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We introduce a two-dimensional electronic insulator that possesses a toric-code topological order enriched
by translation symmetry. This state can be realized from disordering a weak topological superconductor by
double-vortex condensation. It is termed the toric-code insulator, whose anyonic excitations consist of a charge-e
chargon, a neutral fermion, and two types of visons. There are two types of visons because they have constrained
motion as a consequence of the fractional Josephson effect of one-dimensional topological superconductor.
Importantly, these two types of visons are related by a discrete translation symmetry and have a mutual semionic
braiding statistics, leading to a symmetry enrichment akin to the type in Wen’s plaquette model and Kitaev’s
honeycomb model. We construct this state using a three-fluid coupled-wire model, and analyze the anyon
spectrum and braiding statistics in detail to unveil the nature of symmetry enrichment due to translation. We
also discuss potential material realizations and present a band-theoretic understanding of the state, fitting it into
a general framework for studying fractionalizaton in strongly interacting weak topological phases.

DOI: 10.1103/PhysRevB.105.045106

I. INTRODUCTION

Over the past decades, symmetry and topology have
emerged as two central and interwoven organizing principles
in the study of condensed matter physics. In the case of
weakly interacting systems, symmetry-protected topological
(SPT) phases, a class which includes topological insulators
(TIs) and superconductors (TSCs), have been predicted theo-
retically and in a number of cases discovered experimentally
[1,2]. Internal symmetries, such as time-reversal and particle-
hole symmetries, give rise to so-called strong SPT phases
with protected gapless boundary modes [3,4]. In addition to
strong SPT phases, there exist weak SPT phases, which can
be viewed and constructed as stacks of strong SPT phases
from a lower dimension. Importantly, the distinction of weak
SPTs from a trivial phase requires an additional discrete
translation symmetry along the stacking direction, which pre-
vents hybridization of pairs of stacked layers. Prototypical
examples of weak SPTs include the three-dimensional (3D)
weak TI [5–7], which harbors an even number of surface
Dirac modes, and the two-dimensional (2D) weak TSC [8,9],
which harbors a pair of counterpropagating Majorana edge
modes. While the basic properties of weak topological phases
are well understood in the weakly interacting regime, less
is known about the effect of strong interactions, which may
lead to exotic correlated phases and phenomena either on the
boundary or in the bulk. The purpose of this paper is to study
the effect of strong interactions on weak topological phases,
and in particular to address the interplay between translation
symmetry and topology. To this end, we focus on the paradig-
matic example of a strongly interacting weak TSC in two
dimensions.

Strong interactions can give rise to correlated quantum
phases with emergent fractionalized quasiparticles known as
anyons. Such quantum phases are referred to as topological
orders [10,11]. Well-known examples of topological order in-
clude fractional quantum Hall states and quantum spin-liquid
states [12,13]. In the case of the former, recent experimental
evidence for the fractional statistics of Laughlin quasiparticles
has been reported [14,15]. Perhaps the simplest example of
topological order, however, is of the Z2 type, which was first
studied in the context of frustrated quantum antiferromagnets
[16–19] and later reconsidered in the form of Kitaev’s toric-
code toy model, as well as Wen’s plaquette model [20,21].
Given the compelling appeal of the toric-code model, in this
paper we refer to the concerned Z2 topological order as the
toric-code topological order. It features four types of anyons:
1, e, m, and f = e × m, where e and m are self-bosons which
obey a mutual π -braiding (semionic) statistics, as well as the
Z2 fusion rule: e2 = m2 = 1. Remarkably, as pointed out by
Hansson et al. [22], toric-code topological order not only
arises in spin systems, but also in conventional supercon-
ductors, where f is interpreted as the Bogoliubov fermion
and m as the superconducting vortex. It is then natural to
wonder to what extent and how the structure of the topological
order is modified in unconventional superconductors. More
specifically, it is natural to ask whether a 2D weak TSC can
provide a platform for a toric-code topological order enriched
by translation symmetry. Here we answer this question in
the affirmative by constructing an insulator from a strongly
interacting weak TSC and showing that the resulting anyon
spectrum exhibits symmetry enrichment.

In general, a symmetry-enriched topological (SET) order
can exhibit many interesting properties in addition to the
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fusion and braiding properties of anyons [23–28]. For in-
stance, it can feature fractionalized symmetry quantum num-
bers, such as the electric charge of Laughlin quasiparticles.
In this paper, we focus on another aspect: the permutation
of anyon types by a symmetry transformation. This has been
famously demonstrated in spin systems such as Wen’s plaque-
tte model and Kitaev’s honeycomb model [21,29], in which e
particles transform into m particles (and vice versa) under a
discrete translation. This phenomenon is sometimes known
as “weak symmetry breaking,” where the pattern of quasi-
particles breaks the symmetry of the Hamiltonian as well as
the ground state of the system [29,30]. In the spinless elec-
tronic context, such a translation SET order has been recently
proposed in what is termed the “nondiagonal” quantum Hall
state, which possesses a charge sector of a Laughlin state and a
neutral sector characterized by a Zp toric code, with the latter
featuring a weak breaking of translation symmetry [31].

