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Effective field theories of topological crystalline insulators and topological crystals
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We present a general approach to obtain effective field theories for topological crystalline insulators whose
low-energy theories are described by massive Dirac fermions. We show that these phases are characterized
by the responses to spatially dependent mass parameters with interfaces. These mass interfaces implement the
dimensional reduction procedure such that the state of interest is smoothly deformed into a topological crystal,
which serves as a representative state of a phase in the general classification. Effective field theories are obtained
by integrating out the massive Dirac fermions, and various quantized topological terms are uncovered. Our
approach can be generalized to other crystalline symmetry-protected topological phases and provides a general
strategy to derive effective field theories for such crystalline topological phases.
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I. INTRODUCTION

Topological phases of matter are gapped phases which
are characterized by the patterns of quantum entanglement
in the ground state [1]. A ground state with a short-range
quantum entanglement is considered trivial since the state can
be smoothly deformed into a product state of microscopic
degrees of freedom without closing the energy gap. Such
deformation might not be possible in the presence of sym-
metry, allowing us to define the so-called symmetry-protected
topological (SPT) phases [2–15]. Explicitly, a SPT phase is a
gapped phase of matter with a unique ground state that cannot
be adiabatically deformed to a trivial state as long as the
symmetry is preserved; the adiabatic trivialization is possible
only if the symmetry is allowed to be broken.

For internal symmetries, general understanding of SPT
phases has been largely achieved [16–19]. Aside from the
development of SPT phases with internal symmetries, there
has been a great interest on topological phases with crystalline
point-group and space-group symmetries [20–26]. Typical
examples include so-called topological crystalline insulators
(TCIs), which are electronic insulators protected, in part, by
point-group or space-group symmetries [27–29]. As a conse-
quence of crystalline symmetry, higher-order topology may
occur in crystalline SPT (cSPT) phases, where anomalous
gapless modes could show up on the (d − n)-dimensional
boundary of a d-dimensional bulk (with n > 1) [30,31].

There have been two general frameworks which are con-
jectured to give a general classification of cSPT phases. The
first are dubbed the “topological crystal” approach [32–46],
in which the key idea is to deform a generic cSPT state
into a real-space stacking of “building blocks,” which are
lower-dimensional SPT states with effective internal symme-
try. These special kinds of states are referred to as topological
crystals. The classification of cSPT phases is then given

by the deformation classes of the topological crystals. This
approach gives a simple physical picture for understanding
cSPT phases. Interesting physical signatures on the bound-
aries [47,48] or crystalline defects [46] are usually easy to
obtain in this framework.

The second framework is based on the “smooth states”
[49]. In this framework, a hypothetical lattice of ancillas (hy-
pothetical degrees of freedom) is introduced, and the lattice of
ancillas has a much smaller lattice constant than the physical
lattice. A smooth state is very smooth in the lattice of ancillas.
However, the radius of the spatial variation of a smooth state
is on the order of the unit-cell size of the physical lattice. An
important consequence in this framework is that the classifi-
cation of cSPT phases with a crystalline symmetry group G
is the same as the classification of SPT phases with internal
symmetry group G, which is known as the “crystalline equiv-
alence principle” (see also Refs. [50–52]). The topological
crystal and the smooth state approach are actually equivalent
as shown in Ref. [53].

In principle, SPT phases should be characterized by their
response to background gauge fields. The concept of crys-
talline gauge fields has been mathematically defined [49], but
the result is rather formal, which limits the practical usage.
Further attempts have been made in order to turn it into a
concrete theoretical tool either in the field-theory framework
[54–56] or on the lattice [56]. There has been an alterna-
tive proposal which characterizes cSPT phases through their
response to elastic deformations [57–61]. This approach is
very physical and is well defined in a continuous field the-
ory. However, it has only been worked out in some simple
examples, and the relation to the general classification can
only be obtained formally. It is also unclear how to derive such
effective field theories microscopically.

In this paper, we propose a continuous field-theoretical de-
scription of the cSPT phases. Focusing on TCIs described by
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massive Dirac theories, the main idea is to characterize these
phases by the responses to spatially dependent mass parame-
ters (and to the background gauge field of internal symmetry).
These spatially dependent mass terms implement the dimen-
sional reduction procedure such that the states trapped at the
mass interfaces are precisely the building blocks in the corre-
sponding topological crystal picture. The effective field theory
is then obtained by integrating out the gapped fermions. Our
approach not only provides well-defined effective field theo-
ries for the cSPT phases, but also gives an explicit connection
between the topological crystal picture and the effective field
theories.

The rest of this paper is organized as follows: In Sec. II, we
give a review of the topological crystal approach and summa-
rize our main results. Cellular cohomology is used throughout
this paper, which we review in Appendix A.

In Sec. III, we discuss the effective field theory for one-
dimensional (1D) atomic insulators with charge conservation
and the lattice translation symmetry as a simple example to
illustrate our approach. Generalizations to two- and three-
dimensional (2D and 3D) atomic insulators are also discussed
and more details are given in Appendix D. We point out
that the responses described by these topological terms are
generalized Thouless pumps.

In Sec. IV, we apply our approach to various TCIs with
point-group symmetry and derive the effective field theories.
Section IV A considers 1D TCIs with reflection symmetry.
Section IV B generalizes the discussion to 2D TCIs with CN

rotational symmetry. Since the form of the topological term
for this case might not be familiar to the readers, we provide a
perturbative derivation in Appendix E. Section IV C is devoted
to 3D second-order TCIs protected by Cnv symmetry, where
there are gapless hinge modes for appropriate boundary con-
ditions. The field theories we obtained are essentially the same
as the axion field theory [62], where the nontrivial information
of the classification is encoded in the theta angle. We also
briefly discuss the physical responses as the a result of the
topological terms in the effective field theories.

Finally, we conclude in Sec. V with a discussion of our
results and possible directions for future work. Other math-
ematical details are given in Appendix B, including general
discussions on the fundamental domain for crystalline sym-
metry, and the construction of the map f : M → BGs, where
M is the real-space manifold and the BGs is the classifying
space for the space group Gs. Appendix C gives a construction
of the classifying space BGs for a space group.

II. GENERAL PERSPECTIVE AND SUMMARY OF THE
RESULTS

A. Review of the topological crystal approach

Topological crystal approach is a general framework of
describing and classifying cSPT phases. The main idea is that
any cSPT phase is adiabatically connected to a stacking of
db-dimensional topological states with effective internal sym-
metry arranged in some crystalline pattern in d-dimensional
space, where db ranges from 0 to d . This procedure is called
dimensional reduction and these special kinds of states are
referred to as the topological crystals in Ref. [39]. In order for

the argument to go through, an important assumption is that
the correlation length ξ can be tuned to be arbitrarily small,
and, in the presence of translation symmetry, much smaller
than the size of the unit cell, which requires adding a fine mesh
of trivial degrees of freedom.

A systematic way to describe a topological crystal is as fol-
lows. We define a fundamental domain (FD) to be a smallest
simply connected closed part of space, subject to the condition
that no two points in the region are related by a crystalline
symmetry. The FD is then copied throughout space using the
crystalline symmetry such that the whole of space is filled.
A more formal definition of the FD is given in Appendix B.
This construction gives a d-dimensional space a cell complex
structure, where the d cells are copies of FD. The (d − 1) cells
lie on faces where two d cells meet, with the property that no
two points in the same (d − 1) cell are related by symmetry.
This procedure continues to 0 cells. As shown in Appendix B,
an important property of this cell complex is that there exists
a map f : M → BGs, where BGs is the classifying space of
the space group Gs. A construction of the classifying space
BGs is given in Appendix C. As a result, each d cell can be
labeled by a group element in the space group, and each path
connecting a point r in a FD to gr is also labeled by a group
element g ∈ Gs.

With this cell-complex structure, one can understand a
topological crystal state by associating db-dimensional topo-
logical phase with each db cell. These db-dimensional states
are referred to as the “building blocks” of the topological
crystal. When the building blocks intersect in the bulk, the
building blocks must be glued together so as to eliminate any
gapless modes at the junctions while preserving symmetry.
An ordinary crystal is a simple example of a topological
crystal state, which is formed by periodically arranged atoms
as db = 0 building blocks.

B. Characterizing topological crystalline phases by responses
to mass parameters

In this section, we summarize general aspects of our ap-
proach on deriving the effective field theories for cSPT phases.
The main idea of this work is to characterize cSPT phases by
their response to spatially dependent mass parameters. These
spatially dependent mass terms have interfaces that imple-
ment the dimensional reduction procedure such that the states
trapped at the mass interfaces are precisely the building blocks
in the corresponding topological crystal picture. The effective
field theory is then obtained by integrating out the gapped
fermions. This provides a way to connect the topological
crystal picture to the effective field theories.

One of the simplest examples is given in a one-dimensional
crystal with a lattice translation symmetry and a U(1) charge
conservation symmetry. There is an integer topological invari-
ant ν representing the charge per unit cell. We will show that
the topological response of such a system to a spatially depen-
dent mass parameter background and to a background U(1)
gauge field Aμ is characterized by a quantized topological
term

ν

2π

∫
εμνAμ∂νφ(x)d2x, (1)
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where φ(x) is a phase variable that parametrizes the winding
of the mass interface. The charge-ν bound state trapped at
the mass interface with a nontrivial 2πν winding is precisely
the db = 0 building block in the topological crystal picture of
this phase. Detailed arguments and the derivation are given in
Sec. III.

