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Anisotropy and quench dynamics of quasiholes in fractional quantum Hall liquids
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We present a microscopic study of quasiholes in bosonic fractional quantum Hall (FQH) liquids at filling
factor ν = 1/2 in the lowest Landau level with anisotropic band mass tensors. We use the spatial density profile to
characterize the shape of a quasihole and analyze its anisotropy. We then compare the quasihole’s anisotropy with
the intrinsic geometric metric of the system that is extracted from the maximal overlap between the numerically
obtained quasihole ground state and a set of model wave functions of anisotropic quasiholes. For a static system,
we find that the quasihole’s anisotropy, similar to the intrinsic metric, grows with the anisotropy of the band mass
tensor. When the quasihole develops well, we observe a correspondence between the anisotropy of the quasihole
and the intrinsic metric of the underlying anisotropic FQH state. We also drive the system out of equilibrium by
suddenly changing the band mass tensor. In this case, the shape of the quasihole evolves with time and shows
similar dynamics with the intrinsic metric of the postquench state. The evolving frequency matches the energy of
a spin-2 quadrupole degree of freedom in the system. Our results suggest that the density profile of a quasihole
is a useful tool to estimate the intrinsic metric and capture the dynamics of an FQH system.
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I. INTRODUCTION

Fractional quantum Hall (FQH) states, formed in two-
dimensional systems pierced by strong magnetic fields,
provide an epitome of topological phases of matter [1]. One of
the most remarkable features of FQH states is the emergence
of fractionally charged excitations [2,3]. These quasiparticles
and quasiholes are neither fermions nor bosons, but are anyons
[4,5] which obey fractional or even non-Abelian statistics [6].
Fueled by the exotic properties of FQH anyons and their po-
tential application in topological quantum computation [7,8],
there has been much focus on the characterization of charged
excitations in FQH systems from both theoretical [9–28] and
experimental sides [29–36].

On the other hand, theoretic studies of FQH states were
initially confined to rotationally invariant systems. However,
as pointed out by Haldane in Ref. [37], this rotational sym-
metry is not fundamental to the FQH physics. In fact, FQH
states do not only survive when the rotational symmetry is
broken by external anisotropies (anisotropic band mass ten-
sors, inhomogeneous dielectric environments, etc.), but also
develop an intrinsic geometric degree of freedom [37,38].
This intrinsic geometric degree of freedom, which can be
modeled by a metric, describes the response of the underlying
FQH droplet to external anisotropies. Moreover, the long-
wavelength limit of the Girvin-MacDonald-Platzman (GMP)
mode in an FQH system, dubbed the FQH “graviton” carrying
angular momentum (or spin) L = 2 [39–45], can be viewed
as the fluctuation of this intrinsic metric [37,38]. In the past
decade, the intrinsic metric of anisotropic FQH systems has
received considerable attention. Significant efforts have fo-
cused on constructing anisotropic FQH model wave functions
[46,47] and Haldane pseudopotentials [48,49], microscopic

characterizations of anisotropic FQH states and their intrin-
sic metric [50–60], quench dynamics of the intrinsic metric
driven by anisotropies [61–63], the field-theory description of
anisotropic FQH states [64–66], and experimental measure-
ment of the intrinsic metric [67,68].

Motivated by the rapid progress on FQH anyons and
anisotropic FQH states, here we use exact diagonalization to
microscopically investigate the quasiholes in FQH systems
with anisotropic band mass tensors, either in equilibrium or
out of equilibrium. We focus on bosonic FQH systems at
filling ν = 1/2 in the lowest Landau level (LLL) with one
quasihole trapped by an impurity of delta potential. For a static
system, by numerically obtaining the quasihole ground state
and calculating its real-space density profile, we extract the
anisotropy of the quasihole, which we find grows with the
increasing of the anisotropy in the band mass tensor. Mean-
while we evaluate the intrinsic metric of the ground state by
searching for its maximal overlap with a set of model wave
functions of anisotropic quasiholes. By comparing those two
quantities, we observe a correspondence between the quasi-
hole’s anisotropy and the ground-state intrinsic metric when
the quasihole develops well in the finite-size sample. We also
drive the quasihole out of equilibrium by suddenly changing
the band mass tensor from the isotropic limit. By numerically
simulating the quench dynamics, we track the evolution of
the quasihole shape as well as the intrinsic metric of the
evolving state. While the discrepancy between the quasihole’s
anisotropy and the intrinsic metric of the postquench state ex-
ists in small systems which we can numerically deal with, we
find their dynamics is quite similar. The dominant frequency
matches a spin-2 degree of freedom in the system, which may
be interpreted as a quasihole dressed by the FQH graviton.
Our theoretical results suggest a new experimental method
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to measure the intrinsic metric of an FQH state. Because the
delta impurity used in our calculations can approximate the
potential of an STM tip [13,15,16], it would be feasible to use
STM to localize a quasihole and then measure its anisotropy
by some imaging techniques [69–71], from which the intrinsic
metric of the underlying FQH state can be estimated.

