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We study the zero-temperature phase diagrams of Majorana-Hubbard models with SO(N) symmetry on
two-dimensional honeycomb and π -flux square lattices, using mean-field and renormalization group approaches.
The models can be understood as real counterparts of the SU(N) Hubbard-Heisenberg models and may be
realized in Abrikosov vortex phases of topological superconductors, or in fractionalized phases of strongly
frustrated spin-orbital magnets. In the weakly interacting limit, the models feature stable and fully symmetric
Majorana semimetal phases. Increasing the interaction strength beyond a finite threshold for large N , we find
a direct transition towards dimerized phases, which can be understood as staggered valence bond solid orders,
in which part of the lattice symmetry is spontaneously broken and the Majorana fermions acquire a mass gap.
For small to intermediate N , on the other hand, phases with spontaneously broken SO(N) symmetry, which can
be understood as generalized Néel antiferromagnets, may be stabilized. These antiferromagnetic phases feature
fully gapped fermion spectra for even N , but gapless Majorana modes for odd N . While the transitions between
Majorana semimetal and dimerized phases are strongly first order, the transitions between Majorana semimetal
and antiferromagnetic phases are continuous for small N � 3 and weakly first order for intermediate N � 4.
The weakly first-order nature of the latter transitions arises from fixed-point annihilation in the corresponding
effective field theory, which contains a real symmetric tensorial order parameter coupled to the gapless Majorana
degrees of freedom, realizing interesting examples of fluctuation-induced first-order transitions.

DOI: 10.1103/PhysRevB.105.045120

I. INTRODUCTION

Majorana fermions are hypothetical particles that con-
stitute their own antiparticles. They represent real fermion
modes that comprise half the degrees of freedom of the
usual complex fermions [1]. In condensed matter systems,
Majorana fermions can arise as effective excitations in quan-
tum many-body systems [2]. An illustrative example is given
by a one-dimensional chain of spinless fermions in the
presence of p-wave superconducting order, which features
protected Majorana zero modes at its open ends [3]. In a simi-
lar way, Abrikosov vortices of a two-dimensional topological
superconductor can host Majorana zero modes [4], providing
a way to realize two-dimensional systems of interacting Ma-
jorana fermions [5]. Importantly, the width of the Majorana
bands can be tuned by a gate voltage in these systems, allow-
ing one to access the regime of strong interactions between
Majorana fermions even with weak underlying electron-
electron interactions [6]. Besides applications in topological
quantum computing [7], two-dimensional Majorana fermion
systems have therefore received interest as tunable platforms
to investigate effects of strong interactions, spontaneous sym-
metry breaking, and quantum phase transitions [8–12].

Majorana fermions can also emerge in insulating mag-
nets in situations when magnetic frustration is significant.
A well-known example is given by the Kitaev honeycomb

model, which describes spins 1/2 localized on the sites of
a honeycomb lattice and subject to bond-dependent nearest-
neighbor exchange interactions [13]. The model is exactly
solvable using a parton decomposition, in which the spin
Hamiltonian is mapped to a tight-binding Hamiltonian of
Majorana fermions hopping in the background of a static Z2

gauge field. This construction has recently been extended to
other tricoordinated lattices [14–21], as well as to systems
with larger local Hilbert spaces [22–25]. In the latter cases,
instead of a single Majorana fermion, an N-component vector
of Majorana fermions emerges at each lattice site. This vector
transforms in the fundamental representation of SO(N), such
that its components can be thought of as colors of a global
SO(N) symmetry.

In this work, we study the phase diagrams of
Majorana fermion models with generalized Heisenberg
exchange interaction featuring SO(N ) symmetry. These
models fall into the larger class of Majorana-Hubbard
models [5] and can be thought of as Majorana versions of
the well-studied SU(N) Hubbard-Heisenberg models that
involve complex fermions [26–31]. We hence dub these
models SO(N) Majorana-Hubbard models. Apart from their
intrinsic appeal of constituting a systematic family of models
with generalized exchange interactions, some instances at
small N are directly applicable to the low-energy physics of
frustrated quantum magnets in two dimensions; in particular,
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Ref. [32] proposed a spin-orbital generalization of the
Kitaev honeycomb model with an additional Heisenberg
exchange interaction, yielding a theory of three Majorana
fermions on the honeycomb lattice with SO(3)-symmetric
exchange interactions coupled to a static Z2 gauge field.
Fixing a gauge in the ground-state flux sector, one arrives
at the SO(3) Majorana-Hubbard model discussed in this
work. The SO(3) Majorana-Hubbard model can alternatively
also arise in a parton description of S = 1 Heisenberg
antiferromagnets. Further, the SO(6) Majorana-Hubbard
model could emerge as an effective theory in the large-U limit
of an SU(4)-symmetric spin-orbital model with two particles
per site, as the antisymmetric product of two fundamental
representations of SU(4) is six-dimensional, see also Ref. [33]
for an explicit mapping. In the large-N limit, order-parameter
fluctuations in the SO(N) Majorana-Hubbard models are
suppressed, similar to their complex SU(N) counterparts
[26–29], enabling a controlled mean-field analysis.

Here, we first use lattice mean-field theory to investigate
the ground-state phase diagrams as function of interaction
strength for different values of N . We demonstrate the exis-
tence of three symmetry-distinct states in the phase diagrams
of the models on the honeycomb and π -flux square lattices.
(1) A symmetric Majorana semimetal phase at weak inter-
actions for all values of N , featuring N gapless Majorana
modes at the nodal point in the half-Brillouin zone [32].
(2) A dimerized phase, in which part of the lattice symmetry
is spontaneously broken. The order can be understood as a
staggered valence bond solid [34], and is stabilized for strong
interactions and large values of N . (3) An SO(N )-symmetry-
broken phase, characterized by the symmetry breaking pattern
SO(N ) → SO(2) ⊗ · · · ⊗ SO(2) with N/2 [(N − 1)/2] fac-
tors of SO(2) for even (odd) values of N . This state occurs at
intermediate to strong interaction for small values of N , and
can be understood as a generalized Néel antiferromagnet. For
even N , all Majorana modes are gapped out, while for odd N ,
a single mode remains gapless. In addition, for intermediate
values of N , a fully gapped coexistence phase, characterized
by both antiferromagnetic and dimerized order, can occur at
strong interactions in the SO(3) honeycomb lattice model.

