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Auxiliary field quantum Monte Carlo simulations of interacting fermions require sampling over a Hubbard-
Stratonovich field h introduced to decouple the interactions. The weight for a given configuration involves
the products of the determinant of matrices Mσ (h), where σ labels the species, and hence is typically not
positive definite. Indeed, the average sign 〈S〉 of the determinants goes to zero exponentially with increasing
spatial size and decreasing temperature for most Hamiltonians of interest. This statement, however, does not
explicitly separate two possible origins for the vanishing of 〈S〉. Does 〈S〉 → 0 because randomly chosen field
configurations have det[M(h)] < 0, or does the sign problem arise because the specific subset of configurations
chosen by the weighting function have a greater preponderance of negative values? In the latter case, the process
of weighting the configurations with |det[M(h)]| might steer the simulation to a region of configuration space of h
where positive and negative determinants are equally likely, even though randomly chosen h would preferentially
have determinants with a single dominant sign. In this paper, we address the relative importance of these two
mechanisms for the vanishing of 〈S〉 in quantum simulations.
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I. INTRODUCTION

Auxiliary field quantum Monte Carlo (AFQMC) [1–8]
relies on the observation that traces over products of expo-
nentials of quadratic forms of fermionic operators can be
done analytically. Thus, in QMC, for a Hamiltonian like the
Holstein model, where only such quadratic forms are present,
the resulting simulation samples over the remaining space and
imaginary time-dependent bosonic (phonon) degrees of free-
dom x(r, τ ), using a weight which combines a boson action
SBose and the fermion determinants (one for each fermionic
species). If, as in the Hubbard model, quartic (interaction)
terms in the fermions are present, they are decoupled via an
auxiliary field h(r, τ ). In either case, after the fermionic trace
is performed, the sampling is now over these classical fields
and may be implemented by utilizing a variety of standard
numerical techniques.

With the proliferation of computing resources over the
last few decades, such QMC simulations have become indis-
pensable tools for investigating difficult problems involving
strong correlations in a variety of topics in condensed matter
[9,10], high energy [11] and nuclear physics [12] as well as
in chemistry [13,14], providing many breakthroughs in these
fields. These successes notwithstanding, a pervasive problem
afflicting such methods, limiting their scope of application
considerably, is the sign problem (SP), which occurs when
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the fermion determinants become negative for certain quan-
tum configurations, leading to a negative probability. This
has given rise to a considerable body of research aimed at
solving, or alleviating, the SP [8,15–30]. Nevertheless, it re-
mains unsolved, and one of the central issues in this regard
is to understand how the underlying physics of the problem
in consideration affects the SP. In the case of AFQMC, this
is intimately related to the individual configurations of the
bosonic or auxiliary fields and how they affect the sign of the
fermion determinant.

The fermion determinant itself sums over all the possi-
ble quantum mechanical world lines of fermions moving in
the instantaneous value of the physical bosonic field or the
artificially introduced auxiliary field. For a particular world
line configuration, if the fermions wind around each other an
odd number of times, the contribution to the determinant is
negative. This picture provides one view of the origin of the
SP: to the extent that different regions of the space-imaginary
time lattice are uncorrelated, there is a constant density of
winding, and one expects that, as the spatial lattice size N
and inverse temperature β grow, the likelihood of positive
and negative world line configurations becomes equal, and the
average sign vanishes exponentially with both β and N .

The assumption that different regions are uncorrelated is
nontrivial. One motivation is the absence of any intrinsic dy-
namics in the auxiliary field: h(r, τ ) couples to the fermionic
degrees of freedom, but different components of h(r, τ ) are
not coupled to each other. Indeed, it is known that, if h(r, τ )
do interact, the SP can be mitigated [1,31,32]. As an extreme
example, if h has no τ dependence, the sign of the determinant
is positive. Similarly, in electron-phonon models, the phonon
kinetic energy p̂2/2m induces correlations in x(r, τ ) on
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adjacent τ by penalizing imaginary time fluctuations, espe-
cially at low phonon frequencies ω. Although the details are
complex, typically, one expects the SP to be reduced.

Symmetries might allow simulations to avoid the SP in
special situations [15,33,34]. The simplest scenario is one
in which there are two fermionic species (e.g., spin up and
spin down) which couple to the auxiliary or bosonic field in
the same way. Then if they also share a common structure
in the other pieces of the Hamiltonian (the same hopping
and chemical potential terms, for example), the two matrices
arising when the species are traced out are identical. Although
the individual determinants can (and do) change sign, their
product is always a square and hence positive. Such situa-
tions are, however, not generic, and in most QMCs, the SP is
significant.

This traditional argument [15] makes no explicit reference
to how the fields are selected and hence suggests that the
average sign of the determinants of randomly chosen h(r, τ )
should vanish. The intent of this paper is to investigate this
issue further and quantitatively. Before doing so, it is useful to
make some analogies with Monte Carlo for classical degrees
of freedom.

In classical statistical mechanics, the expectation value of
an observable A takes the following form:

〈A〉 = Z−1 Tr{h} A({h}) e−βE ({h}),

Z = Tr{h} e−βE ({h}), (1)

where E ({h}) is the energy of the system described by some
collection of degrees of freedom {h}, and β is the inverse
temperature. Implicit in the structure of Eq. (1) is that A
does not depend on β. However, certain A do have (trivial)
β dependence. For example, in the paramagnetic phase of
the classical Ising model, the magnetic susceptibility χ =
β

∑
i j〈SiS j〉, where Si = ±1 are the Ising spins. Similarly,

energy-fluctuation-based measurements of the specific heat
measure the observable C = β2(〈E2〉 − 〈E〉2). In such cases,
β comes out of the trace over the degrees of freedom. Its
presence does not affect the critical properties. In the case of
the susceptibility, as one approaches Tc, the β factor merely
multiplies the sum of the spin-spin correlations 〈∑i j SiS j〉 by
βc but does not alter the power law describing its divergence.

