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The accurate determination of magnetic phase transitions in electronic systems is an important task of solid-
state theory. While numerically exact results are readily available for model systems such as the half-filled 3D
Hubbard model, the complexity of real materials requires additional approximations, such as the restriction to
certain classes of diagrams in perturbation theory, that reduce the precision with which magnetic properties are
described. In this paper, we examine the description of magnetic properties in second order perturbation theory,
GW, fluctuation exchange, and two T-matrix approximations to numerically exact CT-QMC reference data. We
assess finite-size effects and compare periodic lattice simulations to cluster embedding. We find that embedding
substantially improves finite-size convergence. However, by analyzing different partial summation methods, we
find no systematic improvement in the description of magnetic properties, with most methods considered in this
paper predicting first-order instead of continuous transitions, leading us to the conclusion that nonperturbative
methods are necessary for the accurate determination of magnetic properties and phase transitions.
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I. INTRODUCTION

The accurate quantum mechanical description of magnetic
phase transitions in real materials is an open problem, despite
the enormous practical importance of magnetic materials, as
it requires a simultaneous description of electronic structure
and correlation effects, finite-temperature phenomena, and (at
continuous transitions) criticality.

In model systems, where the complication of electronic
structure effects is absent, the prototypical realization of
a magnetic phase transition occurs in the half-filled three-
dimensional version of the Hubbard model [1,2]. There, the
transition temperature is small for both weak and strong in-
teractions and becomes maximal at an interaction strength
∼2/3 of the bandwidth of the model. This transition has been
studied extensively with numerically exact methods [3–8],
motivated, in particular, by cold atomic gas experiments that
emulate the half-filled 3D model in an optical trap [9–14].

These numerically exact methods cannot easily be ex-
tended to realistic three-dimensional systems, where one
is limited to approximations such as low-order self-
consistent perturbation theory and partial summation meth-
ods. These approximations capture electronic structure and
finite-temperature effects reasonably well, while severely ap-
proximating electron correlation. Nevertheless, one may aim
to find a hierarchy or Jacob’s ladder [15] of approximate
methods that systematically converge to the exact result as
their complexity or approximation level is increased.

In this paper, we explore such a hierarchy. We focus on
semianalytical partial summation methods suitable for real-
istic systems at the example of the simple and well-known
half-filled 3D Hubbard model at weak-to-intermediate cou-
pling (see Fig. 1), with special emphasis on converging the
results in the critical regime to the thermodynamic limit.

We employ self-consistent second-order perturbation theory
(GF2, [16]) in the bare interaction and self-consistent first-
order perturbation theory in the screened interaction (GW,
[17]), and explore convergence and accuracy of these meth-
ods. We then explore two variants of T-matrix or ladder
summation methods and a combination of fluctuation ex-
change (FLEX) diagrams with ladder and polarization terms
[18–20]. All results are then compared to numerically exact
continuous-time quantum Monte Carlo calculations [21–23]
on the same system and in the thermodynamic limit.

We show that finite-size effects in all these methods can
be substantially reduced by employing the dynamical cluster
approximation (DCA, [25,26]), even near criticality. All DCA
results converge to the results on finite-size systems with
periodic boundary conditions, as expected, while requiring
simulations on substantially smaller systems. We also show
that commonly used cluster selection criteria [27,28] gener-
ally do not accelerate convergence.

We then show that despite adding more diagrams, no
systematic convergence of the hierarchy of diagrammatic
methods is observed in the weak-to-intermediate coupling
regime. Instead, methods with additional geometric series
tend to exhibit first-order metastability rather than second-
order criticality, and the numerical values either do not
improve systematically or worsen when compared to the exact
results. This indicates that increasing the accuracy of simu-
lations of magnetic transitions will require the use of other
hierarchy paradigms, such as, for instance, quantum embed-
ding [26,29,30].

The remainder of this paper proceeds as follows. Section II
introduces the 3D Hubbard model and Sec. III the diagram-
matic and finite-size scaling methods. Section IV presents
reference results, analyzes finite-size effects, and discusses
results from GW and GF2. Section V shows results from

2469-9950/2022/105(4)/045109(12) 045109-1 ©2022 American Physical Society

https://orcid.org/0000-0001-7639-1827
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.045109&domain=pdf&date_stamp=2022-01-04
https://doi.org/10.1103/PhysRevB.105.045109


SERGEI ISKAKOV AND EMANUEL GULL PHYSICAL REVIEW B 105, 045109 (2022)

FIG. 1. Overview of the weak-to-intermediate coupling phase
diagram for the half-filled 3D Hubbard model on a simple cubic
lattice. Shown are numerically exact CT-QMC results (black circles)
along with GW (blue), GF2 (dark red, shaded metastable region),
particle-hole ladder (orange), and FLEX (black squares). Also shown
are literature results extracted from Refs. [3,4,6,24].

ladder and FLEX approximations, and Sec. VI discusses our
conclusions. The Appendix provides additional derivations
for general spin-dependent ladder and FLEX methods and
discusses the issue of causality violations.

II. MODEL

The Hamiltonian of the Hubbard model [1,2] is

H = −t
∑

〈i, j〉,σ
c†

i,σ c j,σ + U
∑

i

ni↑ni,↓, (1)

where t denotes the hopping term, U the on-site Coulomb
interaction, and 〈i, j〉 nearest neighbors on a simple cu-
bic lattice. To study (π, π, π ) antiferromagnetic order, we
use a two-site supercell formalism with lattice vectors a1 =
(0, 1, 1)T , a2 = (1, 1, 0)T , and a3 = (1, 0, 1)T . The antifer-
romagnetic order parameter is M = |ρ0,0,↑ − ρ0,0,↓|, where
ρ0,0,σ is the local density matrix for spin σ at site 0.