The remainder of the paper is organized as follows. We in-
troduce our model, including the Hamiltonian and the intrinsic
metric, in Sec. II. In Sec. III, we consider static systems and
discuss the relationship between the quasihole’s anisotropy
and the intrinsic metric of the ground state. We then turn to
dynamical systems in Sec. IV, where we give the geometric
quench protocol and present the time evolution of both the
quasihole’s shape and the intrinsic metric of the postquench
state. Finally, conclusions and outlooks are given in Sec. V.

II. MODEL

We consider N interacting particles of charge q moving on
an L1 × L2 rectangular torus penetrated by a uniform mag-
netic field B. Periodic boundary conditions are imposed with a
quantized magnetic flux Nφ = L1L2/(2π�2

B) [72], where �B =√
h̄/(qB) is the magnetic length (we set �B = 1 as the length

unit). To approach the two-dimensional limit, we choose the
square torus geometry with L1 = L2 = √

2πNφ throughout
this work. The filling factor in a single Landau level is defined
by the ratio between the number of particles and the number
of flux quanta, i.e., ν = N/Nφ , in the thermodynamic limit.

We study the Laughlin state with a single localized quasi-
hole. We expect qualitatively the same physics between
fermions and bosons. However, since the spatial extent of the
ν = 1/3 fermionic Laughlin quasihole is larger than that of
the ν = 1/2 bosonic Laughlin quasihole [16,18], we focus
on the latter so that a quasihole can develop better in our
small finite-size samples. We stabilize the ν = 1/2 bosonic
Laughlin state by two types of interactions. The first one is
the contact repulsion, for which the model ν = 1/2 Laughlin
state is the densest exact zero-energy ground state. The second
interaction is the Coulomb interaction, whose ground state
has a very high overlap with the model Laughlin state. We
further create a quasihole by adding one more magnetic flux
quantum into the original Laughlin state, namely by setting
Nφ = 2N + 1, and pin the quasihole at position R by a repul-
sive impurity potential Uimp = W

∑N
i=1 δ(ri − R) of strength

W > 0. Under this scenario, the many-body Hamiltonian of
the system is

H =
N∑

i=1

1

2m
gab

m πiaπib +
N∑

i< j

V (ri − r j ) + Uimp, (1)

where m is the effective mass of the boson, πia = pia − qAa

(a = x, y) with the canonical momentum pi and the vector
potential A is the kinetic momentum of the ith boson, gm

represents the inverse of the band mass tensor, ri is the co-
ordinate of the ith boson, and V (r) is the interaction potential.
We further assume the magnetic field is so strong that the
Landau level spacing overwhelms both the interaction and
the pinning potential. In this case, it is appropriate to project
the Hamiltonian to the LLL. In the Fock basis spanned by
the LLL single-particle wave functions ψ j=0,1,...,Nφ−1 [see

Eq. (A1) in Appendix A, which is derived for a general gm],
we can obtain the second-quantized form of H as

H =
Nφ−1∑

m1,m2,m3,m4=0

Vm1,m2,m3,m4 a†
m1

a†
m2

am3 am4

+
Nφ−1∑

m1,m2=0

Um1,m2 a†
m1

am2 , (2)

with

V{mi} = 1

2L1L2
δ

mod Nφ

m1+m2,m3+m4

+∞∑
s,t=−∞

δ
mod Nφ

t,m1−m4
Vq

× e− 1
2 q2

m e
i 2πs

Nφ
(m1−m3 )

(3)

and U{mi} = W ψ∗
m1

(R)ψm2 (R). Here a†
j (a j) creates (an-

nihilates) a boson in state ψ j , δ
mod Nφ

i, j is the periodic
Kronecker delta function with period Nφ , q = (qx, qy) =
(2πs/L1, 2πt/L2), Vq = ∫

V (r)e−iq·rdr is the Fourier trans-
form of V (r), and q2

m ≡ gab
m qaqb with a = x, y.

The Hamiltonian Eq. (2) is in general anisotropic. One
source of anisotropy comes from the inverse of the band mass
tensor gm, which can be parametrized by a 2 × 2 unimodular
matrix (det gm = 1)

gm =(
cosh Qm + cos φm sinh Qm sin φm sinh Qm

sin φm sinh Qm cosh Qm − cos φm sinh Qm

)
,

(4)

where Qm and φm are real numbers. If gm �= 1, the band
mass is anisotropic. This band mass anisotropy enters the
Hamiltonian through the LLL form factor e−q2

m/4 and the
pinning potential Uimp. Moreover, there is the second source
of anisotropy which exists in the interaction potential V (q).

For the Coulomb interaction, we have Vq = 2π/

√
gab

i qaqb,
where the tensor gi defines the shape of equipotential lines and
depends on the dielectric tensor of the underlying material.