Secondly, we study the natures of the various transitions
occurring in the phase diagrams. In mean-field theory, the
transitions towards the dimerized phase as function of in-
teraction strength are strongly first order. As these occur at
large N , and/or between ordered states that break different
symmetries, we expect this conclusion to hold also upon the
inclusion of quantum fluctuations beyond mean-field theory.
By contrast, the transitions between Majorana semimetal and
antiferromagnetic phases, occurring for small values of N ,
are continuous on the mean-field level. In order to study the
effects of order-parameter fluctuations, which may become
sizable for small N , we devise the corresponding low-energy
effective field theories describing these transitions. These con-
tinuum field theories exhibit a unique upper critical spatial
dimension of three, allowing us to reveal the universal prop-
erties of the transitions within a controlled ε expansion. We
find that the semimetal-to-antiferromagnet transition remains
continuous for N � 3, while it becomes weakly first order
for N � 4 upon taking quantum fluctuations into account.
The weakly first-order nature of the transition for N � 4

can be understood to arise from a fixed-point-annihilation
mechanism in the corresponding effective field theory, which
contains a real symmetric tensorial order parameter coupled
to the gapless Majorana degrees of freedom. This effect is
similar (though reversed as function of N) to the situation
in the Abelian Higgs model with N complex boson fields
in 4 − ε dimensions, which features a continuous transition
on the mean-field level that is believed to become weakly
first order for N below a certain critical Ncr(ε) = 182.95(1 −
1.752ε + 0.798ε2 + 0.362ε3) + O(ε4) as a consequence of a
fixed-point annihilation [35–37]. A similar fixed-point anni-
hilation has recently been discussed in a number of similar
relativistic [38–46] and nonrelativistic [47,48] field theories
in different dimensions. It leads to an exponentially large, but
finite, correlation length and a quasiuniversal regime charac-
terized by approximate power laws in various observables.

The remainder of this work is organized as follows. In
the next section, we introduce the SO(N) Majorana-Hubbard
models and discuss its ground states in the limiting cases for
weak and strong interactions, respectively. The phase diagram
as obtained from lattice mean-field theory is presented in
Sec. III. Section IV contains a discussion of the natures of
the various quantum phase transition using a renormalization
group analysis. We conclude in Sec. V. Technical details are
deferred to two appendices.

II. MODELS

Motivated by the frustrated spin-orbital models studied in
Ref. [32], we consider N colors of Majorana fermions lo-
cated on the sites of a bipartite lattice, transforming in the
fundamental representation of SO(N ). The SO(N) Majorana-
Hubbard Hamiltonian is comprised of a hopping term with
hopping parameters ti j and an SO(N )-symmetric nearest-
neighbor interaction term with coupling constant J , which
can be thought of as a generalized Heisenberg interaction for
Majorana fermions,

H =
∑
〈i j〉

iti jc
�
i c j + J

∑
a<b

∑
〈i j〉

(
1

2
c�

i Labci

)(
1

2
c�

j Labc j

)
,

(1)

where 〈i j〉 denote nearest-neighbor bonds between adjacent
sites i and j of the lattice. In order to fix the sign of ti j , we
assume that i ∈ A and j ∈ B, where A and B are the two sub-
lattices. The spinor ci ≡ (c1

i , . . . cN
i )� consists of N colors of

Majorana fermions, satisfying canonical anticommutation re-
lations, {cα

i , cβ
j } = 2δi jδ

αβ , and hermiticity, cα†
i = cα

i , α, β =
1, . . . , N . The N (N − 1) matrices Lab ∈ CN×N with 1 � a <

b � N and entries (Lab)αβ = −i(δα
a δ

β

b − δβ
a δα

b ) are the SO(N )
generators in the fundamental representation.

Using the above representation of Lab and evaluating the
summation over a and b in Eq. (1) explicitly, we can alterna-
tively rewrite the interaction term as

H
∣∣∣
t=0

= J

2

∑
〈i j〉

(
c�

i c j
)(

c�
i c j

) + const., (2)

which can be viewed as a Majorana analog of the SU(N ) ex-
tension of the Hubbard-Heisenberg interaction [26,27]. From
Eq. (2), it becomes clear that the Hamiltonian (1) enjoys an
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FIG. 1. (a) Honeycomb lattice with uniform hopping parameter
ti j ≡ t and two sublattices A and B, indicated by the black and white
dots, respectively. (b) Same as (a), but for the π -flux square lattice
with uniform (alternating) signs ti j ≡ t (ti j = ±t) along horizontal
(vertical) bonds, as indicated by the solid (alternating solid and
dashed) lines. (c) Majorana dispersion for J = 0 in the honeycomb-
lattice model with nodal points at 	q = 2π

3 (± 1√
3
, 1), using units in

which the distance between nearest-neighbor sites is a = 1. The
shaded negative-energy band serves as a reminder for the fact that
excitations in the “particle” and “hole” bands are not independent,
as Majorana fermions constitute their own antiparticles. (d) Same as
(c), but for the π -flux model with nodal points at 	q = (± π

2 , 0).

O(N ) symmetry of rotations of the N-dimensional Majorana
vector c �→ Oc for some orthogonal matrix O. The symmetry
group here also includes improper orthogonal transforma-
tions, which may possibly be no longer admissible once a
local fermion parity constraint is introduced.1

In this work, we consider the model (1) on the honeycomb
and π -flux square lattices. On the honeycomb lattice, we as-
sume uniform hopping ti j ≡ t on all bonds 〈i j〉, see Fig. 1(a).
On the π -flux square lattice, by contrast, we assume that a
flux of π is penetrating each square plaquette. This may be
represented, for instance, by ti j = t along horizontal bonds
and alternating signs ti j = ±t along vertical bonds [8,50], see
Fig. 1(b). Note that in the context of lattice gauge theory,
our particular implementation of π -flux pattern on the square
lattice corresponds to only one of many gauge-equivalent
configurations. While our above choice explicitly breaks some
of the square lattice’s symmetries, these symmetries are re-
stored in the lattice gauge theory by noting that physical

1Note, however, that the itinerant Majoranas in Refs. [32] and
[49] are invariant under O(N ) transformations as the local parity
constraint in these models involves additional “gauge” Majoranas,
which can be used to absorb additional parity transformations. We
refer to Ref. [49] for an extended discussion.

symmetry operations act projectively and are to be paired
with appropriate gauge transformations for explicit invariance
[51]. For small values of N , members of the above family of
models can be mapped to known models discussed in previ-
ous works. For N = 3, the honeycomb-lattice model emerges
in the ground-state flux sector of a Kitaev-Heisenberg-type
spin-orbital model [32], and maps to the spin-orbital liquid
of Refs. [22,24] in the weakly interacting limit. Similarly, for
N = 2, the π -flux model describes the ground-state flux sector
of a generalized Kitaev spin-orbital liquid on the square lattice
[23,25], perturbed by an additional Ising spin-spin interaction
[32]. In these spin-orbital realizations of the SO(2) and SO(3)
Majorana-Hubbard Hamiltonians, the hopping term corre-
sponds to a generalized Kitaev spin-orbital exchange coupling
[25], while the interaction terms emerge from Heisenberg and
Ising spin-spin interactions, respectively [32]. In the SO(2)
model, the two Majorana modes can be combined into a single
complex fermion fi = (c1

i + ic2
i )/2. In this representation, the

SO(2) Majorana-Hubbard Hamiltonian describes a model of
spinless complex fermions subject to nearest-neighbor repul-
sion [32], which has been intensely studied previously on both
the honeycomb and π -flux lattices [52–60]. The mapping can
be understood as a consequence of the fact that SO(2) has only
a single generator L12 = σ y, the antisymmetric 2 × 2 Pauli
matrix, leading to a density-density form of the interaction.
We furthermore note that the zero-flux and π -flux configura-
tions of the hopping parameters on the honeycomb and square
lattices, respectively, satisfy the Grosfeld-Stern rule [61], and
as such naturally emerge also in potential realizations of the
models using Abrikosov vortex lattices of topological super-
conductors [62].

