the product basis set (Sec. 4 in Ref. [32]).
(3) Calculate the matrix elements of the bare Coulomb

interaction in q space using the product basis (Sec. II A in
Ref. [31]).

(4) Calculate the effective (or “pseudo”) bare Coulomb
interaction in R space (Sec. II G in Ref. [31]).

(5) Perform initial approximation for the Green’s function
(using LDA one-electron energies) in (k; τ ) representation
(Eq. (17) in Ref. [31]).

(6) Transform the Green’s function from (k; τ ) to (R; τ )
representation (Sec. II C in Ref. [31]).

(7) Calculate the polarizability in (R; τ ) variables
(Sec. II D in Ref. [31] or Sec. 6 in Ref. [32]).

(8) Transform the polarizability from (R; τ ) to (q; ν) rep-
resentation (Sec. II E in Ref. [31]).

(9) Calculate the screened interaction W in (q; ν) repre-
sentation (Sec. II F in Ref. [31]).

(10) Transform the screened interaction from (q; ν) to
(R; τ ) representation (Sec. II G in Ref. [31]).

(11) Calculate the exchange (static) part of the self-energy
in (R) representation (Sec. II H in Ref. [31]).

(12) Transform the exchange part of the self-energy from
(R) to (k) representation (Sec. II H in Ref. [31]).

(13) Solve the effective Hartree-Fock eigenvalue problem
including the core levels, and obtain the exchange part of
the Green’s function in (k; τ ) representation (Sec. II I in
Ref. [31]).

(14) Calculate the correlation (dynamic) part of the self-
energy in (R; τ ) representation (Sec. II H in Ref. [31] or Sec. 8
in Ref. [32]).

(15) Transform the correlation part of the self-energy from
(R; τ ) to (k; ω) representation (Sec. II H and Appendix A in
Ref. [31]).

(16) Calculate the correlation part of the Green’s function
in (k; ω) representation (Sec. II J in Ref. [31]).

(17) Transform the correlation part of the Green’s function
from (k; ω) to (k; τ ) representation (Appendix B in Ref. [31]).

(18) Add the exchange and correlation parts of the
Green’s function to obtain the full Green’s function in (k; τ )
representation.

(19) Go to step 6.

APPENDIX B: VERTEX CORRECTION
TO POLARIZABILITY

In this section we provide the steps which one follows
when solving the Bethe-Salpeter equation for the vertex cor-
rection to polarizability. Our implementation of the BSE uses
full frequency dependence of screened interaction W oppo-
site to a common approximation [54,55] where one uses
static (frequency-independent and taken at zero frequency)
screened interaction W . As a result, the BSE is solved iter-
atively in this study. Each iteration adds one more diagram
from an infinite sequence shown in Fig. 1 into the vertex
correction to polarizability �P. Therefore, the first-order cor-
rection to polarizability which is embodied, for instance, in the
sc(GW + G3W2) approach represents just one iteration of the
current scheme. Here we give the steps of iterations with some
comments on where one can find more detailed information.
A full (and rather lengthy) account of the implementation

was published in Ref. [17], which includes the details of the
basis sets, k dependencies, and handling of time-to-frequency
and frequency-to-time transformations. In this brief account,
space arguments of all functions are represented by digits.
Integration over repeated space arguments (if they are only on
the right-hand sides of equations) is assumed. Below we use
auxiliary functions K0, K , �K , and ��, which are defined by
the corresponding equations.

(1) Before the iterations we evaluate the quantity K0,

K0(123; ω, ν) = −G(13; ω)G(32; ω − ν), (B1)

and assign �K = 0. ω and ν are fermionic and bosonic
Matsubara frequencies, correspondingly. Also we transform
K0(123; τ, ν) = 1

β

∑
ω e−iωτ K0(123; ω, ν) where τ is Matsub-

ara’s time and β = 1/T . Diagrammatically, the quantity K0

represents two Green’s function lines joined at one point (the
rightmost part of each term in Fig. 1). More details are in
Appendices A2 and A3 of Ref. [17].

During each iteration we perform the following steps
[Eqs. (B2)–(B6)}:

(2) Form the full quantity K from K0 and correction �K :

K (123; τ, ν) = K0(123; τ, ν) + �K (123; τ, ν). (B2)

(3) Evaluate the nontrivial part of the three-point vertex
function:

��(123; τ, ν) = W (21; τ )K (123; τ, ν). (B3)

Diagrammatically, the quantity �� represents the sum
of all terms shown in Fig. 1 with each term lacking
two leftmost Green’s function lines. More details are in
Appendix A4 of Ref. [17].

