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Competition of first-order and second-order topology on the honeycomb lattice
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We investigate both first-order topology, as realized through Haldane’s model, and second-order topology,
implemented through an additional Kekulé distortion, on the honeycomb lattice. The interplay and competition
of both terms result in a phase diagram at half-filling which contains 12 distinct phases. All phases can be
characterized by the first Chern number or by a quantized ZQ Berry phase. Highlights include phases with high
Chern numbers, a Z6 topological phase, but also coupled kagome-lattice Chern insulators. Furthermore, we
explore the insulating phases at lower fillings and find again first- and second-order topological phases. Finally,
we identify real-space structures which feature corner states not only at half but also at third and sixth fillings, in
agreement with the quantized ZQ Berry phases.
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I. INTRODUCTION

Topological insulators (TIs) are bulk insulators with
topologically protected metallic states confined to the bound-
ary [1–3], immune to single-particle backscattering [4–6].
They are a generalization of the integer quantum Hall ef-
fect [7], which is characterized by the Chern number [8].
More specifically, these TIs are fermionic phases protected
by time-reversal (TR) symmetry and U (1) charge conserva-
tion. Today, we know a plethora of such symmetry-protected
topological (SPT) phases [9–13]. It has been claimed that
the one-dimensional fermionic SPT phases have been fully
classified [10,11]. Moreover, all noninteracting fermionic
phases in d dimensions have been characterized based on
both group cohomology and K theory [13–15]. SPT phases
usually have boundary (i.e., edge or surface) modes present,
and their bulk states can be classified by a topological
invariant, a phenomenon referred to as bulk boundary corre-
spondence [16,17].

The TR invariant TIs in two dimensions (2D) represent a
pioneering subject in this young field, also known as quantum
spin Hall (QSH) insulators [18–20]. The proposal that the
QSH effect might exist in negative bandgap semiconductor
wells [21] was swiftly followed with the experimental discov-
ery of a 2D TI in HgTe/CdTe quantum wells [22]. The other
early proposal for 2D QSH effect was for the honeycomb
lattice material graphene [18,19]; the seminal papers of Kane
and Mele [18,19] also highlighted that a spinless, TR breaking
version of their honeycomb model was introduced by Haldane
[23].

The electric multipole insulators in the work of Benalcazar
et al. (BBH) [24,25] generalize bulk boundary correspondence
beyond the previously mentioned models of TIs. While those
TIs in d dimensions exhibit d − 1 dimensional boundary
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states, these multipole insulators feature d − n dimensional
corner or hinge states. These modes correspond to quan-
tized higher electric multipole moments, and because of this
unusual bulk-boundary correspondence, they are often re-
ferred to as higher order TIs (HOTIs) [26–29], in contrast
to the previously mentioned first-order TIs. HOTIs represent
today an active and flourishing field of research [30–40].
Their theoretical prediction was quickly matched with exper-
imental realizations, with HOTIs realized in bismuth [26,27],
topolectrical circuits [41–46], photonic crystals [47–49], and
acoustic [50–52] and elastic systems [46]. Usually, one con-
siders first- and higher order topology as exclusive: either one
or the other is realized. That might be the reason why only
little work has been done on the combined effects of first- and
higher order topology.

The honeycomb lattice offers some of the simplest path-
ways to modeling topologically nontrivial behavior. For
example, the Dirac band structure can be realized on the
honeycomb lattice without the need of any π fluxes, while
the square lattice with its trivial parabolic bands switches
to Dirac bands only when subject to π flux per plaque-
tte. In a similar fashion, the simplest HOTI model, the
square lattice BBH model [24,25], still requires insertion
of π fluxes, which are not necessary for the honeycomb
lattice. The honeycomb lattice offers second-order topology
solely through anisotropic hopping amplitudes, referred to as
Kekulé and anti-Kekulé distortions [53–56], which was re-
cently realized in graphene [37]. Several works have explored
HOTI phases on the honeycomb lattice [57–66], includ-
ing experimental work [43]. The simple Kekulé distortion
and the connection to the QSH model of Kane and Mele
[18,19] (for spinful electrons) or to Haldane’s [23] Chern
insulator model (for spinless electrons), respectively, both
make the honeycomb lattice the perfect testing ground to
explore the interplay and competition of first- and second-
order topology. The Kane-Mele model with Kekulé anisotropy
was previously studied in Ref. [67] and more recently an
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experimentally motivated variant of Haldane’s model with
Kekulé distortions [68].

In this paper, we study the interplay and competition of
first- and second-order topology of spinless electrons. In
Sec. II, we introduce the model of our investigation, a Kekulé-
distorted Haldane model. In Sec. III, we analyze the Chern
phases at half-filling, and in Sec. IV, we analyze HOTI phases
at half-filling. Section V contains our analysis of the phases
that emerge at lower fillings. After a discussion of the results
in Sec. VI, the paper ends with a summary in Sec. VII.

II. MODEL AND DEFINITIONS

The Hamiltonian, containing both Haldane’s term and a
Kekulé distortion on the honeycomb lattice, is given by

H =s

(
t
∑
〈i, j〉

c†
i c j +t ′∑

〈〈i, j〉〉
e±iφc†

i c j

)
(hexamers)

+s′
(

t
∑
〈i, j〉

c†
i c j +t ′∑

〈〈i, j〉〉
e±iφc†

i c j

)
(betweenhexamers),

(1)

where 〈i, j〉 (〈〈i, j〉〉) denotes (next) nearest neighbor lattice
sites. Thus, t (t ′) is the real-valued hopping amplitude of the
(second-) nearest neighbor bonds. In the t ′ term, the phase
factor has a positive (negative) exponent for second-nearest
neighbor hoppings that go counterclockwise (clockwise)
around a hexamer. We set φ = π/2, which makes the second-

neighbor hopping purely imaginary, breaking TR symmetry
explicitly. That is the essence of Haldane’s term and can en-
able anomalous quantum Hall effect. To introduce the Kekulé
or anti-Kekulé distortion, respectively, the Hamiltonian is split
into two parts. The first part contains all bonds within the
hexamers (shown in black in Fig. 1), modulated by an overall
scaling factor s. The second part contains all other bonds, i.e.,
all bonds between hexamers (shown in blue in Fig. 1), with
scaling factor s′.