In both the honeycomb and π -flux cases, the single-particle
Majorana bands feature isolated nodal points at zero energy
and a linear dispersion in the vicinity of the nodal points,
see Figs. 1(c) and 1(d). The nodal points are protected by
the internal and lattice symmetries of the Hamiltonian. In
the honeycomb-lattice model, this includes a 2π/3 rotational
symmetry around a lattice site. On the π -flux square lattice,
a π/4 rotation around a lattice site has to be paired with an
appropriate local Z2 transformation of the fermions in order to
yield a symmetry of the model. In the noninteracting limit, the
SO(N ) Majorana-Hubbard models on both lattices therefore
realize Majorana semimetal phases that are stable against the
inclusion of small interactions. This is similar to the situation
of the conventional Hubbard model on honeycomb and π -flux
lattices [50,63,64]. Note, however, that the number of fermion
excitations here is halved in comparison with the correspond-
ing complex-fermion models. “Particle” and “hole” bands are
not independent and in order to avoid double counting, one
has to restrict the mode summations to either only half of
the energies, say ε	q � 0, or only half of the Brillouin zone
momenta, say qx � 0 [32].

The fate of the systems at large couplings J/t is less
obvious. On one hand, the form of the interaction term as
given in Eq. (1) suggests an SO(N )-symmetry-broken ground
state with a staggered ordered parameter φab

j = 〈 1
2 c�

i Labci〉 for
J/t � 1. Such a state can be understood as an SO(N ) gener-
alization of the usual SO(3)-breaking Néel antiferromagnet.
In fact, in the case of N = 3, Eq. (1) can be perceived as a
Majorana parton representation of a spin-1 antiferromagnetic
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Heisenberg Hamiltonian, which also features a Néel-ordered
ground state on a bipartite lattice. On the other hand, the
interaction (2) is readily rewritten as a quadratic form in terms
of dynamic bond variables c�

i c j , suggesting a mean-field
decoupling in terms of the static mean fields χi j ∝ i〈c�

i c j〉.
Finite mean fields χi j in general indicate the hybridization
of Majorana fermions on different sites. A varying config-
uration of the χi j on otherwise symmetry-equivalent bonds
indicates a ground state that breaks lattice rotational and/or
translational symmetries. In particular, χi j being finite on
just one of the nearest-neighbor bonds adjacent to a given
lattice site is suggestive of the forming of a dimer that is a
singlet under SO(N ). While previous infinite density matrix
renormalization group calculations for the case of N = 3 on
the honeycomb lattice [32] indeed provide evidence for the
presence of an SO(N )-breaking Néel-type ordered state for
J/t above a certain finite threshold, the mean-field decoupling
of Eq. (2), leading to SO(N )-symmetric phases, becomes
exact in the limit N → ∞ [26,27]. We therefore expect the
phase diagram as function of N and interaction strength
J to feature at least three phases: (1) A Majorana semimetal
phase for small J/t , (2) a Néel antiferromagnetic phase for
small N and J/t above a certain finite threshold, and (3) an
SO(N ) symmetric phase that breaks lattice symmetries only.
In the next section, we use mean-field theory to map out the
zero-temperature phase diagram in detail.

III. PHASE DIAGRAMS

A. Mean-field ansatz

To capture the competition between disordered, bond-
ordered, and SO(N )-symmetry-broken states, we perform
an unrestricted Hartree-Fock decoupling of the interaction
term as∑

a<b

(
1

2
c�

i Labci

)(
1

2
c�

j Labc j

)

�→
∑
a<b

[
φab

i

(
1

2
c�

i Labci

)
+

(
1

2
c�

j Labc j

)
φab

j − φab
i φab

j

]

− i(N − 1)χi jc
�
i c j + N (N − 1)

2
χ2

i j, (3)

where φab
i = 〈 1

2 c�
i Labci〉 are SO(N )-symmetry-breaking

mean fields, and χi j = 〈ic�
i c j〉/N correspond to the bond

variables. One virtue of this decoupling is that in the
SO(N )-symmetric channel it reproduces to leading order
in 1/N the Hubbard-Stratonovich decoupling of Eq. (2)
akin to the SU(N ) case [26,27]. As is well known, in
the limit N → ∞, the Hubbard-Stratonovich decoupling
and the subsequent saddle-point approximation becomes
exact [26,27].

In the following, we assume that the translational
symmetries remain unbroken, so that the SO(N )-symmetry-
breaking mean fields φab

i depend only on the sublattice
index i ∈ A or i ∈ B. We emphasize that this restriction
excludes states with enlarged unit cells. We allow for a possi-
ble (projective) rotational symmetry breaking, such that the
bond mean-fields χi j ∈ {χ1, χ2, χ3} (χi j ∈ {χ1, χ2, χ3, χ4})
may take different values on the three (four) distinct bonds

in the unit cell of the honeycomb (π -flux) lattice. In total, the
problems on the honeycomb and π -flux lattices thus involve
N (N − 1) + 3 and N (N − 1) + 4, respectively, mean fields,
which we determine self-consistently. To this end, we intro-
duce a Fourier representation of the Majorana modes as cα

s,i =
N−1

u.c.

∑
	k∈BZ/2[cα

s (	k)ei	k·	x + cα†
s (	k)e−i	k·	x] with s = A, B denot-

ing the sublattice index, Nu.c. the number of unit cells, and
the 	k-space summation extending over half of the Brillouin
zone (BZ/2). The mean-field Hamiltonian in momentum
space is readily diagonalized on a finite-size lattice. We
employ a momentum-space discretization of up to 36 × 36
unit cells. We furthermore employ a small, but finite, temper-
ature T = 0.08t to ensure numerical stability, and we have
verified that our results are converged upon varying temper-
ature and system size. The self-consistent solution can then
be found iteratively. Note that due to the Majorana nature of
the fermionic modes, the mean-field Hamiltonian is explicitly
particle-hole symmetric on BZ/2, such that no Lagrange mul-
tipliers are required to enforce a particular filling.

B. Mean-field ground states

The resulting mean-field phase diagrams for the SO(N )
Majorana-Hubbard models on the honeycomb and π -flux
lattices are shown in Fig. 2. In it, the magnitudes of the mean-
field parameters |ρ| = |∑a<b φabLab| and �χ = max χi j −
min χi j as function of J/t are depicted as blue and red color
codings, respectively. Explicit forms of the mean-field pa-
rameters are shown in Appendix A. Here, we discuss the
properties of the different phases.