(4) Transform the nontrivial part of the vertex function to
a double-frequency representation:

��(123; ω, ν) =
∫

dτeiωτ��(123; τ, ν). (B4)

More details are in Appendix A4 of Ref. [17].
(5) Evaluate the improved correction to the quantity K :

�K (123; ω, ν) = −G(14; ω)��(453; ω, ν)G(52; ω − ν).

(B5)

Diagrammatically, the quantity �K represents the sum of
all terms shown in Fig. 1 with each term having two left-
most Green’s function lines disconnected. More details are in
Appendix A5 of Ref. [17].

(6) Transform �K to a one-time or one-frequency
representation:

�K (123; τ, ν) = 1

β

∑
ω

e−iωτ�K (123; ω, ν). (B6)

More details are in Appendix A2 of Ref. [17].
(7) Go to step 2 (if necessary). The above steps are re-

peated a specific number of times (iterations).
(8) At the end of the iterations we evaluate the vertex

correction to polarizability:

�P(12; ν) = −�K (112; τ = 0, ν). (B7)
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FIG. 9. Scheme of the evaluation of the second-order diagram for
self-energy.

Diagrammatically, this step represents the connecting of two
leftmost Green’s function lines in Fig. 1. More details are in
Appendix B of Ref. [17].

If one uses static approximation for W then only a simpli-
fied form of the quantities K0, K , and �� is needed, namely,
with τ = 0 in the arguments: K (112; τ = 0, ν). This makes
the iterations above considerably less time consuming. For
weakly correlated semiconductors (which are the object of the
present study), iterations (B2)–(B6) converge very fast (see,
for instance, Fig. 7 in Ref. [18]).

APPENDIX C: VERTEX CORRECTION TO SELF-ENERGY

We consider the diagram of the second order represented
by the second term in Fig. 2 which we, for convenience of
presentation below, have divided into three terms as shown
in Fig. 9. The meaning of “+” symbols in Fig. 9 is that
three parts are connected to each other (not summed up) in
the course of the evaluation process. The diagram has the
following rendition in the formal math language:

�2(12) = W (14)G(13)G(34)G(42)W (32), (C1)

with digits representing space-time arguments and summation
or integration over repeated indices on the right-hand side is
assumed. Let us introduce the notations for convenience:

K (562) = G(52)W (62), (C2)

which diagrammatically is the rightmost term in Fig. 9.

T (562) = G(65)K (562), (C3)

which represents the combined second and third terms in
Fig. 9.

S(342) = W (35)G(46)T (562), (C4)

which represents all three terms combined but with leftmost
ends of G and W lines disconnected.

Then the final result is the connection of the leftmost (open)
lines of quantity S:

�2(12; ω) = S(112; τ = 0; ω). (C5)

The fact that screened interaction W is represented by a
sum of bare Coulomb interaction V and frequency-dependent
screening part W̃ makes it convenient to separate the evalua-
tion of vertex correction to self-energy into three terms. For
convenience, let us call the term with both interaction lines
represented by W̃ as dynamic, terms with one interaction line
represented by V and another interaction line by W̃ as semi-
dynamic, and the term with both interaction lines represented
by V as static. We begin the presentation of formulas with the
dynamic case.

Let us write down the steps of the evaluation of the dy-
namic part of the self-energy with explicit time and frequency
arguments. Digits in Eqs. (C6)–(C12), therefore, represent
space arguments only. We begin with calculating the quantity
K using a double-frequency representation:

K (562; ω′; ω) = G(52; ω′)W̃ (62; ω − ω′). (C6)

In order to proceed with the evaluation of quantity T , we
have to transform quantity K into a one-time or one-frequency
representation:

K (562; τ ; ω) = 1

β

∑
ω′

e−iω′τ K (562; ω′, ω). (C7)

Next goes the evaluation of quantity T in a one-time or one-
frequency representation,

T (562; τ, ω) = G(65; −τ )K (562; τ, ω), (C8)

and the transform of it back to the double-frequency form (but
with one frequency of bosonic type):

T (562; ν; ω) =
∫

eiντ T (562; τ, ω). (C9)

Evaluation of the quantity S is performed in double-frequency
form,

S(342; ν, ω) = W̃ (35; ν)G(46; ω − ν)T (562; ν, ω), (C10)

with subsequent transform to a one-time or one-frequency
representation:

S(342; τ ; ω) = 1

β

∑
ν

e−iντ S(342; ν, ω). (C11)

Finally the correction to self-energy is obtained by connecting
the leftmost line ends in Fig. 9:

�2(12; ω) = S(112; τ = 0; ω). (C12)

Now we are going to repeat the above steps with explicit
showing of the basis sets used to represent the depen-
dence on the space arguments. In order to make the reading
of the following easier, the notations have been collected
here:

(a) λ, λ′, λ′′ are the band indices.
(b) k, q are points in the Brillouin zone.
(c) i, j are product basis (PB) indices. When index i or

j is used together with vector q in the Brillouin zone (the
corresponding PB function is 


q
i ), the index runs over all PB

(muffin tins plus interstitial). When it is used together with
atomic index t (the corresponding PB function in this case is

t

i ), it runs over the part of the full PB belonging to the given
atom.

(d) ω,ω′ represent the fermionic Matsubara frequency.
(e) ν is the bosonic Matsubara frequency.
(f) τ, τ ′ represent Matsubara’s time.
(g) εk

λ are band energies.
(h) �k

λ are band wave functions.
(i) β is the inverse temperature.
(j) R are vectors of translations in real space.
(k) t, t′ are coordinates (or indices) of atoms in the unit

cell.
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(l) L, L′ are indices combining orbital moment l , its pro-
jection m, and other quantum numbers distinguishing the
orbitals φtL for a given atom t (L indices also distinguish
between φ and φ̇).

(m) Nk is the full number of k points in the Brillouin zone.
(n) r, r′ are the points on the regular real space mesh in

the unit cell. Below we use r and r′ instead of digits for space
arguments.

(o) G are reciprocal lattice vectors.
(p) Gi is the reciprocal lattice vector associated with the

reduced product basis index i.
(q) �0 is the primitive cell volume.
Now, let us use basis sets to represent space arguments.

For the sake of efficiency, in some formulas below we use
reciprocal space representation where quantities depend on
momentum (k-point) and band states. In other formulas we
use (in a somewhat generalized sense) the real-space represen-
tation. The real-space representation is characterized by using
unit cell indices instead of momentum and by using LAPW
orbitals in muffin tin (MT) spheres and a real-space grid in
the interstitial region instead of band states. Therefore, similar
to the transform between time and frequency representations,
we use transformations between reciprocal and real spaces.
With this in mind, let us proceed. Formula (C6) in the basis
of band states and product basis looks as the following (we do
not show spin index for simplicity):

Kk′
λi (kλ′; ω′; ω) =

∑
jλ′′

〈�k
λ′ |�k′

λ′′

k−k′
j 〉∗

× Gk′
λλ′′ (ω′)W k−k′

i j (ω − ω′). (C13)

Next, we transform the quantity K to real space. The transform
to the real space is different depending on where the space
arguments r and r′ are.

Mt-Mt (muffin tin-muffin tin):

KR
tL;i(kλ′; τ ; ω) = 1

Nk

∑
k′

eik′R
∑

λ

Zk′
tL;λKk′

λi (kλ′; τ ; ω),

(C14)

where the relation �k
λ (r)|t = ∑

L Zk
tL;λφtL(r) was used.

Int-Mt (interstitial-muffin tin):

KR
r;i(kλ′; τ ; ω) = 1

Nk

∑
k′

eik′R eik′r
√

�0

∑
G

eiGr

×
∑

λ

Ak′
G;λKk′

λi (kλ′; τ ; ω), (C15)

where the relation �k
λ (r)|Int = ∑

G Ak
G;λ

ei(k+G)r√
�0

was used.
Mt-Int (muffin tin-interstitial):

KR
tL;r′ (kλ′; τ ; ω) = 1

Nk

∑
k′

eik′R
∑

λ

Zk′
tL;λ

ei(k−k′ )r′

√
�0

×
∑

i

Kk′
λi (kλ′; τ ; ω)eiGir′

. (C16)

Int-Int (interstitial-interstitial):

KR
r;r′ (kλ′; τ ; ω) = 1

Nk

∑
k′

eik′R eik′r
√

�0

∑
G

eiGr
∑

λ

Ak′
G;λ

ei(k−k′ )r′

√
�0

×
∑

i

Kk′
λi (kλ′; τ ; ω)eiGir′

. (C17)

Augmentation of the Green’s function line (to form
quantity T ) and subsequent transform to the reciprocal
space is again different dependent on where the arguments
are.