In this work, we use a coupled-wire model approach and
introduce a 2D electronic insulator that realizes a Z2 toric-
code topological order enriched by translation symmetry.
Unlike the nondiagonal quantum Hall state, this does not
require a quantizing magnetic field and does not produce an
extra charge sector. Here we find that the discrete transla-
tion by one wire permutes the e particle with the m particle
of the toric code, which is similar to observations made in
previous works in the context of spin models. We refer to
this topological order as the “symmetry-enriched toric-code
insulator,” and we will argue that it can arise from a disordered
2D weak TSC, through a competition between charge-density
wave instability and superconducting instability that leads to
double-vortex condensation.

Before presenting our microscopic model in the next sec-
tion, we begin by providing an intuitive understanding of the
symmetry-enriched toric-code insulator, based on the physics
of fractional Josephson effect in topological superconductors.

A. 2D weak topological superconductor

The 2D weak TSC may be viewed as a stack of one-
dimensional (1D) TSCs (i.e., Kitaev wires) coupled by
Josephson tunneling and requires the presence of transla-
tion symmetry, as illustrated in Fig. 1(a). Recall first that a
conventional s-wave superconductor possesses a Z2 topolog-
ical order, provided that flux-binding vortices are treated as
dynamical excitations. This requires including a fluctuating
electromagnetic gauge field in the theory [22,32]. Since the
Bogoliubov quasiparticle and the h/2e vortex have mutual π -
braiding statistics [33], a connection with Kitaev’s toric code
can be established by identifying the former as the f particle1

and the latter as the m particle, such that their composite
is the e particle. In the case of a weak TSC, an additional
crucial property arises, which originates from the fractional
Josephson effect in 1D TSCs [see Figs. 1(b) and 1(c)]. In
particular, a 2π phase slip in a 1D TSC must lead to a change
of the ground-state fermion parity [34–36]. Since the 2D weak
TSC can be considered as an array of 1D TSC wires, an h/2e

1This is originally called the ε particle in [29], but here we adopt
another conventional label f to emphasize its fermionic nature.
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FIG. 1. (a) Shows the wire model of a weak TSC, where each
wire represents a 1D TSC (and black dots represent Majorana end
modes). Two types of pointlike excitations in the bulk are depicted:
the h/2e vortex (m) lives on links (dashed lines), and the Bogoliubov
fermion ( f ) lives on wires (blue lines). (b), (c) Illustrate the fractional
Josephson effect: tunneling an h/2e vortex across a wire leads to
a 2π phase slip, which in turn switches the ground-state fermion
parity. Without creating additional excitations, a single vortex can
only move across two wires at a time by exchanging a fermion
between the wires, as shown in (a).

vortex is forbidden (by an energetic cost) to tunnel across a
single wire, but is allowed to tunnel across two wires. The
latter must occur by exchanging an f fermion between the
two neighboring wires, as depicted in Fig. 1(a). Consequently,
two types of h/2e vortices must be distinguished: vortices
living on odd links (mo) and vortices living on even links (me).
Note that the braiding between mo and me involves moving
an f particle around an m particle, which implies a mutual π

braiding between the two. Hence, mo/me can be respectively
identified with the e/m anyon in a toric code. Such a toric-
code topological order is symmetry enriched in the sense that
anyons e and m are related by a translation symmetry.

These general arguments show that a symmetry-enriched
topological phase akin to the toric code can arise in a weak
TSC coupled to a dynamical electromagnetic field. The pur-
pose of this paper is to demonstrate that a different but related
symmetry-enriched topological phase can be realized in an
electrical insulator, which we refer to as the “toric-code in-
sulator,” by condensing double vortices which bind h/e flux.
To correctly describe the dynamical quantum excitations in
the insulator, it is not required to include the electromagnetic
field. Instead, we will show that an emergent Z2 gauge field
naturally arises in a coupled-wire model for the interacting
weak TSC. This results in a three-fluid wire model for the
toric-code insulator, with two fluids associated to the weak
TSC and one fluid for the Z2 gauge field. The remnant of a
single h/2e vortex exists as a Z2 gauge flux.

This Z2 gauge structure is similar in spirit to the Senthil-
Fisher theory for a Z2 fractionalized insulator [37,38], where
the Z2 gauge flux (referred to as the “vison”) plays the role of
a toric-code anyon. It was pointed out that the Z2 fractional-
ized insulator proposed by Senthil and Fisher can also result
from double-vortex condensation [39]. Importantly, however,
the toric-code insulator considered here has two types of vi-
sons: me and mo, which are remnants of the unpaired h/2e
vortices in the 2D weak TSC. As we will demonstrate, the
two types of visons have a mutual π braiding and are related
by translation symmetry, thus realizing a symmetry-enriched
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toric code in an insulator. While our model consists of spin-
less electrons, there exists a neutral fermionic quasiparticle,
analogous to the “spinon,” which arises from electron frac-
tionalization and carries a Z2 gauge charge. After establishing
a microscopic model, we shall elaborate on this connection to
the Senthil-Fisher theory and comment on possible realiza-
tions in spinful electronic systems, with either spontaneously
or explicitly broken time-reversal symmetry.