In order for this approach to make sense, it is important to
consider the “topological limit,” where one tunes the correla-
tion length ξ to be arbitrarily small, especially ξ � a (where
a is the size of a unit cell) in the presence of lattice translation
symmetry. One can imagine that the system is defined on a
much finer lattice with lattice spacing l � a. It is still possible
to describe a system in the topological limit by a continuous
field theory. One considers fields that are coarse grained with
respect to the length scale l so that the fields are smooth on the
scale l and could vary on the scale R with R � l and R < a.
Working in the topological limit, the translation symmetry can
not be viewed as an effective internal symmetry of the field
theory. This property emerges only when one goes to the true
“IR limit,” where the fields are smooth even on the scale a. In
the topological limit, it thus makes sense to consider a mass
interface with a characteristic length scale w < a so that the
dimensional reduction procedure goes through. In this paper,
we will first derive the topological terms in the topological
limit. Once a topological term is obtained, we are free to
deform the field configurations of the mass parameters to be
smooth on the scale a while staying in the same classification
class. The resulting theory will be validated in the IR limit.
This is the general perspective that we take in this work.

C. Summary of the results

Ideally we would like to apply this method to obtain the
quantized topological terms for any cSPT phase. However,
doing this in full generality is still a difficult task. In this
work, we instead illustrate our approach in physically relavant
systems. We consider a wide range of TCIs in one, two,
and three dimensions with a U(1) charge conservation and
a Gc crystalline symmetry. For simplicity, we consider TCIs
that can be built from building blocks with only charge U(1)
response, i.e., the building blocks are db-dimensional topo-
logical phases with U(1) symmetry, which transform trivially
under Gc. These building blocks are characterized by the
Chern-Simons term

L2s+1
CS [A] = 1

(s + 1)!
A ∧

(
dA

2π

)s

, (2)

where A is the U(1) gauge field. For these examples, we find
the quantized topological terms take the following general
form:

S =
∫

Ld−k+1
CS [A] ∧ �k, (3)

where d is spatial dimension and �k is a k form that cor-
responds to the codimension-k mass interfaces at which the
building blocks are decorated. We will show that the mass in-
terfaces that implement the dimensional reduction procedure
are classified by Hk (BGc,Z) with a twisting coefficient when
Gc contains orientation reversing elements. The k form �k in
the topological term (3) is given by �k = f ∗α, where f is the

FIG. 1. A 1D lattice of ancillas with lattice spacing l much
smaller than the unit-cell size a. The correlation length ξ is assumed
to be much less than the unit cell a. After coarse graining with respect
to the lattice space l , local observables have spatial variation within
the unit cell. The original atoms are represented as the charge density
wave (gradient blue colors) in the lattice of ancillas.

map f : M → BGc given by the FDs in crystallography and
α ∈ Hk (BGc,Z). In general, the k form �k is determined by
a set of integral relations, which take the following form:∫

C{g}
�k = N{g}, (4)

where C{g} is a k cycle labeled by a set of group elements {g}
in Gc, and N{g} is given by

N{g} =
∫

C{g}
f ∗α (5)

with α ∈ Hk (BGc,Z). Here N{g} is in general an integer or
a Zn number depending the cohomology group Hk (BGc,Z).
We note that, in all the examples considered in this work, it
is enough to use a single group element g ∈ Gc to label the k
cycle. Representative of �k can be obtained by solving these
equations. Table I summarizes the examples and the results
in this work. From the topological term (3), one can obtain
electromagnetic responses of TCIs, which will be briefly dis-
cussed in the sections of each case.

III. WARMUP: EFFECTIVE FIELD THEORIES
OF 1D ATOMIC INSULATORS

To illustrate the basic idea, we begin with a simple exam-
ple: 1D atomic insulators. The relevant symmetry group is
U(1) × 
, where U(1) is the charge conservation symmetry
and 
 ∼= Z is a 1D discrete translation symmetry. Fermion
parity is the Z2 subgroup of U(1). We will focus on such a 1D
atomic insulator whose building block picture has a charge-1
atom per unit cell.

A model of a 1D atomic insulator consisting of spinless
fermions on a 1D lattice with unit-cell size a so that there is a
unit charge per unit cell. We then consider a much finer lattice
by adding degrees of freedom as ancillas within each unit cell.
Note that these ancillas are not the physical atoms. This setup
is shown in Fig. 1. The new model, which has a lattice spacing
l � a,1 is described by the Hamiltonian

H = −t
L∑
x

(cxc†
x+l + H.c.) − μ

L∑
x

c†
xcx + · · · , (6)

1To simplify the analysis, here we choose a/l = 2m with m � 1
without loss of generality. One is free to choose a/l to be an odd
integer, which will not affect the results.
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TABLE I. Summary of the results. The second column specified the symmetry group of the system. 
, D1, CN , Cnv denote lattice translation,
reflection, N-fold rotation, and Cnv point group, respectively. The third column gives the k form �k that appears in the topological term (3).
The fourth column lists the integral conditions that �k needs to be satisfied. Here we use tI , gr , and u to denote the generator of the lattice
translation in the Ith direction, reflection, and the N-fold rotations, respectively. A 1-cycle labeled by g is denoted by Cg, and the 2-cycle
labeled by the generator of the N-fold rotation u is denoted by Du, of which the boundary is given by N 1-cycles Cu. The last column shows
the section of the paper where each case is discussed.

Space-time
dimensions Symmetry group G �k in Eq. (3) Integral conditions Section

(1 + 1)D U(1) × 
 �1 = E
∫

Ct1
E = ∫

Ct1
f ∗τ ∈ Z, τ ∈ H1(B
,Z) Sec. III

(1 + 1)D U(1) × D1 �1 = dP
∫

Cgr
dP = ∫

Cgr
f ∗r ∈ Z2, r ∈ H1(BD1, Zr ) Sec. IV A

(2 + 1)D U(1) × 
 �2 = 1
2 εIJ E I ∧ EJ

∫
CtI

E I = ∫
CtI

f ∗τ I ∈ Z, τ I ∈ H 1(BTI , Z) App. D

(2 + 1)D U(1) × CN �2 = dω1

∫
Du

dω1 = ∫
Du

f ∗b ∈ ZN , b ∈ H 2(BCN ,Z) Sec. IV B
(3 + 1)D U(1) × 
 �3 = 1

6 εIJK EI ∧ EJ ∧ EK
∫

CtI
E I = ∫

CtI
f ∗τ I ∈ Z, τ I ∈ H 1(BTI , Z) App. D

(3 + 1)D U(1) × Cnv �1 = dP(n)
∫

Cgr
dP(n) = ∫

Cgr
f ∗r ∈ Z2, r ∈ H1(BD1, Zr ) Sec. IV C∫

Cu
dP(n) = ∫

Cu
f ∗a = 0, a ∈ H 1(BCN , Z)

where x labels the ancillas. The ellipsis represents various
perturbations consistent with the U(1) and the translation
symmetries 
 while preserving the average charge per unit
cell. The translation symmetry acts on the fermions by

t : cx → cx+a. (7)

By construction, the new model also has the charge U(1) and
translation symmetry 
.

Now we want to derive the continuum IR limit of the theory
where the fields are coarse grained with respect to the lattice
spacing l . To proceed, we expand the microscopic fermion
operator cx in terms of the slowly varying low-energy fields
ψR/L as

cx ∼ ψR(x)ekF x + ψL(x)e−kF x, (8)

where kF = π/l . Define ψ (x) = (ψR, ψL )T as the low-energy
fermion field, the continuum IR limit of the theory takes the
following general form:

L = −iψ̄γ μ∂μψ + imψ̄ψ, (9)

where γ μ satisfies {γ μ, γ ν} = 2gμν , and gμν = diag (−1, 1)
is the Minkowski metric. We choose γ 0 = iσy, γ 1 = σx, and
γ 01 = σz.

The translation symmetry acts on the low-energy fields by

t : ψ (x) → eikF aσzψ (x + a) = ψ (x + a), (10)

where we have used the fact that kF a ∈ 2πZ for integer filling.
Note that, while ψ (x) varies very slowly on the scale of l:
ψ (x) ≈ ψ (x + l ), it is not the case on the scale of a: ψ (x) 
≈
ψ (x + a), hence, that ψ (x) could vary on the scale R � l and
R < a.

Although this kind of model might not seem like the system
one would normally consider, it has been argued that classi-
fications and the topological properties of such systems are
same as the crystalline phases in general [49]. In other words,
all other states belonging to the same topological crystalline
phase are smoothly connected to the ground state of such
models (dubbed as the smooth state in Ref. [49]), and the
smooth state can serve as a representative of the whole phase.
In the next section, we are going to obtain the effective field
theory in this special limit.

A. Topological term for 1D atomic insulators

As discussed above, the effective theory of an atomic insu-
lator is a (1 + 1)D single massive Dirac theory (9). To make
contact with the topological crystal picture, we add a spatially
dependent mass term

Lm = im0ψ̄eiφ(x)γ 01
ψ, (11)

where γ 01 = γ 0γ 1, m0 > 0, and we assume m � m0. Here
the spatial dependence of the mass term is encoded in the
function φ(x). Similar to the fermion fields, φ(x) could vary
on the scale R. Here we focus on a special configuration of
φ(x) such that it is a monotonic function whose value changes
abruptly by 2π at the location of atoms as shown in Fig. 2.
It can be shown that these kinds of spatially dependent mass
terms trap a charge-1 bound state with a finite energy at the
interfaces of φ(x). These charge-1 bound states are precisely
the building blocks in the topological crystal approach and
correspond to the physical atoms.2

We now discuss the classification of such mass interfaces
parametrized by φ(x). We will show that the mass interfaces
are classified by H1(B
,Z). To systematically discuss the
configurations of φ(x), we consider the cell decomposition of
R by the FDs. Here each one cell �1,(i) is simply a unit cell
and is labeled by a group element g in the group of discrete
translation 
 ∼= Z. Two neighboring 1-cells �1,(i), �1,( j) meet
at a single 0-cell �0,(i j), which is labeled by the generator t
of the translation group 
. This kind of cell decomposition by
the FDs applies to any crystalline symmetry.