1. Majorana semimetal

In the weakly interacting limit, the Majorana semimetal
is stable for all values of N . Any instability occurs only for
interactions beyond a finite threshold, which can be under-
stood as a consequence of the linearly vanishing density of
states at the Fermi level. The solution of the self-consistency
equations is fully symmetric, featuring isotropic bond vari-
ables (χ1, χ2, χ3) = (χ, χ, χ ) on the honeycomb lattice, and
following the modulation of the hopping strength (t, t, t,−t )
on the π -flux lattice, i.e., (χ1, χ2, χ3, χ4) = (χ, χ, χ,−χ ).
Independent of N and J/t within this phase, we find
χ = −0.52483184 (χ = −0.47902212) on the honeycomb
(π -flux) lattice. The low-energy spectrum in this phase is
characterized by N gapless Majorana modes at a unique nodal
point in BZ/2, as in the noninteracting cases displayed in
Figs. 1(c) and 1(d).

2. Néel antiferromagnetic order

For small N � 4 (N � 6) on the honeycomb (π -flux) lat-
tice and increasing interaction strength, we find a direct phase
transition from the Majorana semimetal to a staggered SO(N )-
symmetry breaking phase, which can be understood as the
SO(N ) generalization of the usual Néel antiferromagnet. On
the level of mean-field theory, this transition is, independently
of the value of N , continuous. The presence of the generalized
Néel antiferromagnet at intermediate to strong coupling and
small N is expected from the previous calculations for N = 3
on the honeycomb lattice [32] and N = 2 on both lattices

045120-4



PHASE DIAGRAMS OF SO(N) MAJORANA-HUBBARD … PHYSICAL REVIEW B 105, 045120 (2022)

FIG. 2. Mean-field phase diagrams of SO(N ) Majorana-Hubbard models as function of J/t for different values of N on (a) honeycomb
and (b) π -flux square lattices. The red shading indicates the norm |ρ| of the SO(N )-breaking order parameter matrix ρ = ∑

a<b φabLab,
representing the generalized Néel antiferromagnetic order (AFM). This phase features a gapped (gapless) Majorana spectrum for even (odd)
N , as illustrated in the insets. The blue shading indicates an anisotropy in the bond order parameters, �χ = max χi j − min χi j , representing the
gapped staggered dimerized phase (DIM). This phase can also be understood as a staggered valence bond solid, as illustrated in the inset. The
white region corresponds to the symmetric gapless Majorana semimetal phase (MSM). The transitions involving the DIM phase are strongly
first order, while the transition between MSM and AFM is continuous on the mean-field level. Renormalization group arguments presented in
Sec. IV indicate that the MSM-AFM transition remains continuous for N � 3, but becomes weakly first order for N � 4 upon the inclusion
of quantum fluctuations. For N = 3 and large coupling J/t � 5.88 in the honeycomb-lattice model, mean-field theory suggest a coexistence
phase characterized by both antiferromagnetic and dimerized order [hatched region in (a)].

[52–60]. For general N , the spontaneous symmetry breaking
of this antiferromagnetic state is “maximal” in the sense that
the eigenvalues of φabLab come in �N/2� identical pairs ±φ̃,
where � · � corresponds to the floor function. For odd N , there
is an additional zero eigenvalue. The corresponding symmetry
breaking pattern is

O(N ) →
{⊗N/2 SO(2), for N even,

[
⊗(N−1)/2 SO(2)] ⊗ Z2, for N odd,

(4)

where the residual Z2 symmetry for N odd corresponds to
a π phase rotation of the Majorana zero mode in the anti-
ferromagnetic state. The unbroken SO(2) subgroups become
evident by noting that the Cartan generators H p of SO(N ) with
p = 1, . . . , �N/2� lie in the broken-symmetry manifold [49],
which are block diagonal with

H p = 02 ⊕ · · · ⊕ 02︸ ︷︷ ︸
p − 1 blocks

⊕ σ y ⊕ 02 ⊕ · · · ⊗ 02︸ ︷︷ ︸
N
2 − p blocks

, (5)

for N even, and

H p = 02 ⊕ · · · ⊕ 02︸ ︷︷ ︸
p − 1 blocks

⊕ σ y ⊕ 02 ⊕ · · · ⊗ 02︸ ︷︷ ︸
N−1

2 − p blocks

⊕ 01, (6)

for N odd. Here, 01 and 02 denote one- and two-dimensional
zero blocks, respectively, and σ y is the imaginary anti-
symmetric Pauli matrix. For any SO(N )-symmetry-breaking
configuration φab, we can use a O ∈ SO(N ) transformation
to write

O�φabLabO = φ̃pH p, (7)

where above notion of “maximal” breaking leads to identical
φ̃p ≡ φ̃. Considering the mean-field Hamiltonian follow-
ing from Eq. (3) in a 2N-component-spinor notation 
 =
(c1

A, c1
B, c2

A, c2
B, . . . , cN

A , cN
B )�, a staggered order in φab is seen

to generate a mass term for the Majorana fermions of the form

†(φabLab ⊗ τ z )
, where the 2 × 2 diagonal Pauli matrix τ z

acts on the sublattice degree of freedom. With above trans-
formation to the Cartan basis it becomes clear that there is a
SO(2) freedom of mixing the two Majorana modes in each
2 × 2 block. These considerations also show that for even
N , the SO(N )-broken antiferromagnetic state is fully gapped,
while there remains a single gapless mode for odd N .

3. Staggered dimerized order

On the other hand, for large N � 5 (N � 7) on the
honeycomb (π -flux) lattice, we find a strong first-order
transition from the semimetallic phase to a bond-ordered
dimerized state that is fully SO(N ) symmetric. Instead, the
bond mean fields χi j in the latter state break part of the
lattice symmetry: On the honeycomb (π -flux) lattice, we
find one “strong” and two (three) “weak” bonds per unit
cell, with (χ1, χ2, χ3) = (χ̃ − �χ, χ̃, χ̃ ) [(χ1, χ2, χ3, χ4) =
(χ̃ − �χ, χ̃, χ̃ ,−χ̃ ) or (χ̃ , χ̃ , χ̃ ,−χ̃ + �χ )], or symmetry-
equivalent, with 0 < �χ < 1 and some renormalized value
χ̃ < 0. This configuration is adiabatically connected to the
“fully dimerized” configuration, for which (χ1, χ2, χ3) =
(−1, 0, 0) [(χ1, χ2, χ3, χ4) = (−1, 0, 0, 0)], corresponding to
�χ → 1− and χ̃ → 0−, and can be understood as a staggered
valence bond solid [34]. Note that the staggered dimerized
order does not enlarge the two-site unit cell, but instead breaks
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the 2π/3 rotational symmetry (combined symmetry from
π/4 rotation and local Z2 transformation) on the honeycomb
(π -flux) lattice. The lattice symmetry breaking fully gaps out
the Majorana spectrum, rendering this phase insulating.