Mt-Mt:

T R
ti;t′L′ (kλ′; τ ; ω) = −

∑
L1L2

∑
L3i′

G
∗R
tL1;t′L2

(β − τ )

× 〈
φt

L1

∣∣φt
L3


t
i

〉
KR

tL3;t′i′ (kλ′; τ ; ω)

× 〈
φt′

L′
∣∣φt′

L2

t′

i′
〉
, (C18)

T q
ti;λ′′ (kλ′; τ ; ω) =

∑
t′L′

{∑
R

e−iqRT R
ti;t′L′ (kλ′; τ ; ω)

}
Z

∗k−q
t′L′;λ′′ .

(C19)

Mt-Int:

T R
ti;r′ (kλ′; τ ; ω) = −

∑
L1L3

G
∗R
tL1;r′ (β − τ )

× 〈
φt

L1

∣∣φt
L3


t
i

〉
KR

tL3;r′ (kλ′; τ ; ω). (C20)

In order to transform this expression to the reciprocal space
we first perform a Fourier transform (after R → q):

T q
ti;r′ (kλ′; τ ; ω) =

∑
G′′

T q
ti;G′′ (kλ′; τ ; ω)

ei(k−q+G′′ )r′

√
�0

,

(C21)

with

T q
ti;G′′ (kλ′; τ ; ω) = �0

Nr

∑
r′

T q
ti;r′ (kλ′; τ ; ω)

e−i(k−q+G′′ )r′

√
�0

.

(C22)

After that

T q
ti;λ′′ (kλ′; τ ; ω)

=
∫

�Int

dr′T q
ti;r′ (kλ′; τ ; ω)�

∗k−q
λ′′ (r′)

=
∑
G′′

T q
ti;G′′ (kλ′; τ ; ω)

∫
�Int

dr′�
∗k−q
λ′′ (r′)

ei(k−q+G′′ )r′

√
�0

=
∑
G′′

T q
ti;G′′ (kλ′; τ ; ω)X k−q

G′′;λ′′ , (C23)

with

X k
G;λ =

∫
�Int

dr�
∗k
λ (r)

ei(k+G)r

√
�0

=
∑
G′

A
∗k
G′;λ

∫
�Int

dr
e−i(k+G′ )r

√
�0

ei(k+G)r

√
�0

. (C24)
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Int-Mt:

T R
r;t′L′ (kλ′; τ ; ω) = −

∑
L2i′

G
∗R
r;t′L2

(β − τ )

× KR
r;t′i′ (kλ′; τ ; ω)

〈
φt′

L′
∣∣φt′

L2

t′

i′
〉
. (C25)

In this case we first represent

T q
r;t′L′ (kλ′; τ ; ω) =

∑
G′′

ei(q+G′′ )r
√

�0
T q

G′′;t′L′ (kλ′; τ ; ω),

(C26)

with

T q
G′′;t′L′ (kλ′; τ ; ω)

= �0

Nr

∑
r

e−i(q+G′′ )r
√

�0

{∑
R

e−iqRT R
r;t′L′ (kλ′; τ ; ω)

}
. (C27)

After that

T q
G;λ′′ (kλ′; τ ; ω) =

∑
G′′

∫
�Int

dr
e−i(q+G)r

√
�0

ei(q+G′′ )r
√

�0

×
∑
t′L′

T q
G′′;t′L′ (kλ′; τ ; ω)Z

∗k−q
t′L′;λ′′

=
∑
G′′

Sq
GG′′

∑
t′L′

T q
G′′;t′L′ (kλ′; τ ; ω)Z

∗k−q
t′L′;λ′′ .

(C28)

Int-Int:

T R
r;r′ (kλ′; τ ; ω) = −G

∗R
r;r′ (β − τ )KR

r;r′ (kλ′; τ ; ω). (C29)

First we represent

T q
r;r′ (kλ′; τ ; ω) =

∑
G′′G′′′

ei(q+G′′ )r
√

�0
T q

G′′;G′′′ (kλ′; τ ; ω)
ei(k−q+G′′′ )r′

√
�0

,

(C30)

with

T q
G′′;G′′′ (kλ′; τ ; ω)

= �0

N2
r

∑
rr′

e−i(q+G′′ )rT q
r;r′ (kλ′; τ ; ω)e−i(k−q+G′′′ )r′

. (C31)

After that

T q
G;λ′′ (kλ′; τ ; ω) =

∑
G′′

∑
η′G′′′

Sq
G;G′′T

q
G′′;G′′′ (kλ′; τ ; ω)X k−q

G′′′;λ′′ .