Both gm and gi are determined by extrinsic experimental
conditions. To adjust to these two external anisotropies, an
FQH system develops an intrinsic geometric degree of free-
dom described by a metric g. This intrinsic metric determines
the shape of the fundamental FQH droplet, which, for the
ν = 1/2 Laughlin state, is the composite of one boson and two
magnetic flux quanta [37,38]. As the system needs to com-
promise between the two external anisotropies to minimize
the energy, g is in general between gm and gi [37]. Because
the anisotropy in the interaction can be transformed into
an effective anisotropy in the band mass tensor, we assume
isotropic interactions, i.e., gi = 1, in this work for simplicity.
We parametrize g as a unimodular 2 × 2 matrix with the same
form as Eq. (4), where Qm and φm are replaced by Q and φ,
respectively. Because the metric is invariant under Q → −Q
and φ → φ + π , we choose Q � 0 in this work.
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III. STATIC SYSTEMS

In this section, we study the spatial extent of a localized
ν = 1/2 Laughlin quasihole in a static system. In this case,
the quasihole state is the ground state of the Hamiltonian
Eq. (2) with Nφ = 2N + 1, which can be obtained by exact
diagonalization. However, the computational cost of a direct
diagonalization of Eq. (2) is high because the impurity po-
tential Uimp breaks the translation symmetry on the torus so
that we do not have good quantum numbers to reduce the
many-body Hilbert space dimension. In order to avoid this
difficulty, we first diagonalize the Hamiltonian without the im-
purity potential, where we have translation invariance to use.
For both the contact and Coulomb interactions, this diagonal-
ization gives us a low-energy manifold consisting of Nφ states,
which encodes the information of a delocalized quasihole. We
further assume the strength of the impurity potential is much
smaller than the gap between this quasihole manifold and
other higher-energy eigenstates such that the impurity cannot
mix them. Then we can diagonalize the impurity potential
within the quasihole manifold, whose dimension is much
smaller than that of the whole Hilbert space, to obtain the
ground state with a localized quasihole. We can reach at most
N = 12 bosons with this strategy. For the contact interaction,
which is the parent Hamiltonian of the model ν = 1/2 Laugh-
lin state, the quasihole manifold is exactly at zero energy, and
we get two zero-energy degenerate quasihole ground states,
i.e., the model Laughlin quasihole states, corresponding to a
localized quasihole on the torus. For the Coulomb interaction,
we have approximate degeneracies for both the quasihole
manifold and the localized quasihole ground states, and they
are slightly shifted from the zero energy.

Once we numerically get the ground states with a localized
quasihole, we compute the average spatial density distribution

ρ(r) = 1

2

2∑
i=1

〈	i|ρ̂(r)|	i〉 (5)

over the two quasihole ground states |	i=1,2〉, where the den-
sity operator ρ̂(r) = ∑Nφ−1

m1,m2=0 ψ∗
m1

(r)ψm2 (r)a†
m1

am2 . In Fig. 1,
we show this ground-state density profile for N = 12 bosons
with eQm = 1.5, φm = π/2, and R = (L1/2, L2/2). For both
the contact interaction [Fig. 1(a)] and the Coulomb interac-
tion [Fig. 1(b)], we can see the quasihole is indeed pinned
at the center of the sample where the density is zero. How-
ever, the density distribution around the quasihole is clearly
anisotropic. To characterize this anisotropy of the quasihole,
we consider the radial density distribution ρθ along various
directions labeled by the angle θ with the +x axis. Then the
spatial extent of the quasihole in each specific direction can
be estimated by the moments of ρθ [16]. In this work, we use
the first moment [16]

R1
θ =

∫ rmax

0 |ρθ (r) − ρθ (rmax)|r2dr∫ rmax

0 |ρθ (r) − ρθ (rmax)|rdr
(6)

and the second moment [16]

R2
θ =

√∫ rmax

0 |ρθ (r) − ρθ (rmax)|r3dr∫ rmax

0 |ρθ (r) − ρθ (rmax)|rdr
, (7)

FIG. 1. The ground-state density profile in the presence of a
single ν = 1/2 Laughlin quasihole for N = 12 bosons interacting
via (a) the contact interaction and (b) the Coulomb interaction. We
choose eQm = 1.5 and φm = 0.5π in the band mass tensor. The spa-
tial extent of the quasihole is estimated by the first (black dots) and
the second moments (blue dots) of the density distributions in various
directions, as defined in Eqs. (6) and (7), respectively. Two dashed
lines indicate the stretched and squeezed directions of the quasihole,
which in this case match the two diagonals of the square system.

where r is the distance from the center of the quasihole along
the θ direction and rmax is the largest available distance in this
direction in the finite sample. As shown in Fig. 1, both R1 and
R2 suggest that the quasihole is approximately elliptic. There-
fore, we can measure its anisotropy by two quantities. The first
one is the ratio between the spatial extents of the quasihole
in the stretched and squeezed directions: αqh ≡ R1(2)

a /R1(2)
b ,

where a and b represent the stretched and squeezed directions,
respectively. The second quantity is the angle φqh between the
stretched direction and the +x axis.