With this cell decomposition, we can now discuss the
configurations of φ(x) more systematically. We will first fo-
cus on the discontinuous configurations of φ(x) since the
general structure can be seen more clearly in this limit. A

2More formally, we note that the function φ(x) defines a map φ :
X → M1, where M1 is the space of (1 + 1)D fermionic short-range
entangled states with U(1) symmetry. The configuration of φ(x) we
choose gives a noncontractible loop in M1 every time we go through
a unit cell and the bound state is associated to the winding number
π1(M1) = Z.
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FIG. 2. A typical configuration of the phase φ(x) of the mass
term. φ(x) jump by 2π at the location of an atom.

discontinuous configuration of φ(x) is modeled by having a
constant function in each 1-cell �1,(i). At the intersecting 0-
cell �0,(i j), where �1,(i) and �1,( j) meet, we have the relation

φ(�1,( j) ) = φ(�1,(i) ) + 2πτ (�0,(i j) ), τ (�0,(i j) ) ∈ Z. (12)

The integer-valued function τ satisfies

τ (�0,(i j) ) + τ (�0,( jk) ) = τ (�0,(ik) ). (13)

Moreover, there is a redundancy since, if we modify the con-
figuration of φ as

φ(�1,(i) ) → φ(�1,(i) ) + 2πh(�1,(i) ),

τ (�0,(i j) ) → τ (�0,(i j) ) + h(�1,( j) ) − h(�1,(i) ) (14)

with h(�1,(i) ) ∈ Z, we obtain the same configuration of φ,
which means that τ is a Z-valued cocycle in H1(M,Z). This,
however, does not mean that φ(x) is classified by the cellular
cohomology H1(M,Z) of the manifold M, and we are not
considering arbitrary interfaces. What we are interested in are
the symmetric deformation classes of the interface configura-
tions of φ with a charge-1 particle at each interface. Taking the
typical configuration of φ(x) shown in Fig. 2 as an example,
one can see that all the deformations, which respect the trans-
lation symmetry, will not change the 2π jumps at the locations
of atoms. This structure can be captured by identifying the
integer-valued transition function τ as the pullback τ = f ∗α,
where α ∈ H1(B
,Z) by the map f : M → B
. The general
construction of the map f is given in Appendix B. In our
case the map f is constructed as follows. We note that for
each 1-cell �1,(i), there is a dual 0-cell �∨

0,(i). Similarly, for
each 0-cell �0,(i j), there is a dual 1-cell �∨

1,(i j). The map f is
constructed such that every dual 0-cell �∨

0,(i) is mapped to the
based point ∗ in B
, and a dual 1-cell �∨

1,(i j) is mapped to the
nontrivial loop labeled by the generator t ∈ π1(B
) = Z:

f : M → B
,

�∨
0,(i) �→ ∗,

�∨
1,(i j) �→ t ∈ π1(B
) = Z. (15)

As a result, dual 1-cells (or the original 0-cells) are in one-
to-one correspondence with the generator t of the translation
group 
. This has a following implication: let x0 be a point
inside a 1-cell, a path connecting x0 to gx0 is labeled by a
group element g ∈ 
. This property is generally true for any

space group Gs: any such path can be labeled by a group
element g ∈ Gs.

Since we have τ = f ∗α, the redundancy of the mass in-
terfaces (14) is restricted as we now discussed. We recall
that H1(B
,Z) ∼= H1(
,Z) is the quotient of 1-cocycles by
1-coboundaries. The cocycle condition reads as

α(g1) + α(g2) = α(g1g2). (16)

In other words, α(g) is a group homomorphism of 
. The
coboundaries in this case are all trivial:

δμ : 
 → Z,

g �→ 0. (17)

One can easily see that H1(B
,Z) = Z with the generator
given by α(t ) = 1 where t is the generator of the trans-
lation group 
. Using our construction of the map f , we
have h(�1, j ) = h(�1,i ) due to Eq. (17). The only remaining
redundancy is given an overall shift by 2π , which will not
affect the value of τ , and hence the 2π jumps of φ(x) at
the locations of atoms. This is similar to the redundancy of
changing the integer labeling of the atoms. Therefore, the
symmetric deformation classes of the interfaces are classified
by H1(B
,Z) = Z.

To obtain an effective theory, we couple the fermion to
an external background U(1) gauge field Aμ. By integrating
out the massive fermion, the effective action contains the
following topological term:

Seff = 1

4π

∫
εμνφ(x)Fμνd2x

= 1

2π

∫
εμνAμ∂νφ(x)d2x. (18)

By requiring the effective action to be gauge invariant under
Aμ → Aμ + ∂μα, we find the current

Jμ = 1

2π
εμν∂νφ (19)

is conserved.
In the limit where φ(x) is discontinuous, the density is

given by

ρ = 1

2π
∂xφ =

∑
i

δ(x − xi ), (20)

where the discrete nature of the density of an atomic insulator
is recovered. Note that, if we define the theory on a finite
system with size L, the total charge of the system is

Qtot =
∫ L

0

1

2π
∂xφ dx = 1

2π
[φ(L) − φ(0)] = N. (21)

This topological term also reveals the “Thouless pump” re-
sponse for the atomic insulators [63]. There is a net charge
flow through the system when the phase field φ winds 2π in
time.

In general, there is a coefficient ν in front of the topological
term (18). To show this coefficient is quantized, we proceed
with the following argument. Consider φ is time independent
and the spatial dependence is given by Eq. (12) with τ = 1.
We then integrate along the x direction and the topological
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term becomes

Seff = ν

2π

∫
εμνAμ∂νφd2x

∼ ν
∑

i

∫
A0δ(x − xi )d

2x

=
∑

i

ν

∫
A0(xi )dt, (22)

where the gauge transformations of A0(xi ) can be different for
different i. We obtain a sum of (0 + 1)D effective actions,
each of which is the effective action of an atom coupled to
the U(1) gauge field. By the gauge invariance, we see the ν

has to be quantized to integers.

B. Taking the smooth limit

In the previous section, we take the limit where φ(x) is dis-
continuous in order to make a clear connection to the building
block picture. We also see that these discontinuous configura-
tions of φ(x) are classified by α ∈ H1(B
,Z). Here we show
that it is possible to take a limit where φ(x) is a smooth func-
tion such that φ(x) is still classified by H1(B
,Z). Moreover,
we are going to take the limit where φ(x) is as smooth as
possible such that ∂xφ(x) is uniform. After taking such smooth
limit, we will obtain an effective field theory which works in
the usual IR limit, where the correlation length ξ does not have
to be much smaller than the unit cell a.

Let us recall that the defining property of an element α ∈
H1(B
,Z) is that the pairing satisfies∫

C1

α ∈ Z, (23)

where C1 is the nontrivial 1-cycle of B
. We pull this back by
using the map f : M → B
, and the corresponding 1-cocycle
e1 ∈ H1(M,Z) satisfies∫

�∨
1

e1 =
∫

�∨
1

f ∗α ∈ Z, (24)

where �∨
1 is a dual 1-cell (unit cell) in the real space. This

integral essentially counts the number of atoms in a unit cell.
We would like to obtain a low-energy effective field theory

where all the fields are smooth. At the same time, we want to
preserve the classification of φ(x) given by H1(B
,Z). The
way to achieve this is to consider closed 1-forms with integral
periods.3 Now we replace the cocycle on the left-hand side
of Eq. (24) by a smooth differential 1-form E1 with integral

3Recall that a closed k-form ω on M has integral periods if, for ev-
ery smooth k-cycle C in M, the integral

∫
C ω is an integer. Moreover,

a closed k-form ω has integral periods if and only if the de Rham
class of ω lies in the image of the change-of-coefficients map

Hk (M,Z) → Hk (M,R) ∼= Hk
dR(M ),

where Hk
dR(M ) denotes the de Rham cohomology of M [80]. Loosely

speaking, a closed k-form with an integral period serves as a differ-
ential form representative of an element in Hk (M,Z).

periods: ∫
�∨

1

E1 = Nt ∈ Z, (25)

where E1 = dφ/2π , and φ is a smooth function. Then we
identify the integer Nt with the right-hand side of Eq. (24):

Nt =
∫

�∨
1

f ∗α ∈ Z. (26)

Representatives of the smooth 1-form E1 can be obtained
by solving Eq. (25). We consider a smooth function φ(x)
satisfying∫ x0+a

x0

dφ = [φ(x0 + a) − φ(x0)] = 2πτ, (27)

where we have restored the unit-cell size a for the sake of
clarity. An example of such function, which is as smooth as
possible and satisfying Eq. (27), is given by

φ(x) = 2π

a
τx = b1τx, (28)

where b1 = 2π/a is the reciprocal lattice vector. (This is
essentially the “labeling” field introduced by Haldane [64].)
We can then define a smooth 1-form

E1 = 1

2π
∂xφ(x)dx = 1

2π
τb1dx. (29)

This is a closed 1-form with integral period since, if we
integrate over a unit cell, we have∫

�∨
1

E1 =
∫ x0+a

x0

1

2π
τb1dx = τ ∈ Z, (30)

which is the property that we want.
In general, there will be time dependence in φ so that we

can define the time component of the 1-form E0 = ∂tφdt/2π .
Written in terms of these smooth 1-form E , we have the
following topological term:∫

A ∧ E = 1

2π

∫
εμνAμbνd2x. (31)

We have thus reproduced the effective field theory of an
atomic insulator in Refs. [57–61]. As one can see from
the above discussion, the 1-form E = dφ/2π basically tells
us where to decorate the zero-dimensional (0D) building
blocks. Therefore, our approach gives a direct correspondence
between the topological terms and the topological crystal pic-
ture.