(C32)

The evaluation of quantity S is accomplished in reciprocal
space:

Sq
iλ(kλ′; ν; ω) =

∑
jλ′′

W q
i j (ν)Gk−q

λλ′′ (ω − ν)T q
j;λ′′ (kλ′; ν, ω).

(C33)

Finally, the dynamic part of the correction to self-energy is
evaluated as the following:

�k
λλ′ (ω) = 1

Nk

∑
q

∑
iλ′′

〈
�k

λ

∣∣�k−q
λ′′ 


q
i

〉
× 1

β

∑
ν

Sq
iλ′′ (kλ′; ν, ω). (C34)

TABLE III. Quasiparticle energies of Si at high-symmetry points
in the Brillouin zone. For fully self-consistent methods they repre-
sent the positions of the peaks in corresponding k-resolved spectral
functions.

k point � � L L L X X

scGW 0 3.85 −1.33 2.68 4.66 −3.22 1.62
sc(BSE0:P@GW) 0 3.67 −1.32 2.50 4.47 −3.19 1.46
sc(BSE:P@GW) 0 3.62 −1.29 2.46 4.41 −3.11 1.39
sc(BSE:P@GW+G3W2) 0 3.54 −1.25 2.36 4.36 −3.10 1.31
sc(GW+G3W2) 0 3.63 −1.28 2.43 4.44 −3.12 1.36
QSGW 0 3.58 −1.28 2.44 4.40 −3.10 1.45
QS(BSE0TD:P@GW) 0 3.46 −1.27 2.30 4.23 −3.06 1.31
QS(BSE0:P@GW) 0 3.33 −1.25 2.21 4.12 −3.03 1.22
QS(BSE:P@GW) 0 3.00 −1.20 1.96 3.87 −2.88 1.02

Let us consider the static part now. In this case, the mathe-
matical expression of the whole diagram is simpler:

�2(12; τ ) = G(13; τ )V (14)G(34; −τ )G(42; τ )V (32).

(C35)

Again, we introduce the following notations for
convenience:

K (342; τ ) = G(42; τ )V (32), (C36)

T (342; τ ) = G(34; −τ )K (342; τ ), (C37)

and

S(112; τ ) = G(13; τ )V (14)T (342; τ ). (C38)

The use of basis sets and reciprocal and real spaces is totally
identical to the dynamic case, only the time and/or frequency
role is different. Therefore, the evaluation proceeds similar to
the dynamic case above but with simplified time or frequency
dependence of the quantities involved. The final result for the
static part of the self-energy correction is

�k
2,λλ′ (τ ) = 1

Nk

∑
q

∑
iλ′′

〈
�k

λ

∣∣�k−q
λ′′ 


q
i

〉
Sq

iλ′′ (kλ′; τ ). (C39)

Let us consider now the semidynamic part of the self-
energy correction. First we note that in this case

�2(12; τ ) = �̃(12; τ ) + �̃(21; τ ), (C40)

where

�̃(12; τ ) = G(13; τ )W̃ (14; τ − τ4)

× G(34; −τ4)G(42; τ4)V (32). (C41)

Using quantity T from the static case, we have

�̃(12; τ ) = G(13; τ )W̃ (14; τ − τ4)T (342; τ4). (C42)

Again, the use of basis sets is the same as in the dynamic case,
so we do not repeat the corresponding formulas.

APPENDIX D: QUASIPARTICLE APPROXIMATION

Our method is exclusively based on imaginary axis data,
which makes it different from earlier proposed methods (see,
for example, Ref. [29]).
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TABLE IV. Quasiparticle energies of NaCl at high-symmetry points in the Brillouin zone. For fully self-consistent methods they represent
the positions of the peaks in corresponding k-resolved spectral functions.