In such a situation, a rescaling of the weight W = e−βE →
(e−βE )g merely amounts to a shift in inverse temperature
β → gβ (or equivalently, in the energy scales E → gE ) in the
calculation of 〈A〉. This analogy also makes clear that g �= 1
will alter the expectation values measured since it changes
the temperature of the simulation. As we shall see in detail
below, in QMC, the situation is more complex. There, the
observable Â can depend in a complicated way on the inverse
temperature. As a consequence, the change in 〈Â〉 upon a
weight rescaling W → Wg can be highly nontrivial.

The rescaling parameter g has the effect of tuning the
configurations sampled in a simulation. Here, g = 1 gives the
appropriate expectation values for the energy (Hamiltonian)
in question. The limit g = 0 makes all configurations of {h}
equally likely. In this paper, we investigate the effect of tuning
g in determinant QMC (DQMC) [1]. Focusing on the aver-
age sign 〈S〉, our purpose here is to understand whether the
fermion SP in which 〈S〉 → 0 occurs because the value of the

sign itself for random configurations is becoming increasingly
badly behaved as β increases, as suggested by the winding
argument above, or whether the sampling is preferentially
guiding the system to a region in phase space where the
weighted configurations yield vanishing average sign. To this
end, we analyze three different realizations of the Hubbard
model, viz., on the square lattice, on the honeycomb lattice,
and the ionic Hubbard model with a staggered potential, inves-
tigating the average sign as well as several physical variables,
over a large range of parameter values such as the chemical
potential μ and the interaction U , as we vary g systematically.

Our results show that the SP depends on the weight and
temperature in a nontrivial manner. In the square lattice
model, we find that the SP originates mainly from the the
fact that weight guides the simulation to regions of phase
space with a low average sign. In this situation, random
Hubbard-Stratonovich (HS) fields result in a larger value of
the overall sign at all temperatures and densities. In the honey-
comb lattice, on the other hand, the SP becomes progressively
worse for random sampling as the system approaches the
interaction-induced antiferromagnetic Mott insulator (AFMI),
underscoring the complex relationship between the origin of
the SP and the underlying physical states in DQMC. The
ionic Hubbard model shows qualitatively similar results; here,
the sign becomes worse again for random sampling as we
navigate across the correlated metal (CM) phase and approach
the AFMI state. In addition, analysis of various physical quan-
tities as well as the detailed nature of the sign curves reveals
that, in many respects, a reduced g pushes the system to
weaker coupling. Nevertheless, the system retains nontrivial
signatures of the interaction in certain characteristics even in
the fully random g = 0 case.

Next, we briefly consider the complementary oversampling
case where g > 1 for the square lattice model. In this case,
signatures of a stronger effective coupling as g is increased are
even more prominent, as the Mott plateau around half-filling
becomes progressively stronger, leading to a swift reduction
in the SP accompanied by a shift in the sign minimum as g is
increased. We end with a quantitative analysis of the effective
interaction with changing g, confirming the qualitative obser-
vations made earlier.

II. DQMC AND THE HUBBARD MODEL

We investigate the SP within the context of the Hubbard
Hamiltonian [35,36]:

Ĥ = K̂ + V̂ ,

K̂ = − t
∑
〈i j〉

(c†
jσ ciσ + c†

iσ c jσ ) −
∑

i

μi(ni↑ + ni↓),

V̂ = U
∑

j

(
n j↑ − 1

2

)(
n j↓ − 1

2

)
. (2)

Here, c†
jσ (c jσ ) are fermion creation(destruction) operators at

spatial site j and with spin σ ; n jσ = c†
jσ c jσ is the number op-

erator; t is hopping matrix element between nearest neighbor
sites; μ is the chemical potential; and U is an onsite repulsion.
We set t = 1 as our unit of energy.
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As remarked earlier, we will explore several different con-
texts, beginning with the two-dimensional square lattice at
constant μi = μ, which is the most famous geometry owing
to its relevance to cuprate physics [37]. We will then sim-
ulate the honeycomb lattice to understand if the effect of g
is linked in any way to the quantum critical point Uc/t �
3.8 which separates antiferromagnetic from semimetallic be-
havior [38–43]. Finally, we will turn to the ionic Hubbard
model [μi = (−1)i μ] on a square lattice to further test our
conjectures.

We use a commonly employed DQMC formulation [1,2].
In computing the partition function, the inverse temperature is
discretized β = Lτ�τ , and the Trotter approximation is used
to separate out the exponentials of the kinetic and potential
energies. Thus, the partition function may be written as

Z = Tr(e−βĤ )

= Tr(e−�τ Ĥ )Lτ

≈ Tr[e−�τ K̂ (1)e−�τV̂ (1)e−�τ K̂ (2)e−�τV̂ (2) · · ·
e−�τ K̂ (Lτ )e−�τV̂ (Lτ )]. (3)

The quartic onsite interaction term V̂ is now decoupled by
a discrete HS transformation [44]:

exp

[
−�τU

(
ni↑ − 1

2

)(
ni↓ − 1

2

)]

= C
∑

hi=±1

exp [αhi(ni↑ − ni↓)], (4)

where cosh(α) = exp(�τU/2), C = 1
2 exp(−�τU/4), and hi

are discrete classical variables that only take values ±1. This
converts a quartic fermionic term into a quadratic one, while
adding a sum over the new variables hi. Introducing this
transformation for each lattice site i at each time slice l , the
partition function may be rewritten as

Z = CNLτ Tr{h}Tr
[
e�τ K̂ eV̂ (1) e�τ K̂ eV̂ (2) · · · e�τ K̂ eV̂ (Lτ )

]
, (5)

where N denotes the number of lattice sites, the operator
V̂i jσ (l ) = c†

iσ v
i j
σ (l ) c jσ , with v

i j
σ (l ) = α σhi(l ) δi j , where σ =

±1, and K̂i jσ (l ) = c†
iσ ki j

σ (l )c jσ , ki j
σ (l ) = (t )δ〈i j〉 + μiδi j . For a

given configuration {h}, the terms in the exponentials are all
quadratic, allowing us to perform the fermionic trace analyti-
cally, yielding [1,2]

Z = CNLτ Tr{h}[detM↑(h)][detM↓(h)], (6)

where the matrix Mσ (h) = [I + ∏
l e�τkevσ (l )].