This discussion can be generalized to atomic insulators in
higher dimensions. For example, in 2D and 3D, we expect
there are topological terms of the form

Seff = ν

2

∫
εIJA ∧ EI ∧ EJ ,

Seff = ν

6

∫
εIJK A ∧ EI ∧ EJ ∧ EK , (32)

where, for a translation in the Ith direction, EI is the differ-
ential form representative of the cocycle in H1(BTI ,Z). In
Appendix D, we give a detailed derivation of the topological
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term (32) for the 2D atomic insulators. Generalizing to 3D
atomic insulators is straightforward.

The physical meaning of the topological terms (32) is that
there is a charge ν per unit cell as one can see from the
effective action of the mass interface obtained by integrating
out the spatial directions. Those terms also describe higher-
dimensional analogs of the Thouless pump [65,66]. Such
kinds of topological terms for atomic insulators are discussed
in Ref. [61] in the context of topological elasticity theory
(see also Refs. [57–60]), where θ I fields are interpreted as the
phonon fields. Since the topological terms we obtained above
take essentially the same form, this suggests that there could
be an elasticity interpretation for the spatially dependent mass
terms. Indeed, in the case where the spatially dependent mass
terms are generated from coupling to lattice deformations, our
topological terms are the topological terms in the elasticity
theory.

IV. TOPOLOGICAL TERMS OF TOPOLOGICAL
CRYSTALLINE INSULATORS WITH POINT-GROUP

SYMMETRY

In this section, we are going to discuss various effective
field theories for TCIs with point-group symmetries. We will
focus on the reflection, CN rotation, and Cnv symmetries for
1D, 2D, and 3D TCIs. The 1D and 2D TCIs that we are
going to discuss are built by placing 0D charges at the high-
symmetry points, which do not support protected boundary
gapless modes. For 3D TCIs, we will consider the second-
order topological phases with gapless chiral hinge models,
whose building block picture is given by placing 2D IQH
states on high-symmetry planes.

A. 1D insulators with reflection symmetry

We now move on to discuss topological crystalline insu-
lators with reflection symmetry in 1D. The symmetry group
we focus on is G = U(1) × D1, where the reflection group
D1

∼= Z2. We are going to focus on the phase of which the
building block picture is given by placing a 0D state carrying
a unit U(1) charge and a trivial irreducible representation of
D1 at the reflection center.

The low-energy theory of this kind of insulator is given by
the following massive Dirac theory:

L = −iψ̄γ μ∂μψ − m1ψ̄γ 01ψ (33)

with the reflection symmetry acting on the fermions by

gr : ψ (x, t ) → γ1ψ (−x, t ). (34)

We are going to show that this Dirac theory indeed describes
the TCI we are interested in. We proceed with the dimensional
reduction procedure by adding a spatially varying mass term:

Lm = −im2ψ̄eiφ(x)γ 01
ψ, (35)

where we require that m1 � m2 > 0. The reflection symmetry
requires that φ(x) = π − φ(−x) mod 2π . The phase φ(x)
could wind nontrivially in space subjecting to the constraint
given by the reflection symmetry. If we consider a configura-
tion of φ(x) such that it winds 2π along a path passing through
the reflection center (as shown in Fig. 3), by solving the bound

FIG. 3. A typical configuration of φ(x) which supports a charge-
1 bound state at the reflection center.

state directly for this mass interface, one can confirm that there
is a charge-1 bound state sitting at the reflection center. This
is precisely the building block picture for this phase, which
justifies the claim that Eq. (33) describes the TCI we are
interested in.

We are going to show that the mass interfaces
parametrized by φ(x) are classified by the cellular cohomol-
ogy H1(BD1,Zr ) with a twisting coefficient Zr , which will
be defined below. To proceed, we first discuss the cell decom-
position given by the FDs. As shown in Fig. 4, there are two
1-cells �1,(0), �1,(1) and a single 0-cell �0,(01) at the reflection
center. The dual-cell structure is also shown in Fig. 4, which
contains two dual 0-cells �∨

0,(0), �∨
0,(1) and one dual 1-cell

�∨
1,(01). With this choice of cell decomposition, there is a map

f : M → BD1. Written explicitly, the map f : �∨
0,(0) �→ ∗,

�∨
0,(1) �→ ∗, �∨

1,(01) �→ gr , where gr ∈ π1(BD1) ∼= D1 denotes
the nontrivial group element in D1.

We consider the configurations of φ(x) such that it is a
constant function within the two 1-cells �1,(0), �1,(1). At the
intersecting 0-cell �0,(01), the constant functions satisfy the
relation

φ(�1,(1) ) = φ(�1,(0) ) + 2πr(�0,(01)), (36)

where r(�0,(01)) ∈ Z. The reflection symmetry gives the fol-
lowing condition:

φ(�1,(0) ) + φ(�1,(1) ) = π mod 2π (37)

as well as a nontrivial action on the integer-valued function r:

grr = −r. (38)

However, there is a redundancy since, if we modify the con-
figuration of φ as

φ(�1,(i) ) → φ(�1,(i) ) + 2πh(�1,(i) ),

r(�0,(01)) → r(�0,(01)) + h(�1,(1) ) − h(�1,(0) ), (39)

FIG. 4. Reflection-symmetric cell decomposition (above) and
the dual-cell decomposition (below).
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we obtain the same configuration of φ(x). These conditions
tell us that r is a Z-valued cocycle in H1(M,Zr ) with a
twisting coefficient given by Eq. (38).

We consider the mass interface such that r is given by
the pullback r = f ∗υ of υ ∈ H1(BD1,Zr ) ∼= Z2. To under-
stand this Z2 classification, we note that the coboundaries in
H1(BD1,Zr ) are of the form

δν0 : D1 → Z,

gr �→ 2m (40)

for some m ∈ Z, where ν0 is a function taking the based point
∗ ∈ BD1 to an integer ν0(∗) ∈ Z. By using the map f : M →
BD1, we have

h(�1,(0) ) = ν0( f (�1,(0) )) = ν0(∗),

h(�1,(1) ) = ν0( f (�1,(1) )) = ν0(gr · ∗), (41)

where g · ∗ ∼ ∗ in the classifying space BD1. Using Eq. (40),
we have h(�1,(1) ) − h(�1,(0) ) = δν0 = 2m. As a result, there
is an equivalence relation r ∼ r + 2m, and the nontrivial
winding of the phase φ(x) has a Z2 classification. Pictorially, it
is easy to see that an interface with a 4π jump can be deformed
into a configuration with no interface while preserving the
reflection symmetry.

After coupling to the U(1) gauge fields and integrated out
the massive fermions, we obtain a topological term which
takes the same form as Eq. (18). The difference is that φ(x)
has to satisfy Eq. (37) due to the reflection symmetry. We thus
define a 1-form

dP = dφ

2π
. (42)

The topological term becomes

Seff = k
∫

A ∧ dP, (43)

where the coefficient k = 1 in our example. Note that the
coefficient k is Z2 valued since the mass interfaces have Z2

classification. In the next section, we are going to show how
to connect the topological term (43) to the known result in
Refs. [59,67] by taking the smooth limit for φ(x).

1. Smooth limit

Now we would like to consider smooth configurations
of φ(x) such that the mass interfaces are still classified by
H1(BD1,Zr ). To proceed, we first rewrite Eq. (36) in terms
of the cellular cohomology:

∫
�∨

1

dP′
1 =

∫
∂�∨

1

P′
1 = r, (44)

where, for the sake of convenience, we have defined P′
1 =

φ/2π − 1/4 to subtract the constant π/2 contribution in φ.
P′

1 is now simply odd under refection: gr : P′
1 → −P′

1.
What we are looking for is the smooth version of Eq. (44)

such that the 1-form dP′
1 is constructed by smooth functions.

This is achieved by considering the following smooth 1-form

with integral periods:∫ gr ·(−x0 )

−x0

dP̃1 =
∫ x0

−x0

dP̃1

= P̃1(x0) − P̃1(−x0)

= r, (45)

where |x0| � ξ and P̃ is smooth. We can thus write the low-
energy effective action in terms of the smooth 1-form P̃:

Seff = k
∫

A ∧ dP̃. (46)

Under the reflection symmetry P̃ → −P̃. After an integration
by parts, we recognized that Eq. (46) is essentially the effec-
tive action obtained in Refs. [59,67], and P̃ can be interpreted
as the spatially dependent electric polarization.