For the contact interaction, after imaging the quasihole for
various band mass tensors, we find both R1

a and R2
a (R1

b and
R2

b) increases (decreases) with the increasing of Qm. More pre-
cisely, we observe αqh = eQm and φqh = φm/2 once the system
is sufficiently large for the quasihole to well develop, as shown
in Table I for N = 12 bosons. These results can be understood
by considering the transforms of canonical momentum π and

TABLE I. Contact interaction. The spatial extents in the stretched
and squeezed directions of the ν = 1/2 Laughlin quasihole as well
as their ratios for N = 12 contact interacting bosons. The spatial
extents are evaluated by the first and the second moments of the
density distribution, as defined in Eqs. (6) and (7), respectively. Here
we consider various band mass anisotropies with different Qm and
fixed φm = π/2. In these cases, we find the stretched and squeezed
directions are always along the two diagonals of the square system.

eQm R1
a/�B R1

b/�B R1
a/R1

b R2
a/�B R2

b/�B R2
a/R2

b

1 1.467 1.467 1 1.760 1.760 1
1.1 1.536 1.400 1.10 1.839 1.681 1.09
1.2 1.605 1.340 1.20 1.921 1.608 1.20
1.3 1.675 1.289 1.30 2.010 1.548 1.30
1.4 1.740 1.246 1.40 2.090 1.502 1.39
1.5 1.799 1.202 1.50 2.158 1.446 1.49
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TABLE II. Coulomb interaction. The spatial extents in the
stretched and squeezed directions of the ν = 1/2 Laughlin quasihole
as well as their ratios for N = 12 Coulomb interacting bosons. The
spatial extents are evaluated by the first and the second moments of
the density distribution, as defined in Eqs. (6) and (7), respectively.
Here we consider various band mass anisotropies with different
Qm and fixed φm = π/2. In these cases, we find the stretched and
squeezed directions are always along the two diagonals of the square
system. In the second column, we also show the intrinsic metric Q
of the quasihole ground state, which is estimated by the maximal
overlap O with the model states of an anisotropic quasihole for
N = 8 bosons (see the third column).

eQm eQ O R1
a/�B R1

b/�B R1
a/R1

b R2
a/�B R2

b/�B R2
a/R2

b

1 1 0.996 1.522 1.522 1 1.924 1.924 1
1.1 1.07 0.996 1.558 1.476 1.06 1.951 1.866 1.05
1.2 1.14 0.996 1.584 1.434 1.11 1.952 1.810 1.08
1.3 1.20 0.995 1.606 1.413 1.14 1.943 1.799 1.08
1.4 1.27 0.995 1.629 1.406 1.16 1.937 1.814 1.07
1.5 1.33 0.994 1.660 1.408 1.18 1.947 1.842 1.06

real-space coordinate r:(
π ′

x
π ′

y

)
=

(
e

Qm
2 cos φm

2 e
Qm

2 sin φm

2

−e− Qm
2 sin φm

2 e− Qm
2 cos φm

2

)(
πx

πy

)
,

(
x′
y′

)
=

(
e− Qm

2 cos φm

2 e− Qm
2 sin φm

2

−e
Qm

2 sin φm

2 e
Qm

2 cos φm

2

)(
x
y

)
, (8)

which restore the isotropy of the Hamiltonian because both the
contact interaction and the delta impurity do not change under
the coordinate transform. Therefore, the quasihole should be
rotationally invariant in the (x′, y′) coordinate. As we can go
to (x′, y′) from (x, y) through a clockwise rotation by φm/2
first, then squeezing and stretching by a factor of eQm/2 in the
x′ and y′ directions, respectively, the quasihole in the (x, y)
coordinate must be an ellipse and have an anisotropy with
αqh = eQm/2/e−Qm/2 = eQm and φqh = φm/2.

The situation is different for the Coulomb interaction. In
this case, although the transforms Eq. (8) restore the isotropy
for the one-body terms of the Hamiltonian, they break the
isotropy in the Coulomb interaction. After the transforms, the
equipotential contours of the Coulomb potential change from
circles to ellipses which are squeezed and stretched by a factor
of eQm/2 along the x′ and y′ directions, respectively. Therefore,
it is reasonable to suppose the quasihole is also elliptic in the
(x′, y′) coordinate, whose minor and major axes are along the
x′ and y′ directions, respectively. Using the relation between
(x′, y′) and (x, y), we hence expect the anisotropy of the quasi-
hole in the (x, y) coordinate is φqh = φm/2 and αqh < eQm ,
which we indeed observe in our numerical results. We show
the data of αqh for N = 12 bosons in Table II. As the quasi-
hole size in the isotropic limit for the Coulomb interaction is
larger than that for the contact interaction, the Coulomb data
may suffer more from finite-size effects. This problem should
become more serious in the presence of anisotropy when the
spatial extent of the quasihole along the stretched direction
is limited by the length of the system, and especially for R2

which estimates the fluctuation of the density distribution in a
longer range. Indeed, we find R2

a (R2
b) does not monotonically

increase (decrease) with the increasing of eQm when eQm > 1.2
(Table II), which implies that the quasihole no longer develops
well in our finite system with these band mass anisotropies.
By contrast, R1

a and R1
b still monotonically depend on eQm until

eQm = 1.5, so they suffer less from the finite-size effect.
It would be interesting to compare the quasihole anisotropy

(αqh, φqh ) with the intrinsic metric (Q, φ) of the quasihole
ground state. Similarly to Refs. [50,52], we evaluate the intrin-
sic metric by searching the maximal overlap of the quasihole
ground state with a set of model quasihole states. These model
quasihole states are the anisotropic model Laughlin quasi-
hole states carrying specific intrinsic metrics (Q0, φ0) (see
Ref. [20] for the wave function on the torus in the isotropic
case). They are the exactly zero-energy ground states of the
Hamiltonian Eq. (2) with the contact interaction and band
mass anisotropy (Q0, φ0). Once the overlap