B. Outline of the paper

The rest of the paper is organized as follows. In Sec. II
we present a microscopic model for the toric-code insulator
using the coupled-wire construction. In Sec. III A, the anyonic
spectrum and braiding statistics are analyzed. In particular, by
constructing local operators that transport anyons, we discover
a constrained motion for the visons that lead to symmetry
enrichment. An interesting consequence is a size-dependent
ground-state degeneracy on torus, which we elucidate in
Sec. III B. In Sec. IV, we provide a survey of possible material
platforms for realizing the toric-code insulator, and discuss a
band-theoretic perspective that connects to recent proposals
of attaining fractionalization in semimetals. We conclude in
Sec. V.

II. WIRE MODEL

Our approach to constructing the toric-code insulator relies
on a coupled-wire model for an array of spinless single-
channel quantum wires. Since the 2D weak TSC can be
viewed as a stack of 1D TSCs, the coupled-wire model pro-
vides a natural description for the weak TSC, and, as we will
see, it also provides a description for the double-vortex con-
densation that leads to the toric-code insulator. In this section,
we begin by introducing a two-fluid model for a single wire.
Then, by considering the competition between the interwire
Josephson coupling and the intrawire charge-density wave
ordering, a Z2 gauge structure emerges. This leads us to a
three-fluid wire model for a disordered weak TSC, which is
the symmetry-enriched toric-code insulator.

A. Two-fluid model for a single wire

Let us first review a bosonized theory for a 1D TSC,
which is developed in Ref. [40]. A single 1D TSC can be
described by a two-fluid model, where a Luttinger liquid
of charge-e fermions (i.e., the spinless electrons) coexists
with a Luttinger liquid of charge-2e bosons (i.e., the Cooper
pairs). Using Abelian bosonization [41,42], the right- and left-
moving (R/L) electron operator and the Cooper-pair operator
(�2e) are expressed as2

ψR/L
e = ei( 1

2 ϕ1±θ1 ), �2e = eiϕ2 , (2.1)

2Notice that Klein factors can be safely dropped here. In the sub-
sequent discussion, the only place where Klein factors should arise
is in the pairing interaction, i.e., ψR

e ψL
e �†

2e, while all other terms to
be considered in the Hamiltonian are intrinsically bosonic. The Klein
factor thus commutes with the Hamiltonian, and does not affect our
central discussion.

and their minimal density fluctuations are e2iθ1 and eiθ2 , re-
spectively. Here, the variables ϕα and θα (α = 1, 2) are canon-
ically conjugate with the commutator [∂xθα (x), ϕβ (x′)] =
2π iδαβδ(x − x′). In our convention, the x direction is along
the wire (hence continuous), and later we will stack up an
array of wires in the y direction. It is convenient to define the
charge- and neutral-sector variables as follows:

ϕρ = ϕ2, θρ = θ1 + θ2, (2.2a)

ϕσ = ϕ1 − ϕ2, θσ = θ1. (2.2b)

Note that the commutation relations are preserved and that the
charge-sector variable ϕρ is the superconducting phase. The
Hamiltonian of a single wire is chosen to be Hwire = Hρ +
Hσ , with

Hρ = vρ

4π

[
gρ (∂xϕρ )2 + 1

gρ

(∂xθρ )2

]
, (2.3a)

Hσ = vσ

4π

[
gσ (∂xϕσ )2 + 1

gσ

(∂xθσ )2

]
+ u cos ϕσ + v cos 2θσ . (2.3b)

Here, gρ,σ are the Luttinger parameters of the charge and
neutral Luttinger liquids. The term with coupling constant
u describes the pairing interaction between the two fluids,
which turns two electrons into a Cooper pair and vice versa.
The interaction with coupling constant v describes the single-
electron backscattering.

In the limit where v � u, the unpaired electrons are de-
pleted by backscattering and the wire becomes a trivial 1D
superconductor which is gapless only to two-electron excita-
tions. Instead, in the opposite limit u � v the electrons are
weakly paired in the sense that charge-e and charge-2e fluids
coexist, and the wire is a topological superconductor (with a
fluctuating phase). As pointed out in Ref. [40], the weakly
paired phase is adiabatically connected to a single-channel
Luttinger liquid with attractive interactions, and is gapless to
both one-electron and two-electron excitations. The gapless
charge-e excitation corresponds to a composite operator given
by

ψ± = ei[ 1
2 (ϕρ+ϕσ )±θρ ], (2.4)

which is a composite of adding a bare electron and tunneling a
vortex across the wire (because e±iθρ introduces a ±2π phase
slip in ϕρ). The gaplessness of this composite one-electron
excitation simply reflects the fractional Josephson effect in a
1D TSC: a ±2π phase slip switches the fermion parity of the
ground state.

As a next step, we couple an array of 1D TSCs by Joseph-
son tunneling between neighboring wires, resulting in a 2D
weak TSC, and then consider phase disordering the supercon-
ductor. We label the wires by j and links between the wires by
�, which is related to wire label as � = j + 1

2 . The Josephson
coupling (coupling constant J) between the wires can then be
expressed as

HSC = J
∑

�

cos(�yϕρ )�, (2.5)

where we have defined the discrete “derivative” �y of wire
variables as �yϕρ ≡ ϕρ, j+1 − ϕρ, j . The �y derivative is
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FIG. 2. (a) Two formulations for the Luttinger liquid of Cooper
pairs. In one, ϕ2 has 2π compactification. Alternatively, ϕ2 can have
4π compactification and couple to a Z2 gauge symmetry: ϕ2 �→ ϕ2 +
2π . (b) Three-fluid wire model of the toric-code insulator: two fluids
for the charge and neutral sectors of a weak TSC, while the third
fluid describes the Z2 gauge sector emerging from double-vortex
condensation. Anyons from each sector are labeled.

associated with link � = j + 1
2 and we thus write (�yϕρ )�.