B. 2D insulators with rotational symmetry

Here we discuss the topological term of fermionic TCIs
with U(1) × CN symmetry.4 The classification of these sys-
tems has been computed in Ref. [68] by using the topological
crystal approach. For the sake of simplicity, here we focus
on the states with no charge and thermal Hall conductivity,
and with a building block picture given by placing a 0D state
carrying a unit U(1) charge and a trivial CN charge at the
rotational center.

The low-energy field theory of this state is given by a (2 +
1)D massive Dirac theory:

L = −i�̄γ μ∂μ� + im0�̄σ3�, (47)

where � = (ψ1, ψ2), and σi are Pauli matrices in the flavor
space. The mass term here guarantees that the Chern number
is zero. The CN rotation acts on the fermions by

u : �(r) → exp

(
i

2

2π

N
γ 0σ3

)
�(Rr). (48)

One can recover the building block state by adding the
following spatially varying mass term:

Lm = im�̄
[
n1(r)σ1 + n2(r)σ2

]
�, (49)

where we require that m0 � m > 0 and consider the config-
uration of n1 and n2 such that there is a bound state carrying
a unit U(1) charge at the origin. An example of such con-
figuration would be a “hedgehog” with a singularity at the
origin. Usually, a hedgehog configuration is invariant under
a continuous rotational symmetry; here we only require that it
is invariant under a discrete CN rotation. We note that Shiozaki
shows there there is an isomorphism between the group of 0D
building blocks and the K group of the Dirac Hamiltonians
with the hedgehog-mass potential with a unit winding num-
ber [69]. Starting from a 0D Hamiltonian describing the 0D
building state, one can obtain the massive Dirac theory (47)
by using his general construction.

4More precisely, the symmetry is [U(1) × CN ]/Z2, as the CN rota-
tion U defined in Eq. (48) obeys U N = (−1)Nf , where Nf is the total
fermion number under U(1).
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Since the system is rotational invariant, it is convenient to
parametrize the mass term by

n1 = nr cos nθ , n2 = nr sin nθ , (50)

where nr can be taken to be a constant almost everywhere and
nr → 0 as r → 0. Following from the CN transformation on
the fermions [Eq. (48)], nθ must satisfy

nθ

(
θ + 2π

N

)
= nθ (θ ) + 2π

N
mod 2π. (51)

In general, the singularity at the origin is described by
a 1-form ω1 such that dω1 = (∂i∂ j − ∂ j∂i )nθ 
= 0. As we
will discuss in detail below, this 1-form ω1 is classified by
H1(BCN ,ZN ).

After coupling the fermion to a U(1) gauge field and inte-
grate out the massive fermions, the effective theory contains
the following topological term:

Seff =
∫

A ∧ ω2, (52)

where the 2-form ω2 is the Euler class in H2(M,Z). A pertur-
bative derivation of this topological term is given in Appendix
E. In general, we have ω2 = n∗τ2, where τ2 is 2-form in
the space of the mass parameters. However, we are going
to show that the topological crystal picture tells us that the
2-form ω2 should be identified with the pullback f ∗α2, where
α2 ∈ H2(BCN ,Z) and the map f : M → BCN is the map from
the manifold M to the classifying space BCN .

The appearance of the Euler class H2(M,Z) is very natural
(see Refs. [53,70] for encountering the Euler class in similar
situations). Note that since n1 and n2 transform as the regular
representation of the CN rotational symmetry, it makes sense
to view them as a vector field n = (n1, n2). Formally, we have
a R2 real-vector bundle V over the manifold M (we will al-
ways assume the manifold M to be a Euclidean space E2), and
the vector field n is the section of this bundle: n : M → V such
that π ◦ n = id , where π is the projection π : V → M. The
singular configurations of n correspond to the zero sections of
the vector bundle V , and it is well known that the Euler class
e(V ) ∈ H2(M,Z) counts the number of zero sections [71].

Now we discuss how to construct the 2-form ω2 explicitly.
We begin with the cell decomposition of R2 given by the FDs.
Each 2-cell �2,(i) is labeled by a group element g ∈ CN . Two
neighboring two cells �2,(i), �2,( j) meet at a single 1-cell
�1,(i j), which is labeled by the generator u ∈ CN . There is a
unique 0-cell �0 sitting at the rotational center. An example
of the C4-symmetric cell decomposition is shown in Fig. 5(a),
and the corresponding dual-cell decomposition is shown in
Fig. 5(b).

We now discuss the configurations of the mass term
parametrized by Eq. (50) from a more general perspective.
Since we only require that the mass term be invariant under
a discrete CN rotation, nθ can be chosen to be a constant in
each 2-cell �2,(i). At the intersections of 2-cells, nθ could
jump abruptly. We proceed with the following systematic
discussion. At the 1-cell �1,(i j) where �2,(i) and �2,( j) meet,
we have the relation

nθ (�2,( j) ) = nθ (�2,(i) ) + 2π

N
c(�1,(i j) ), c(�1,(i j) ) ∈ Z. (53)

(a) (b)

FIG. 5. (a) The cell decomposition for a system with C4 symme-
try, and (b) the corresponding dual-cell decomposition.

A typical configuration of nθ for C4-symmetric system is
shown in Fig. 6. The integer-valued function c satisfies

c(�1,(i j) ) + c(�1,( jk) ) = c(�1,(ik) ). (54)

There is a redundancy of the function c(�1,(i j) ) since we
obtain the same configuration of nθ after we modify the con-
figuration as

nθ (�2,(i) ) → nθ (�2,(i) ) + 2πh(�2,(i) ),

c(�1,(i j) ) → c(�1,(i j) ) + h(�2,( j) ) − h(�2,(i) ), (55)

where h(�2,(i) ) ∈ Z. Formally, c is a Z-valued cocycle in
H1(M,Z). Here we consider the interface such that c = f ∗α1,
where α1 ∈ H1(BCN ,ZN ), which is lifted to C1(BCN ,Z)
by the embedding ZN ∼ [0, N − 1) ⊂ Z. The deformation
classes of the nθ interfaces are classified by H1(BCN ,ZN ) =
ZN . If we choose c(�1,(i j) ) = 1, we obtain a class of interfaces
of nθ satisfying Eq. (51). Such choice can always be made
since we can always choose α1(u) = 1, where u is the genera-
tor of the CN rotation and α(u) ∈ H1(BCN ,ZN ). We then have

c(�1,(i j) ) = α1( f (�1,(i j) )) = α1(u) = 1, (56)

where we have used the fact that f : �1,(i j) �→ u for every 1-
cell �1,(i j).

We now use the cocycle c ∈ H1(M,Z) to construct the
desired 2-form in the topological term. At the level of cellular
cohomology, we would like to have some 2-cocycle w = δc

FIG. 6. A typical configuration of nθ for systems with C4

symmetry.
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satisfying the following property:

1

N

∫
�∨

2

w = 1

N

∫
�∨

2

δc = 1

N

∫
∂�∨

2

c = 1. (57)

Physically, this means that nθ rotates by 2π as it goes around
the origin along the 1-cells, which, intuitively, corresponds to
having a vortex configuration of n with strength 1. There will
be a localized charge-1 bound state trapped at the vortex core,
which reproduces the building block picture. We claim the
property (57) is satisfied if δc = f ∗δα1. Using Eq. (56), we
can explicitly check Eq, (57) is satisfied:

1

N

∫
�∨

2

w = 1

N

∫
∂�∨

2

c

= 1

N

N∑
i=1

c(�1,(i,i+1))

= 1

N

N∑
i=1

α1(g)

= 1. (58)

The 2-form ω2 we are looking for is the differential form
representative of the 2-cocycle w, which is a 2-form with
integral periods. Now we discuss an explicit construction of
the 2-form ω2. First we need to use two patches U0 and U1 to
cover the real space R2 such that the singularity of the section
n (at the origin) is contained entirely in U0, and that U1 covers
R2 − D0, where D0 is the disk covered by U0. Let ρ0(r) and
ρ1(r) be the partition of unity satisfying ρ0(r) + ρ1(r) = 1
subordinate to U0 and U1. In the patch U1, we use the config-
uration of nθ discussed above and partition of unity to define
a 1-form

ω
(1)
1 = −ρ0

dnθ

2π
= ρ0

N∑
i=1

ci,i+1

N
δ

(
θ − 2πci,i+1

N

)
dθ, (59)

where we have used a shorthand notation ci, j to denote
c(�1,i j ) and cN,N+1 = cN,1. In the patch U0, we define the
1-form ω

(0)
1 = ρ1dnθ /2π .

Finally, we construct the 2-form

ω2 = dω
(1)
1 = − 1

2π
dρ0 ∧ dnθ (60)

such that it has an integral period:∫
M

ω2 = 1. (61)

From the property of the partition of unity, ω2 has support near
the intersection U0 ∩ U1. One can show that dω

(0)
1 = dω

(1)
1 so

that they piece together to a well-defined 2-form ω2. We will
then drop the superscript when it is not relevant to the context.
Equation (61) can be checked explicitly as follows:∫

M
ω2 =

∫
M

dω
(1)
1

= − 1

2π

∫
M

dρ0 ∧ dnθ

= − 1

2π
[ρ0(∞) − ρ0(0)]

∫
dnθ

= 1

2π

∫ N∑
i=1

ci,i+1

N
δ

(
θ − 2πci,i+1

N

)
dθ = 1. (62)

The explicit form of the topological term is given by substi-
tuting this 2-form ω2 = dω1 into Eq. (52).