The unit cell for this model contains six atoms (a hexamer),
spanned by the following lattice vectors:

a1 = 3ax̂, a2 = 3a

2
(x̂ +

√
3ŷ). (2)

We further introduce a3 = a1 − a2; a is the lattice spacing,
and x̂ and ŷ are unit vectors in the x and y directions, respec-
tively. The reciprocal lattice vectors are then given as

b1 = 2π

3
√

3a
(
√

3x̂ − ŷ), b2 = 4π

3
√

3a
ŷ. (3)

For convenience, we set a = 1 throughout the paper. By
imposing periodic boundary conditions, we can express the
model in Eq. (1) in momentum space:

H =
∑

k

c†
kh(k)ck, (4)

where ck is the vector of annihilation operators
(c1,k, ..., c6,k )T , and h(k) is the Bloch matrix. Here,

h = it ′

⎛
⎜⎜⎜⎜⎜⎝

0 0 A 0 −B∗ 0
0 0 0 B∗ 0 −C∗

−A∗ 0 0 0 C 0
0 −B 0 0 0 A∗
B 0 −C∗ 0 0 0
0 C∗ 0 −A 0 0

⎞
⎟⎟⎟⎟⎟⎠ + t

⎛
⎜⎜⎜⎜⎜⎜⎝

0 s 0 s′e−ia2·k 0 s
s 0 s 0 s′eia3·k 0
0 s 0 s 0 s′eia1·k

s′eia2·k 0 s 0 s 0
0 s′e−ia3·k 0 s 0 s
s 0 s′e−ia1·k 0 s 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (5)

where

A = s + s′(e−ia1·k + e−ia2·k ), (6)

B = s + s′(e−ia3·k + eia2·k ), (7)

C = s + s′(eia3·k + eia1·k ), (8)

and A∗ is the complex conjugate of A.
The Hamiltonian in Eq. (1) can be fully parametrized by

two values, which we define to be λ and α. (i) λ = t ′/t is the
relative strength of the next-nearest neighbor (Haldane) bonds
to the nearest neighbor bonds and is a measure of first-order
topology in the system; (ii) α = s′/s is the relative strength of
bonds within hexamers to bonds between hexamers (for bonds
of the same type) and is a measure of second-order topology
in the system.

We use the following conventions:

λ � 1 ⇒ t = 1 ∧ λ = t ′,

λ > 1 ⇒ t ′ = 1 ∧ λ = 1

t
, (9)

Following this definition, λ = ∞ corresponds to t ′ = 1 ∧ t =
0. The same convention is used for α.

α � 1 ⇒s = 1 ∧ α = s′,

α > 1 ⇒s′ = 1 ∧ α = 1

s
, (10)

We thus avoid, for α = 1
0 or λ = 1

0 , respectively, the band-
width going to infinity.

Figure 2 shows the α-λ phase diagram at half-filling, con-
taining 12 different phases. The phase diagram was calculated
by exact diagonalization of Eq. (4) and not for the real-space
Hamiltonian Eq. (1) to avoid finite-sized effects. Black lines
correspond to gap closings between the different phases.

Since the unit cell of the system is threefold larger than the
standard two-atomic unit cell used in the tight binding model
of the honeycomb lattice of graphene (which corresponds to
α = 1, λ = 0 in the current model), the Dirac cones located
in the valleys K and K ′ in the dispersion relation of graphene
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FIG. 1. Honeycomb lattice: nearest-neighbor bonds shown as
solid lines, second-neighbor bonds as dashed lines, and the arrows
fix the phase convention of the Haldane term. The ratio of hoppings
of the blue and black bonds is given by α, quantifying the Kekulé
distortion. Lattice vectors a1 and a2 are shown in red.

have been backfolded to the � point, the center of the Brillouin
zone. The bulk gap closes between phases IV, I, and II through
this Dirac cone at �. The other gap closings for larger λ do
not happen at � but rather at the K , K ′, or M and on the line
between them in the new (reduced) Brillouin zone.

FIG. 2. The phase boundary diagram for the combined tight-
binding Hamiltonian in Eq. (1). α is the ratio s′/s, and λ is the
ratio t ′/t . The phase boundaries are calculated by numerically finding
where the Bloch Hamiltonian in Eq. (5) has a gap closing.

The bulk gap is closed for α → ∞, 1
2
√

3
� λ � 1√

3
(from

the boundary between phases I and IV to the boundary be-
tween phases V and VII). The bulk gap also closes for λ →
∞, which means that the bulk gap is generally of order 0.01
or less for λ � 1

0.2 (for an example, see Appendix B).

III. CHERN INSULATING PHASES AT HALF-FILLING

Nine out of the 12 phases possess a finite Chern number
and are thus versions of anomalous quantum Hall effect. In
the following, we will discuss the most interesting of these
Chern phases in detail; the other Chern phases are delegated
to the Appendices B and C.

A. Chern number

The first Chern number is the topological invariant which
was discovered in a physical system and linked to an
experiment [7] (also known as the Thouless–Kohmoto–
Nightingale–den Nijs invariant [8]); it characterizes the
(anomalous) quantum Hall effect. It is well-established that,
for quantum Hall systems, the Chern number can be measured
in standard transport experiments via transverse (Hall) con-
ductance:

σ xy = e2

h
C. (11)

A finite Chern number implies broken TR symmetry (ex-
plicitly or spontaneously). For our model in Eq. (1), TR is
explicitly broken by Haldane’s term, i.e., whenever t ′ �= 0. A
characteristic property of topological phases is the presence
of bulk-boundary correspondence. That is, a finite topological
invariant causes metallic states, which are topologically pro-
tected, to be present at (some of) the edges or surfaces, and
they must traverse the spectral bulk gap.

Suppose a band is separated from other bands by an energy
gap. The Chern number of that band is defined as

cn = 1

2π i

∫
BZ

F (n)
xy (k) · dk, (12)

where the integral is taken over the first Brillouin zone. Here,
F (n)

xy is the Berry curvature of the nth band:

F (n)
xy (k) = ∂A(n)

y (k)

∂kx
− ∂A(n)

x (k)

∂ky
. (13)

The Berry connection A(n)(k) of the nth band is defined as

A(n)
i (k) = 〈n(k)| ∂

∂ki
|n(k)〉, (14)

where |n(k)〉 is the normalized Bloch state of the nth band:

h(k)|n(k)〉 = En|n(k)〉. (15)

Note that the normalized wave functions, and therefore the
Berry connection, are gauge dependent; however, the Chern
number is not.