4. Coexistent antiferromagnetic-dimerized order

Interestingly, the mean-field analysis of the N = 3 model
on the honeycomb lattice suggests for J/t � 5.88 coexis-
tent antiferromagnetic and dimerized order, characterized by
both SO(3) and lattice symmetry breaking. In this phase,
the fermion spectrum is fully gapped. On the level of mean-
field theory, the coexistence state apparently gains energy
by gapping out the remaining gapless fermion mode of
the antiferromagnetic state through developing a weak bond
anisotropy, in a way that it remains energetically favorable
to break both SO(3) and lattice symmetry simultaneously,
instead of breaking the lattice symmetry only. For even N ,
the fermion spectrum is already fully gapped in the antifer-
romagnetic phase, such that the energetic competition drives
a direct transition between the pure antiferromagnetic and
dimerized orders, without a coexistence phase. We stress that
the occurrence of the coexistence phase for odd N hinges
on the precise energetic competition of the different micro-
scopic states involved. Indeed, from the above argument, one
may have expected an analogous coexistent order to be real-
ized for N = 5 on the π -flux lattice, where for intermediate
interaction, antiferromagnetic order with a remnant gapless
Majorana band is realized. However, our mean-field results on
the π -flux lattice for N = 5 instead suggest a direct transition
between the antiferromagnetic and dimerized orders, without
a coexistence phase, see Fig. 2(b).

IV. QUANTUM PHASE TRANSITIONS

In this section, we discuss the natures of the quantum phase
transitions occurring between the different phases.

A. Semimetal-to-dimerized-phase transition

On the mean-field level, the transition from the Majorana
semimetal towards the dimerized phase, across which part of
the lattice symmetry gets spontaneously broken, is strongly
first order. As this transition occurs at large values of N , for
which quantum fluctuations around the mean-field solution
are suppressed, we expect this conclusion to hold also beyond
mean-field theory.

B. Antiferromagnet-to-dimerized-phase transition

For intermediate values of N , a transition from the
SO(N )-symmetry-breaking antiferromagnet to the lattice-
symmetry-breaking dimerized phase becomes possible. These
states break different symmetries, and a direct transition be-
tween them is therefore expected to be first order on general
grounds, unless nontrivial fractionalized excitations play a
role at the transition [65]. This expectation is consistent with
our mean-field result for N � 4, in which case we indeed
find a direct first-order transition. For N = 3 on the honey-
comb lattice, the mean-field calculations suggest a transition
towards a coexistence phase, which in principle could be

continuous, but turns out to be first order on the mean-field
level. It should be emphasized, however, that the mean-field
calculation may be uncontrolled at this small value of N . We
leave the study of the effects of quantum fluctuations at this
transition for future work. For N = 2 on both lattices, we
find the generalized antiferromagnet to be stable up to the
large J/t limit, in agreement with previous works [52–60]. For
this small value of N , there is therefore no transition towards
dimerized order.

C. Semimetal-to-antiferromagnet transition

The transition between the Majorana semimetal and the
SO(N )-symmetry-breaking antiferromagnet is continuous on
the mean-field level and occurs at small N . Fluctuations may
therefore play a significant role at this transition, and we
employ a renormalization group analysis to study their effects.

1. Gross-Neveu-SO(N) field theory

To this end, we reinterpret the N (N − 1)/2 mean-field
parameters φab, 1 � a < b � N , as off-diagonal components
of a real antisymmetric tensor (φab) ∈ RN×N , which hence-
forth is promoted to a fluctuating tensor-order-parameter
field. Using a gradient expansion, the microscopic model in
the vicinity of the semimetal-to-antiferromagnet transition
can be mapped onto a corresponding continuum field the-
ory, described by the Euclidean action S = ∫

dd xdτL with
Lagrangian

L = ψ̄αγμ∂μψα + 1

4
φab

(
r − ∂2

μ

)
φab + g

2
φabψ̄α (Lab)αβψβ

+ λ1

4
(φabφab)2 + λ2φ

abφbcφcdφda, (8)

where ψα and ψ̄α ≡ ψ†
αγ0 with α = 1, . . . , N are N colors

of Dirac fermion fields that arise from combining each pair
of lattice Majorana operators per color at the two valleys in
the Brillouin zone of the microscopic model into a complex
fermion field [32]. In the physical model with two sublattices
in d = 2 spatial dimensions, the fermion fields have dγ = 2
components per color, where dγ corresponds to the dimension
of the Clifford algebra representation, {γμ, γν} = 2δμν1dγ

,
μ, ν ∈ {0, . . . , d}. However, for the interpretation of our re-
sults, it will prove convenient to compute the renormalization
group flow for general dγ ∈ R and postpone setting dγ = 2
until later. This allows us to identify the effects of the fermion
fluctuations on our results explicitly by smoothly interpolat-
ing from dγ = 0 towards its physical value. We will also
consider general spatial dimension 1 < d < 3, allowing us to
perform an ε = 3 − d expansion around the unique upper crit-
ical spatial dimension of three. In Eq. (8), we have assumed
summation convention over all a, b, c, d ∈ {1, . . . , N} using
Lba = −Lab and L11 = · · · = LNN = 0, such that φabφab ≡
−Tr(φ2) and φabφbcφcdφda ≡ Tr(φ4).

The order-parameter field can be understood to arise from
a Hubbard-Stratonovich transformation of the four-fermion
term [ψ̄α (Lab)αβψβ]2, and as such couples linearly to the
corresponding fermion bilinear, with Yukawa coupling g.
Fermion fluctuations will generate a kinetic term for φ, which
has therefore been included from the outset in Eq. (8). The
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parameter r acts as a tuning parameter for the transition; on
tree level, we have 〈φab〉 = 0 for r > 0, corresponding to the
Majorana semimetal phase, while 〈φab〉 �= 0 for r < 0, corre-
sponding to the SO(N )-symmetry-broken antiferromagnetic
phase. A finite expectation value for φab will at least partly
gap out the Majorana spectrum. From our mean-field results,
we expect that the SO(N )-symmetry-breaking ground state
realizes the “maximal” symmetry breaking pattern of Eq. (4),
corresponding to a “maximal” gapping of the Majorana spec-
trum, and leaving behind at most only a single gapless mode.

Fluctuations will also generate bosonic self-interactions,
which have therefore also been included in Eq. (8). In the
present situation with an antisymmetric real order-parameter
field, there are in general two different interactions possible,
parametrized by the couplings λ1 and λ2 in Eq. (8). This is
because [Tr(φ2)]2 and Tr(φ4) are generically independent for
N � 4. The fact that the space of bosonic self-interaction is
spanned by two couplings λ1 and λ2 for N � 4 has important
consequences for the fixed-point structure, as we shall see
below. The cases N = 2 and N = 3, however, are special.
In these cases, we have [Tr(φ2)]2 ≡ 2Tr(φ4), such that the
bosonic self-interaction terms can be written as

λ1

4
(φabφab)2 + λ2φ

abφbcφcdφda = λ1 + 2λ2

2
[Tr(φ2)]2, (9)

for N � 3. Within the naming scheme of Ref. [32], the theory
defined by Eq. (8) may be dubbed Gross-Neveu-SO(N), as
the fermion bilinear, to which the order parameter φ couples,
transform in the fundamental representation of SO(N).