All physical observables can be expressed in terms of the
fermion Green’s function Gσ,i j = 〈ciσ c†

jσ 〉 = M−1
σ i j . For exam-

ple, for the fermion density on site i with spin σ , niσ =
1 − Gσ,ii, the kinetic energy (excluding the chemical potential)
〈K〉 = (8t )Gi i+x̂,σ , where the factor of eight arises from the
two spin species, the two directions x, y to hop, and the Her-
mitian conjugate pair associated with hopping i ↔ j. Finally,
the pair correlator Pd

i j = 〈�d
i �

d†
j 〉, where �

d †
j = c†

j↑(c†
j+x̂↓ −

c†
j+ŷ↓ + c†

j−x̂↓ − c†
j−ŷ↓) for d-wave symmetry.

It is important for us to reemphasize the goal of this paper
in introducing the parameter g. We are not seeking to find

an improved importance sampling scheme which would re-
duce the SP and associated error bars while leaving physical
observables with the same expectation values. Such work
has been productively undertaken by several groups in the
community, especially within the context of constrained path
AFQMC [45–50]. Instead, our objective is solely focused
on gaining insight into the origin of SP itself and isolating
whether it is better or worse for randomly selected field config-
urations compared with those chosen preferentially according
to the weight (fermion determinants).

III. WEAK AND STRONG COUPLING LIMITS

In the U = 0 limit, the matrices Mσ and their inverses,
the Green’s functions Gσ , are independent of the HS field
configuration. As a consequence, expectation values of any
observable Â are exact and also independent of g. The proof is
straightforward:

〈Â〉 = Z−1
∫

DhÂ(h)[detM↑(h)detM↓(h)]g,

Z =
∫

Dh[detM↑(h)detM↓(h)]g

⇒ 〈Â〉 =
∫
DhÂ(h)∫
Dh

. (7)

Here, the notation
∫
Dh is used as a general symbol for

summation or integration over the degrees of freedom h,
including both the cases where they represent continuous vari-
ables (for a continuous HS transformation) and discrete ones
(as in our calculations below).

The strong coupling (single site) limit t = 0 is more inter-
esting. In this case, the sites are completely decoupled, and the
solution reduces to a product of single site calculations. The
partition function for a general value of g is given by

Z = CNLτ

∏
i

∑
{hi}

(∏
σ

{
1 + exp

[
βμi + ασ

∑
l

hi(l )

]})g

.

(8)

This can be evaluated analytically at g = 1 (and trivially at
g = 0). The general case with g �= 1 can be easily evaluated
numerically. In Appendix E, we show detailed results for the
number density 〈n〉 and the double occupancy 〈n↑n↓〉 for sev-
eral values of g, U , and β. These results show that this simple
case already demonstrates aspects of the nontrivial effects of
varying the nature of the high probability configurations in
such problems.

IV. HUBBARD MODEL ON A SQUARE LATTICE

In this section, we consider the Hubbard model on a
square lattice of size L with a constant μi = μ. As is well
known, at half-filling, the onsite interaction U results in
an AFMI. Away from half-filling, the possibility of super-
conducting correlations mediated by spin fluctuations makes
this iconic Hamiltonian relevant as a prospective model for
high-temperature superconductors [37]. Thus, it provides a
rich background for investigating the effect of the rescaling
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FIG. 1. The average sign 〈S〉 vs 〈n〉 at U = 8 as a function
of g on an 8 × 8 lattice for four values of β. As β increases, the
minimum in 〈S〉 becomes wider and deeper, as expected, displaying
a minimum around 〈n〉c ∼ 0.85. While the sign remains close to 1
for g → 0 at β � 3, it starts reducing noticeably as β is increased
further, eventually forming a valley-peak-valley structure, as seen in
the bottom panels. This suggests that, while the bulk of the sign prob-
lem at low temperature originates from the restricted configuration
space available to the system, random configurations of the Hubbard-
Stratonovich (HS) fields also result in a perceptible reduction in 〈S〉
at low enough temperatures. The bottom panels, where the sign is
the worst, show a sharp upturn near half-filling since the total sign is
constrained to be equal to 1 at μ = 0 due to particle-hole symmetry.

parameter g on the evolution of the system in various parame-
ter regimes.

Figure 1 shows the average of the total sign 〈S〉 vs the total
density 〈n〉 for different values of the rescaling parameter g
at four different values of β. For β � 3 (top panels), it is
seen that, as g → 0, 〈S〉 → 1, with only a small dip around
〈n〉 ∼ 0.8. These plots suggest that, at temperatures that are
not too low, simulations which sample with randomly chosen
HS field configurations tend to have a considerably reduced
SP. On the other hand, at lower temperatures β � 3 (lower
panels), we find that, while the sign continues improving sys-
tematically as g is reduced from 1 toward 0, the value of 〈S〉
around its minimum is decreased considerably compared with
larger temperatures, even near g = 0. In addition, we find an
emerging valley-peak-valley structure as g → 0, reminiscent
of the shell effect in noninteracting finite-sized lattices. In
Appendix D, we explore this connection more carefully by
considering even lower temperatures and demonstrate that
the values of 〈n〉 at the maxima of the sign correspond to the
locations of the density steps on a noninteracting lattice of the
same size due to the shell effect [51]. An additional feature of

FIG. 2. Scaling of the total and spin-resolved sign with tempera-
ture and system size at μ = −3.0, U = 8 on an 8 × 8 lattice. Left
column shows ln(〈S〉) and ln(〈Sσ 〉) vs the inverse temperature β

for a range of values of g. We find a faster-than-exponential reduc-
tion in the sign with decreasing temperature, both for the total and
spin-resolved quantities. The inset in the top panel extends this to
temperatures β ∼ 9 for g = 0.0 and 0.05, demonstrating that even
the randomly sampled case shows a faster-than-exponential scaling
over a large temperature range. The right column plots the same
quantities as a function of the lattice size L2. The scaling in this case
is exponential for all g values.

the data, seen at all temperature values presented here, is that
there is an initial worsening of the SP for 0.8 � g < 1.