The Chern number at a particular filling is then the sum of
the Chern numbers of the filled bands:

C =
∑
n occ.

cn. (16)

045113-3



BUNNEY, MIZOGUCHI, HATSUGAI, AND RACHEL PHYSICAL REVIEW B 105, 045113 (2022)

For instance, for Eq. (1), the Chern number at half-filling is
C = ∑3

n=1 cn.
The integral in Eq. (12) can be numerically evaluated us-

ing the method established in Ref. [69]. We discretize the
Brillouin zone into an N × N grid, defined by reciprocal
lattice vectors: μ1 = b1/N, μ2 = b2/N . At each point in the
discretized Brillouin zone k	, the lattice field strength F12 is
defined as

F12(k	) = ln[U1(k	)U2(k	 + μ1)U1(k	 + μ2)−1U2(k	)−1].
(17)

Here, F12(k	) is purely imaginary, and Im[F12(k	)] is defined
on the principal branch of the logarithm. Also, Ui(k	) is the
link variable:

Ui(k	) = 〈n(k	)|n(k	 + μi )〉, (18)

where |n(k	)〉 is the nth normalized energy eigenvector at k	.
The Chern number of the nth band is then

cn = 1

2π i

∑
	

F12(k	), (19)

where we sum over the entire discretized Brillouin zone.
By virtue of bulk-boundary correspondence, C can also

be read off from ribbon spectra such as those in Figs. 3(a),
3(c), and 3(e). The ribbon spectra are calculated by Fourier
transforming the lattice in one direction to momentum space
while keeping the other real-space coordinate. The result is
a 6N-dimensional basis system, with one quantum number
k. For Chern phases with finite Chern number C, we expect
the difference of right- and left-moving edge modes per edge
to be C. For all Chern phases considered in this paper, we
have checked that the edge mode counting in ribbon geometry
matches the calculated Chern numbers. We note that this
procedure applies to any other filling.

Phases I–III have a zero Chern number; all nine other
phases have a nonzero Chern number, ranging in value from
−4 to 5, see Table I.

B. Discussion of phases

We have selected three phases which exemplify the be-
havior of the nine Chern phases. Ribbon spectra, spectra in
momentum space, and Berry curvature for these three phases
are the subject of Fig. 3; the corresponding plots for the other
six phases are delegated to Appendixes B and C.

1. Phase IV: Haldane phase

Phase IV is the largest phase in our phase diagram and
contains at α = 1 the original Haldane phase [23], albeit with
a three-times increased unit cell. The Chern number of Hal-
dane’s original model is C = 1, and by adiabatic continuity, C
cannot change within the entire phase. Here, we discuss the
phase mainly for benchmarking purposes. A representative
ribbon spectrum shown in Fig. 3(a) clearly highlights one
right-moving (left-moving) mode on the left (right) edge at
half-filling. The sum over the Chern numbers of the three
occupied bands [Fig. 3(b)] yields C = −1 + 0 + 2 = 1, as
expected. The emerging Chern phases at lower fillings are
discussed in Sec. V.

As mentioned before, the phase boundary is determined by
gap closings at the �, K , K ′, or M points in the Brillouin zone.
There are a few special points which require our attention:
(i) α = 1, λ = 0 corresponding to undistorted graphene; (ii)
α = 0 and λ = 1√

3
represent the only phase boundary point

which is in the decoupled hexamer limit (the evolution of
energies at α = 0 as a function of λ is shown in Appendix A);
(iii) α = 1, λ → ∞ corresponds to t ′ = 1 and t = 0, i.e.,
the honeycomb lattice decouples into its two triangular sub-
lattices. Note that these triangular lattices are subject to
imaginary hoppings and thus different from standard triangu-
lar lattice bands; in fact, at this point, the band structure is that
of a semimetal on the triangular lattice [70].

2. Phase V

Phase V requires large values of α and significant λ ∼ 1.
Energy gaps at half-filling turn out to be quite small in the
entire phase, see Figs. 3(c) and 3(d) and in particular the
zoom-in in panel (c). This phase has a Chern number C =
1 + 0 + 3 = 4. Despite the small gap size, the four chiral edge
modes can be well observed [Fig. 3(c)].

3. Phase VII

Phase VII is a rather large phase in Fig. 2, realized through
parameters α > 2 and λ > 1. The phase has two flat, topolog-
ically trivial bands closer to zero energy; the Chern number
is found as C = 1 + 1 + 0 = 2, in agreement with two chi-
ral edge modes [Figs. 3(e) and 3(f)]. Moreover, the phase
contains the special point α → ∞, λ → ∞, albeit gapless
due to perfectly flat bands at zero energy. As before, λ → ∞
corresponds to decoupled triangular-sublattices of the original
honeycomb lattice. Moreover, sending α → ∞ isolates and
decouples further sites from the triangular lattices. The re-
maining graph is adiabatically equivalent to a kagome lattice
with additional isolated lattice sites. The equivalence to the
kagome lattice is illustrated in Fig. 4.

The kagome lattice tight-binding model with real nearest-
neighbor hopping appears to be the one of the honeycomb
lattice with an additional perfectly flat band touching the
other bands at the top or bottom, depending on the sign of
the nearest-neighbor hopping amplitude. Here, the nearest-
neighbor term is, however, purely imaginary (Haldane’s term).
The bands appear like gapped graphene but with a flat band in
between at zero energy.

The spectrum is identical to that of a kagome tight -binding
model with staggered fluxes applied [71,72], causing topolog-
ically nontrivial behavior. The staggered fluxes lead to a Chern
number C = 1 in the gaps above and below the flat zero-
energy band. Perturbing slightly away from this special point
leads to a weak coupling of the two kagome lattices (for finite
λ < ∞), a weak coupling of the isolated atoms in the center
of the kagome hexagons (for finite α < ∞), or both. Coupling
both triangular sublattices leads then to a total Chern number
C = 2, as found before; also, the flat zero-energy bands are
hybridized to finite energy, rendering the phase gapped at half-
filling. The weak coupling of the two sublattices likely forms a
symmetric and an antisymmetric superposition of the original
two sublattice degrees of freedom. The symmetric edge state
then overlaps slightly with an antisymmetric bulk band and
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FIG. 3. (a), (c), and (e) Ribbon spectra and (b), (d), and (f) spectra in momentum space (top) and Berry curvature (bottom) over the
Brillouin zone. (a) and (b) First row is phase IV with C = 1 at half-filling, parameters used α = 1

0.5 , λ = 0.2; (c) and (d) second row is phase
V with C = 4 at half-filling, parameters used α = 1

0.08 , λ = 0.57; (e) and (f) third row is phase VII with C = 2 at half-filling, parameters used
α = 1

0.25 , λ = 1
0.25 . Displayed below Berry curvature plots are the Chern numbers cn of each individual band. For the ribbon spectra, blue (red)

dots are states with �75% of the wave function contained on the left (right) of the ribbon. Ribbon spectra are calculated for a width of 100
unit cells (600 atomic sites), with a k resolution of 2π/125 (2π/150 for the zoomed in regions). Momentum space spectra and Berry curvature
evaluated on a 500 × 500 grid.

vice versa. These edge state therefore do not hybridize with
the overlapping bulk bands [see Fig. 3(e)].

TABLE I. Chern numbers of phases in Fig. 2. Phases I–III pos-
sess a zero Chern number.