O = 1

2

2∑
i, j=1

|〈	i(Q, φ)|�Laughlin
j (Q0, φ0)〉|2, (9)

where |	i(Q, φ)〉 are the two numerically obtained quasi-
hole ground states and |�Laughlin

j (Q0, φ0)〉 are the twofold-
degenerate model Laughlin quasihole states, is maximized
for specific (Q0, φ0), we have Q = Q0 and φ = φ0. For
the Hamiltonian with the contact interaction and band mass
anisotropy (Qm, φm), |	i(Q, φ)〉 are just the model quasi-
hole states with intrinsic metric (Q = Qm, φ = φm), leading
to αqh = eQ and φqh = φ/2 based on our results about the
quasihole anisotropy. For the Coulomb interaction, we ob-
tain φ = φm = 2φqh but Q < Qm due to the compromise of
g between gm and gi = 1, as shown in the second column of
Table II. When the quasihole develops well for eQm � 1.2, the
agreement between eQ and αqh measured by R1 is reasonably
good, so we establish the approximate relations αqh = eQ

and φqh = φ/2 between the quasihole’s anisotropy and the
ground-state intrinsic metric. However, the discrepancy be-
tween αqh and eQ increases at larger Qm, probably because
in these cases the spatial extent of the quasihole is limited by
the finite system size.

IV. QUENCH DYNAMICS

Having established the anisotropy of a Laughlin quasihole
in a static system with an anisotropic band mass tensor, we
now turn to study the dynamics of a quasihole after a geo-
metric quench driven by a sudden change of the band mass
tensor. We focus on the contact interaction in this section. We
have checked that the results of the Coulomb interaction are
very similar, which will not be presented to avoid repetition.
In the following, we set the impurity strength W = 0.1 to trap
the quasihole. However, the quench results do not depend on
the precise value of W as long as W is much smaller than the
energy gap separating the manifold of a delocalized quasihole
from other higher-energy states (this gap is about 0.6 for
the contact interaction). We have examined several different
small impurity strengths and all of them give almost the same
results.

Let us first give our quench protocol. We initially pre-
pare the system as the model Laughlin state with a localized
isotropic quasihole, i.e., the ground state |	(0)〉 of the
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FIG. 2. The time-evolved density profile ρ(r, t ) in the presence
of a single ν = 1/2 Laughlin quasihole for N = 9 contact interacting
bosons at time (a) t = 1, (b) t = 2.6, (c) t = 4.2, and (d) t = 5.2. We
choose αm = 1.3 to drive the geometric quench. The spatial extent
of the quasihole is estimated by the first (black dots) and the second
moments (blue dots) of the density distributions in various directions,
as defined in Eqs. (6) and (7), respectively. The dashed lines indicate
the stretched and squeezed directions of the quasihole, which rotate
with time.

Hamiltonian Eq. (2) with Nφ = 2N + 1 in the isotropic limit.
At time t = 0+, we suddenly change the band mass tensor
from gm = 1 to g′

m �= 1, then use the modified Hamiltonian
H (g′

m) to start time evolution. The state |	(t )〉 at time t is
given by |	(t )〉 = e−iH (g′

m )t |	(0)〉. For simplicity, we choose

g′
m =

(
αm 0
0 1/αm

)
(10)

with αm > 1, and consider weak quenches with αm not too far
from 1. Unlike in the static case, here we cannot reduce the
computational cost by restricting the numerical simulation in a
low-energy subspace where we have translation invariance to
use, because in principle all eigenstates of H (g′

m) are involved
in the time evolution. Due to the high computational cost, we
can deal with the quench dynamics of at most N = 9 bosons
(compared with N = 12 in the static case). Time-dependent
Lanczos methods are used to iteratively compute |	(t )〉.

We first characterize the postquench dynamics by the evo-
lution of the density profile in the system. The density profile
at time t is defined as ρ(r, t ) = 1

2

∑2
i=1〈	i(t )|ρ̂(r)|	i(t )〉,

where |	i(t )〉 is the postquench state evolved from the ith
(i = 1, 2) degenerate quasihole ground state |	i(0)〉 at time
t = 0. In Fig. 2, we show typical ρ(r, t ) at different times for
the quench driven by αm = 1.3. One can see the quasihole
survives during the dynamics, with stretching, squeezing, and
rotation with time. Like in static systems, we estimate the spa-
tial extent of the quasihole at time t by moments of the density
distribution (Fig. 2), from which we can extract the anisotropy
(αqh, φqh ) of the quasihole. In Fig. 3, we display the evolution
of Qqh ≡ ln αqh and φqh for αm = 1.3. We find the maximum

0 5 10 15 20 25 30 350.0
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0.4

0.5

Q
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(t
)
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qh
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π
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FIG. 3. Time evolution of the quasihole anisotropy for N = 7–9
contact interacting bosons at ν = 1/2 with a single localized quasi-
hole. We plot Qqh ≡ ln αqh in (a) and 2φqh in (b), for a convenient
comparison with the intrinsic metric in Fig. 5. We choose αm = 1.3
to drive the geometric quench. Markers in (a) and (b) with the same
color refer to the same system size.