As explained earlier, the traditional argument about the
connection of the sign with the fermionic world lines sug-
gests that, with lowering temperature (i.e., increasing β) and
increasing system size, the fermion world lines are more
likely to wind around each other and provide determinants of
both sign more frequently, resulting in a progressively worse
SP on the average. To see how the choice of g affects the
scaling properties of the sign, we show in Fig. 2 the scaling
properties of 〈S〉 as well as the spin resolved sign 〈Sσ 〉 =
(〈S↑〉 + 〈S↓〉)/2, with increasing lattice size N = L2 and in-
verse temperature β. We find that, for g � 1, where the HS
fields are sampled according to the correct thermal weights,
both show a faster-than-exponential drop with increasing β,
as found in earlier work [27]. As g is reduced, the overall
sign gradually improves at all β values, but the reduction with
increasing β remains faster than exponential. The plots near
g = 0 seem to show little change in this temperature range, but
as the inset demonstrates, at smaller temperatures, they show
the same faster-than-exponential reduction. The scaling with
system size at fixed temperature, as seen in the right column,
is exponential. Again, we find that, while 〈S〉 is less severe
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FIG. 3. Plots of the average sign 〈S〉 (first row) and observables,
including the density 〈n〉 (second row), kinetic energy 〈K〉 (third
row), and nearest neighbor spin-spin correlator Czz (fourth row), vs
μ as a function of g for three different values of β. These physical
observables clearly demonstrate signatures of a reduced effective
interaction (see text for more details).

at lower g values, it continues to reduce exponentially with
increasing lattice size.

These results indicate that, while the SP (both the total
value as well as the spin-resolved ones) itself is dominated by
the reduced phase space at lower temperatures and larger lat-
tice sizes, the scaling dependence on both parameters remains
very similar throughout the whole range of the sampling
parameter g.

Near g = 1, the thermodynamic sampling restricts the HS
field configurations to a suitably confined region of the total
phase space, reflecting the underlying physics, especially at
low temperatures. As g is reduced from 1, the increasingly ran-
dom sampling occupies progressively larger regions of phase
space, affecting the physical properties of the system. To study
this more carefully, we show a number of physical variables,
including the number density 〈n〉 ≡ 1

N

∑
i,σ 〈niσ 〉, the kinetic

energy 〈K〉, and the nearest neighbor spin-spin correlations
Czz ≡ 1

4 〈(ni↑ − ni↓)(n j,↑ − n j,↓)〉 (i, j are nearest neighbors),
as a function of the chemical potential μ in Fig. 3 for three
temperature values.

The second row demonstrates some of this physics for
g = 1 by plotting 〈n〉 vs μ. As the temperature decreases, the
number density saturates close to half-filling as the AFMI
sets in and the compressibility goes to zero, triggering a
Mott plateau. As g is reduced and the HS fields are sampled
more and more randomly, we find that this physics disappears
slowly; the plots near g = 0 do not show any signs of saturat-
ing. Instead, we find gentle oscillations in 〈n〉, reminiscent of
the oscillations we saw in the sign for similar parameter values
in Fig. 1. As mentioned above, we demonstrate in Appendix D
that this is due to the reemergence of finite-sized effects from
the noninteracting problem.

In the third row, we show the kinetic energy 〈K〉 for the
same parameter values. Again, we see that, while the g = 1
results demonstrate the expected reduction in the kinetic en-
ergy as the density increases and the electrons start to avoid
each other due to the onsite coupling U , lower values of the
sampling parameter nullify this effect. We emphasize, how-
ever, that even at g = 0, the system is very different from a
noninteracting one in many respects, as seen, for instance, in
the enlarged bandwidths in these results.

The fourth row, which plots Czz, also demonstrates the
same suppression of the physics with lowering g. At g = 1, as
the system approaches half-filling and the Mott state begins
to appear, the nearest neighbor spin correlations become neg-
ative, their magnitude increasing with lowering temperature
as the antiferromagnetic order becomes stronger. The weak-
ening Mott insulator that results as g is lowered leads to a
corresponding reduction in the spin correlations, as is clearly
evident from the plots.

Hence, we see that, as g is reduced, the physical variables
clearly demonstrate signatures of a reduced effective interac-
tion in some aspects while retaining nontrivial signatures of
the full interaction in others. This is not unreasonable, as the
HS fields act as proxies for the electron-electron interactions
[44], and randomizing them progressively is expected to dilute
the effect of U . On the other hand, the matrix elements in the
simulations still contain exponential factors that include the
full interaction strength, and hence, certain features, such as
the bandwidth, essentially retain their g = 1 values through-
out. In Sec. VIII, we will quantify this relationship between
the effective interaction Ueff (g) and U by analyzing physical
observables such as the double occupancy 〈n↑n↓〉 and the
kinetic energy 〈K〉 in an attempt to put these observations on
a firmer footing.

Now we return to the behavior of the sign again, focus-
ing on the temperature dependence at fixed g as well as the
g dependence at fixed μ. In Fig. 4, we concentrate on the
temperature dependence of the sign at fixed representative
values of g. As expected, we find that the sign worsens with
decreasing temperature for all g values. In the lower panels,
for larger values of g, the plots are smooth and rather similar.
However, the top panels with g < 0.4 show clear evidence
of finite-size-based oscillations at lower temperatures, as re-
marked earlier in this paper.

In Fig. 5, we replot the data with the sign 〈S〉 as a function
of the parameter g with temperature at different values of
μ. As the top right and lower panels with μ � −2.0 show,
increasing g leads to a worsening of the sign at all tempera-
tures. In contrast, the top left panel with μ = −0.5 close to
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FIG. 4. The average sign 〈S〉 vs 〈n〉 at U = 8 on an 8 × 8 lattice
as a function of β for four different g values. Upper panels for g < 0.4
demonstrate finite-sized oscillations at lower temperatures.

half-filling shows a nonmonotonic behavior where the sign
first reduces, reaches a minimum at a moderate value, and then
increases continuously to unity as g → 1, as the approaching

FIG. 5. The average sign 〈S〉 vs g at L = 8, U = 8 as a function
of β for four different μ values.