IV V VI VII VIII IX X XI XII

1 4 −2 2 −4 5 −1 3 −2

IV. HIGHER ORDER TOPOLOGICAL
PHASES AT HALF-FILLING

Higher nth-order topology for a d-dimensional system is
evident as a bulk-boundary correspondence with d − n edge
or surface states, respectively. Just like a 2D first-order TI pos-
sesses one-dimensional edge states traversing the bulk gap, a
2D second-order TI possesses zero-dimensional corner modes
localized within the gap [24]. The BBH model for the π -flux
square lattice [24] translates to the honeycomb lattice with
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FIG. 4. Sublattice of the honeycomb lattice for α → ∞ and λ →
∞ (black). In red, an equivalent kagome lattice is shown. By slightly
shifting the sites and bonds around, one can transform one lattice
into the other. Arrows indicate the phase convention of the imaginary
hopping term with amplitude t ′.

Kekulé or anti-Kekulé distortion without the need to apply
any flux [63]. The honeycomb HOTI phases (for λ = 0) were
previously characterized by virtue of ZQ Berry phases, which
were introduced in Refs. [63,73–75]. In the following, we
extend this pioneering work and investigate the entire α-λ
phase diagram and search for HOTI phases.

Irreducible cluster representations, i.e., configurations
where the lattice is decoupled into monomers, dimers, trimers,
etc., are key to understanding HOTI phases. For instance,
the previously discussed anti-Kekulé phase II contains the
decoupled hexamer point α = 0 = λ. If the bulk gap remains
finite, the HOTI phase will persist, and the ZQ invariant will
stay constant. Similarly, α → ∞ and λ = 0 are the decoupled
dimer point of the Kekulé phase I [63].

The ZQ Berry phase [63,74,75] can take Q discrete val-
ues. Due to the (anti-) Kekulé distortion causing dimerization
or hexamerization, respectively, we expect only Q = 2 and
Q = 6 to be of relevance; thus, we compute the Z2 and Z6

invariants for the entire phase space.
In agreement with the irreducible cluster representations

mentioned before, we find phase I to be a Z2 HOTI phase
with Z2 = 2π/2 × 1 = π and phase II to be Z6 HOTI phase
with Z6 = 2π/6 × 3 = π . In addition, we identify phase III
also as a Z6 HOTI with Z6 = 2π/6 × 3 = π . Ribbon spectra,
spectra in momentum space, and Berry curvature for these
three phases are the subject of Fig. 5. Naively, one might
assume first- and second-order topologies are exclusive, i.e.,
either a phase is one or the other. Thus, one would also assume
the Chern phases should possess ZQ = 0. In contrast to such
reasoning, we find finite Z2 and Z6 Berry numbers within
some of the Chern phases, albeit not adiabatically connected
to irreducible cluster representations. Even more surprising,

we find discrete transitions of the Berry phases within Chern
phases (i.e., without closing of the bulk gap), as discussed
below.

A. Z2 Berry phase

Consider the dimer cluster limit α → ∞, λ = 0 adiabati-
cally connected to phase I, where the only nonzero bonds are
the nearest neighbor bonds, i.e., dimers, between the hexamer.
Dimers have a Z2 sublattice symmetry; thus, we consider the
Z2 Berry phase. We choose one of the disconnected dimer
bonds and without loss of generality label its lattice sites 1
and 2. We may separate the Hamiltonian as

H = Hdimer + (H − Hdimer) (20)

= c†
1c2 + c†

2c1 + (H − Hdimer). (21)

Next, we introduce a twist on this dimer bond by transforming
the operators corresponding to one of the dimer sites:

c1 → eiθ c1, (22)

while leaving the other one unchanged. Thus, the Hamiltonian
becomes a function of θ :

H (θ ) = Hdimer(θ ) + (H − Hdimer) (23)

= e−iθ c†
1c2 + eiθ c†

2c1 + (H − Hdimer). (24)

Since the energy eigenstates |n(θ )〉 are often degenerate, we
need to compute the trace over the matrix 〈n(θ )| ∂

∂θ
|m(θ )〉

instead of the standard Berry potential, thus sometimes also
referred to as non-Abelian Berry phase [76,77]. The non-
Abelian Berry phase accumulated as we twist this dimer
through 2π is

γ2 =
∫ 2π

0
Tr A(θ )dθ, (25)

where A(θ ) is the non-Abelian Berry connection [77]:

A(θ ) = −i�†(θ )
∂

∂θ
�(θ ). (26)

Here, �(θ ) is a multiplet, defined as

�(θ ) = [|1(θ )〉, |2(θ )〉, ..., |M(θ )〉], (27)

i.e., a matrix whose columns are the lowest M normalized
energy eigenvectors |n(θ )〉:

H (θ )|n(θ )〉 = En(θ )|n(θ )〉, (28)

and M is the number of filled states. For instance, M = N/2
for half-filling, where N is the number of lattice sites. If we
consider the integration path in Eq. (25) as half of a closed
loop from θ = 0 to 2π and back again, then the condition that
the gauge must be regular (single valued) demands that the
Berry loop over the whole closed loop must be equal to an
integer multiple of 2π . However, the integral for θ from 0 to
2π is identical to the integral from 2π back to 0. The latter
integral is the equivalent of the former integral if we were to
apply the gauge transformation in Eq. (22) to the other atom
in the dimer c2 rather than c1. The Z2 symmetry of the dimer
forces the two integrals to be identical. Therefore, the Berry
phase defined in Eq. (25) must be equal to 0 or π modulo 2π ,
i.e., the Z2 twist Berry phase is quantized [74].
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FIG. 5. (a), (c), and (e) Ribbon spectra and (b), (d), and (f) spectra in momentum space (top) and Berry curvature (bottom) over the
Brillouin zone. Chern numbers for each of the three cases shown is C = 0 at half-filling. (a) and (b) First row is phase I, parameters used
α = 1

0.2 , λ = 0.1; (c) and (d) second row is phase II, parameters used α = 0.2, λ = 0.1; (e) and (f) third row is phase III, parameters used
α = 0.2, λ = 1

0.4 . Displayed below Berry curvature plots are the Chern numbers cn of each individual band. For the ribbon spectra, blue (red)
dots are states with �75% of the wave function contained on the left (right) of the ribbon. Ribbon spectra are calculated for a width of 100 unit
cells (600 atomic sites), with a k resolution of 2π/125. Momentum space spectra and Berry curvature evaluated on a 500 × 500 grid.

Numerically, we can calculate the non-Abelian Berry phase
by breaking up the integration path into N + 1 discrete values
θi, {θi = 2π i/N | 0 � i � N}. We can then use a lattice Berry
connection so Eq. (26) at θ = θi becomes

Ai = −i�†(θi )�(θi+1). (29)

The Berry phase in Eq. (25) can then be evaluated as

γ2 = i
N∏

i=0

Arg det Ai. (30)

Note that this calculation is gauge invariant if we start and
end the integration at the same point, which is the case in our
calculation [76,78].