2. Renormalization group flow

Integrating out the momentum and frequency modes in a
thin shell between �/b and � in the (d + 1)-dimensional
reciprocal space, where � is the ultraviolet cutoff, leads to
the flow equations at one-loop order

dg2

d ln b
= (ε − ηφ − 2ηψ )g2 − 2g4, (10)

dλ1

d ln b
= (ε − 2ηφ )λ1 − 2(N2 − N + 16)λ2

1

− 16(2N − 1)λ1λ2 − 96λ2
2, (11)

dλ2

d ln b
= (ε − 2ηφ )λ2 − 48λ1λ2 − 8(2N − 1)λ2

2 + dγ

4
g4,

(12)

with the anomalous dimensions

ηφ = dγ g2, ηψ = N − 1

2
g2, (13)

and where we have rescaled the couplings as
(g2, λ1, λ2)/(8π2�ε ) �→ (g2, λ1, λ2), with ε = 3 − d being
the deviation from the upper critical dimension. In order
to arrive at the above flow equations, we have used a set
of identities for the SO(N) generators, which are discussed
in Appendix B. These flow equations allow a number of
crosschecks: We have verified that for g2 = 0, the flows
of the bosonic self-interactions λ1 and λ2 are equivalent to
those of the purely bosonic O(N)-symmetric model with
antisymmetric tensor order parameter [66,67]. For N = 2 and
3, there is a only one quartic bosonic self-interaction term,

parametrized by the coupling λ ≡ λ1 + 2λ2. Using Eqs. (11)
and (12), we find in this case

dλ

d ln b
= (ε − 2ηφ )λ − 2[N (N − 1) + 16]λ2 + dγ

2
g4. (14)

For N = 2, Eqs. (10), (13), and (14) are equivalent, modulo a
rescaling of the couplings, to the flow equations of the Gross-
Neveu-Ising model in 3 − ε spatial dimensions [68–74]. For
N = 3, they are in agreement with the previous explicit calcu-
lation for the Gross-Neveu-SO(3) model in Refs. [32,75].2

3. Continuous transition for N � 3

For N � 3, there are only two independent couplings g2

and λ ≡ λ1 + 2λ2. Their flow equations (10), (13), and (14)
admit an infrared stable fixed point at

g2
� = ε

N + dγ + 1
+ O(ε2), (15)

λ� = N + 1 − dγ + f (dγ , N )

4(N + dγ + 1)[N (N − 1) + 16]
ε + O(ε2), (16)

where f (dγ , N ) ≡ dγ

√
1 + 4N2−6N+62

dγ
+ ( N+1

dγ
)2 > dγ , such

that both g2
� > 0 and λ� > 0. The stable fixed point cor-

responds to a quantum critical point in the Gross-Neveu-
SO(N) universality class for N � 3. The semimetal-to-
antiferromagnet transition in the SO(2) and SO(3) Majorana-
Hubbard models is therefore continuous, in agreement with
the mean-field result of Sec. III. The quantum critical behav-
ior is characterized by a set of universal critical exponents.
The fermion and boson anomalous dimensions are readily
obtained from Eq. (13) as

ηφ = dγ ε

N + dγ + 1
+ O(ε2), ηψ = (N − 1)ε

2(N + dγ + 1)
+ O(ε2).

(17)

The correlation-length exponent ν is determined from the flow
of the tuning parameter r,

dr

d ln b
= (2 − ηφ )r + 2[N (N − 1) + 4]

λ

1 + r
− 2dγ g2,

(18)

yielding

1/ν = 2 −
{

dγ

N + dγ + 1

+ [N + 1 − dγ + f (dγ , N )][N (N − 1) + 4]

2(N + 1 + dγ )[N (N − 1) + 16]

}
ε

+ O(ε2). (19)

As there appears no dangerously irrelevant coupling in the
problem, we expect hyperscaling to hold. The exponents α,
β, γ , and δ can then be obtained from ηφ and ν by making use
of the standard scaling relations [76]. We note in passing that
the above values for the critical exponents agree with those for

2Note that in Refs. [32,75], the variable N denotes the number of
two-component fermion flavors for fixed internal symmetry group
SO(3), which corresponds to 3dγ /2 in this work.
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the Gross-Neveu-Ising model [68–74] upon setting N = 2 and
the Gross-Neveu-SO(3) model [32] for N = 3, as expected.
In the latter case, recent results from three-loop and other
elaborate approximations [75] show that while the values of
the critical exponents receive quantitative corrections for finite
ε, the main conclusion concerning the nature of the transition
holds also beyond the one-loop order. The same is true for
the N = 2 case, for which results up to four-loop order are
available [73].

4. Fluctuation-induced first-order transition for N � 4

For N � 4, the presence of two independent bosonic self-
interaction terms is crucial. In order to identify the physical
mechanism that leads to the absence of a stable fixed point
in the parameter space spanned by g2, λ1, and λ2 in the
coupled fermion-boson field theory, it is useful to analytically
continue the flow equations to noninteger dimension dγ of the
Clifford algebra representation, 0 � dγ � 2, where the limit
dγ = 2 corresponds to the physical situation in d = 2 spatial
dimensions. This allows us to smoothly incorporate the effects
of fermion fluctuations. We start by discussing the N = 4
case explicitly. The generalization to N > 4 will be discussed
afterwards.

In the limit dγ = 0, the Yukawa coupling g and the pair
of bosonic self-couplings (λ1, λ2) completely decouple, such
that the flow in the bosonic sector is equivalent to those of
purely bosonic model studied in Refs. [66,67]. The fixed-point
structure of this model is depicted for N = 4 in Fig. 3(a).

Besides the Gaussian fixed point at (λ1, λ2) = (0, 0), there
are three interacting fixed points. One of it is located at λ1 > 0
and λ2 = 0, and it corresponds to the usual Wilson-Fisher
fixed point in the O(4) vector model. We denote it as “O(4)
vector” in Fig. 3(a). Importantly, in the vicinity of this fixed
point, λ2 corresponds to an infrared relevant parameter, ren-
dering the O(4) vector fixed point bicritical. Another bicritical
fixed point is located at λ1 > 0 and λ2 < 0, denoted as “B” in
Fig. 3(a). There is, however, a unique critical fixed point that
is fully infrared stable in the λ1-λ2 coupling plane, and thus
corresponds to a continuous transition in the purely bosonic
model. As the order parameter φab is a real antisymmetric
tensor, we denote this fixed point as “O(4) tensor.”