Mott insulating state pins the density 〈n〉 ∼ 1, establishing
particle-hole symmetry and mitigating the SP.

Thus, we find that, on the whole, the SP in the standard
square lattice Hubbard model is mainly due to the fermion
determinants steering the simulation to regions of low aver-
age sign. Random sampling typically mitigates the problem
substantially over a large parameter window, even though it
reappears at sufficiently low temperatures. The random fields
tend to reduce the effect of the interaction, pushing the system
to weaker coupling, resulting in a reemergence of certain non-
interacting features such as the shell effect as well as reducing
the signatures of the AFMI in observables such as the density,
the kinetic energy, and the spin-spin correlations. Even so, this
comparison only holds for certain characteristics, and such
systems retain several nontrivial signatures of interactions
even at g = 0.

V. HUBBARD MODEL ON A HONEYCOMB LATTICE

In the previous section, we analyzed how the rescaling pa-
rameter g affected the SP and physical variables of the square
lattice Hubbard Hamiltonian. While this model has a very
rich phenomenology, the Hubbard model on the honeycomb
lattice provides added insight into the sampling problem by
presenting a sharply defined quantum phase transition.

At U = 0, the Hubbard model on a honeycomb lattice is
a semimetal whose energy ε(k) disperses linearly with the
momentum k close to special points on the k-space called
Dirac points. This leads to a semimetallic density of states
which also varies linearly with energy ω near ω = 0. As
U is turned on, the semimetal state persists up to a critical
coupling value U = Uc ∼ 3.8 [38–43], where it undergoes a
quantum phase transition into an AFMI, unlike the square
lattice version, which shows antiferromagnetic order at any
nonzero value of U .

In Fig. 6, we plot the average sign 〈S〉 on a lattice with
L = 9 at a small nonzero μ = 0.2 (the model is SP free at
half-filling) vs the coupling U as a function of g for four
different values of the temperature. The g = 1 plots deviate
from their limiting values of 〈S〉 → 1 in a broad region around
Uc, tracking the transition, as we have shown in detail else-
where [52]. As g is reduced, we find that the dip in the sign
becomes more pronounced, in stark contrast to the results of
the square lattice Hubbard model where this led to a reduction
in the SP, and the minimum shifts to higher values of U .
An intuitive explanation of the latter result follows from the
observation we have already made earlier: as the sampling
becomes more random, the effect of U is reduced. As a result,
the semimetal-to-AFMI transition here is pushed to higher
values of U . This does not lead to a reduction in the sign,
however, as full inclusion of the fermion determinants (g = 1)
in this case evidently leads the system to a phase space region
(corresponding to the AFMI phase) where the SP is less severe
than g = 0, where the determinants are ignored. Since the
AFMI phase is characterized by a finite regime where 〈n〉 ∼ 1
is saturated at 1, reinstating particle-hole symmetry (originally
broken by the small but nonzero μ), the sign may be expected
to be robust in this phase.
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FIG. 6. The average sign 〈S〉 vs U at μ = 0.2, for the Hubbard
model on a honeycomb lattice with L = 9, with varying U as a
function of g, for four values of β. At g = 1, 〈S〉 shows a minimum
around Uc. Reducing g lowers the sign, shifting the minimum to the
right (see text for details).

Overall, these results again demonstrate the complex effect
the underlying physics of the system can have on the SP in
DQMC.

VI. IONIC HUBBARD MODEL

In this section, we shift our attention to the ionic Hubbard
model at half-filling. On a square lattice, this model essentially
consists of an added local staggered potential μi = (−1)i�/2
to the square lattice Hubbard model. In the noninteracting
limit U/� → 0, the system is a band insulator (BI), where
the sites with a negative value of the potential −�/2 have
a higher occupancy than the sites with a positive value, re-
sulting in a charge density wave order due to the breaking
of the sublattice symmetry by the staggered potential. In the
opposite limit U/� � 1, the system is an AFMI due to the
large onsite repulsion favoring single occupancy everywhere.
Interestingly, as the coupling strength U is increased starting
from the weak coupling limit, the BI does not undergo a direct
transition to the AFMI. Instead, over a range of values of U
and � where the two energy scales are comparable, the model
displays an exotic CM phase, as past work has demonstrated
[53,54].

Figure 7 plots the sign 〈S〉 vs the coupling U at different g
values for four values of β, as before. At g = 1, the sign shows
a broad minimum roughly corresponding to the CM phase (the
correspondence becomes sharper at lower temperatures). Like
the results for the honeycomb Hubbard model, we find that
increasingly random sampling worsens the SP and shifts the
minimum value of the sign to the right, leading to a complete

FIG. 7. The average sign 〈S〉 vs U at half-filling μ = 0, as a
function of g on an 8 × 8 lattice for four values of β in the ionic
Hubbard model. The staggered potential � = 1.0. Results are quali-
tatively like the honeycomb model (see text).

flattening of the curves (at least in the coupling range shown
here) for g � 0.5 as the AFMI state becomes progressively
weaker. The shift in the minimum suggests that the BI-CM
boundary is also pushed to higher values of U , consistent with
the reduction in the effective interaction.