quasihole anisotropy can reach αqh ≈ 1.5, which exceeds the
value of αm. While the finite-size effect is strong due to the rel-
atively small system sizes, both Qqh and φqh clearly oscillate
with a single dominant frequency. To extract this frequency
more precisely, we consider the discrete Fourier transform
|F (ω)| of the postquench quantum fidelity

F (t ) = 1

2

2∑
i, j=1

|〈	i(0)|	 j (t )〉|2. (11)

As shown in Fig. 4(a) for αm = 1.3, F (t ) oscillates very sim-
ilarly for various system sizes, suffering from much weaker
finite-size effects than Qqh(t ) and φqh(t ). |F (ω)| develops a
sharp peak at ω ≈ 1.26 [Fig. 4(b)], whose position almost
does not depend on the system size or the precise value of
αm so long as the quench is weak.

Previously, similar dynamics with a single dominant fre-
quency was also observed for the same geometric quench
protocol, but in the absence of quasiholes [61]. In that case,
the dominant frequency is interpreted as the long-wavelength
limit of the GMP mode above the Laughlin state, i.e., the
FQH graviton with spin-2. One can probe this spin-2 graviton
degree of freedom by the spectral function

IO(ω) =
∑

j

δ(ω − ε j )|〈 j|Ô|0〉|2 (12)
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FIG. 4. (a) The quantum fidelity F (t ) and (b) its discrete Fourier
transform |F (ω)| for N = 7–9 contact interacting bosons at ν = 1/2
with a single localized quasihole. The quench is driven by setting
αm = 1.3. The inset of (b) shows the normalized spectral func-
tion Ī0,2(ω) = I0,2(ω)/

∫
I0,2(ω)dω for isotropic systems. Markers in

(a) and (b) with the same color refer to the same system size.

of an operator Ô with angular momentum two, where ε j

and | j〉 are the eigenenergy and eigenstate of the Hamilto-
nian Eq. (2), respectively. A natural choice of the operator
Ô is the generalized Haldane pseudopotential V̂0,2 [48] with
V0,2(q) ∝ q2

x − q2
y . Note that V0,2(q) has the d-wave form,

so V̂0,2 does carry angular momentum two. In systems
without quasiholes, the corresponding spectral function I0,2

indeed has sharp peaks near the energy of the spin-2 FQH
graviton [44,61].

Now we calculate the spectral function I0,2 in the presence
of a localized quasihole. As shown in the inset of Fig. 4(b),
I0,2 develops a single pronounced peak at ω ≈ 1.26, which
agrees very well with the dominant frequency of the quench
dynamics. This means that the geometric quench dynamics of
a quasihole is also dominated by a spin-2 degree of freedom in
the system, just like in the case without quasiholes. A natural
interpretation of this spin-2 state is the quasihole dressed by
the FQH graviton. As the FQH graviton can be described as a
spin-2 composite fermion exciton, the spin-2 state observed
in the presence of a quasihole probably corresponds to a
composite fermion trion [73]. As expected, the energy of this
trion state, E ≈ 1.26, is a little lower than the FQH graviton
energy E ≈ 1.3 [61].

Finally, we compare the dynamical quasihole anisotropy
(αqh, φqh ) with the intrinsic metric (Q, φ) of the postquench
state. As in the static case, we determine the intrinsic metric

0 5 10 15 20 25 30 350.0

0.1
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0.3

0.4

0.5

Q
(t

)

(a)

N = 7 N = 8 N = 9
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0.6

φ
(t

)/
π

(b)
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t
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1.00

O(
t)

(c)

FIG. 5. Dynamics of (a) Q, (b) φ, and (c) O for N = 7–9 contact
interacting bosons at ν = 1/2 in the presence of a single localized
quasihole. The quench is driven by setting αm = 1.3. The red curves
are fits to Eq. (13). Markers in (a)–(c) with the same color refer to
the same system size.

of the postquench state by maximizing the overlap be-
tween {|	i=1,2(t )〉} and the model Laughlin quasihole states
{|�Laughlin

i=1,2 〉}. For weak quenches, this maximal overlap O(t )
[Fig. 5(c)] is always close to unity. The evolution of Q and
φ is quite similar to those in the situation without quasiholes
[61]. As shown in Figs. 5(a) and 5(b), at short and moderate
times, Q harmonically oscillates with time and φ is a linear
function of t . Such dynamics can be well fitted into

Q(t ) = 2A sin

(
�t

2

)
, φ(t ) = π

2
− �t

2
,

Q(t ) = −2A sin

(
�t

2

)
, φ(t ) = 3π

2
− �t

2
, (13)
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where � ≈ 1.26 and A ≈ 0.225 are the oscillating frequency
and amplitude, respectively. By comparing Fig. 5 with Fig. 3,
we find high similarity between the dynamics of quasihole
anisotropy and the intrinsic metric of the postquench state.
The discrepancy between Qqh and Q, as well as that between
φqh and φ/2, may be attributed to the relatively small sizes
of numerically tractable systems in which the quasihole does
not always develop well during the time evolution. We expect
Qqh(t ) = Q(t ) and φqh(t ) = φ(t )/2 to hold once the system
size is sufficiently large.