Upon the inclusion of fermion fluctuations in the flow of
(λ1, λ2) for finite, but small, dγ > 0, all four fixed points
move within the coupling plane. In particular, the O(4) vector
and O(4) tensor fixed points approach each other, Fig. 3(b),
and collide at dcr,1

γ = 0.0164. For dγ > dcr,1
γ , the O(4)

tensor and O(4) vector fixed points have annihilated and
moved into the complex coupling plane. A similar fixed-
point-annihilation scenario has previously been discussed in
a number of relativistic [35–46] and nonrelativistic [47,48]
field theories. For values of dγ above, but not too far from
dcr,1

γ , the imaginary parts of the complex fixed-point values
are small. This implies that the renormalization group flow
in the real coupling plane slows down in the regime where
the two fixed points have annihilated. This regime is in-
dicated as gray shaded region in Fig. 3(c). The slow flow
induces an exponentially large, but finite correlation length

ξ ∝ eA/
√

dγ −dcr,1
γ , where A > 0 is a dimensionless constant of

order unity [39,47,77]. The situation can be understood as

an example of a fluctuation-induced first-order transition, in
analogy to the case of the Abelian Higgs model [35–37]. Upon
further increasing dγ , we find a second critical dcr, 2

γ = 1.4853,
at which the two remaining fixed points collide, and annihilate
as well for dγ > dcr,2

γ .
For the case of dγ = 2, corresponding to the physical situ-

tation in two spatial dimensions, there are no fixed points
left, leaving behind only the runaway flow towards λ1 → −∞
and λ2 < |λ1|, see Fig. 3(d). Local stability of the effective
order-parameter potential V (φab) near criticality r = 0 and
small φab requires

V (φab)|r=0 = λ1

4
(φabφab)2 + λ2φ

abφbcφcdφda > 0 (20)

for all real antisymmetric matrices (φab) ∈ R4×4. By making
use of the O(4) symmetry, we can rotate any field configura-
tion into a block-diagonal form

φ �→ O�φO =

⎛
⎜⎝

0 m1 0 0
−m1 0 0 0

0 0 0 m2

0 0 −m2 0

⎞
⎟⎠ (21)

with orthogonal matrix O ∈ R4×4 and real m1, m2 ∈ R. It is
then straightforward to show that the local-stability criterion
(20) is equivalent to

λ2 >

{|λ1| for λ1 < 0,

−|λ1|/2 for λ1 > 0.
(22)

The faint region in Fig. 3(d) indicates the values of (λ1, λ2) for
which the above criterion is violated, marked as “unstable.”
In particular, Fig. 3(d) illustrates that the quartic boson self-
interaction couplings always flow towards the locally unstable
region in the infrared, independent of their ultraviolet start-
ing values. Higher-order terms beyond the quartic order are
therefore required to ensure global stability of the effective
potential, and for r above, but close to zero, there must be
a global minimum at finite φ that is lower in energy than
the local minimum at φ = 0. Together with the exponentially
large correlation length, this implies that the semimetal-to-
antiferromagnet transition in the SO(4) Majorana-Hubbard
model is discontinuous, but only very weakly so.

Let us now discuss the fixed-point structure for N > 4.
Again, we start with the bosonic case dγ = 0 first and dis-
cuss the effects of fermion fluctuations for dγ > 0 afterwards.
Furthermore, we now analytically continue the flow equations
also for noninteger values of N , allowing us to track the
evolution of the fixed points as function of this parameter
as well, starting from the N = 4 flow diagram in Fig. 3(a).
Interestingly, we now find already for fixed dγ = 0 as function
of increasing N > 4 a fixed-point-annihilation scenario that is
very similar to the one discussed above for fixed N = 4 as
function of increasing dγ > 0. The main difference to the sit-
uation for fixed N = 4 is that the stable O(4) tensor fixed point
now collides and annihilates with the bicritical fixed point B
as function of N > 4 for fixed dγ = 0. At the one-loop or-

der, this happens already at Ncr(dγ = 0) = 2+3
√

22
4 = 4.0178.

For N > Ncr, no infrared stable fixed point remains for real
values of the couplings, leaving behind the runaway flow
now already for dγ = 0. Fermion fluctuations for finite dγ do
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FIG. 3. Evolution of fixed-point structure of Gross-Neveu-SO(4) field theory as function of dimension of Clifford algebra representation
dγ , analytically continued to noninteger values. Arrows denote flow towards infrared. (a) Bosonic case dγ = 0, featuring, besides the Gaussian
fixed point G, three interacting fixed points; the O(4) vector fixed point at λ2 = 0 and the fixed point B are bicritical, while the O(4) tensor fixed
point at finite λ1 > 0 and λ2 < 0 is fully infrared stable, corresponding to a continuous phase transition. (b) Upon the successive inclusion
of fermion fluctuations, the O(4) vector and O(4) tensor fixed points approach each other as function of increasing 0 < dγ < 0.0164. The
counterpart of the Gaussian fixed point G′ has moved slightly towards finite interaction. Here, dγ = 0.0150, i.e., slightly below dcr,1

γ . (c) For
0.0165 < dγ < 1.4853, the O(4) vector and O(4) tensor fixed points have annihilated, leaving behind a regime of slow flow in parameter space
(gray shaded region). Here, dγ = 1.450, i.e., slightly below dcr,2

γ . (d) For dγ > 1.4854, fixed points B and G′ have annihilated as well, leaving
behind only the runaway flow towards λ1 → −∞ and λ2 < |λ1| (faint region marked as “unstable”), suggesting a weak first-order transition.
Here, dγ = 2, corresponding to the physical situation in d = 2 spatial dimensions.

not bring these two fixed points back into the real coupling
plane, as we have explicitly verified by numerically solving
the fixed-point equations for various values of N and dγ .
Instead, increasing dγ > 0 for fixed N > Ncr(dγ = 0) leads to
a collision of the remaining two unstable fixed points, similar

to the situation for N = 4 shown in Figs. 3(b)–3(d). As a
consequence, the semimetal-to-antiferromagnet transition in
the SO(N) Majorana-Hubbard model is discontinuous for all
values of N � 4, for which the antiferromagnetic phase can
be stabilized on a given lattice. As the flow is the slower
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the smaller the value of N , the fluctuation-induced first-order
transition will be weakest for N = 4, and less weak for
larger N .

Let us comment on what might be expected from correc-
tions beyond the one-loop approximation. The bosonic sector
for dγ = 0 has recently been discussed at the three-loop order
in Ref. [67]. These results suggest that the two fixed points at
finite values of λ2 in Fig. 3(a) exchange stability as function
of ε above a certain finite critical value, which is estimated to
be below the physical value of one. This would imply that in
d = 2 spatial dimensions, the infrared stable fixed point is the
one denoted as “B” in Fig. 3(a). The fact that this fixed point
annihilates, in the one-loop approximation, at a significantly
larger critical value dcr,2

γ � dcr,1
γ , still leaves room for the ex-

istence of a stable fixed point at ε = 1, dγ = 2, and N = 4. In
this scenario, the N = 4 transition would then still be contin-
uous. For larger values of N , however, the imaginary parts of
the complex fixed-point couplings are sizable at the one-loop
order, inhibiting the revival of these fixed points in the real
coupling plane upon the inclusion of higher-loop corrections.
We therefore believe that our result of a fluctuation-induced
first-order transition that occurs beyond a certain critical value
of N is a robust feature of the SO(N) Majorana-Hubbard
models in d = 2 spatial dimensions, although the value of N
above which this happens might receive corrections beyond
the one-loop order. Estimating these corrections represents an
interesting direction for future work.