k point � � L L L X X X

scGW 0 9.41 −2.35 −0.35 11.57 −2.07 −0.77 12.20
sc(BSE0:P@GW) 0 8.71 −2.32 −0.34 10.90 −2.05 −0.75 11.52
sc(BSE:P@GW) 0 8.59 −2.32 −0.34 10.75 −2.05 −0.75 11.41
sc(BSE:P@GW+G3W2) 0 8.54 −2.36 −0.33 10.72 −2.08 −0.77 11.39
sc(GW+G3W2) 0 8.84 −2.35 −0.33 11.01 −2.08 −0.77 11.67
QSGW 0 9.52 −2.37 −0.35 11.69 −2.09 −0.77 12.33
QS(BSE0TD:P@GW) 0 8.80 −2.35 −0.34 10.98 −2.07 −0.76 11.72
QS(BSE0:P@GW) 0 8.45 −2.35 −0.34 10.76 −2.08 −0.76 11.29
QS(BSE:P@GW) 0 8.31 −2.35 −0.34 10.48 −2.07 −0.75 11.16
QS(BSE:P@GW+G3W2) 0 8.11 −2.45 −0.36 10.32 −2.17 −0.80 11.01

We proceed as follows. In the Dyson equation for the
Green’s function

G−1
λλ′ (k; ω) = (iω + μ − εk

λ )δλλ′ − �c
λλ′ (k; ω), (D1)

with the band indices (λ, λ′) corresponding to the effective
exchange Hamiltonian [31], we approximate the frequency
dependence of the self-energy by a linear function

�c
λλ′ (k; ω) = �c

λλ′ (k; ω = 0) + ∂�c
λλ′ (k; ω)

∂ (iω)
|ω=0(iω). (D2)

With this approximation, the Dyson equation can be
simplified:

G−1
λλ′ (k; ω) = Z−1

λλ′ (k)(iω) + (μ − εk
λ )δλλ′ − �c

λλ′ (k; 0),

(D3)

where we have introduced a renormalization factor Z matrix,

Z−1
λλ′ (k) = δλλ′ − ∂�c

λλ′ (k; ω)

∂ (iω)
|ω=0. (D4)

Representing the Z factor as a symmetrical product,

Z−1
λλ′ (k) =

∑
λ′′

Z−1/2
λλ′′ (k)Z−1/2

λ′′λ′ (k), (D5)

we reduce the Dyson equation to the following form:∑
λ′′λ′′′

Z1/2
λλ′′ (k)G−1

λ′′λ′′′ (k; ω)Z1/2
λ′′′λ′ (k)

= iωδλλ′ +
∑
λ′′λ′′′

Z1/2
λλ′′ (k)[(μ − εk

λ′′ )δλ′′λ′′′

−�c
λ′′λ′′′ (k; 0)]Z1/2

λ′′′λ′ (k). (D6)

The second term on the right-hand side of this equation is
a Hermitian matrix. It can be diagonalized:

μδλλ′ − Hk
λλ′ =

∑
λ′′λ′′′

Z1/2
λλ′′ (k)[(μ − εk

λ′′ )δλ′′λ′′′

−�c
λ′′λ′′′ (k; 0)]Z1/2

λ′′′λ′ (k)

=
∑

i

Qk
λiE

k
i Q

†k
iλ′ , (D7)

where Ek
i are the effective eigenvalues. After the diagonaliza-

tion, we can rewrite Eq. (D6) as∑
λ′′λ′′′

Z1/2
λλ′′ (k)G−1

λ′′λ′′′ (k; ω)Z1/2
λ′′′λ′ (k) =

∑
i

Qk
λi

[
iω+μ−Ek

i

]
Q

†k
iλ′ ,

(D8)

or, for the Green’s function,

Gk
λλ′ (ω) =

∑
i

(Z1/2Q)k
λi(Q

†Z1/2)k
iλ′

iω + μ − Ek
i

. (D9)

This expression differs from the full GW Green’s function
by a linear approximation for the frequency-dependent self-
energy.

At this point, we construct the quasiparticle Green’s func-
tion by setting Zk

λλ′ = δλλ′ (in order to satisfy the Z-factor
cancellation condition [29]) in the above equation to obtain

Gk
λλ′ (ω) =

∑
i

Qk
λiQ

†k
iλ′

iω + μ − Ek
i

. (D10)

APPENDIX E: EFFECTIVE QUASIPARTICLE ENERGIES
AT k POINTS OF HIGH SYMMETRY

In this Appendix we present (for the purpose of reference)
the effective quasiparticle one-electron energies for two ma-
terials: Si (Table III) and NaCl (Table IV). Silicon represents
an example of a small-gap semiconductor whereas NaCl rep-
resents a large-gap insulator.
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