A vortex with winding number n, which binds nh/2e flux,
corresponds to a 2nπ kink in �yϕρ (and thus lives on the
links). Hence, a pinned charge-density wave (CDW) on wire
j of the form

HCDW, j = w cos 2θρ, j (2.6)

competes with HSC (since ϕρ and θρ are conjugate variables)
by tunneling double vortices across wire j. In the large-w
limit, double vortices are condensed and superconductivity
is destroyed by the rapid phase fluctuations. However, since
double vortices correspond to ±4π kinks, there still remains
a binary degree of freedom that distinguishes configurations
with a uniform �yϕρ from those with 2π kinks in �yϕρ .
The latter are remnants of the uncondensed single vortices.
To properly treat these as dynamical quantum excitations and
to study the properties of the insulating ground state, we now
introduce a Z2 gauge theory, which will be treated as the third
fluid in the wire model.

B. Z2 gauge theory

To see how a Z2 gauge sector emerges from the Luttinger
liquids, consider the compactification of the fields ϕ1 and ϕ2.
In the above formulation, both fields are defined on a circle
such that ϕ1 ≡ ϕ1 + 4π and ϕ2 ≡ ϕ2 + 2π . As mentioned,
in this case the minimal density operators are e2iθ1 and eiθ2 ,
respectively. Given the compactification of ϕ2, a 2π phase
winding of ϕ2 corresponds to a superconducting vortex. In
terms of the charged and neutral variables, however, a 2π

shift of ϕ2 implies a simultaneous 2π shift of ϕρ and ϕσ , from
which one identifies (ϕρ, ϕσ ) ≡ (ϕρ + 2π, ϕσ − 2π ). The lat-
ter is reflected, for instance, in the form of the composite
operator in Eq. (2.4). In this sense the charged and neutral
variables are coupled, and not independent.

A Z2 gauge theory is introduced by compactifying ϕ2 on
a larger circle [see Fig. 2(a)], such that ϕ2 ≡ ϕ2 + 4π , and
coupling ϕ2 to a Z2 gauge field which mods out the shift
symmetry ϕ2 �→ ϕ2 + 2π . In this formulation, the minimal
density operator becomes e2iθ2 , while eiθ2 is replaced by a
twist operator, which tunnels single vortices across a wire. The
vortices themselves correspond to a nontrivial Z2 magnetic

flux, which is defined on the links and can hop across a wire
by applying the electric field operator eiEx/2. The latter is the
new twist operator, to be considered in more detail below. This
formulation, in which the single vortices are represented as the
magnetic flux of a Z2 gauge field, is equivalent to the original
formulation. It has the benefit that the charge and neutral
variables are treated as independent, but are coupled via the
gauge field. In this sense, our approach is similar in spirit
to previous approaches, such as slave-particle representations,
which introduce a gauge symmetry to liberate new degrees of
freedom [37].

To further develop the gauged two-fluid model, it is in-
structive to consider the emergence of the Z2 gauge field at
the level of the partition function. In particular, consider the
Josephson tunneling term (2.5) in the partition function, which
may be rewritten using Villain’s method as [43]

e−J cos �yϕρ ∼
∑
n∈Z

e
J
2 (�yϕρ−2nπ )2

∼
∑

Ay=0,π

e−4J cos(�yϕρ/2−Ay ). (2.7)

In the first line the cosine is approximated using Villain’s
prescription, which is reversed in the second line after rear-
ranging the sum over integers into separate sums over even
and odd integers. By reexpressing the partition function in this
way, we have introduced a Z2 gauge field Ay ∈ {0, π}, which
is defined on the links, as is �yϕρ , and enters as a minimal
coupling to the superconducting phase. As is evident from
(2.7), a 2π phase slip in �yϕρ can be compensated by a π

kink in Ay, which reflects the aforementioned identification
of magnetic gauge flux with the superconducting vortex. It
is worth noting that Eq. (2.7) is similar in spirit to the Z2

gauge theory developed by Senthil and Fisher [37], which they
introduced by splitting the Cooper pair in half (i.e., ϕ → ϕ/2),
at the expense of a gauge degree of freedom.

Gauging the Z2 symmetry on individual wires leads to
the minimal coupling of the gauge field components Ax and
At to the phase variables ϕ2: ∂t,xϕ2 − 2At,x. Analogous to
Maxwell’s U(1) gauge theory, one can define a magnetic field
B = ∂xAy − �yAx, and conjugate electric fields (Ex, Ey) that
satisfy the canonical commutation relations

[Ex, j (x), Ax, j′ (x
′)] = i2πδ j j′δ(x − x′), (2.8a)

[Ey,�(x), Ay,�′ (x′)] = i2πδ��′δ(x − x′). (2.8b)

It is clear from the above that eiEx/2 is a local operator that
tunnels a π -magnetic flux across a single wire. This operator
will play an important role when we discuss anyon statistics
and symmetry enrichment in the next section.