V. CONCLUSIONS AND OUTLOOK

In this paper, we use exact diagonalization to investigate
the anisotropy and quench dynamics of a ν = 1/2 Laughlin
quasihole in bosonic FQH systems with anisotropic band mass
tensors. We estimate the spatial extent of the quasihole via the
moments of the density profile along different directions. In
static systems, the correspondence Qqh = Q and φqh = φ/2
between the quasihole anisotropy (Qqh, φqh ) and the intrinsic
geometric metric (Q, φ) of the quasihole ground state ap-
proximately holds, as long as the quasihole develops well in
our finite systems. In the dynamics following the geometric
quench driven by a sudden change of the band mass tensor,
we track the dynamical deformation of the quasihole, and find
its anisotropy evolves in a very similar pattern to the intrinsic
metric of the postquench state. Interestingly, like in systems
without quasiholes, the quench dynamics in the presence of
a localized quasihole is also dominated by a single frequency
which corresponds to a spin-2 degree of freedom. This degree
of freedom may be interpreted as a quasihole dressed by the
FQH graviton.

There are several possible future developments based on
our work. On the theoretical side, it would be interesting to
microscopically study the anisotropy of quasiholes of more
complicated FQH states in both static and dynamical cases,
including the quasiholes of bilayer states [25], non-Abelian
states [13,15,17], and lattice FQH states dubbed fractional
Chern insulators [18,25]. Advanced numerical simulation
techniques, like the density matrix renormalization group al-
gorithm, are needed to overcome the finite-system-size limit
which we meet here, so that more evidence can be found for
the correspondence between the quasihole anisotropy and the
intrinsic state of the underlying state. For a tighter connection
with experiments, one can choose impurity potentials that
simulate the STM experimental setup more precisely, for ex-
ample, the Coulomb potential of a charge positioned above the
FQH sample [15,16], then study the quasihole anisotropy and
its relation with the intrinsic metric in those cases. Further-
more, one can explore the interplay between anisotropy and
quasiparticles, for which we present some preliminary results
in Appendix B. Unfortunately, due to the strong finite-size
limit, these results are not conclusive. On the experimental
side, the intrinsic metric of a gapless composite fermion liq-
uid has been successfully measured from the anisotropy of
the composite-fermion Fermi surface [67,68]. As it is pos-
sible to image FQH quasiholes in experiments [69,71], the
correspondence between the quasihole anisotropy and the
intrinsic metric of the quasihole state, which we observe in
our numerical results for the Laughlin state, suggests that

the spatial extent of a localized quasihole may be used to
experimentally estimate the intrinsic metric of a gapped FQH
state.
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APPENDIX A: LLL SINGLE-PARTICLE
WAVE FUNCTIONS

Both second-quantizing the many-body Hamiltonian
Eq. (1) and computing the density profile require the knowl-
edge of LLL single-particle wave functions on the torus for a
general band mass tensor gm in Eq. (4), which we will derive
here.

We start from the single-particle Hamiltonian H0 =
1

2m gab
m πaπb. Under the Landau gauge A = B(0, x), we can

write H0 in a diagonal form as H0 = 1
2m (π ′2

x + π ′2
y ) with

π ′
x = e

Qm
2

[
cos

(
φm

2

)
px + sin

(
φm

2

)
py − h̄

�2
B

sin

(
φm

2

)
x

]
,

π ′
y = e− Qm

2

[
− sin

(
φm

2

)
px + cos

(
φm

2

)
py

− h̄

�2
B

cos

(
φm

2

)
x

]
,

where p is the canonical momentum. As H0 does not contain
y, it commutes with py, such that we can choose the ansatz
eikyyφ(x) for its eigenstate. The Hamiltonian for φ(x) is

H̃0 = eQm

2m

[
cos

(
φm

2

)
px − h̄

�2
B

sin

(
φm

2

)(
x − ky�

2
B

)]2

+ e−Qm

2m

[
sin

(
φm

2

)
px + h̄

�2
B

cos

(
φm

2

)(
x − ky�

2
B

)]2

.

To solve H̃0, we define new operators

x′ = �2
B

h̄
e

Qm
2

[
cos

(
φm

2

)
px − h̄

�2
B

sin

(
φm

2

)(
x − ky�

2
B

)]
,

p′
x = −e− Qm

2

[
sin

(
φm

2

)
px + h̄

�2
B

cos

(
φm

2

)(
x − ky�

2
B

)]

satisfying [x′, p′
x] = ih̄, such that H̃0 = p′2

x
2m + 1

2 mω2x′2 with
the cyclotron frequency ω = qB

m . The ground state of H̃0 (cor-
responding to the LLL) is then determined by the relation
âφ0(x) = 0, where the annihilation operator

â =
√

mω

2h̄
x′ + i

√
1

2mh̄ω
p′

x

= �B√
2h̄

[
e

Qm
2 cos

(
φm

2

)
− ie− Qm

2 sin

(
φm

2

)]
px

− 1√
2�B

[
e

Qm
2 sin

(
φm

2

)
+ ie− Qm

2 cos

(
φm

2

)]
x.
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FIG. 6. (a) The ground-state density profile in the presence of a
single isotropic Laughlin quasiparticle for N = 12 contact interact-
ing bosons at ν = 1/2. (b) The quantum fidelity F (t ) (inset) and its
discrete Fourier transform |F (ω)| for N = 7–10 contact interacting
bosons at ν = 1/2 in the presence of a single Laughlin quasiparticle.
The geometric quench is driven by setting αm = 1.3. We choose
a weaker impurity strength W = −0.01 to trap the quasiparticle,
because the energy gap protecting the quasiparticle manifold (about
0.4) is smaller than that protecting the quasihole manifold.