Up to this overall gauge freedom, these Berry phases are
well defined and do not change unless the spectral gap, de-
pending on twist angle θ , closes. There are two ways in which
the gap may close: (i) the gap closes with no twist and is thus
identical to the bulk gap (as it happens for the boundaries of
the phases I and II in Fig. 2) or (ii) the gap remains open for
zero twist but closes for a finite twist angle. In the Z2 twist
Berry phase calculation, the latter case only occurred when
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FIG. 6. The Z2 Berry phase diagram. Orange is a Berry phase
of π , and white/black is a Berry phase of zero. The color scales
correspond to the smallest energy gap of H (θ ) along the Berry
phase integral calculated for N = 18 (i.e., 6 × 182 lattice sites). The
Z2 Berry phase is zero in all other phases. The half-filling phase
boundaries from Fig. 2 have been overlaid as black lines. Inset is the
half-filling energy twist gap parameters for α = 1

0.5 , λ = 0.2 (blue
circle), which highlights that the gap is closing for twist angle θ = π ;
see main text for discussion.

θ = π , where the Z2 twist Berry phase transitions between π

and 0 away from the phase boundaries through the middle of
phase IV (see Fig. 6).

The numerical calculation shown in Fig. 6 has two phases
where the Z2 twist Berry phase γ2 = π . One coincides with
phase I, where the Chern number is zero, so the constant and
nonzero Z2 Berry phase characterizes the phase. The other
phase overlaps some of phase IV, where the Chern number is
one. Corner states that sit in the bulk energy gap at E = 0 can
be observed in phase I. Where there is a finite Chern number
in the half-filling gap, corner states cannot be discerned from
the edge states which are linearly dispersed across the bulk
gap. Phases with a finite Chern number and finite ZQ Berry
phase are discussed further in Sec. VI.

The presence of corner states in phase I is dependent on
the edge geometry. There are many possible geometries that
give corner states, but a requirement is that there is a complete
hexamer on a corner that is attached to either 1, 3, or 5 other
hexamer unit cells [43,61–63,68]. Consider the limit where in-
terhexamer bonding is much stronger than a small (but finite)
intrahexamer bond. Then all atoms in the hexamer that are
connected to a different hexamer in the lattice are involved
in forming a strong interhexamer dimer and are practically
disconnected from the other atoms in the hexamer. The atoms
that are not dimerized in this way then form a free monomer,
trimer, or pentamer with a zero-energy eigenstate. An example
geometry is considered in Fig. 7 (which is reminiscent to
that shown in Ref. [68]), where the 120◦ corner hexamers
are connected to three other hexamer unit cells each, so a
weakly connected trimer is formed. The inset (b) shows the
zero-energy corner states are localized on these corners. Note

FIG. 7. Example of energy spectrum in phase I (α = 1
0.2 , λ =

0.05, on a 10 × 10 × 6 − 2 = 598 site lattice). Energies are plotted
in increasing order n. Wave functions of interest are shown in the
inset boxes corresponding to their color. (a) |ψ |2 of tetramer structure
corner state at E = 0.1162. (b) |ψ |2 of trimer structure corner state
at E = 0, i.e., one of the two zero-energy corner states at half-filling.
Note that these two wave functions look identical. (c) |ψ |2 of dimer
edge state at E = −0.2262. (d) |ψ |2 of chiral edge state in the sixth
filling gap at E = −1.1578. Chiral edge states exist in the third and
sixth filling gaps, which both have a Chern number of −1. Yellow
(black) corresponds to zero (high) wave function density in (a)–(d).

that isolated trimer (and pentamer) states feature additional
energy states different from E = 0. Where corner hexamers
are attached to two other hexamer unit cells, tetramers are
formed, which are the green energy eigenstates in the diagram.
These tetramer structures (and dimer structures, like those on
the edge of the lattice) do not have zero-energy states.

B. Z6 phase

Now consider the decoupled hexamer cluster limit α = 0.
Each individual hexamer has a Z6 symmetry (rotating the
labels of the atoms in a hexamer); thus, we consider the Z6

Berry phase. The construction is like that of the Z2 Berry
phase, but instead of considering a dimer in the decoupled
dimer limit, we consider a hexamer in the decoupled hexamer
limit. Without loss of generality, we choose a hexamer and
split the Hamiltonian H into two parts. Here, Hhexamer contains
all bonds between two atoms in the hexamer, and H − Hhexamer

contains all other bonds (bonds between hexamer and any
atoms not in the hexamer, and bonds entirely not in the hex-
amer).

We then introduce twists onto the hexamer by transforming
the operators in Hhexamer as

c j → eiφ j c j, (31)

for j = 1, . . . , 6 with φ j = �
j
i=1θi and φ6 = 0. The individual

θi are the twists on the nearest neighbor bonds between atoms
i and i + 1 in the hexamer (where θ6 is the twist on the bond
between atom 1 and 6). Note θ6 = −�5

i=1θi, since φ6 = 0.
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FIG. 8. (Left) Z6 twist Berry phase at half-filling. (Right) Minimum energy gap along the twist path. Calculated for N = 18 real-space
lattice (i.e., 6 × 182 sites). The half-filling phase boundaries from Fig. 2 are overlaid as black lines.

The transformation also introduces twists on the next-nearest
neighbor bonds within the hexamer, where the transformation
ensures that the net phase accumulated in any closed loop
within the hexamer is constant for any amount of twisting.

This transformation renders the Hamiltonian a function of
� = (θ1, ..., θ5). The non-Abelian Berry phase accumulated
as we twist the hexamer over a path L in the five-dimensional
parameter space is

γ6 =
∫

L
TrA(�) · d�, (32)

where A(�) is the non-Abelian Berry connection in Eq. (26).
The path L is any one of the paths Li, 0 � i � 5, where Li

is defined as

Li : Ei → G → Ei+1, (33)

with E0 = E6 = (0, 0, 0, 0, 0), Ei = 2π êi for 1 � i � 5,
where êi is the unit vector in the ith direction, and G =
2π
6 (1, 1, 1, 1, 1) is the center of mass of a five-dimensional

tetrahedron with side lengths of 2π . As implied by the defini-
tion of the Berry phase as the integral over any of these paths,
these paths are equivalent. This stems from the Z6 symmetry
of rotating the labels of the hexamer, which is equivalent to
rotating through the θi.

Since the Berry phase accumulated by taking all six paths
(which is a closed loop) must be equal to an integer multiple
of 2π , and the six paths individually are equivalent to each
other, then the Z6 Berry phase Eq. (32) must be equal to an
integer multiple of 2π/6 = π/3. The Z6 twist Berry phase is
unchanging unless the gap closes which, like the Z2 calcula-
tion, happens with either no twist or when � = G, the center
of mass point.