The above (2+1)-dimensional [(2+1)D] gauge theory can
be formulated as an array of Luttinger liquids defined on links,
each characterized by a pair of canonically conjugate bosonic
fields ��(x) and ��(x), with �� having a 2π compactification
and ei�� being an allowed operator. To that end, we identify
Ay,� = ��, and consider a sine-Gordon Hamiltonian with a
large cos 2�� to impose the discreteness of the gauge field.
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We then adopt the Ax, j = 0 gauge, and express

B� = ∂x��, Ey,� = ∂x��, (2.9a)

Ex, j = 2(θρ − θσ ) j − (�y�) j . (2.9b)

As such, a π -magnetic flux on link � corresponds to a π kink
in ��. The discrete derivative �y for link variables is defined
as (�y�) j ≡ � j+1/2 − � j−1/2 = �� − ��−1. The expression
for Ex (defined modulo 4π ) is the Gauss’s law constraint
for the physical Hilbert space, which can be obtained from
integrating out At in the theory. The Gauss’s law constraint is
particularly important here, as the twist operator eiEx/2 needs
to be recast into a form that is compatible with the Ax, j = 0
gauge, under which the Luttinger-liquid representation of the
gauge theory is constructed. A derivation for the Gauss’s law
constraint is presented in Appendix A.

C. Three-fluid model for coupled wires

The stage is now set for constructing a microscopic model
for the symmetry-enriched toric-code insulator. This is a
three-fluid model describing a disordered weak TSC, as
sketched in Fig. 2(b), with the Hamiltonian H = Hσ + Hρ +
HZ2 . Here,

Hσ =
∑

j

vσ

4π

[
gσ (∂xϕσ, j )

2 + 1

gσ

(∂xθσ, j )
2

]
+ u cos ϕσ, j,

(2.10a)

Hρ =
∑

j

vρ

4π

[
gρ (∂xϕρ, j )

2 + 1

gρ

(∂xθρ, j )
2

]
+ w cos 2θρ, j,

(2.10b)

HZ2 =
∑

�

V

4π

[
g(∂x��)2 + 1

g
(∂x��)2

]
+ h cos 2��.

(2.10c)

Three important ingredients are in place: the u term makes
the wires into 1D TSCs, the w term introduces a CDW that
disorders the 2D superconductivity which would otherwise be
obtained from Josephson coupling, and the h term implements
the remaining gapped Z2 degree of freedom. When all the
interactions (i.e., u,w, h) are large, the system is a gapped
insulator. Despite the apparent decoupling of the three fluids
in H, they are indeed coupled given the set of allowed local
operators, and, as we show next, all these conspire to give a
nontrivial state exhibiting a charge-statistics separation and a
symmetry-enriched Z2 topological order.

III. TRANSLATION SYMMETRY-ENRICHED
TOPOLOGICAL ORDER

The central result of this work lies in the physical features
of the insulating state constructed in the previous section and
concerns the quasiparticle excitations, i.e., 2π kinks in the
argument of the interacting cosine terms. For reasons that will
become clear, we refer to the excitations from the u, w, and
h terms as “neutral fermion” (f), “chargon” (e), and “vison”
(m), respectively. They are also labeled in Fig. 2(b). As will
be explained below, they are actually anyons with nontrivial

braiding statistics. Importantly, there are in fact two types of
visons: mo and me, which are mutual semions that altogether
form a toric-code topological order enriched by translation
symmetry.

A. Anyon spectrum and statistics

Let us first begin with the more evident features. Given the
allowed local operators e2iθσ, j and ei�� , which create 4π kinks
in the argument of the u- and h-cosine terms, respectively, we
conclude that both the neutral fermion and the vison obey a
Z2 fusion rule:

f2 = m2 = 1. (3.1)

From the charge-density fluctuation on wire j: ρ j (x) =
∂xθρ, j (x)/π , we conclude that a chargon (which corresponds
to a π kink in θρ, j) carries an electric charge e of a single
electron, hence labeled as the e particle.

Next, we study the anyonic motion. The anyon operators
are summarized in Table I. From the canonical commutation
relations [ϕ(x), θ (x′)] and [�(x),�(x′)], they can be easily
checked to create 2π kinks in the corresponding interaction
terms. Since anyons are nonlocal objects, a single one of them
cannot be created or annihilated by local operators; however,
they can be pair created from the ground state by acting local
operators, and this action can be equivalently interpreted as
moving the anyon (i.e., let it be annihilated in one place and
created in somewhere else). These operators are referred to
as the hopping operators, and their explicit form dictates the
braiding statistics of the anyons. The hopping operators for
motion along x̂ are easily constructed. For instance, a chargon
can move along the wire by

e j (x1) e†
j (x2) = exp

[
i

2

∫ x1

x2

dx ∂xϕρ, j

]
, (3.2)

which is indeed a local operator as ∂xϕρ represents the current
operator in the Abelian bosonization. Similarly, one can argue
that f j (x1)f†

j (x2) is a local operator. Visons, which are created

by e
i
2 �� , can move along x̂ by applying the y component of the

electric field operator, namely,

m�(x1) m†
� (x2) = e

i
2 [��(x1 )−��(x2 )]