To summarize these detailed results, we show plots of the
ratio 〈S〉(g = 1)/〈S〉(g = 0) side by side for the three models
considered here in Fig. 8. In a sense, this ratio isolates the part
of the sign due to the correct sampling (at g = 1) from the
intrinsic sign due to random sampling (at g = 0). While this is
a somewhat crude quantity, it provides a good first impression
of the above effects and how they vary from one model to
another. The left plot for the square lattice Hubbard model

FIG. 8. The ratio 〈S〉(g = 1)/〈S〉(g = 0) for the square lattice
Hubbard model (left), the Hubbard model on the honeycomb lattice
(middle), and the ionic Hubbard model (right). The horizontal dashed
black lines show 〈S1〉/〈S0〉 = 1, providing a reference for the other
plots.
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results clearly demonstrates how the sign gets progressively
worse with increasing g in the intermediate μ regime, where
the ratio becomes small, and then rises up to unity again as the
system approaches half-filling. The slight increase >1 near
half-filling is due to the faster increase of the g = 1 plots there,
as the Mott plateau is the strongest in this case. The mid-
dle plot shows the corresponding results for the honeycomb
Hubbard model. As seen earlier in Fig. 6, as g is lowered, the
sign plots become wider and deeper systematically. This also
shows up in the ratio plot, where it is almost unity for U � 3.0
and then increases considerably with increasing U . Crudely,
the branching point marks the regime where random sampling
starts to make the sign worse, leading up to the AFMI phase,
even though this is somewhat smaller than the critical value
Uc. In the ionic model (right column), we find that the ratio
initially dips <1 and then rises, crossing unity approximately
around U ∼ 4 for the temperature values shown here. The
initial dip is a consequence of the rightward shift in the g = 0
plot, as can be seen in Fig. 7, where the random sampling
sign is larger than the g = 1 value. However, as the system
navigates through the CM phase and approaches the AFMI,
the g = 1 sign stabilizes again, leading to the crossing at
U < Uc.

VII. OVERSAMPLING

In the preceding sections, we have considered 0 < g < 1,
which interpolates from random sampling of the HS fields
(g = 0) and the exact simulation at g = 1. As we have dis-
cussed, this allows us to separate two sources of the SP:
the inherent possibility of negative determinants for any, i.e.,
randomly selected, fermionic matrices and the preferential
likelihood of such matrices induced by the sampling. Here,
we explore an additional issue, namely, the behavior for g > 1.
We are indirectly motivated by the successive overrelaxation
method [55,56] to solve linear equations which suggests an
iterative move from k to k + 1 beyond the value at k + 1
initially computed. The analogy here is that g > 1 samples
the HS field beyond what the g = 1 determinant suggests, but
admittedly, we are also motivated by plain old curiosity. We
focus exclusively on the square lattice.

In Fig. 9, we show plots of 〈S〉 vs μ with 1 < g < 2 for
three different lattice sizes in three panels as marked. We find
that the minimum in the sign becomes shallower and drifts
rapidly to the left (for μ < 0, the plots are symmetric about
half-filling) as g is increased. The observations in the previ-
ous sections immediately suggest an explanation: increasing
g pushes the system toward stronger coupling, resulting in
a larger Mott plateau which improves the sign and pushes
the onset of the SP to more negative μ, beyond the Mott
plateau. As expected, the SP becomes progressively worse
with increasing lattice size, as the panels clearly demonstrate.
The bottom right panel explores the temperature dependence
of the sign at g = 1.2 on a 10 × 10 lattice. We find a broad
minimum in 〈S〉 which grows deeper with reducing tempera-
ture, as expected. As g is increased, the Mott plateau grows
progressively bigger, and by g = 2.0 (not shown), the sign
is practically saturated at unity throughout the range shown
−8 < μ < 0.

FIG. 9. The average sign 〈S〉 vs chemical potential μ at fixed
β = 3 as a function of reweight factor g > 1 at U = 8 on different
lattice sizes L = 8, 10, and 12. The sign problem (SP) gets worse
with increasing lattice size. Increasing g makes the sign shallower
(i.e., lessens the SP) and pushes the chemical potential at which the
minimum 〈S〉 occurs to lower values. With fixed lattice size L = 10,
lowering temperature results in smaller 〈S〉.

FIG. 10. Oversampling case: electron density 〈n〉, double oc-
cupancy 〈n↑n↓〉, and kinetic energy 〈K〉 vs μ as a function of g
at U = 8 on a 10 × 10 square lattice. Bottom right panel displays
the temperature dependence of 〈K〉 at g = 1.2 (density and double
occupancy have negligible lattice and temperature dependence in this
regime).
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FIG. 11. Double occupancy 〈n↑n↓〉 (top) and kinetic energy 〈K〉
(bottom) vs onsite interaction strength U using different reweight
factors g. Here, L = 10 and β = 5. The dashed horizontal line in-
tersects the g = 1 curve at U = 4. To get the same value of 〈n↑n↓〉
for g = 0.7 requires U = 5.1, and for g = 1.2 requires U = 3. This
implies Ueff = 4 for g = 1.2,U = 3.0 and for g = 0.7,U = 5.1. A
similar analysis of 〈K〉 implies that Ueff = 4 for g = 1.2, U = 2.8
and for g = 0.7, U = 9.2.

In Fig. 10, we show the behavior of local physical variables
such as the number density 〈n〉, the double occupancy 〈n↑n↓〉,
and the kinetic energy 〈K〉 vs μ in this g > 1 regime. As the
Mott insulator becomes more extensive with increasing g, we
find that 〈n〉 saturates at progressively more negative values
of μ. The double occupancy and the kinetic energy both
reduce in magnitude as the insulating system increasingly
favors single occupancy. The bottom right panel plots 〈K〉 for
varying temperatures at g = 1.2, demonstrating a rather weak
dependence on temperature. Similarly, we find negligible de-
pendence on temperature and lattice size for all these variables
in this regime (data not shown here). It is quite striking that,
while the sign itself varies considerably with temperature, the
physical variables show little change in comparison; a peek at
Fig. 3 reveals that the same observation is largely true in the
undersampling case (g < 1) as well.

VIII. RENORMALIZED COUPLING

It is useful to quantify these statements concerning the
effect of g on the physics. To do this, we determine an ef-
fective (renormalized) interaction strength Ueff due to g �= 1.
We proceed as follows: for a given g and U , we find the value
of the repulsion Ueff which at g = 1 yields the same value for
local observables including the double occupancy D = 〈n↑n↓〉
or the kinetic energy 〈K〉. In Fig. 11, we show D and K
as functions of U at half-filling (〈n〉 = 1) on a N = 10 × 10
lattice. For a given value of U at g = 1, a horizontal cut gives
the value of Ueff from the intersections with the curves at

FIG. 12. Effective onsite interaction Ueff determined from double
occupancy 〈n↑n↓〉 (solid lines) and kinetic energy K (dotted lines) vs
reweight factor g. Inverse temperature is fixed at β = 5 (left panel)
and β = 2.5 (right panel), and data were extracted using an L = 10
lattice. For g > 1, the inferred values are roughly equal, while for
small g, there is a marked disagreement. Ueff seems to be roughly
temperature independent, except for small g and large U .

g �= 1. Comparison of D and K reveals that the results are
not universal—the inferred Ueff depends on the observable,
especially for g < 1.