The numerical calculation of the Z6 Berry phase is analo-
gous to the calculation of the Z2 Berry phase, see Fig. 8 (left).
We have observed a finite-sized dependence of the results.
For instance, the γ6 = π phase at α ≈ 1

0.4 , λ ≈ 0.6 on the
left in Fig. 8, which is calculated on an 18 × 18 hexamer
lattice, is not present when the Z6 Berry phase is calculated

on a 17 × 17 hexamer lattice. The energy gap diagram on the
right in Fig. 8 shows that the energy gap is small across this
entire phase, which may explain the discrepancy. Similarly,
the energy gap is small for the γ6 = 5π/3 phase next to it,
and the size of this phase decreases and increases depending
if the size of the lattice is n × n hexamer unit cells with n odd
or even.

There are three phases with Z6 = 4π/3, covering a large
part of phase IV (Haldane phase) and phases X and XI. These
phases all have finite Chern numbers (C = 1,−1, 3, respec-
tively). Analogous to the Z2 Berry phase, where there was no
change in the Berry phase from phase I to the Haldane phase,
in the Z6 Berry phase calculation, a Berry phase of γ6 = π

extends from phase II to the middle of the Haldane phase. This
makes a phase with γ6 = π and a Chern number with C = 1.
For further discussion of the interplay of ZQ Berry phases and
Chern numbers, see Sec. VI.

1. Real-space plots/corner states

Both phases II and III have a Z6 twist Berry phase γ6 = π

and a Chern number of zero. As α = 0 is a decoupled hexamer
cluster limit for all λ, both phases II and III are adiabatically
connected to the decoupled cluster limit (note that, for the
analogous situation α → ∞, only λ = 0 is a decoupled dimer
cluster limit, as second-nearest neighbor hopping with finite
λ couples all the dimers). Like phase I, the specific geometry
of the lattice edges and corners determines where zero-energy
corner states may appear.

In a similar fashion to the Su-Schrieffer-Heger model [79],
where a zero-energy edge mode exists when there are lone
atoms at the end of a chain of dimers, an incomplete strongly
bound hexamer unit cell at the boundary is needed for corner
states to exist. The simplest case would be a single atom
leading to a E = 0 state [63]. Another way to obtain corner
states is to remove one atom from a complete hexamer at
corners to create two open pentamers (see insets in Fig. 9 for
geometry). The pentamer possesses five energy states which
turn out to be in-gap states in the five gaps corresponding to
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FIG. 9. Example of energy spectra. (Left) Phase II (α = 0.2, λ = 0.2, and on a 10 × 10 × 6 − 2 = 598 site lattice). The pairwise
degenerate states within the different filling gaps are highlighted in various colors and correspond to the corner states shown in insets with the
same color. (a) |ψ |2 of an in-gap corner state at 1

6 filling. (b) |ψ |2 of an in-gap corner state at 1
3 filling. (c) |ψ |2 of an in-gap zero-energy corner

state at half-filling. (Right) Phase III (α = 0.2, λ = 1 on a 550 site lattice). Energies are plotted in increasing order n. The pairwise degenerate
states within the half-filling gap are highlighted in red and correspond to the |ψ |2 of the corner state shown in inset (a) |ψ |2 of in-gap corner
state at half-filling. Yellow (black) corresponds to zero (high) wave function density in the insets.

1
6 , 1

3 , 1
2 , 2

3 , and 5
6 fillings and are highlighted in color in Fig. 9.

The other geometry is a trimer at the corners, also leading to
three in-gap states. In contrast, dimers and tetramers at the
corner do not create corner states at zero energy since, in
the decoupled cluster limit, dimers or tetramers do not have
a zero-energy state. Monomer, trimer, or pentamers corners
persist across phases II and III until the gap closes, see spectra
in Appendix A.

V. TOPOLOGICAL PHASES AT LOWER FILLINGS

In the following, we focus on lower fillings which have
been less studied in the past. We note that, due to the particle-
hole symmetry of the spectrum, we expect our findings to hold
for the corresponding higher fillings as well. Figures 10(a) and
10(d) show the energy gap at 1

6 and 1
3 fillings for all values of

α and λ. Several gapped phases can be observed in addition to
an extended metallic region.

A. Third filling

Also note that the gap is closed for any value of α when
λ = 0. From Fig. 10(e), we can also see that the two left top
phases both also have a Z2 twist Berry phase of π .

The lower two phases both have a Chern number of zero,
Z2 twist Berry phase of zero, and a Z6 Berry phase of
2 × 2π/6 = 2π/3. This matches the analytic result, which is
that the Z6 twist Berry phase is equal to n × 2π in a phase
that is adiabatically connected to the decoupled hexamer limit,
where n is the filling factor [75].

A Chern number of zero and a nonzero Z6 Berry phase
lead us to look for isolated corner states in the third-filling
gap. The pentamer corner structures which gave corner states
at E = 0 across the whole of half-filling phases II and III

also give corner states in the third-filling gap at α = 0, i.e.,
in the disconnected hexamer cluster limit. This is not true
for other corner structures, i.e., monomers, dimers, trimers, or
tetramers. We thus have identified the structure with pentamer
corners as the one to observe corner states of the HOTI phases
at lower fillings.

The pentamer corner states persist while the gap remains
open, as shown in Appendix A. However, it should be noted
that corner states can enter a bulk band while the third-filling
gap is still open (see Appendix A for details). This is a prob-
lem unique to fillings that are not half-filling for this system,
as a particle-hole symmetry in the Hamiltonian ensures that
bands come in positive-negative pairs, and corner states exist
at zero energy, so for the corner state to enter the bulk band,
the half-filling gap must close. A similar behavior is also seen
in the breathing kagome model in a triangular shape [30].

B. Sixth filling

As can be seen in Fig. 10(a), there are four unique insulat-
ing phases at the sixth filling. The two phases at the top of the
diagram (for α > 1) are again both Chern phases. The phase
on the top left has a Chern number of −1, as demonstrated in
Figs. 5(a) and 5(b), and the phase on the top right has a Chern
number of +1, see Fig. 3(c) and 3(d). Like for the third filling,
the sixth-filling bulk bandgap is closed for λ = 0 [not visible
in Fig. 10(a)], so neither of these phases are adiabatically con-
nected to the dimer decoupled cluster limit. Portions of these
phases have a Z2 twist Berry phase equal to π , and where
the transition happens within a phase, the twist Hamiltonian
has closed at θ = π . From Fig. 10(c), we see that the left top
phase also has a Z6 twist Berry phase equal to π . Note that
the portions of the phase with other twist Berry phase values
correspond to regions with very small gaps, so are not equal
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FIG. 10. (a) and (d) Energy gap vs α and λ, (b) and (e) the Z2 twist Berry phase vs α and λ, (c) and (f) Z6 Berry phase vs α and λ. First
row corresponds to 1

6 filling, the second row to 1
3 filling. Energy gap calculations are performed in momentum space, while ZQ twist Berry

phases are performed in position space with 16 × 16 hexamer unit cells.

to π due to finite size effects. See the discussion for further
comments about the interplay between first- and higher order
topology in Sec. VI.