The imaginary time Green’s function is

GK,i j,σ (τ ) = − 1

Z Tr[e−(β−τ )HcK,i,σ e−τHc†
K, j,σ ]. (2)

Here Z = Tr[e−βH] is the grand partition function, β the
inverse temperature, H = H − μN with μ the chemical po-
tential and N the particle number, and K a reciprocal lattice
vector. i and j denote site indices in the supercell. In this
paper, we limit ourselves to the half-filled case of μ = U

2 .
The Dyson equation relates the noninteracting (U = 0)

Green’s function G0
K,i j,σ (τ ) to the interacting Green’s function

GK,i j,σ (τ ) via the self-energy �K,i j,σ (τ ),

GK,i j,σ (ωn) = G0
K,i j,σ (ωn)

+
∑

kl

G0
K,ik,σ (ωn) �K,kl,σ (ωn)GK,l j,σ (ωn),

(3)

where ωn = (2n + 1)π/β are fermionic Matsubara frequen-
cies related to imaginary time τ via Fourier transform [31].

FIG. 2. Self-energy diagrams for GF2 (top) and GW (bottom).
Straight lines denote interacting Green’s functions. Wiggly lines
denote Coulomb interaction.

The Schwinger-Dyson equation [32] relates the dynamical
part of the self-energy to a fully reducible vertex function F ,

�K,i j,σ (ωn) = 1

(βNc)2

∑
n′n′′; pml
K′Q,σ ′

UGK′,ip,σ ′ (ωn′ )

× G(K′+Q),mi,σ ′ (ωn′+n′′ )G(K+Q),il,σ (ωn+n′′ )

× F
σσ ′σ ′σ

pml j
K′KQ (ωn′ , ωn,	n′′ ), (4)

with Nc the number of lattice sites and 	m = 2mπ/β bosonic
Matsubara frequencies.

The Bethe-Salpeter equation relates the vertex function to
the generalized susceptibility χ ,

χ
αβγ κ

KK′Q(ωn, ωn′ ,	m)

= χ
(0),αβγ κ

KK′Q (ωn, ωn′ ,	m)δ n,n′
K,K′

− χ̃
,αβγ κ

KK′Q (ωn, ωn′ ,	m)

(5)

χ̃
αβγ κ

KK′Q(ωn, ωn′ ,	m)

=
∑
ψξηθ

χ
(0),αβψξ

KKQ (ωn, ωn,	m) Fψξηθ

KK′Q (ωn, ωn′ ,	m)

× χ
(0),ηθγ κ

K′K′Q (ωn′ , ωn′ ,	m). (6)

Here

χ
(0),αβγ κ

KK′Q (ωn, ωn,	m)

= −βNcGK,αβ (ωn)G(K+Q),γ κ (ωn + 	m) (7)

is the unconnected and χ̃
αβγ κ

KK′Q(ωn, ωn′ ,	m) the connected part
of the susceptibility [32], and Greek indices correspond to
combined spin and orbital indices.

The Galitzkii-Migdal formula expresses the energetics in
terms of Green’s functions and self-energies [33–37] as

〈V 〉 = 1

βNc

∑
n,K,i j,σ

�K,i j,σ (ωn)GK, ji,σ (ωn), (8)

〈T 〉 = 1

βNc

∑
n,K,i j,σ

Tr[(εK,i j − μδi j )GK, ji,σ (ωn)]. (9)

III. METHODS

A. GF2

In self-consistent second-order perturbation theory, the
dynamical part of the self-energy in the presence of local
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interactions is (see Fig. 2)

�
(2)
K,i j,σ (ωn) = − 1

(βNc)2

∑
n′m,σ ′
K′Q

U 2GK′,i j,σ ′ (ωn′ )

× G(K′+Q), ji,σ ′ (ωn′+m)G(K+Q),i j,σ (ωn+m). (10)

Comparison to Eq. (4) implies that GF2 corresponds to ap-
proximating F by the bare interaction U [32]. The connected
part of the susceptibility in the case of the Hubbard model then
reduces to

χ̃
(2)αβγ κ

KK′Q (ωn, ωn′ ,	m) =
∑
ψξηθ

χ
(0),αβψξ

KKQ (ωn, ωn,	m)

× Uχ
(0),ηθγ κ

K′K′Q (ωn′ , ωn′ ,	m). (11)

The static analog of this expression has been presented in
Refs. [38,39]. Because the GF2 is not a two-particle self-
consistent method, the susceptibility can also be evaluated
from the second-order approximation to the vertex function
obtained through the functional derivative of the Luttinger-
Ward functional. In this approach, the GF2 susceptibility
is [40]

χ̃ (22 ) = χ̃ (2) + χ (0)Uχ (0)Uχ (0). (12)

Neither Eq. (11) nor Eq. (12) can generate a divergent suscep-
tibility, as would be expected at a continuous phase transition.
Transitions in this method are therefore necessarily first order.

The direct evaluation of the self-energy diagram in GF2,
Eq. (10), requires integration over two momentum indices.
The overall scaling with system size is therefore O(N3

c ). Due
to the locality of the interaction in the Hubbard model, this
scaling can be reduced to O[Nc log(Nc)] by evaluating dia-
grams in real space.