= exp

[
i

2

∫ x1

x2

Ey,� dx

]
. (3.3)

The more interesting hopping operators are for the motion
perpendicular to the wires, which explicitly encode infor-
mation about the braiding and exchange statistics. From the
partition function in Eq. (2.7), along with the identification of
Ay,� = ��, we can identify the local operator that transports a
chargon across link �:

T�(e) = ei( 1
2 �yϕρ−�)� . (3.4)

By composing this with the electron hopping operator
exp i�y( 1

2ϕρ + 1
2ϕσ + θσ ), we obtain the local operator that

transports an f particle across link �:

T�(f ) = ei( 1
2 �yϕσ +�yθσ +�)� . (3.5)

We first notice that the above combination ei( 1
2 ϕσ +θσ ) for the f

particle suggests that it, as a 2π kink in ϕσ , is a self-fermion
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TABLE I. Summary of the spectrum and anyon statistics in the toric-code insulator, which exhibits charge-statistics separation and
symmetry-enriched topological order. Neutral fermions and chargons live on wires (labeled by j), while visons live on links (labeled by
� = j + 1/2), with even- and odd-link corresponding to even or odd integer j. The local hopping operator moves an anyon across one link,
along the direction perpendicular to the wires. In particular, without creating additional excitations, a vison has to hop across two wires at a
time, thus differentiating between me and mo.

Anyon Symbol Operator Hopping operator Self-statistics Mutual π braiding with

Neutral fermion f ei( 1
2 ϕσ +θσ ) j ei( 1

2 �yϕσ +�yθσ +�)� Fermion me, mo

Chargon e e
i
2 ϕρ, j ei( 1

2 �yϕρ−�)� Boson me, mo

Vison (even-link �) me e
i
2 �� see Eq. (3.9) Boson mo, f , e

Vison (odd-link �) mo e
i
2 �� see Eq. (3.9) Boson me, f , e

since e
i
2 ϕσ is acting as a Jordan-Wigner string. In contrast, the

charge-e e particle is a self-boson since θρ does not show up
in Eq. (3.4). The above considerations suggest that an electron
can fractionalize into a bosonic chargon (which carries charge
e of the electron) and a neutral fermion (which carries the
fermionic self-statistics of the electron) in the toric-code insu-
lator. This resembles the fractionalization noticed by Senthil
and Fisher in the Z2 gauge theory of cuprate superconductors
[37], hence, a similar nomenclature has been adopted here.
More explicitly, the bare electron operator in Eq. (2.1) can be
written as

ψe = e
i
2 ϕρ × ei( 1

2 ϕσ +θσ ) = e × f . (3.6)

There is a local Z2 symmetry that transforms (ϕρ, ϕσ ) �→
(ϕρ + 2π, ϕσ + 2π ) or, equivalently,

Z2: (e, f ) �→ (−e,−f ), (3.7)

which leaves the electron operator invariant. This is the origin
of the Z2 gauge field that we introduce in Sec. II B, which
couples to both the chargon and the neutral fermion. Its gauge
flux is known as the “vison.” From Eqs. (3.4) and (3.5), one
should notice a phase factor e±i�� being picked up by trans-
porting e/f . Since a vison on link � corresponds to a π kink in
��, this implies a π braiding between e/f and m, as illustrated
in Fig. 3(a).

Despite the above similarities with the Senthil-Fisher
model, the toric-code insulator just constructed has an ad-
ditional feature of symmetry enrichment. To see that, let us
analyze how visons move along ŷ, and derive a mobility
constraint. A local operator that hops a π kink in �� can be ob-
tained from the twist operator eiEx, j/2, introduced in Sec. II B.
From the Gauss’s law constraint in Eq. (2.9b), we have

e
i
2 Ex, j = ei(θρ−θσ − 1

2 �y�) j , (3.8)

hence, the right-hand side provides a physical operator in our
chosen gauge: Ax = 0. However, this operator not only hops
a vison (by e− i

2 �y�), but also creates an f particle, which is
a 2π kink in ϕσ as created by e−iθσ . This is the reincarna-
tion of the fractional Josephson effect: an m-particle simply
cannot hop across a single wire without changing the fermion
parity of the wire. Nevertheless, by applying the above twist
operator twice, a vison can hop across two neighboring wires
( j and j + 1) or, equivalently, across a link (� = j + 1/2),
without creating excitations as long as the hopping operator
in Eq. (3.5) is also applied to annihilate additional f particles.

Namely, we consider the local operator

T�(m) = e
i
2 (Ex, j+Ex, j+1 )T�(f ) × e2iθσ, j

= ei( 1
2 �yϕσ +�yθρ+�)�e

i
2 (��−1−��+1 ), (3.9)

where (�yθρ )� ≡ θρ, j+1 + θρ, j . In the last line, the first part is
a phase factor, and the second part has the action of tunneling
a vison across two wires. We have made use of f2 = 1 by
attaching a factor of e2iθσ, j , so as to completely eliminate θσ

in the hopping operator, and hence no additional excitation is
created during the tunneling process.