In this example, the coefficient in front of the topological
term is 1 by construction. In general, there is a coefficient κ

and the topological term takes the form

κ

∫
A ∧ dω1. (63)

To show that the coefficient κ is quantized, we integrate out
the real space. By construction, we have

κ

∫
M×S1

A ∧ dω1 = κ

∫
S1

A0dt, (64)

which is precisely the effective action of a 0D particle carry-
ing charge κ . Gauge invariance requires that κ is quantized.
Moreover, κ is a mod N integer as we now show. From the
block equivalence relation in the topological crystal picture, a
state with 0 charge is equivalent to a state with N charge at
the rotational center. This can be understood as the following
deformation process. Starting from a state with no charge, we
bring in N additional charge-1 particles to the rotational center
while preserving the CN symmetry [and sending N additional
charge-(−1) particles to infinite, which are not relevant to
the bulk property]. At the level of field theory, if there are
N charge-1 particles at the rotational center, the interface is
described by a 2-form dω′

1, in which c′
i,i+1 = N . However, this

2-form is trivial as one can check as follows:
∫

M
dω′

1
(1) = 1

2π

N∑
i=1

c′
i,i+1

N

= 1

2π

N∑
i=1

c′
i,i+1 − dhi,i+1

N

= 0 (65)

where, in the first equality, we have integrated over the r and
θ directions, and, in the second equality, we have shifted the
cocycle c′

i,i+1 by a coboundary dhi,i+1 = N . This implies that
κ is a mod N integer.

1. Smooth limit

Here we show that it is possible to deform the function nθ

to a smooth function such that the 2-form ω2 is smooth almost
everywhere except having a singularity at the origin. We begin
with the 1-form ω1. To go to the smooth limit, the key is to
consider the smooth 1-form dñθ of the angular variable ñθ

such that ∫
�∨

1

dñθ =
∫ θ0+2π/N

θ0

dñθ

= ñθ

(
θ0 + 2π

N

)
− ñθ (θ0)

= 2π

N
c̃, (66)
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FIG. 7. The top surface view of the 3D topological crystals built
from 2D IQH states for Cnv point groups. Solid lines represent an
IQH state on each mirror plane. The arrows represent the edge
chiralities of the IQH states.

where c̃ ∈ Z is one-to-one correspondent to c ∈ H1(M,Z) in
Eq. (53), which is determined by the pullback f ∗α1 with α1 ∈
H1(BCN ,ZN ). The smooth 2-form ω̃2 is constructed in same
way as in the discontinuous case:

ω̃2 = dω̃1, (67)

where ω̃1 = −ρ0dñθ /2π with ñθ satisfying Eq. (66). Substi-
tuting this 2-form into Eq. (63), we obtain the topological term
in the smooth limit.

C. 3D topological crystalline insulators

Here we discuss the effective theories of the 3D topological
crystalline insulators with U(1) × Gpg, where Gpg is a point-
group symmetry. The noninteracting classifications have been
obtained in Ref. [41] by computing the Atiyah-Hirzebruch
spectral sequence for K homology, which is the rigorous
mathematical framework of the topological crystal approach
for free-fermion systems. We will be focusing on one type
of the second-order topological insulators [30,72–74], which
break time-reversal symmetry and host protected gapless chi-
ral hinge modes in an open geometry. To illustrate the basic
idea, we will consider Gpg = Cnv for n = 1, 2, 3, 4, 6 but our
approach can be generalized to other point groups. Such
second-order phases can be described by the topological crys-
tal pictures of having some 2D integer quantum Hall (IQH)
states placing at some high-symmetry planes. With proper
open geometry, the protected chiral hinge modes are directly
given by the gapless edge modes of the 2D IQH states [30,74].
It was known that such a type of second-order topological
insolators can be well described by the effective axion field
proposed in Ref. [62] (see also Ref. [75]). It coincides with the
fact that the second-order topological insulators that we con-
sidered can be well described by the effective axion field, and
the chiral hinge modes are the domain-wall modes between
two gapped surface with opposite half quantum anomalous
Hall effect [30]. In this section, we will show that the same
topological terms can be reproduced by our approach.

The topological crystal states that we are going to focus
on are shown in Fig. 7. Those states are obtained by placing a
IQH state at each reflection plane with the requirement that all

the gapless modes at the rotational axis are gapped out while
preserving the symmetry.

It has been shown in Ref. [41] that the bulk of the second-
order phases can be described by the following (3 + 1)D
massive Dirac theory:

L = −iψ̄γ μ∂μψ − im0ψ̄ψ, (68)

where we use the following convention for the gamma matri-
ces:

γ 0 =
(

1 0
0 −1

)
= τ 3,

γ i =
(

0 σ i

−σ i 0

)
= iσ iτ 2,

γ 5 =
(

0 1
1 0

)
= τ 1. (69)

The reflection and the rotation symmetry in the Cnv symmetry
act on the fermions by

gy
r : ψ (r) → iσ 2τ 3ψ

(
gy

rr
)
,

R : ψ (r) → e
i
2 θσ 3

ψ (Rr). (70)

Other reflection symmetries in the Cnv group can be generated
by the combination of the y reflection gy and the rotation R.

To connect the massive Dirac theory to the topological
crystal states, we add the following spatially dependent mass
term:

Lm = −imψ̄eiφ(r)γ 5τ 2
ψ. (71)

The reflection and the rotational symmetries act on the phase
variable φ by

gy
r : φ(r) → −φ

(
gy

rr
)
,

R : φ(r) → φ(Rr). (72)

In order for Eq. (71) to be invariant under the symmetry, we
must have

φ(r) = −φ
(
gy

rr
)

(73)

and

φ(r) = φ(Rr). (74)

We are going to consider the interface configurations of φ

such that there is an IQH state at each reflection plane. To sim-
plify the discussion, let us first focus on Gpg = C1v in which
there is only one reflection symmetry gy

r . We are going to show
that such interfaces of φ are classified by H1(BC1v,Zr ).

The cell decomposition given by the fundamental domains
is the shown in Fig. 8. There are two 3-cells �3,(0), �3,(1),
and one 2-cell �2,(01). Similar to the previous discussion, the
map f : M → BC1v maps the dual 0-cells to the based point
of BC1v , and it maps the dual 1-cell to the nontrivial loop in
BC1v labeled by gy

r .
We consider the configurations of φ(r) such that it is a

constant function within the two 3-cells �3,(0), �3,(1). At the
intersecting 2-cell �2,(01), we have the following relation:

φ(�3,(1) ) = φ(�3,(0) ) + 2πr(�2,(01)), (75)
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(a) (b)

FIG. 8. (a) The cell decomposition for 3D systems with reflec-
tion symmetry, and (b) the corresponding dual-cell decomposition.

where r(�2,(01)) ∈ Z. The reflection symmetry gives the fol-
lowing condition on φ:

φ(�3,(0) ) = −φ(�3,(1) ). (76)

There is also a nontrivial symmetry action on the integer-
valued function r:

gy
rr = −r. (77)

However, there is a redundancy since, if we modify the con-
figuration of φ(r) as

φ(�3,(i) ) → φ(�3,(i) ) + 2πh(�3,(i) ),

r(�2,(01)) → r(�2,(01)) + h(�3,(1) ) − h(�3,(0) ), (78)

we obtain the same configuration. From these conditions, we
see that r is a Z-valued cocycle in H1(M,Zr ) with a twisting
coefficient due to the nontrivial action of the reflection (77).
A typical configuration of φ is shown in Fig. 9. Similar to the
discussion in Sec. IV A, we identify r to be the pullback of
c: r = f ∗c, where c ∈ H1(BC1v,Zr ) ∼= Z2. The deformation
class of such φ(r) interfaces is classified by Z2.

With this systematic discussion on the interfaces, we are
now ready to discussion the effective field theory. After cou-
pling the fermions to the U(1) gauge field and integrating
out the massive fermions, the effective theory contains the
following topological term:

S = 1

4π

∫
AdA ∧ dP, (79)

where we have defined P = φ/2π . If we consider the nontriv-
ial interface configuration of φ given by r = 1, it is easy to see
that, at the interface, we have

SInterface = 1

4π

∫
AdA, (80)

FIG. 9. A typical configuration of φ(r) as a function of y. φ(r)
has no spatial variation along the x and z directions.

as we expected that there is an IQH state at the interface. In
Ref. [41], the explicit solution of the low-energy states that are
localized at the interface is obtained, as well as an effective 2D
massive Dirac Hamiltonian that describes an IQH state with a
unit Chern number.

1. Smooth limit

To go to the smooth limit, we simply replace the discon-
tinuous 1-form dP by the following smooth 1-form dP̃ with
integral periods satisfying

∫ gy
r r0

r0

dP̃ = r, (81)

where |r0| is much larger than the correlation length ξ .
The generalization to other Cnv symmetry for n = 2, 3, 4, 6

is straightforward. In the smooth limit, we have a 1-form dP̃(n)

with integral periods satisfying Eq. (81) and
∫ Rr0

r0

dP̃(n) = 0. (82)

This comes from the requirement that the gapless modes at
the rotational axis should be gapped out in order for the IQH
states to be glued together. The resulting effective theory is
given by

S = 1

4π

∫
AdA ∧ dP̃(n). (83)

The above action is essentially the same as the action for
effective axion field proposed in Ref. [62], where P̃(n) serves
as the effective axion field. Therefore, our method indeed
reproduces the axion effective action for the second-order
topological insulators. Moreover, our approach shows that the
1-form dP̃(n) constructed from the axion field P̃(n) should be
classified by H1(BGpg,Zr ) for the second-order topological
insulators.