B. GW

In GW [17], the dynamical part of the self-energy is ex-
pressed in terms of the renormalized screened interaction W :

WQ,i j (	m) = U − 1

βNc

∑
Knlσ

U

× GK,il,σ (ωn)GK+Q,li,σ (ωn+m)WQ,l j (	m).
(13)

W can also be expressed as a geometric series,

WQ(	m) = U
[
1 − U�

(GW )
Q (	m)

]−1
, (14)

where
[
�

(GW )
Q (	m)

]
il

= − 1

βNc

∑
K,n′,σ ′

× GK′,il,σ ′ (ωn′ )GK+Q,li,σ ′ (ωn′+m) (15)

is the GW approximation of the polarization operator [17] and
bold symbols correspond to a tensor representation in orbital
space. The dynamical part of the self-energy is (see Fig. 2)

�
(GW )
K,i j,σ (ωn) = 1

βNc

∑
Q,m,l

UGK+Q,i j,σ (ωn+m)

× �Q,il (	m)WQ,l j (	m). (16)

The connected part of the susceptibility in GW is

χ̃
αβγ κ

KK′Q(ωn, ωn′ ,	m) =
∑
ψξηθ

χ
(0),αβψξ

KKQ (ωn, ωn,	m)WQ,ψξηθ

× (	m)χ (0),ηθγ κ

K′K′Q (ωn′ , ωn′ ,	m). (17)

Like GF2, GW is not a two-particle self-consistent ap-
proach [17,41]. Unlike Eqs. (11) and (12), Eq. (17) will
diverge when 1 − U�

(GW )
Q (	m) becomes singular or, equiv-

alently, when the leading eigenvalue of U�
(GW )
Q (	m) passes

through 1. The complexity of evaluating the self-energy dia-
gram with local interactions is only O(N2

c ).

C. CT-QMC

To obtain unbiased results for the model, we validate our
results with continuous time [21,42] auxiliary field quantum
Monte Carlo (CT-AUX) [22] with submatrix updates [23].
This algorithm obtains numerically exact results (within sta-
tistical error) for finite-size lattice and impurity models. In
the half-filled case, the sign problem is absent and the algo-
rithm scales as O(N3

c ). In the 3D Hubbard model, the method
has been successfully applied to the study of thermodynamic
properties in the continuum limit with systematic finite-size
extrapolations [5], as well as to spectral properties [6,43].

To obtain results in the continuum limit, finite system size
results need to be extrapolated in the system size [6]. We
extrapolate our reference results from a sequence of clusters
with up to 90 cluster sites, using a linear extrapolation of the
critical temperature in the inverse cluster size.

D. Treatment of the finite-size effects

The thermodynamic limit of Eq. (1) is typically approx-
imated by restricting the system to a finite-size lattice with
periodic boundary conditions. By gradually enlarging the lat-
tice, convergence to the thermodynamic limit is observed.

1. Finite lattice selection

The traditional approach on simple cubic lattices uses
periodic systems defined by the orthogonal translational vec-
tors 2n{(100)T , (010)T , (001)T }, with n integer [3]. With this
choice, few lattices (2 × 2 × 2, 4 × 4 × 4, ..., 10 × 10 × 10)
are readily accessible, complicating the extrapolation to the
thermodynamic limit. This choice of lattices is equivalent
in reciprocal space to the standard choice of �-centered
Monkhorst-Pack grids [44] used in real-material calculations,
and fully respects all lattice symmetries.

If symmetries of the infinite lattice are allowed to be
broken by the finite system, many more cluster geometries
become available. References [27,28] classified the suitability
of these clusters for finite system simulations at the example
of the 2D and 3D Heisenberg model and developed empirical
criteria for cluster selection based on geometric properties.
These so-called Betts clusters are popular in DCA [25,45] (see
Refs. [4,6] for larger 3D geometries), as they allow us to per-
form thermodynamic limit extrapolations from comparatively
small system sizes with many more points. We emphasize
that selecting clusters according to these criteria does not
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guarantee accelerated convergence for small clusters and that
finite-size effects need to be assessed for each simulation.

Other approaches to select finite-size clusters exist. For
instance, Ref. [46] (in a real materials context) suggests using
different k̃ grids, reducing grids to their symmetrically dis-
tinct points and thereby substantially reducing the number of
sampling points by better symmetry reduction [47]. Methods
using nonequidistant grids could also improve finite-size con-
vergence by increasing grid density near the high-symmetry
points [48].

2. Quantum embedding methods

Finite size convergence may be drastically accelerated with
quantum embedding techniques [45]. Here, the original lattice
is replaced by an impurity embedded into a self-consistently
adjusted bath of noninteracting fermions [29,30,49,50]. This
allows us to treat correlations within the size of the cluster
explicitly while long-range correlations are approximated, and
corresponds to an approximation on the level of the self-
energy rather than the Green’s function. Similarly to lattice
calculations, embedding calculations converge to the contin-
uum limit as the system size is increased, such that the inverse
system size is a control parameter for finite-size corrections
[5,23,51–53].

Numerous embedding methods have been proposed
[25,30,49,50,54]. Here we use the DCA [25,45], which is
based on a translationally invariant embedding where local
quantities such as the order parameter or the energy converge
quadratically with the linear system size [25,26]. DCA can
also be understood as the approximation of the continuous
self-energy by a few momentum-dependent basis functions
[55], see also Ref. [56].

DCA can be formulated in conjunction with any impurity
solver,including the numerically exact CT-QMC methods and
diagrammatic methods such as GF2 or GW and on any finite-
size cluster, including the Betts clusters discussed above. As
with lattice methods, the cluster selection criteria are not rig-
orous and convergence to the thermodynamic limit must be
assessed for any simulation [4,35,45,57,58].