The two lower phases both have a Chern number of zero,
see Figs. 5(b) and 5(d) for example spectra and Berry curva-
ture calculations for the bottom left phase. As with the two
lower phases for the third filling, the expected Z6 twist Berry
phase of 1

6 × 2π = π/3 is seen in the numerical calculations
and persists over the entire phase. Pentamer corner states also
are present in the bulk bandgap across the phase, as seen in
Figs. 9 and 12.

VI. DISCUSSION

A. Phase boundaries and changes of Chern number

The Chern phases of this model at half-filling are notable
for their high Chern numbers. Large changes in Chern number
can be observed when crossing phase boundaries, with the
largest change occurring from phases VIII to IX. These phases
have Chern numbers of −4 and 5, respectively, meaning that
the Chern number changes by �C = 9 moving between these
phases. The changes in Chern number can be understood by
examining the gap closings. Dirac cones are the sources and
sinks of the topological invariant [3], where the change in
Chern number when crossing a phase boundary is usually
equal to the number of Dirac cones that form at the gap

closing. The change in the Chern number by �C = 9 occurs
at the intersection of two phase boundary lines, with one phase
boundary line corresponding to three Dirac cones at the three
M points and the other line corresponding to the two points
symmetrically between each of the three unique M and K/K ′
points, which gives six unique gap closing points on this
phase boundary line. When crossing over the intersection of
these two phase boundary lines, the two gap closings happen
at once, which explains the jump by �C = 9 of the Chern
number.

Aside from the M points and the two points around each
of the M points, gap closings can also happen at the � point
or the K and K ′ points (as mentioned previously). These gap
closings represent the creation of 3, 6, 1, and 2 uniquely
placed Dirac cones in the Brillouin zone, respectively. All the
boundaries between phases fall into one of these categories;
for example, toward the left of the phase boundary diagram
Fig. 2, the phase boundary between the HOTI phases with
Chern number 0 and the Haldane phases with Chern number
1 occurs where the gap closes at � with one Dirac cone.

B. Double and triple phase boundary points

There are a few higher order phase boundary points across
the phase boundary diagram. A few of these points are where
phase boundary lines cross over each other, i.e., a double
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phase boundary point, like what we discussed above for the
case �C = 9. Another higher order point is at α = 0, λ = 1√

3
,

where three lines come out of the one point, i.e., a triple phase
boundary point. As this point is in the decoupled hexamer
limit, the energies are obtained easily through diagonalization
of a k-independent 6 × 6 matrix, and the bands are therefore
flat. Thus, the gap closing occurs everywhere in the Brillouin
zone (touching of flat bands) rather than just at specific points.

The corresponding gap closing point does not happen in the
opposite limit λ = 1√

3
, α = 1

0 (i.e., β = 0), as the dimers are
not decoupled for finite λ, so the bands are k dependent. The
point α = 1

0 , λ = 1√
3

is a gap closing point, however, just at
the K/K ′ points. Another higher order phase boundary point
is λ = 1√

3
, α = 6, which is connected to three phase boundary

lines (triple phase boundary point). Approaching along λ <
1√
3
, the phase boundary line occurs at M, and for λ > 1√

3
,

the phase boundary splits into two—with one phase boundary
continuing at M and the other for the two points around M
along the K to K ′ line. This higher order point is the origin of
this later line, which is where the zero-energy points bifurcate
from M, moving closer to K with increasing λ.

C. Structure of Chern phases

The ZQ Berry phase calculation is straightforward for
phases with no Chern number, i.e., the HOTI phases. With-
out competition from the Chern number, the finite ZQ Berry
phase = 2πν/Q, where ν = filling factor, characterizes a
phase adiabatically connected to a decoupled cluster limit,
either hexamer or dimer [75]. In the absence of dispersive
(chiral) edge states, we can engineer incomplete cluster unit
cell boundaries to get corner states which remain energetically
separated from bulk states within a finite gap, even in lower
fillings than half-filling.

The story is not so clear for phases with a finite Chern num-
ber and ZQ Berry phase. We have previously identified such
phases, see Fig. 8 but also Fig. 10. Not only have we found ex-
amples with both finite Chern number and finite Berry phase,
but we have also observed changes of the ZQ Berry phases
within a fully gapped Chern phase. Such changes of the Berry
phase happen at gap closings for a finite twist angle (while the
bulk gap, i.e., the spectral gap for twist angle θ = 0, remains
finite). Crucially, none of the Chern phases are adiabatically
connected to the decoupled cluster limit. Some of these Chern
phases have boundary points that are in a decoupled cluster
limit but not the phases themselves. There are two cases:
one is the half-filling Chern phase and α = 0, λ = 1√

3
, and

the sixth- and third-filling phases with α = 1
0 , λ = 0. In both

these cases, the gap mentioned is closed at that point, so the
Chern phases are not adiabatically connected to these phases.

This means that finite ZQ Berry phase does not charac-
terize a connection to a decoupled cluster limit in a Chern
phase. This is not surprising, as the unit cell of a decoupled
cluster limit can always be defined in a way that there are
no bonds between unit cells. Thus, the Bloch matrix is k
independent, and the bands are flat. That implies that phases
adiabatically connected to a decoupled cluster limit must have
a Chern number of zero. We might also consider that the
finite ZQ Berry phase in the half-filling Chern phases might

indicate that lower filling bandgaps are still connected to the
decoupled cluster limit; however, this is not the case, as the
extension of the ZQ = π phase in the half-filling phase IV
does not overlap with the open gap at lower fillings. It is
also meaningless to discuss the presence of in-gap corner
states in Chern phases, as the bulk-boundary correspondence
of the first-order topology requires edge states to traverse
the entire bulk gap. Therefore, isolated corner states are not
observable.

We are tempted to claim that ZQ Berry phases in phases
which are disconnected from the decoupled cluster limit are
not necessarily well defined; clearly, further work is required
to clarify this situation. We would like to mention that the
ZQ Berry phase evaluated in Ref. [68] defined in momentum
space is not equivalent to the Berry phase computed and dis-
cussed in this paper (thus, we have not explored it any further
here).

D. Response to impurities

Since the ZQ Berry phase calculation is local invariant (in
contrast to the Chern number which is a global quantity),
there are also parallels to the way a material responds to local
impurities. Following the method described in Refs. [66,80],
we have tested the spectral response to a positive or nega-
tive local impurity potential. The prediction [66,80] is that a
topologically nontrivial phase will show an impurity bound
state within the spectral gap, no matter how large the impurity
potential might be. In contrast, a trivial phase might feature
a fine-tuned in-gap state, but for sufficiently large impurity
strength, it will have moved into the bulk and not appear
within the gap. It was further clarified [66] that this characteri-
zation only holds for topological phases which are not caused
by a modulation of bond strengths. Higher order TI phases
such as the Kekulé phases do not share this impurity response.
Instead, the impurity response can be fully understood by the
decoupled cluster limit [66].