Assuming φ0(x) ∝ e
− λ

2�2
B

x2

, we can get

λ = 1 − i sin φm sinh Qm

cosh Qm + cos φm sinh Qm
.

Finally we bring back ky to φ0(x) and impose periodic bound-
ary conditions. Then the LLL wave functions on an L1 × L2

rectangular torus are

ψ j = 1√
N

+∞∑
n=−∞

e
i
(

2π j
L2

+ nL1
�2
B

)
y
e
− λ

2�2
B

(x− 2π j
L2

�2
B−nL1 )

2

, (A1)

where j = 0, 1, . . . , Nφ − 1 and the normalization factor
N = L2�B

√
π (cosh Qm + cos φm sinh Qm).

APPENDIX B: QUASIPARTICLE AND ITS QUENCH
DYNAMICS

In the main text, we focus on a single localized Laugh-
lin quasihole. Here, we consider a single localized Laughlin
quasiparticle, which can be created by reducing one magnetic
flux quantum (i.e., Nφ = 2N − 1) and pinned by an attractive
delta impurity potential with W < 0. Similarly to what we did
for a quasihole, we first diagonalize the Hamiltonian without
the impurity potential to obtain the low-energy manifold of
Nφ states corresponding to a delocalized quasiparticle, then
we diagonalize the impurity potential in this manifold to get
the two ground states with a localized quasiparticle. As shown
in Fig. 6(a) for the contact interaction, the spatial extent of
a quasiparticle is much larger than that of a quasihole. Even
for the largest system size N = 12, Nφ = 23 that we can deal
with by exact diagonalization, the density fluctuation is still
visible throughout the whole sample even in the isotropic limit
[Fig. 6(a)], which means the quasiparticle does not develop
well. Adding anisotropy will make the situation worse be-
cause it stretches the quasiparticle in one direction. Therefore,
we leave the study of anisotropic quasiparticles to the future,
in which advanced numerical techniques are needed to reach
much larger system sizes.

We have also examined the geometric quench dynamics
in the presence of a localized quasiparticle. The initial state
is the isotropic Laughlin state with a localized quasiparticle;
then we suddenly change the band mass tensor from 1 to g′

m
[Eq. (10)] to drive the quench. The postquench fidelity F (t )
[Eq. (11)] and its discrete Fourier transform |F (ω)| are shown
in Fig. 6(b) for N = 7–10 contact interacting bosons and
αm = 1.3. Unlike in the quasihole case (Fig. 4), now for all
system sizes we observe three peaks in |F (ω)| at frequencies
ω ≈ 0.7, 1.2, and 1.4, respectively. The two peaks at ω ≈ 1.2
and ω ≈ 1.4 might correspond to a quasiparticle dressed by
the FQH graviton because their frequencies are close to the
graviton energy ≈1.3 of the ν = 1/2 Laughlin state. By con-
trast, the peak at ω ≈ 0.7 could be irrelevant to the graviton
mode.

It is difficult to conclude based on these numerical results
that the dynamics is governed by the quasiparticle dressed by
the FQH graviton. However, there appears to be a tendency
that the graviton signature gradually dominates with the in-
creasing of the system size. When the system size grows,
the height of the ω ≈ 0.7 peak significantly drops, while the
ω ≈ 1.2 and ω ≈ 1.4 are more robust. Therefore, the graviton
signature might become dominant in the thermodynamic limit
for the quasiparticle quench. Of course, numerical simulations
of the quasiparticle quench in much larger system sizes are
needed to support this argument.
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[53] S. Johri, Z. Papić, P. Schmitteckert, R. N. Bhatt, and F. D. M.

Haldane, New J. Phys. 18, 025011 (2016).
[54] M. Ippoliti, S. D. Geraedts, and R. N. Bhatt, Phys. Rev. B 95,

201104(R) (2017).
[55] M. Ippoliti, S. D. Geraedts, and R. N. Bhatt, Phys. Rev. B 96,

115151 (2017).
[56] Z. Zhu, I. Sodemann, D. N. Sheng, and L. Fu, Phys. Rev. B 95,

201116(R) (2017).
[57] M. Ippoliti, R. N. Bhatt, and F. D. M. Haldane, Phys. Rev. B 98,

085101 (2018).
[58] A. Krishna, F. Chen, M. Ippoliti, and R. N. Bhatt, Phys. Rev. B

100, 085129 (2019).
[59] N. Jiang, S. Ke, H. Ji, H. Wang, Z.-X. Hu, and X. Wan, Phys.

Rev. B 102, 115140 (2020).
[60] P. Kumar and R. N. Bhatt, Phys. Rev. B 104, 035147 (2021).
[61] Z. Liu, A. Gromov, and Z. Papić, Phys. Rev. B 98, 155140
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