2. Physical responses

For the sake of completeness, we briefly discuss the
magnetoelectric responses for the second-order topological
insulators governed by P̃(n). When P̃(n) is a constant, the
integrand of Eq. (83) is a total derivative, and thus Eq. (83)
cannot have any response. Therefore, we need certain spatial
or temporal dependence in P̃(n) to get any responses. Here the
spatial dependence in P̃(n) comes from the mass interfaces in
the bulk as discussed in the previous section. In particular,
we focus on the case where P̃(n) is smooth, and the space is
infinite in order to avoid subtle issues that could appear on the
boundary. The responses we discuss below are essentially the
same as in Ref. [62].

The general form of the magnetoelectric effect is given by
the conserved current

Jμ = 1

2π
εμνλδ∂νP̃(n)∂λAδ. (84)

Specifically, when P̃(n) is static, the electric current can be
induced by an applied electric field as

Ji = σ i jE j, (85)
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with the 3D Hall conductivity

σ i j = 1

2π
εi jk∂kP̃(n). (86)

We note that the conductivity σ i j is not quantized by itself in
general. The quantized quantity is given by

1

2

∫ gy
r r0

r0

εi jkσ
jkdxi = 1

2π

∫ gy
r r0

r0

∂iP̃
(n)dxi = 1

2π
r, (87)

which is quantized in the unit of e2/2πh if we restore the
proper unit. When P̃(n) is dynamic yet homogeneous, the
electric current can be induced by an applied magnetic field
as

Ji = 1

2π
∂t P̃

(n)Bi . (88)

V. DISCUSSION AND OUTLOOK

In this work, we have proposed a general approach to
characterize cSPT phases by their response to spatially de-
pendent mass parameters with interface configurations. These
mass interfaces implement the dimensional reduction proce-
dure such that the bound states trapped at the interfaces are
precisely the building blocks in the topological crystal picture.
To illustrate the main idea, we have focused on the TCIs with
both U(1) charge conservation and the crystalline symmetry.
We have shown that such mass interfaces with codimension k
are classified by Hk (BGs,Z), and discussed the corresponding
topological terms generated by integrating out the massive
fermions.

One physical correspondence of the spatially dependent
mass terms in TCIs is nonhomogeneous lattice distortions
or strain [76,77]. In the case when the couplings between
electrons and the lattice distortions take the same form as
the mass terms in this work, the topological terms will have
an interpretation in the elasticity theory. This point of view
provides a guiding principle on characterizing TCIs through
lattice distortions.

The topological terms discussed in this paper are by
no means an exhaustive list. In particular, these terms are
incapable of describing the building blocks that transform
nontrivially under the crystalline symmetry. It will be desir-
able to study these kinds of terms in the future and matching
with the formal classifications.

When we consider more general topological crystalline
phases, it might be the case that there is no local Lagrangian
description for the building block of interest. A simple exam-
ple is given by a weak topological crystalline superconductors
protected by the translation symmetry. It can be thought of as
a stacking of 1D Kitaev chains. It has been known that the
Kitaev chain is characterized by the Arf invariant, which can
not be expressed by a local differential form. One can never-
theless apply the dimensional reduction procedure by adding
a mass term to a (2 + 1)D Dirac theory with the interface
configurations with respect to the translation symmetry. We
expect such mass interfaces are classified by τ ∈ H1(BZ,Z),
which can be pullback by the map f : M → BZ, giving x =
f ∗τ ∈ H1(M,Z). The result is that there is a (1 + 1)D Dirac
theory describing the Kitaev chain at each mass interface. Af-
ter integrating out the fermions, we can write the topological

term in the following schematic form:
∫

x ∪ Arf ≡ Arf[PD(x)], (89)

where PD(x) denotes a collection of codimension-1 sub-
manifolds, which is Poincaré dual to x = f ∗τ ∈ H1(M,Z).
Arf[PD(x)] denotes the Arf invariant defined on the subman-
ifolds PD(x). The codimension-1 submanifolds PD(x) are
precisely the location of the mass interfaces. These kinds of
topological terms have been considered in Ref. [78] from a
more formal point of view. Applying our approach also leads
to these kinds of topological terms naturally, and it will be
interesting to study these kinds of terms more systematically
in the future. Finally, we point out that our approach can be
applied to noninvertible topological crystalline phases as well,
which provides a way to study these phases in the continuous
field-theory framework while keeping a clear physical picture.
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APPENDIX A: REVIEW OF THE CELLULAR
COHOMOLOGY

Let X be a space with a cell decomposition in terms of CW
complexes. A cellular k-chain is a formal linear combination
of oriented k cells with integer coefficient Z. These generate
an Abelian group Ck (X,Z). The cellular k-cochain is defined
to be a map

α : Ck (X,Z) → A (A1)

and these form a group denoted as Ck (X, A). The pairing of a
k-cochain α ∈ Ck (X, A) and a k-cycle 
 ∈ Ck (X,Z) is a map
Ck (X, A) ⊗ Ck (X,Z) → R, which we denote by

∫



α. (A2)

The cellular coboundary map

δ : Ck (X, A) → Ck+1(X, A) (A3)

is defined as ∫



δα =
∫

∂


α. (A4)

One can show that δ2 = 0. We denote the kernel of δ as
Zk (X, A), whose elements are cellular k-cocycles, and the
image of δ in Zk (X, A) as Bk (X, A), the group of exact cellular
k-cocycles. The kth cellular cohomology of X with coeffi-
cients in A is defined as

Hk (X, A) = Zk (X, A)/Bk (X, A). (A5)
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APPENDIX B: CONSTRUCTION OF THE MAP
f : M → BGs FOR GENERAL SPACE GROUPS

Here we give a construction of the map f : M → BGs. We
begin by the following cell decomposition of the real space
M, which is assumed to be the Euclidean space Ed .

Given a space group Gs, we can partition the Euclidean
space Ed into fundamental domains accordingly. A funda-
mental domain (FD), also known as an asymmetric unit (AU)
in crystallography, is the smallest simply connected closed
part of space from which, by application of all symmetry
operations of the space group, the whole of space is filled.
Formally, the partition is written as

Ed =
⋃
g∈Gs

gF , (B1)

where F is a fundamental domain and gF its image under the
action of g ∈ Gs. If g is not the identity of space group Gs,
then by definition F and gF only intersect in their surfaces at
most. The choice of fundamental domain is often not unique;
a regular choice of fundamental domain for each wallpaper
group and 3D space group is available in the International
Tables for Crystallography.

This construction gives the Euclidean space Ed a cell de-
composition �. For example, in three dimensions, the 3-cells
are the individual (nonoverlapping) copies of FDs. The 2-cells
lie on faces where two 3-cells meet, with the property that no
two distinct points in the same 2-cell are related by symmetry.
Similarly, 1-cells are edges where two or more faces meet, and
0-cells are points where edges meet.

The construction of the map f : M → BGs is based on the
dual-cell decomposition of the one given above. In particular,
there is a one-to-one correspondence between k-cells �k and
dual (d − k)-cells �∨

d−k such that they intersect at a single
point. Each fundamental domain F then corresponds to a dual
0-cell �∨

0 and is labeled by a group element in Gs. Moreover,
a dual 1-cell �∨

1 connecting a dual 0-cell �∨
0 (associated to F)

to g�∨
0 (associated to gF) is also labeled by a group element

g ∈ Gs. The map f is then constructed such that it maps these
dual 0-cells �∨

0 to the base point {∗} in BGs, and maps a dual
1-cell �∨

1 labeled by g to a link in BGs labeled by the same
g ∈ π1(BGs) and so on.

APPENDIX C: CLASSIFYING SPACE OF SPACE GROUPS

Let 
 be the translation group in Rd and P the point group.
The d-dimensional space group Gs fits into a short exact
sequence

1 → 
 → G → P → 1. (C1)

In general, Gs is a subgroup of Rd
� O(d ). We can write an

element of Gs as (v, P) with v ∈ 
 and p ∈ P.
Following Ref. [79], the classifying space of Gs can be

constructed as follows. First we note that the classifying space
B
 of 
 is the d-torus T d = Rd/Zd . The point group P has a
nontrivial action on B
 by

p[v] = [a(p) + pv], (C2)

where [v] denotes an element in B
 with the representative
v ∈ Rd , and a is a lift

a : P → Rd (C3)

such that (a(p), p) ∈ Gs. For symmorphic space groups, a can
be chosen to be trivial. For nonsymmorphic space groups, a
has to be nontrivial. We have the usual point group action on
the contractible universal cover EP of the classifying space
BP of P. The classifying space BGs of Gs can be construed as

BGs = B
 ×P EP, (C4)

where B
 ×P EP denotes the quotient space (B
 × EP)/P.
One can show that this space is the same as

BGs = E
 ×Gs EP, (C5)

where Gs acts on E
 = Rd according to the space-group
action and on EP by first projecting Gs to P. The space
E
 × EP is the universal cover since it is contractible.

In this paper, we only consider the symmetry group of
the from G = Gs × Gint, where Gint is the internal symmetry
group. Since Gint has trivial action on Rd , the classifying space
of G splits as

BG = BGs × BGint. (C6)

APPENDIX D: THE TOPOLOGICAL TERM OF ATOMIC
INSULATORS IN TWO DIMENSIONS

Here we consider the topological terms of higher-
dimensional atomic insulators. We will illustrate the main idea
in two dimensions, and generalization to higher dimensions is
straightforward.