In the following, we discuss the impurity response within
the Haldane phase for α �= 1, i.e., for Haldane phase with fi-
nite (anti-) Kekulé distortion. We have tested single site, bond,
and hexamer impurities. A hexamer impurity consists of six
bond impurities sharing the bonds of the same hexagon. Our
analysis is consistent with previous findings [66]. Everywhere
in the Haldane phase, we find one (multiple) in-gap bound
state(s) for arbitrary impurity potential strength V0 for a site
(hexamer) impurity, see Fig. 11 at half-filling. In this figure,
we have exemplarily shown two parameter points within the
Haldane phase; the left panel shows the spectral response for
a site impurity, while the right panel shows the one for a
hexamer impurity. The parameters for the left panel of Fig. 11
are chosen such that the lower filling gaps also exhibit a Chern
number C = 1. In contrast, the parameters for the right panel
are chosen such that the lower filling gaps possess zero Chern
number. As expected, only for a fine-tuned parameter range
of V0 are in-gap bound states present, but they are absent for
large positive and negative V0. In our analysis, we cannot ob-
serve any features in the spectral response to local impurities
which would explain the finite Berry phases within the Chern
phases.
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FIG. 11. Spectral response to an impurity, plotting the spectrum E vs impurity strength V0. Gray are bulk bands, i.e., bands in the absence
of the impurity. (Left) Site impurity for α = 1

0.2 , λ = 0.3. Each of the gaps exhibits a Chern number of 1. (Right) Hexamer impurity for
α = 0.5, λ = 0.3. The half-filling gap exhibits a Chern number 1, while the other gaps have no Chern number.

VII. SUMMARY

We have analyzed the combined effects of Haldane’s term
leading to a Chern insulator and a Kekulé (anti-Kekulé) dis-
tortion leading to a higher order topological insulating phase
on the honeycomb lattice. Interplay and competition of both
terms lead to a surprisingly rich phase diagram with 12 phases
at half-filling and several more phases at lower fillings. All
phases can be classified by either the Chern number or the
ZQ Berry phase. In addition, we have presented a thorough
investigation of the spectral properties for periodic bound-
ary conditions and ribbon spectra geometry as well as open
boundary conditions. Most interestingly, (i) we have found
phases with high Chern numbers, (ii) a higher order TI phase,
and (iii) a Chern phase corresponding to two coupled kagome
Chern insulators. Furthermore, we have explored the insu-
lating phases at lower fillings and found again first- and
second-order topological phases. Finally, we have identified

real-space structures which feature corner states not only at
half but also at third and sixth fillings, in agreement with
the quantized ZQ Berry phase of the corresponding phases.
It remains an exciting problem for future work how the topo-
logical phase diagram established in this paper will evolve in
the presence of electron-electron interactions [81].
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APPENDIX A: REAL SPACE SPECTRA WITH OPEN BOUNDARY CONDITIONS

In Fig. 12 we show real-space spectra as a function of λ [in panels (a), (b), (d), (e), (g), (h)] for various values of α and as a
function of α [in panels (c), (f), (i)] for various values of λ. These horizontal and vertical cuts through the phase diagram nicely
reveal chiral edge states (in blue) and corner states (in red). Note that Figs. 12(e) and 12(g) contain examples where pentamer
corner states enter bulk bands while the third filling gap remains open.

FIG. 12. Real-space spectra with open boundary conditions, selected vertical or horizontal cuts through the phase diagram Fig. 2. Lattice
geometry contains 16 × 16 hexamer unit cells but with an site from each of the 120◦ corners removed; the lattice structure corresponds to
the smaller 10 × 10 case shown in Fig. 9. (a), (b), (d), (e), (g), and (h) λ cuts for fixed values of α, see legends. (c), (f), and (i) α cuts for
fixed values of λ, see legends. Energies corresponding to eigenstates with �35% localized on the 120◦ corner pentamers are red, and energies
corresponding to eigenstates with �55% localized on a hexamer unit cell which is on the edge of the lattice (but not a corner state) are blue.
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APPENDIX B: RIBBON SPECTRA OF PHASES VI, VIII, IX

In the first column of Fig. 13 we show ribbon spectra for the phases VI, VIII, and IX. The second column also shows the
energy bands in momentum space as well as the corresponding Berry curvatures for each of the three phases.

FIG. 13. (a), (c), and (e) Ribbon spectra and (b), (d), and (f) spectra in momentum space (top) and Berry curvature (bottom) over the
Brillouin zone. (a) and (b) First row is phase VI with C = −2, parameters used α = 1

0.38 , λ = 1; (c) and (d) second row is phase VIII with
C = −4, parameters used α = 1

0.466 , λ = 1
0.693 ; (e) and (f) third row is phase IX with C = 5, parameters used α = 1

0.5595 , λ = 1
0.2 . For the ribbon

spectra, blue (red) dots are states with �75% of the wave function contained on the left (right) of the ribbon. Ribbon spectra are calculated
for a width of 100 unit cells (600 atomic sites), with a k resolution of 2π/125 (200 unit cells with a k resolution of 2π/200 for the zoomed-in
regions in (a) and (c); 800 unit cells with a k resolution 2π/500 for zoomed-in regions in (e). Note that, in (c), there are two closely spaced
but separate edge states traversing the bulk gap at E = 0 on each side and one in the middle. Momentum space spectra and Berry curvature
evaluated on a 500 × 500 grid.
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APPENDIX C: RIBBON SPECTRA OF PHASES X, XI, XII

In the first column of Fig. 14 we show ribbon spectra for the phases X, XI, and XII. The second column also shows the energy
bands in momentum space as well as the corresponding Berry curvatures for each of the three phases.

FIG. 14. (a), (c), and (e) Ribbon spectra and (b), (d), and (f) spectra in momentum space (top) and Berry curvature (bottom) over the
Brillouin zone. (a) and (b) First row is phase X with C = −1, parameters used α = 1

0.6 , λ = 1
0.4 ; (c) and (d) second row is phase XI with

C = 3, parameters used α = 0.6, λ = 1
0.4 ; (e) and (f) third row is phase XII with C = −2, parameters used α = 0.22, λ = 0.8. Displayed

below Berry curvature plots are the Chern numbers cn of each band. For the ribbon spectra, blue (red) dots are states with �75% of the wave
function contained on the left (right) of the ribbon. Ribbon spectra are calculated for a width of 100 unit cells (600 atomic sites), with a k
resolution of 2π/125. Momentum space spectra and Berry curvature evaluated on a 500 × 500 grid.
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