In Fig. 12, we compare the values of Ueff (g) determined
in the manner described from Fig. 11. In general, the double
occupancy D tends to predict larger Ueff than the kinetic
energy K when g < 1, but the values are similar for g > 1.

IX. CONCLUSIONS

In this paper, we have argued that a simple view of the SP
as originating in the independent winding of fermionic world
lines across the space-time lattice is incomplete. Instead,
by studying the Hubbard model in three different contexts,
namely, on a square lattice, on a honeycomb lattice, and with
an external staggered potential, the SP has been shown to
depend nontrivially on the manner in which the fermion deter-
minants select the HS fields. While the square lattice results
show that the SP predominantly originates from determinants
steering the simulation to low sign regions of phase space, the
honeycomb and ionic results demonstrate that random sam-
pling makes the sign worse, especially leading up to the AFMI
phase. Given the few models considered here, it is difficult to
infer a general rule that determines the extent of the different
contributions to the SP under a given set of circumstances.
However, as seen above, when the determinants guide the
system toward a protected particle-hole symmetric point, such
as the AFMI state, the SP is typically reduced. Extensions of
this work to other models could shed more light on this issue.

As we have seen, shifting g away from g = 1 explicitly
changes the values of physical observables. Indeed, it has
the effect of pushing the system to weaker coupling in the
sense that the effects of correlation such as the Mott gap
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and the suppression of double occupancy and hopping are
reduced. Similarly, in the oversampling case, with g > 1, the
effective coupling is larger. The resulting reinforcement of
the Mott plateau in the square lattice case rapidly mitigates
the SP. An explicit calculation of the effective coupling puts
these observations on a more quantitative footing. However,
unlike an analogous analysis for the renormalization of the
electron-phonon coupling in a model which includes onsite
interactions, where the effective coupling was the same for
different observables [57], here, only whether Ueff is reduced
or enhanced relative to U is universal. The quantitative value
of Ueff can vary markedly depending on which observable is
analyzed.

Our procedure allows us to deconvolve the ways in which
the SP arises, and the alteration of the underlying physics
provides us with qualitative insight into the observed trends.
It is, of course, possible to formulate a protocol in which
the alteration of the weight W by g �= 1 is compensated by
including an appropriate factor W1−g in the measurement of
physical observables. In this case, expectation values would
be unchanged, but the error bars would be altered. Intuitively,
setting g �= 1 seems likely to lead to less efficient simulations,
as it violates the spirit of proper importance sampling.

A final comment concerns connections between what we
have explored here and the rational hybrid Monte Carlo
(RHMC) algorithm [58] widely used in lattice gauge the-
ory. In RHMC, the fermion determinant is split into many
pieces detM = [det(M1/n)]n. The purpose there has nothing
to do with the SP but rather to make the computation of
a pseudofermion approximant to the determinant more well
conditioned, allowing larger step sizes in the integration of the
equations of motion. Nevertheless, it is interesting that the 1/n
factor plays a very similar role to the g considered here. The
difference, of course, is that our approach no longer simulates
the original model when g < 1 because we do not introduce
an increased number n = 1/g of copies of the determinant.
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APPENDIX A: SIGN OF INDIVIDUAL SPIN SPECIES

Figure 13 shows the behavior of the sign of the individual
weight matrices 〈Sσ 〉 with the rescaling parameter g at four
values of the temperature. We find that the spin-resolved sign
shows very similar qualitative behavior to the total one, except
near half-filling, where the constraint of particle-hole symme-
try that led to the sign approaching unity near half-filling is
no longer present for the spin-resolved quantity. Interestingly,
the plots with g � 0.8 still show an upturn near half-filling,
even though they do not reach the maximum value. The

FIG. 13. The average sign of the matrices for individual spins,
〈Sσ 〉 vs 〈n〉 at U = 8 as a function of g on an 8 × 8 lattice for
four values of β. As seen for the total sign in the main text, the
minimum in 〈Sσ 〉 becomes wider and deeper with increasing β.
The nonmonotonic behavior of the sign with reducing g, where Sσ

becomes worse initially and then gets progressively better, is also
evident here. In contrast to the total sign, however, the spin-resolved
sign is not constrained to be equal to 1 at half-filling, and thus, the
sharp upturn seen in Fig. 1 near μ = 0 is absent here for most g
values.

nonmonotonicity of the sign noted in Fig. 1 with reducing g,
where it becomes worse initially before increasing again, is
also visible here for 〈Sσ 〉.

APPENDIX B: NUMBER DENSITY AT DIFFERENT
LATTICE SIZES

In Fig. 14, we show the number density vs chemical poten-
tial for different lattice sizes L. Apart from the usual features
of the Mott saturation near half-filling at high values of g and
its absence at low values of the rescaling parameter that we
have already noted in the main text, we find that the finite-
sized effects, evidenced in the oscillations of 〈n〉 for g ∼ 0,
are considerably enhanced at lower lattice sizes, as expected.

APPENDIX C: SIGN VS LATTICE SIZE

In Fig. 15, we show the sign 〈S〉 plotted against the density
〈n〉 as a function of the lattice size L for four different values of
g. Aside from the usual observations, we clearly see the finite-
sized oscillations for the L = 4 plots, with the sign reaching a
maximum at the magic density 〈n〉 ∼ 0.625, corresponding to
a closed-shell filling for this system size.
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FIG. 14. Density 〈n〉 vs μ at U = 8, β = 3.0 on an 8 × 8 lat-
tice as a function of g for four different values of the lattice size
L. The oscillatory behavior at low g in the 4 × 4 lattice is due to
the reemergence of the shell effect in small lattices. As explained
in detail in the main text, a completely random sampling of the
Hubbard-Stratonovich (HS) fields in quantum Monte Carlo (QMC)
is more involved than a standard rescaling of T ; in this case, pushing
the system to weaker coupling by reducing the effect of U , resulting
in a reappearance of finite-sized effects originally suppressed by the
interaction.