3. Twisted boundary conditions

Twisted boundary conditions and twist averaging [59,60]
are powerful techniques commonly used in quantum Monte
Carlo simulations [61,62] for accelerating finite size conver-
gence and eliminating shell effects. Twist averaging has been
applied to the Hubbard model, e.g., in Refs. [61,63]. The
main idea of this method is to shift the momentum of cluster
states. This provides information about additional momentum
points and, in the absence of the long-range correlations, to
simulate systems of effectively much larger size. The aver-
aging over different twisting phase factors then accelerates
the convergence to the thermodynamic limit. In the context
of embedding, the method has been explored in Ref. [64].

IV. RESULTS FOR CT-QMC, GW, AND GF2

Because of its importance as a paradigmatic model for
phase transitions in periodic systems [1], the 3D Hubbard
model has been extensively studied over the years with meth-

ods including mean-field theory [65,66], quantum Monte
Carlo [3,7,8,67], dynamical mean field theory and its cluster
extensions [4,6], the two-particle self-consistent approxi-
mation [68], and diagrammatic extensions to the DMFT
[24,69,70]. Several benchmark results for this model in the
weak-to-intermediate coupling regime exist, making it an
ideal test bed for numerical methods, such as Refs. [71–73].
Figure 1 contains an overview of literature results and their
respective uncertainties.

A. Reference results

Staudt et al. [3] studied the model with lattice QMC based
on a discrete Hubbard-Stratonovich transformation [74,75]
on finite cubic lattices with linear dimension up to L = 10.
Results from this work have been established as the main
reference for TN in the intermediate coupling regime. Lat-
tice studies [8] with continuous time Monte-Carlo methods
[21,42,76] that eliminate potential time discretization errors
[77] are in good agreement with these results.

Approaches based on the DCA have been used in conjunc-
tion with both discrete [4] and continuous [6] time Monte
Carlo cluster solvers and have shown good agreement with
reference results [3] while using much smaller system sizes.

Motivated by cold atom experiments [10,11,78], the
problem was revisited in the context of energetic and ther-
modynamic properties [5,7]. Studies were mostly performed
in the region near U ≈ 8t , where the entropy of the ordered
phase is maximal [5], and for trap geometries [14,79–81].

B. Order parameter and energetics

Our focus is on the weaker correlation regime (2 � U/t �
6), where perturbative partial summation methods have a
higher likelihood of success than at U = 8.

We start the discussion from an analysis of the antifer-
romagnetic order parameter on a lattice with Nc = 68 sites
characterized by the lattice vectors a1 = (1, 2, 3)T , a2 =
(3, 3,−2)T , a3 = (2,−3, 3)T , using DCA self-consistency to
reduce finite-size effects. This lattice is large enough that
finite-size effects are small, but small enough that calculations
can readily be performed. Figure 3 shows the temperature
dependence of the order parameter for numerically exact (CT-
QMC) and perturbative (GW and GF2) methods at U = 4t and
U = 6t . For both values of the interaction, perturbative meth-
ods find a phase transition within 20% of the exact transition
temperature.

Numerically exact CT-QMC results for both U = 4t and
U = 6t show a continuous phase transition, in agreement with
previously results by other Monte Carlo simulations, and the
values of TN coincide (within statistical error) with previous
studies [3–5,8].

In GF2, the order parameter is ∼10% − 20% larger than
the numerically exact value for all values of interaction.
We performed simulations with high and low initial stag-
gered magnetic fields. These initial conditions led to different
self-consistent solutions and two transition temperatures, Tc1

(where the initially polarized solution becomes isotropic) and
Tc2 (where the initially unpolarized solution develops or-
der). These metastable solutions indicate a first-order phase
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FIG. 3. Temperature dependence of the antiferromagnetic order
parameter for U = 4t (top) and U = 6t (bottom) obtained from DCA
for Nc = 68. Blue: GW. Red: GF2 for high (diamonds) and low
(squares) initial field. Black circles correspond to numerically exact
CT-QMC results.

transition, which we attribute to the lack of divergence in the
GF2 susceptibility [Eqs. (11) and (12)]. While the metastable
region becomes smaller for smaller values of interaction (see
red shaded area in Fig. 1) and becomes unobservable for
U � 2t , it will likely persist for any nonzero value U .

GW, on the other hand, predicts a continuous phase tran-
sition. The order parameter is smaller than in GF2, and the
exact value is bracketed between GF2 and GW results. Like
in GF2, the transition temperature grows almost linearly for
U � 4t and we find no indication of a ∼1/U behavior [3,24]
at large U . The order parameter in all three methods saturates
around T ≈ Tc/3.

An analysis of the energetics of the model using Eq. (9)
(not shown) indicates that Tc1 corresponds to the actual GF2
transition temperature, whereas the isotropic solution below
Tc1 belongs to a metastable state.

C. Finite size convergence

Next, we perform a finite size analysis. We consider two
approaches: Simulations on periodic finite-size clusters and
embedding simulations using the DCA scheme. Both ap-
proaches use the same cluster geometries, and we emphasize
that in the infinite cluster size limit, both approaches converge
to the same solution, both in theory [51–53] and in practice
[5,58].