The upshots of the above analysis are threefold: (1) there
are two types of visons, one lives on the even links (me) and
one lives on the odd links (mo). While they are related by
a translation symmetry, there is no local operator that turns
one into the other without creating additional excitations. This
leads to a pattern of weak symmetry breaking akin to the
one in Wen’s plaquette model and Kitaev’s honeycomb model

me
j

j+1

j-1

mo

e

(a) (b)

(c) (d)

j

j+1

j-1

j

j+1

j-1

j

j+1

j-1

e

mo

me

meme

j-2j-2

j-2 j-2

FIG. 3. Representative braiding processes in the toric-code insu-
lator. The braiding phase can be computed by multiplying a string of
operators that transport the anyon around a closed loop, depicted by
a dashed line in each panel. (a), (b) Braiding between e and m leads
to a π phase. The same happens for the braiding between f and m,
as f is topologically equivalent to e = ψe × f . (c) Braiding between
mo and me leads to a π phase. (d) The self-statistics of meven/odd is
trivial. All these can be deduced from the expression of operator
T�(m), which transports an m particle across two wires.
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[21,29,30]. (2) By the virtue of Eq. (3.8), a local operator
can create a composite of three anyons: me, mo, and f . This
implies the following fusion rule:

me × mo = f . (3.10)

Together with Eq. (3.6), this implies that a physical electron
can fractionalize into one chargon e and two symmetry-related
visons me and mo. (3) The braiding statistics related to the
m particle is encoded in the phase factors in Eq. (3.9), and
schematically summarized in Fig. 3: the phase factor e

i
2 (�yϕσ )�

implies a π braiding between m and f , ei(�yθρ )� implies a π

braiding between m and e, and last but not least, ei�� implies a
π -braiding between me and mo. Combining the above consid-
erations, we have obtained a translation symmetry-enriched
toric-code order, which is formed by {me, mo, f}.

One signature of this symmetry enrichment is revealed on
the side edge, which is then described by a critical Ising-
Majorana chain due to the correspondence between bulk
anyonic symmetry and edge duality [44]. Alternatively, this
can be seen in the 2D weak TSC, whose side edge is a
chain of Majorana zero modes coupled in an undimerized
pattern, which leads to counterpropagating gapless Majorana
fermions. Disordering the 2D WTSC by proliferating double
vortices in the bulk should not destroy the Majorana edge
modes. The gapless neutral excitations might then be probed
by thermal transport measurements [45].

In summary, the toric-code insulator constructed from dis-
ordering a 2D weak TSC is a tensor product between the
symmetry-enriched toric code {me, mo, f} and the physical
electron ψe. The two types of visons, me and mo, can be
respectively associated to the e anyon and the m anyon in
Kitaev’s toric code, and the e ↔ m anyon permutation is real-
ized here by a discrete translation that exchanges me ↔ mo.
Our model is different from Kitaev’s toric code due to the
presence of itinerant electron ψe, which additionally features
charge-statistics separation: ψe = e × f . The f particle is a
neutral fermion that can further fractionalize into me × mo,
while the e particle is a charge-e boson with a π braiding with
respect to both types of m visons.

B. Ground-state degeneracy on torus: An even-odd effect

Related to the fusion and braiding properties of anyons,
another prominent feature of a topological order is the ground-
state degeneracy (GSD) on a high-genus Riemann surface.
Below, we focus on the GSD on torus (T 2), by imposing
periodic boundary conditions on both directions of the 2D
system. For Kitaev’s toric code, the GSD on torus is well
known to be 4 [20]. However, with a nontrivial interplay
between translation symmetry and the topological order, there
can be a size-dependent GSD as in the case of Wen’s plaquette
model [21,46,47].

For the toric-code insulator just constructed, the GSD de-
pends on the parity of the number of wires L as follows:

GSD on T 2 =
{

4, for even L;
2, for odd L.

(3.11)

The above result can be understood using a Wilson-loop argu-
ment. Let us consider the action of creating a pair of anyons

FIG. 4. Toric-code insulator with an odd number of wires. Due to
the periodic boundary condition, an even-link vison (me) turns into
an odd-link vison (mo) after going around Cy once.

from a ground state, then bringing one of the anyons all the
way around a nontrivial cycle Ci (i = x, y) of T 2 and back to
reannihilate with its partner, finally returning the system back
to a ground state. We denote the corresponding operator for
the a anyon as Wa

i . Since the fundamental anyons are me and
mo, while other excitations can be treated as composites of
these (or together with the trivial electron), we shall focus just
on the algebra generated by the operators associated to these
two anyons. In the case of an even number of wires, from the
mutual braiding statistics discussed above, we have

Wme
x Wmo

y = −Wmo
y Wme

x , (3.12a)

Wmo
x Wme

y = −Wme
y Wmo

x , (3.12b)

while other combinations of operators commute. The
above algebra demands at the minimal a four-dimensional
ground-state Hilbert space: {|n, m〉 | n, m ∈ Z2}, where
the Wilson-loop operators can be shown to act as
Wme

x |n, m〉 = |n + 1, m〉, Wmo
x |n, m〉 = |n, m + 1〉,

Wme
y |n, m〉 = (−1)m |n, m〉, and Wmo

y |n, m〉 = (−1)n |n, m〉.
In case of an odd number of wires, the situation is quite

different. Notice that by going around Cy once, me and mo

are exchanged, as illustrated in Fig. 4. In other words, Wme
y

and Wmo
y are ill defined, as the m particle cannot annihilate

with its partner by just going around Cy once. Instead, we are
forced to consider a new operator W̃m

y , which pair creates two
me/o particles and transports one of them around Cy twice, and
finally re-annihilates them. The Wilson operators that act on
the ground-state subspace then obey the following relations
(again derived from the braiding statistics):