APPENDIX D: FINITE-SIZED OSCILLATIONS IN THE
g = 0 LIMIT

In Fig. 16, we reinforce the statements made in several
parts of the main text that, as we approach g = 0, the effect of
U is reduced on certain physical attributes of the system, and
noninteracting features, such as finite size shell effects, usu-
ally washed out by the strong interaction, are unmasked. The
left panel shows the sign at g = 0 plotted for a large number of
temperature values going down to β = 9. Strong oscillations
in 〈S〉 are observed as lower temperatures are reached. The
peak positions in this limit are connected to the closed-shell
densities for this system size, as confirmed by the right panel,
which plots the positions of the densities corresponding to the
maxima of the sign at low temperatures. This is more evident
when comparing it with the dotted horizontal lines, which
mark the values of the closed-shell densities for 8 × 8 lattices.

APPENDIX E: THE t = 0 LIMIT

Here, we discuss the strong coupling (t = 0) limit in detail.
As mentioned briefly in the main text, this limit can be solved
analytically at g = 1 (g = 0 is trivial, of course), whereas for
a general value of g, the solution cannot be written down in a
closed form.

FIG. 15. 〈S〉 vs 〈n〉 at β = 3, U = 8 as a function of L for dif-
ferent g values. The main observation is the finite-sized oscillations
for L = 4, with the sign reaching a maximum at the magic density
〈n〉 ∼ 0.625 associated with a closed-shell filling for this system size.

The partition function for a general value of g is given by

Z = CNLτ

∏
i

∑
{hi}

(∏
σ

{
1 + exp

[
βμ + ασ

∑
l

hi(l )

] })g

.

(E1)

For g = 1, this is trivially easy to calculate:

Z = CNLτ

∏
i

∑
{hi}

(
exp(βμ)

{
exp

[
α

∑
l

hi(l )

]

FIG. 16. Left: 〈S〉 vs μ at g = 0, U = 8, L = 8 for different β

values. As β is increased >4, 〈S〉 shows strong oscillatory behavior
reminiscent of shell effects. Right: values of 〈n〉 at the maxima of the
sign. Dotted black lines mark the magic values of the density at this
lattice size (see text).
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+ exp

[
−α

∑
l

hi(l )

]}
+ 1 + exp(2βμ)

)

= CNLτ

∏
i

{2 exp(βμ)[2cosh(α)]Lτ

+ 2Lτ [1 + exp(2βμ)]}

=
∏

i

exp

(
−βU

4

)
{1 + exp(2βμ)

+ 2 exp
[
β
(
μ + U

2

)]}
. (E2)

On the other hand, the general case with g �= 1 cannot be
solved to yield an analytical expression as above and must be
computed numerically. However, the calculations may be sim-
plified by noting that the summand is a function of

∑
l hi(l )

for any given site i. Since each site is independent, we will just
choose one site and drop the label i in what follows below.
Each of the HS fields h(l ) takes values ±1. Hence, for a
general situation where n of them are −1 and the rest +1, the
sum

∑
l h(l ) = Lτ − 2n. The degeneracy of such a situation

is given by LτCn = Lτ !
n! (Lτ −n)! , the number of ways of choosing

n variables out of Lτ . Thus, the single site partition function
Zs may be rewritten as

Zs = CLτ

Lτ∑
n=0

LτCn

(∏
σ

{1 + exp [βμ + ασ (Lτ − 2n)]}
)g

.

(E3)

The equal time Green’s function Gσ (τ, τ ) is independent of
the imaginary time coordinate τ and is given by Gσ (τ, τ ) =
1/{1 + exp[βμ + ασ

∑
l h(l )]}. For any given configuration

{h}, this is simply the equivalent of the noninteracting ex-
pression {1 − 1/[1 + exp(βεσ )]}, with εσ = −ασ

∑
l h(l ) −

μ. Calculations of expectation values of variables A(G), ex-
pressed in terms of the equal time Green’s function, may be
performed in a similar manner to Zs:

〈A〉 = Z−1 CLτ

Lτ∑
n=0

LτCn A(G)

×
(∏

σ

{1 + exp [βμ + ασ (Lτ − 2n)]}
)g

. (E4)

In Fig. 17, we show the number density 〈n〉 and the double
occupation 〈n↑n↓〉 as a function of μ for various values of g,

FIG. 17. The t = 0 limit. Top left panel shows the number den-
sity 〈n〉 vs chemical potential μ at different g values, showing the
Mott plateau near g = 1 disappearing as g → 0. Top right panel
plots 〈n〉 vs μ for U = 4.0, g = 0 at different β. The inset fits these
curves to a Fermi function with βeff . Bottom left shows the same for
fixed β = 3.0, g = 0 at different coupling U , with inset plotting the
same at g = 1. The final plot shows the double occupancy 〈n↑n↓〉 for
different g values along with the U = 0 plot for comparison.

U , and β. As seen in the general cases with finite coupling
in the main text, we find that the Mott insulator at g = 1
gradually disappears as g is dialed down. Similarly, the dou-
ble occupancy in the bottom right panel also shows that the
effect of U becomes weaker as g is reduced. However, as
the U = 0 black line indicates, even g = 0 is very different
from the noninteracting case. The top right and bottom left
panels show the g = 0 plots for 〈n〉 for different values of β

(fixed U ) and different U (fixed β), respectively. While these
can be nominally fitted to noninteracting Fermi functions, the
effective β (top right inset) is finite (the classical β → gβ
scaling implies infinite temperature) but is smaller than the
actual value. Already at the single site level, this demonstrates
the nontrivial effect that tuning g has on the physics of the
interacting system.
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