Figure 4 shows system-size dependence of the critical
temperature as obtained from GF2 (red) and GW (blue), on

FIG. 4. Dependence of the critical temperature for U = 4t (top)
and U = 6t (bottom) on linear system size Lc = N1/3

c . Open symbols:
Lattice with periodic boundary conditions. Filled symbols: DCA.
Red: GF2 for high (diamonds) and low (squares) initial fields. Blue
triangles: GW. Black circles: Numerically exact CT-QMC results.

periodic clusters (open symbols) and with DCA embedding
(filled symbols). Error bars correspond to the uncertainty in
Tc, which is obtained by bracketing the critical temperature
with simulations from above and below. We first consider
periodic clusters without embedding. At U = 4t , we see large
finite-size dependence and very slow convergence with sys-
tem size up to Nc = 1000. This indicates the importance of
long-range fluctuations for small values of U . For U = 6t , the
convergence of the transition temperature is much faster and
we see a clear sign of saturation at Nc � 100. For some cluster
geometries, we observe no sign of any antiferromagnetic tran-
sition, e.g., Nc = 34. GF2 and GW exhibit a similar finite size
dependence at both interaction strengths U = 4t and U = 6t .

In the case of DCA, for perturbative methods, the critical
temperature converges to the thermodynamic limit value for
all cluster geometries we consider. Unlike simulations with-
out embedding, DCA simulations for all clusters demonstrate
clear signs of the antiferromagnetic transition. This indicates
that a relatively short-ranged self-energy, in conjunction with
a fine-grained resolution of the dispersion, can efficiently
capture phase-transition physics even in the weak coupling
regime. For the numerically exact CT-QMC DCA results, we
do not observe large deviations in the transition temperature
for clusters larger than Nc ∼ 40, consistent with Ref. [4].

The finite-size dependence of the order parameter, shown
in Fig. 5, shows a similar trend as the critical temperature. For
each cluster, we perform simulations at a temperature ∼1/5Tc
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FIG. 5. System-size dependence of the antiferromagnetic order
parameter for U = 4t (top) and U = 6t (bottom). Open symbols:
Lattice with periodic boundary conditions. Filled symbols: DCA.
Red squares: GF2. Blue triangles: GW.

(where the order parameter is close to saturation), as the
critical temperature has a large cluster size dependence. In the
absence of embedding, the order parameter slowly saturates
and even for U = 6t (bottom panel) does not fully converge.
DCA embedding shows quick convergence and exhibits only
small fluctuations, even for clusters with Nc < 80.

For interaction strength U = 4t and U = 6t , we observe
that in the absence of embedding, some cluster geometries
show no sign of an antiferromagnetic phase transition. Ex-
amining those clusters for their correspondence to the criteria
outlined in Ref. [27], we find that the cluster imperfection
I , as the main criterion for cluster selection, is not a reliable
predictor for the presence of a phase transition. The Nc = 38
cluster with vectors a1 = (1, 2, 3)T , a2 = (3,−1,−2)T , a3 =
(2,−2, 2)T , for example, has an imperfection of I = 0 and
is therefore classified as a good cluster [4], despite having
no Tc.

In Fig. 6, we compare the system-size dependence of
Monkhorst-Pack grids to those of Betts clusters. Shown are
GW results for the system-size dependence of transition tem-
perature. Results without embedding for Betts clusters are
shown as blue open triangles, results for Monkhorst-Pack
grids as open purple triangles for both values of interaction.
DCA results (filled blue triangles) are shown as an estimate of
the thermodynamic limit value. Results for Betts clusters and
Monkhorst-Pack grids show similar finite-size effects, leading
us to conclude that the main advantage of Betts clusters is not
an accelerated convergence, but the possibility of having many

FIG. 6. Comparison of system-size dependence of the GW tran-
sition temperature for different type of cluster geometries for U = 4t
(top) and U = 6t (bottom). Blue open triangle: Betts clusters with
periodic boundary conditions. Purple open triangles: Monkhorst-
Pack lattices with periodic boundary conditions. Filled blue triangles:
DCA on Betts clusters.

more finite-size values from which a systematic finite-size
extrapolation can be performed.

V. RESULTS FOR HIGHER ORDER
DIAGRAMMATIC METHODS

One may hope to systematically improve perturbative
methods by including additional diagrammatic topologies.
We consider three types of diagrammatic approximations:
Particle-hole ladder (ph ladder), particle-particle ladder (pp
ladder), and FLEX [18–20]. All these methods are formu-
lated in terms of single-particle objects (such as Green’s
functions and self-energies) rather than two-particle suscepti-
bilities [32], and could therefore be extended to more complex
multiorbital systems with limited numerical effort [82]. The
ph ladder includes the diagrams of GF2, GW, and additional
magnetic fluctuations. The pp ladder contains charge fluctu-
ations in addition to GF2 diagrams. FLEX contains all the
diagrams of GF2, GW, ph ladder, and pp ladder combined.
These methods are thermodynamically consistent and con-
serving [18,83,84]. Appendix A derives the formulas used.

A. Self-consistency convergence

We find that all three higher order methods have a strong
dependence on the starting point and may converge to a
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FIG. 7. Temperature dependence of the order parameter at U =
6t for DCA cluster of size Nc = 68. Particle-hole ladder: Orange.
FLEX: Red. Also shown are results for GF2 (dark red) and GW
(blue). Arrows indicate numerically exact CT-QMC solution for Tc

and order parameter.

metastable isotropic phase instead of the ordered phase or to
an unphysical solution. We attribute these convergence issues
to the presence of sign-alternating diagrams (see Sec. B).
Using a fixed staggered antiferromagnetic field to initialize
the self-consistent iteration and gradually relaxing it reveals
the antiferromagnetic transition in FLEX and in the ph ladder.
We find no indication of a phase transition in the pp ladder.