V. CONCLUSIONS

In conclusion, we have studied SO(N) Majorana-Hubbard
models on honeycomb and π -flux square lattices in the zero-
temperature limit. On both lattices, the phase diagrams feature
three symmetry-distinct phases. For weak interactions, the
disordered Majorana semimetal is stable for all values of N .
For strong interactions above a certain finite threshold, how-
ever, an ordered state that breaks SO(N) symmetry and can be
understood as a Néel antiferromagnet is stabilized when N is
small, while a dimerized state that breaks the lattice symmetry
and can be understood as a staggered valence bond solid is
found for large N . These results are reminiscent of the situa-
tion of complex fermions in the SU(N) Hubbard-Heisenberg
model [26–31]. There, in the large-N limit and for half filling,
a Dirac semimetal phase is stabilized for weak interactions
(dubbed “flux” phase in Refs. [26,27]), which gives way to
a dimerized “spin-Peierls” phase (also dubbed “columnar va-
lence bond solid” in Ref. [31]) upon increasing the interaction
strength above a finite threshold. For small N , on the other
hand, the Néel antiferromagnet occurs in the limit of strong
interactions [28,29]. Further exotic symmetry-broken states
may be stabilized for intermediate values of N and strong
interactions as well [30,31,78–80]. The phase diagrams of
our SO(N) Majorana-Hubbard models feature an analogous
structure, with the Majorana semimetal replacing the Dirac
semimetal at weak interaction, the staggered dimerized phase
replacing the columnar dimerized phase at strong interaction
and large N , and the Néel antiferromagnet occurring in both
families of models at strong interaction and small N .

In this work, we have restricted ourselves to translation-
invariant states. Note that this ansatz excludes states with

enlarged unit cells, such as columnar or plaquette valence
bond solids. From the analogy between SO(N ) Majorana-
Hubbard and SU(N ) Hubbard-Heisenberg models, it seems
possible that the staggered dimerized state could be replaced,
in some parts of the phase diagram, by other states that feature
larger unit cells, if the latter are taken into account in a refined
mean-field analysis. We leave this interesting question for
future work.

For the SO(N) Majorana-Hubbard models, we have shown
that the transition between the symmetric Majorana semimetal
and the SO(N)-symmetry-broken Néel antiferromagnet is
continuous for small N , but becomes discontinuous for N
above a certain critical value. In the one-loop approxima-
tion, the fluctuation-induced first-order transition occurs for
N � 4, while the cases for N � 3 feature a continuous tran-
sition. Higher-loop corrections may shift the critical value
of N , above which the transition turns first order; however,
the qualitative features of the one-loop result are expected
to hold also beyond our approximation. Recently, a lattice
model, which is amenable to sign-problem-free quantum
Monte Carlo simulations, and is expected to feature a quantum
critical point in the universality class of the semimetal-to-
SO(3)-antiferromagnet transition, has been devised [81]. The
numerical data obtained for this model are consistent with a
continuous transition, in agreement with our results for the
SO(3) Majorana-Hubbard model. It would be interesting to
generalize this model to larger values of N in order to test
our prediction of a fluctuation-induced first-order transition
by means of large-scale numerical simulations.
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APPENDIX A: EXPLICIT FORMS OF MEAN-FIELD
PARAMETERS

In the main text, only the magnitudes of the antiferro-
magnetic and dimer order parameters are shown. In this
Appendix, we discuss the various mean-field parameters ex-
plicitly as function of J/t , see Fig. 4. The top panels of
this figure show the eigenvalues of the antiferromagnetic or-
der parameter φabLab for various values of N , illustrating
the continuous nature of the semimetal-to-antiferromagnet
transition at the mean-field level, the discontinuous nature
of the antiferromagnet-to-dimerized transition, and the ab-
sence of antiferromagnetic order at large N � 5 (N � 7) on
the honeycomb (π -flux) lattice. The bottom panels show the
bond variables χi j on different nearest-neighbor bonds 〈i j〉
for various values of N . In the Majorana semimetal phase,
all bond variables acquire the same N- and J/t-independent
values χi j = −0.52483184 and χi j = ∓0.47902212 on the
honeycomb and π -flux lattices, respectively. In the anti-
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FIG. 4. Mean-field parameters of SO(N) Majorana-Hubbard model as function of J/t for different values of N on (a,c) honeycomb and
(b,d) π -flux square lattices. (a,b) Eigenvalues ±φ̃ of antiferromagnetic order parameter matrix ρ = ∑

a<b φabLab. (c,d) Dimer order parameters
χ (δ) ∈ {χ̃ − �χ, χ̃} on different nearest-neighbor bonds δ in 〈i j〉 = 〈i, i + δ〉.

ferromagnetic phase, the bond variables become N- and
J/t-dependent, but continue to have the same magnitude
on the different bonds. Eventually, in the dimerized phase,
the bond variables acquire different values on the differ-
ent nearest-neighbor bonds. This leads to a splitting of
the curves for χi j above a certain value of J/t , which
indicates the antiferromagnet-to-dimerized and semimetal-
to-dimerized transitions for intermediate N and large N ,
respectively. Both transitions are characterized by sizable
jumps in the dimer order parameter, indicating strong first-
order transitions.

APPENDIX B: IDENTITIES FOR SO(N) GENERATORS

In this Appendix, we list some identities for the SO(N )
generators Lab, which we have used to derive the flow
equations (10)–(13). An explicit representation is given by
Lab

αβ = −i(δa
αδb

β − δa
βδb

α ), with Greek indices α, β = 1, . . . , N .
In order to avoid double counting, we restrict the indices of
Lab as 1 � a < b � N . For given a < b and c < d , the N × N
matrices Lab and Lcd satisfy the defining SO(N ) algebra

[Lab, Lcd ] = (−i)(Ladδbc − Lacδbd + Lbcδac − Lbdδac),

(B1)

where matrix multiplication is understood when Greek indices
are suppressed. Note that the explicit factor of i in the above
relation is due to our choice of imaginary Lab.

With the representation chosen above, the SO(N ) Casimir
in the fundamental representation reads

∑
1�a<b�N

Lab
αβLab

γ ρ = −δαγ δβρ + δαρδβγ . (B2)

The above identity can be understood as a completeness re-
lation in the space of purely imaginary antisymmetric N × N
matrices, in which the Lab form a basis. Contracting β with γ

in Eq. (B2), one obtains

∑
a<b

LabLab = (N − 1)1N (B3)

and ∑
a<b

TrLabLab = N (N − 1). (B4)

For the triangle diagram contributing to the renormalization
of the Yukawa coupling, we further make use of the identity

∑
c<d

Lcd LabLcd = Lab, (B5)

which similarly follows from Eq. (B2).
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