The symmetry group of a 2D atomic insulator is U(1) × 
,
where 
 = Tx × Ty

∼= Z2, and the fermion parity is the Z2

subgroup of U(1). It is known that the general classification
of is Z × Z. One of the Z factors is the integer quantum Hall
state, which is not our focus. We will focus on the other Z
factor, which is the classification of 2D atomic insulators.
The building block picture is having an atom carrying U(1)
charges per unit cell. We will focus on the charge-1 case.
We assume that we have added the ancillas and performed
the coarse graining with respect to the ancilla’s lattice. The
unit-cell size is much larger than the lattice space of the
ancilla’s lattice. The minimal low-energy field theory is given
by a two-flavor massive Dirac theory:

L = −i�̄γ μ∂μ� + im0�̄σ3�, (D1)

where � = (ψ1, ψ2), and σ i are Pauli matrices in the flavor
space. The mass term here guarantees that there is no Chern
number.

To obtain the building block picture, we add the following
spatially varying mass term:

L = im�̄(n1σ1 + n2σ2)�, (D2)

where n1, n2 have spatial dependence. Translation symmetries
Tx and Ty require that ni(r) = ni(r + a) for i = 1, 2. We would
like to choose configurations of n1 and n2 such that there is a
charge-1 bound state at original lattice site. It turns out that
it is enough to consider n1 depends only on x and n2 on y.
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The conditions on n1 and n2 from the translation symmetries
become

n1(x) = n1(x + 1), n2(y) = n2(y + 1). (D3)

The generic forms of n1 and n2 satisfying Eq. (D3) are given
by

n1(x) = x − 1

2π
θ1(x),

n2(y) = y − 1

2π
θ2(y), (D4)

where θ1(x), θ2(y) are R/2πZ-valued functions and their
values jump by 2π at the location of atoms. In other words,
under that translation, we have

θ1(x + 1) = θ1(x) + 2πN1, N1 ∈ Z

θ2(y + 1) = θ2(y) + 2πN2, N2 ∈ Z. (D5)

Equation (D5) implies that the parameter space is a 2-torus
T 2 = S1 × S1. If we consider the system with periodic bound-
ary condition, we can think of the field θ as a map θ : S1 ×
S1 → S1 × S1.

We now discuss the general classification of the interface
configurations of θ1 and θ2. Let �2,(x,y) and �2,(x+1,y) be two
neighboring 2-cells that cover the two neighboring unit cells
in real space, related by a translation in the x direction and,
similarly, �2,(x,y) and �2,(x,y+1) are two neighboring 2-cells re-
lated by a translation in the y direction. According to Eq. (D5),
we have

θ1(�2,(x+1,y) ) = θ1(�2,(x,y) ) + 2πN1(�1,(x+1,x) ),

θ2(�2,(x,y+1)) = θ2(�2,(x,y) ) + 2πN2(�1,(y+1,y) ), (D6)

where N1 ∈ Z, N2 ∈ Z, and �1,(x+1,x) is the 1-cell where the
two neighboring 2-cells �2,x+1 and �2,x meet, and similarly
for �1,(y+1,y). It is easy to see that N1 and N2 satisfy

N1(�1,(xi,x j ) ) + N1(�1,(x j ,xk ) ) = N1(�1,(xi,xk ) ),

N2(�1,(xi,x j ) ) + N2(�1,(x j ,xk ) ) = N2(�1,(xi,xk ) ). (D7)

There is a redundancy since, if we modify the configuration
of θ1 as

θ1(�2,(xi,x j ) ) → θ1(�2,(xi,x j ) ) + 2πh1(�2,(xi,x j ) ), h1(�2,(xi,x j ) ) ∈ Z,

N1(�1,(xi+1,xi ) ) → N1(�1,(xi+1,xi ) ) + h1(�2,(xi+1,x j ) ) − h1(�2,(xi,x j ) ), (D8)

we obtain the same configuration of θ1. There is a similar
redundancy for N2 as well. Therefore, we see that N1 and N2

are Z-valued cocycles in H1(M,Z). Moreover, N1 = f ∗α and
N2 = f ∗β are the pullback of the cocycle α ∈ H1(BTx,Z) and
β ∈ H1(BTy,Z).

To obtain the effective field theory, we couple Eq. (D1) to
a background U(1) gauge field and integrate out the massive
Dirac fermions. According to Ref. [66], we have the following
topological term:

Seff = 1

2

∫
εμνλAμ∂νnI∂λnJτ2,IJ (n)d3x

=
∫

A ∧ n∗τ2, (D9)

where τ2 = 1
2τ2,IJdnI ∧ dnJ is a 2-form on the parameter

space. Here, since our parameter space is a 2-torus T 2

parametrized by θ I , the 2-form τ2 should be proportional to
the volume form of the 2-torus:

τ2 = 1

8π2
εIJdθ I ∧ dθ J . (D10)

The topological term becomes

Seff = 1

8π2

∫
εμνλεIJAμ∂νθ

I∂λθ
Jd3x. (D11)

Requiring that Eq. (D11) be gauge invariant under Aμ →
Aμ + ∂μ f , we find that the following current has to be con-
served:

Jμ = 1

2
εμνλεIJ∂νθ

I∂λθ
J . (D12)

To gain more intuition, we focus on the charge density

ρ = J0 = 1

2
εklεIJ∂kθ

I∂lθ
J . (D13)

When the interface is discontinuous, we have

ρ =
∑

i

δ(x − xi )δ(y − yi ). (D14)

We thus recover the discrete nature of the charge density of an
atomic insulator.

1. Smooth limit

Now we discuss how to take the smooth limit for the θ I

fields. To preserve the information of H1(B
,Z), we consider
the following smooth 1-forms with integral periods:∫ x0+1

x0

E1dx = N1 ∈ Z,

∫ y0+1

y0

E2dy = N2 ∈ Z, (D15)

where we have defined EI = dθ I/2π . The smooth limit of the
2-form τ2 then takes the form

τ2 = 1

2
εIJE I ∧ EJ . (D16)

Written in terms of the smooth differential forms, the effective
action becomes

Seff = 1

2

∫
εIJA ∧ EI ∧ EJ . (D17)

045112-15



HUANG, HSIEH, AND YU PHYSICAL REVIEW B 105, 045112 (2022)

FIG. 10. The Feynman diagrams for Eq. (E5). The solid lines
stand for the fermion field.

The simplest configurations of θ I (and hence EI ) that sat-
isfy Eqs. (D15) and (D15) are given by

θ1(x) = 2πN1x = b1N1x,

θ2(y) = 2πN2y = b2N2y, (D18)

where b1 and b2 are the reciprocal lattice vectors of x and y di-
rections. This discussion can be straightforwardly generalized
to higher dimensions.

APPENDIX E: THE TOPOLOGICAL TERM
OF ROTATION-INVARIANT INSULATORS

IN TWO DIMENSIONS

In this Appendix, we show how to derive the topological
term of rotation-invariant insulators in two dimensions by
integrating out fermions. We start from the following La-
grangian:

L = iψ̄γ μDμψ − m0ψ̄ψ − ψ̄mn · (γ 3,−iγ 5)ψ, (E1)

where Dμ = ∂μ + iAμ, n(r) = (n1, n2) = nr (cos nθ , sin nθ ),
m0 is a constant, and the gamma matrices are

γ 0 = τzσz , γ 1 = iτyσz , γ 2 = −iτxσz , γ 3 = iτ0σy ,

γ 5 = iγ 0γ 1γ 2γ 3 .
(E2)

Here the expressions of the gamma matrices differ from those
in the main text by a factor i, but this difference has no
influence on the resultant effective field theory.

Performing the Fourier transformation gives the action in
the momentum space as

S = −
∫

k
ψ̄kG−1(k)ψk −

∫
k

∫
q
ψ̄k+ q

2
[Aμ(q)γμ

+ mn(q) · (γ 3,−iγ 5)]ψk− q
2
, (E3)

where μ = 0, 1, 2, k = (ω, k),
∫

k = ∫
d3k/(2π )3, and

G−1(k) = kμγ μ + m0. Here we use the same Fourier
transformation rule for ψ , A, and n as

ψx =
∫

k
eikxψk , (E4)

and kx = kμxμ. Integrating out the fermions, the n1n2A term
is given by the two diagrams in Fig. 10, and reads as

− i
∫

k,q1,q2

m2n1(q1)n2(−q1 − q2)Aμ(q2)(Tr [G(k)γ 3

× G(k − q1)γ 5G(k + q2)γ μ] + Tr [G(k − q2)γ 5

× G(k + q1)γ 3G(k)γ μ])

= −
∫

k,q1,q2

m2n1(q1)n2(−q1 − q2)Aμ(q2)8m0ε
μνρ

× q1νq2ρ(
k2 + m2

0

)3 + O(q3)

= i
1

4π

m2

m2
0

∫
d3x εμνρ∂νn1n2∂ρAμ + · · · . (E5)

Then, the leading-order contribution to the corresponding ef-
fective action reads as

Se f f = − 1

4π

m2

m2
0

∫
d3x εμνρ∂νn1∂ρn2Aμ. (E6)

Substituting n = nr ( cos(nθ ), sin(nθ )) and κ = −m2/(4m2
0 )

into the equation, we arrive at

κ

2π

∫
d3x εμνρAμ∂νn2

r ∂ρnθ . (E7)

The above expression is Eq. ((63)) with

dω1 = 1

2π
∂νn2

r ∂ρnθdxν ∧ dxρ. (E8)

The quantization of κ can be derived from Eq. (64).
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