B. Results for the ordered state

As in Sec. IV, we use the double unit-cell formalism and
observe the change in the order parameter. We present data for
DCA with a fixed cluster of size Nc = 68. The temperature
dependence of the order parameter at U = 6t is shown in
Fig. 7. As shown in Fig. 3, GW (blue) shows a continu-
ous phase transition and GF2 (dark red) shows a first-order
transition. Both methods deviate from the numerically exact
Tc (black arrow) and also overestimate the order parameter.
FLEX (red) and ph ladder (orange) estimates bracket GF2 and
GW values of Tc, as the additional renormalization in the pp
channel, included in FLEX, leads to a substantial reduction
of the transition temperature. The order parameter of FLEX
and ph ladder have a similar temperature dependence as GF2,
indicating a first-order transition.

To further analyze the transition, we evaluate the an-
tiferromagnetic susceptibility χ = ∂M

∂H . Figure 8 shows the
temperature dependence of the inverse susceptibility in the
linear response regime. For GW (blue), the susceptibility di-
verges from both sides of the estimated Tc. For GF2 (dark
red), ph ladder (orange), and FLEX (red) we see a divergence
of the susceptibility when approaching Tc from the ordered
phase and a discontinuous jump to the isotropic phase, clearly
indicating a first-order transition for these methods. For the
pp ladder (green), we see no divergence and do not observe a
phase transition.

As the results for both the order parameter (Fig. 7) and
the susceptibility (Fig. 8) show, adding an infinite series of
diagrams does not lead to systematic improvement of the
results, neither for the static low-T order parameter nor the
critical temperature. Infinite geometric series, while necessary
for continuous phase transitions, do not necessarily suppress

FIG. 8. Inverse susceptibility in the linear response regime ob-
tained for DCA clusters of size Nc = 68 at U = 6t . GF2: dark red.
GW: blue. ph ladder: Orange. pp ladder: Green. FLEX: Red. Arrow
indicates Tc of numerically exact CT-QMC solution.

the first-order behavior in this model, and despite the mag-
netic ph fluctuations contained in the FLEX and ph ladder,
these methods do not capture the continuous magnetic phase
transition.

These observations are consistent with results for the
weak-coupling regime of the 2D Hubbard model [85], where
systematic convergence was also not observed.

C. Comparison to Tc extrapolated from high-T results

To evaluate the transition temperature approaching from
the high-T phase, we analyze the leading eigenvalue (λ) of the
matrix χ0,(ph)�0,(ph) in Eq. (A4) as a function of temperature.
This is the standard method to analyze phase transitions in
normal-state simulations [86–90] but requires the calculation
of a two-particle susceptibility rather than the simulation of
the ordered state in an extended unit cell. As it relies on the
divergence of the susceptibility in the normal state, it is only
applicable to continuous phase transitions.

For U = 4t (Fig. 9, top panel) we find that the λ of the
ph ladder saturates near ‖λ‖ ∼ 0.96 for temperatures down
to T ∼ 0.1 and no signature of Tc ∼ 0.166 is visible. This
indicates an absence of a divergence in the susceptibility when
approaching from the isotropic phase and supports the obser-
vation of the first-order phase transition obtained in the double
unit-cell formalism. Figure 9 shows a comparison of the tem-
perature dependence of the order parameter (crosses), inverse
susceptibility (diamonds), and leading eigenvalue (pluses).
For U = 6t (Fig. 9, bottom panel), similarly to U = 4t , our
ph-ladder simulations tend to either converge to an unphysical
solution or do not converge at all for T < 0.4t , and no sign
of Tc ∼ 0.48 obtained in the double unit-cell formalism is
visible.

We are only able to converge FLEX to the ordered phase
for U � 5.5t . The results for U = 6t are shown in the bottom
panel of Fig. 9. The phase-transition estimates obtained in
the ordered phase and in the normal state are substantially
different due to the first-order transition, similarly to what is
observed for the ph ladder.

In addition to simulation data, we show linear extrapolation
of high-temperature values of the leading eigenvalue (Fig. 9,
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FIG. 9. Methods for estimating the critical temperature at U =
4t (top) and U = 6t (bottom). Particle-hole ladder: Orange. FLEX:
Red. Normal-state solution: Pluses. Doubled unit-cell order param-
eter: Crosses. Doubled unit-cell inverse susceptibility: Diamonds.
Also shown is a linear extrapolation of high-T results for the leading
eigenvalues in the ph channel.

dashed lines). Because of the first-order nature of the tran-
sition, these extrapolations do not yield accurate transition
temperatures.

VI. CONCLUSION

In this paper, we examined the behavior of self-consistent
diagrammatic methods at the example of the 3D Hubbard
model, which is the prototypical fermionic model system for
continuous phase transitions. Our diagrammatic methods are
formulated in terms of single-particle quantities only, making
them generalizable to real materials simulations, and com-
pared to numerically exact CT-QMC data.

We find that finite-size effects can be very efficiently
controlled by using the DCA embedding scheme, and that
embedding and lattice simulations constantly converge to
the thermodynamic limit results, as expected. Betts clusters
without embedding do not exhibit a faster convergence than
the standard Monkhorst-Pack grids. However, in combination
with DCA, they provide many more systems from which an
extrapolation with small clusters can be performed. An ex-
tension of the DCA scheme to realistic contexts may be able
to reproduce this accelerated convergence in more general
systems.

We also find that neither the transition temperature nor the
ordered moment in GF2 or GW are accurate, and that they are

not systematically improved by adding additional geometric
series of diagrams. As methods that explicitly sum up dia-
grams beyond those considered here are typically formulated
in terms of four-operator vertices and are often too expensive
to be applied in a realistic setup, our results imply that other
paradigms, such as nonperturbative embedding methods, are
needed to systematically improve results.

The continuous magnetic phase transition examined here
was found to be discontinuous in most of the methods, even
in methods that contain an infinite series of magnetic ladder
diagrams. Therefore, the detection of phase transitions based
on the divergence of susceptibilities (or the observation of
leading eigenvalues) is not reliable.
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APPENDIX A: PARTICLE-HOLE LADDER,
PARTICLE-PARTICLE LADDER, AND FLEX

In this Appendix, we describe the equations used for
solving the general spin-dependent FLEX and ladder approx-
imations. The normal-state FLEX formalism was originally
introduced in Refs. [18,91]. It has later been extended to
general lattice Hamiltonians [19]. This approach has been ex-
tensively used to study effects of spin and charge fluctuations
on the superconducting state in cuprates [92–96], organic
superconductors [97–99], and spin lattice systems [100] due
to its ability to treat these fluctuations on equal footing.

Application of FLEX to multiorbital systems is usually
limited to few orbitals [19,101,102] due to its computational
complexity. Often, diagrams in the pp channel are neglected
[82,99,103,104]. This additional approximation corresponds
to the ph ladder in our notation.

To study the ordered phase, one has to consider spin depen-
dence of the interaction as proposed in Ref. [105] for a local
multiorbital problem. The extension to lattices with general
nonlocal interactions is straightforward and will be briefly
discussed below.

Reference [105] proposed to work with an interaction di-
agonalized in spin space. We find that this approach is not
necessary as the susceptibilities in the ph and pp channels
remain nondiagonal. Instead, we utilize the linear indepen-
dence of different components in the interaction tensor. Both
approaches are mathematically equivalent.

The self-energies have the following form:

�K1,i1i2,σ1 (ωn) = �
(2)
K1,i1i2,σ1

(ωn)

+ ζ �̃
(ph)
K1,i1i2,σ1

(ωn) + ξ�̃
(pp)
K1,i1i2,σ1

(ωn).
(A1)

Here �(2) is the second-order self-energy [Eq. (10)], �̃(ph) and
�̃(pp) are higher order contributions from ph and pp ladders,
respectively.
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FIG. 10. Antisymmetrized bare interaction in particle-hole chan-
nel (top) and in particle-particle-channel (bottom).

For FLEX, both ζ = 1 and ξ = 1, for ph ladder ζ = 1 and
ξ = 0, and for pp ladder ζ = 0 and ξ = 1.

The ph-ladder contribution to the self-energy is

�̃
(ph)
K1,i1i2,σ1

(ωn)

= 1

βN2
c

∑
345
678

m

�
0,(ph)
1456

(
χ

(ph)
6587(	m) − χ

0,(ph)
6587 (	m)

)
�

0,(ph)
7832

× GK1+Q,i3i4,σ3 (ωn+m)δσ1,σ2δσ3,σ4δK1+K5,K4+K6

× δK7+K3,K8+K2 . (A2)

Here the indices N = (KN , iN , σN ) are combined momentum,
orbital, and spin indices. The bosonic momentum trans-
fer is Q = K4 − K1. �0,(ph) is the ph antisymmetrized bare
Coulomb interaction, as shown in the top panel of Fig. 10.
The unconnected part of the susceptibility is

χ
0,(ph)
1234 (	m) = − 1

β

∑
n

GK1,i1i4,σ1 (ωn)GK2,i3i2,σ2 (ωn+m)

× δσ1,σ4δσ2,σ3δK1,K4δK2,K3 . (A3)

The dressed ph susceptibility is evaluated via solution of the
Bethe-Salpeter equation in the ph channel:

χ (ph)(	m) = (1−χ0,(ph)(	m)�0,(ph) )−1χ0,(ph)(	m), (A4)

where bold symbols χ (ph), χ0,(ph), and �0,(ph) correspond to
matrix representations of the unconnected part of the sus-
ceptibility, dressed susceptibility, and antisymmetrized bare
interaction, respectively.

Similarly, the pp contribution:

�̃
(pp)
K1,i1i2,σ1

(ωn)

= 1

βN2
c

∑
345
678

m

�
0,(pp)
1456

(
ψ

(pp)
6587(	m) − ψ

0,(pp)
6587 (	m)

)
�

0,(pp)
7832

× GQ−K1,i3i4,σ3 (ωm−n)δσ1,σ2δσ3,σ4δK1+K5,K4+K6

× δK7+K3,K8+K2 . (A5)

The pp bosonic momentum transfer is Q = K4 + K1. �0,(pp)

is the pp antisymmetrized bare Coulomb interaction, as shown

in the bottom panel of Fig. 10. The bare pp susceptibility is

ψ
0,(pp)
1234 (	m) = 1

2β

∑
n

GK1,i1i4,σ1 (ωn)GK2,i2i3,σ2 (ωm−n)

× δσ1,σ4δσ2,σ3δK1,K4δK2,K3 (A6)

and the susceptibility in the pp channel is

ψ (pp)(	m) = (1 − ψ0,(pp)(	m)�0,(pp) )−1ψ0,(pp)(	m). (A7)

The computational complexity of Eqs. (A4) and (A7)
is O(N6), where N = norbNc is the dimension of the com-
bined index N. To reduce the numerical complexity of these
equations, it is advantageous to use conservation laws and
symmetries. For example, due to momentum conservation,
these equations are diagonal in the bosonic momentum trans-
fer Q leading to overall complexity O(n6

orbN4
c ). Another

important property is spin conservation. In the ph channel, it
leads to the following structure of the two-particle quantities
in spin space:

X (ph) =

⎛
⎜⎜⎜⎜⎝

X (ph)
↑↑↑↑ 0 0 X (ph)

↑↑↓↓
0 X (ph)

↑↓↓↑ 0 0

0 0 X (ph)
↓↑↑↓ 0

X (ph)
↓↓↑↑ 0 0 X (ph)

↓↓↓↓

⎞
⎟⎟⎟⎟⎠

, (A8)

where X is either the antisymmetrized interaction or the sus-
ceptibility. One can see that ph two-particle quantities in
a spin space consist of three linearly independent blocks,
namely, longitudinal (‖), and two transverse S± (±) and S∓
(∓) blocks:

X ‖,(ph) = (
X (ph)

↑↑↑↑ X (ph)
↑↑↓↓X (ph)

↓↓↑↑ X (ph)
↓↓↓↓

)
, (A9a)

X ±,(ph) = (
X (ph)

↑↓↓↑
)
, (A9b)

X ∓,(ph) = (
X (ph)

↓↑↑↓
)
. (A9c)

Thus, Eq. (A4) can be split into a set of the following
linearly independent equations:

χ
γ ,(ph)
K1i1i2,K2i3i4

(Q,	m)

= (1 − [χ0,γ ,(ph)�0,γ ,(ph)](Q,	m))−1
K1i1i2,K3i5i6

× χ
0,γ ,(ph)
K3i7i8,K2i3i4

(Q,	m), (A10)

where γ ∈ (‖,±,∓) is one of three spin channels.
Similarly, in the pp channel one can separate two-particle

quantities into three spin blocks: longitudinal (‖), triplet up-
spin (t+1), and triplet down-spin (t−1):

X ‖,(pp) = (
X (pp)

↑↓↑↓ X (pp)
↑↓↓↑X (pp)

↓↑↑↓ X (pp)
↓↑↓↑

)
, (A11a)

X t+1,(pp) = (
X (pp)

↑↑↑↑
)
, (A11b)

X t−1,(pp) = (
X (pp)

↓↓↓↓
)
. (A11c)

Equation (A7), similarly, can be simplified,

ψ
γ,(pp)
K1i1i2,K2i3i4

(Q,	m)

= (1 − [ψ0,γ ,(pp)�0,γ ,(pp)] (Q,	m))−1
K1i1i2,K3i5i6

× ψ
0,γ ,(pp)
K3i7i8,K2i3i4

(Q,	m), (A12)

with spin channel γ ∈ (‖, t+1, t−1).
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FIG. 11. Self-consistent FLEX results for 2D Hubbard model
at U = 1.57t and T = 0.1t in comparison to FLEX results from
Ref. [106].

In Ref. [105], the interactions are diagonal matrices in spin
space, but the longitudinal susceptibilities are expressed as a
linear combination of different spin components. For instance,
the longitudinal bare ph susceptibility that corresponds to
Eq. (A9a), in the notation of Ref. [105], is

χ‖,0,(ph) =
⎛
⎝χ

0,(ph)
↑↑↑↑ + χ

0,(ph)
↓↓↓↓ χ

0,(ph)
↑↑↑↑ − χ

0,(ph)
↓↓↓↓

χ
0,(ph)
↑↑↑↑ − χ

0,(ph)
↓↓↓↓ χ

0,(ph)
↑↑↑↑ + χ

0,(ph)
↓↓↓↓

⎞
⎠.

(A13)

The two formalisms are one-to-one equivalent.
Results of FLEX agree with published work [106], see

Fig. 11.

APPENDIX B: CAUSALITY VIOLATIONS

We find regimes where results become noncausal for all
three infinite antisymmetrized diagrammatic series. This be-
havior can be attributed to the presence of sign-alternating ph-
(Fig. 12, top) and pp- (Fig. 12, bottom) scattering diagrams.

FIG. 12. Particle-hole (top) and particle-particle (bottom) scat-
tering diagrams, contained in FLEX. Top panel corresponds to
Eqs. (B3).

We analyze this behavior at the example of the half-filled
Hubbard atom. The Hamiltonian

H = U
(
n↑ − 1

2 )(n↓ − 1
2

)
(B1)

is defined in such a way that chemical potential μ = 0 cor-
responds to half-filled case. Starting from the noninteracting
Green’s function

G0(ωn) = 1

iωn + μ
, (B2)

the unconnected susceptibility is χ0,(ph)(	m) = β

4 δm,0. The
second- and third-order ph-scattering contributions to the self-
energy [see Fig. 12(a)] are [107]

�2(ωn) = U 2

4

1

iωn
, (B3a)

�3(ωn) = −βU 3

16

1

iωn
. (B3b)

The contribution from the third-order diagram will lead
to noncausal behavior for βU � 4. This corresponds to the
region where the geometric series for the ph scattering is
outside of its radius of convergence. In the case of a partially
dressed one-particle propagator, the radius of convergence of
the ph-scattering ladder is determined by χ0,(ph)(	0)U < 1
[108]. A similar conclusion can be reached for pp-scattering
diagrams [see Fig. 12(b)]. For multiorbital and lattice systems,
the radius of convergence has a more complicated dependence
on system parameters.
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