Wme
x W̃m

y = −W̃m
y Wme

x , (3.13a)

Wmo
x W̃m

y = −W̃m
y Wmo

x , (3.13b)

while other combinations of operators commute. This time
the minimal ground-state subspace is two dimensional: {|n〉 |
n ∈ Z2}, where the operators act as Wme

x |n〉 = Wmo
x |n〉 =

|n + 1〉 and W̃m
y |n〉 = (−1)n |n〉. In fact, one can show that

Wme
x and Wmo

x are related by a large gauge transformation
in this case, so they are effectively the same operator which
we shall denote as W̃m

x . The only nontrivial algebraic re-
lation for the Wilson operators is that W̃m

x anticommutes
with W̃m

y , demanding a ground-state subspace with minimal
dimension 2.

The Wilson-loop argument thus provides support to
Eq. (3.11), as a consequence of the translation symmetry
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enrichment. In Appendix B, we present a counting argument
using the three-fluid wire model to explicitly demonstrate this
even-odd effect, confirming that the minimal GSD is indeed
realized in each case. In future numerical studies, this feature
could be useful for identifying the symmetry-enriched toric-
code insulator.

IV. POSSIBLE REALIZATIONS

We now discuss possible routes towards the experimental
realization of a symmetry-enriched toric-code insulator. Since
the 2D weak TSC has provided the conceptual starting point
for our analysis, we focus on three promising experimental
platforms for realizing the weak TSC in two dimensions. A
separate question concerns the precise mechanism by which
vortex condensation might occur, thus phase disordering the
superconductor and potentially giving rise to the toric-code
insulator. This question is intimately related to the nature of
superconductivity, i.e., whether it is intrinsic or proximity
induced. We leave this question for future study, and instead
focus more broadly on realizations of weak TSCs.

In addition, we present a tight-binding model realiza-
tion for the weak TSC on a square lattice. This serves
as a toy model for certain available experimental plat-
forms, and furthermore exposes an intriguing connection with
strongly interacting gapped semimetals, both in two and three
dimensions.

A. Relevant experimental platforms

As a first example of a possible experimental platform,
consider the side surface of a weak topological insulator (TI).
The weak TI can be viewed as a stack of two-dimensional
quantum spin Hall insulators protected by time-reversal
symmetry (TRS) and translation symmetry in the stacking
direction. This implies that a side surface, whose normal
is perpendicular to the stacking direction, realizes a stack
of counterpropagating helical (i.e., spin-momentum locked)
edge modes, with one pair of counterpropagating modes per
layer. Viewing the helical edge modes as quantum wires
establishes a connection with the wire model introduced in
the previous section, albeit with the important difference that
the helical quantum wires can only exist as boundary modes
of a topologically nontrivial bulk system protected by TRS.
Breaking translation symmetry allows for the hybridization
of two helical wires and leads to a trivial gapped surface.
Opening up a pairing gap in a single helical wire gives rise to a
topological superconducting phase similar to Kitaev’s model
for a spinless superconductor in one dimension. Notably, ev-
idence for such a 1D phase has been recently reported in
a WTe2-NbSe2 proximity-coupled heterostructure [48]. This
similarity with the Kitaev wire suggests that the physics of the
2D weak TSC can be emulated on the surface of a 3D weak TI.
A promising experimental candidate is the recently reported
weak TI bismuth iodine (β-Bi4I4), which has a quasi-1D
structure and side surface states with weak dispersion in one
of the two momentum directions [49]. As a result, our wire
model may provide a useful starting point for describing such
surfaces.

The fate of the weak TI surface in the presence of strong
interactions was explored in Ref. [50], which showed that
a symmetric gapped surface is necessarily topologically or-
dered. The minimal Abelian order studied in Ref. [50] is of the
Z4 type, whose fundamental anyons a and d are self-bosons
and have mutual π/2-braiding statistics. In particular, in this
Z4 topological order the d particle transforms nontrivially un-
der translation, very much like the m particle in the toric-code
insulator. However, the Z4 topological order is anomalous, in
the sense that it can only be realized on the surface of a 3D
system but not in a strictly 2D system provided that both TRS
and translation symmetry are preserved. This is a consequence
of the bulk topology. Breaking either symmetry allows for
a 2D topological order. In fact, by breaking TRS, one can
condense the d2 anyon (which requires backscattering of he-
lical modes), and reduce the Z4 state to the Z2 toric code. As
long as the translation symmetry is still preserved, the surface
topological order is then identical to our symmetry-enriched
toric-code insulator. This again suggests that 2D side surfaces
of 3D weak TIs are possible venues for realizing the toric-code
insulator.

A second route towards a weak TSC makes use of an
array of nanowires, with each wire realizing a 1D TSC (i.e.,
Kitaev chain). Two broad experimental platforms for assem-
bling such 1D quantum wires have attracted much attention:
proximitized quantum wires with strong spin-orbit coupling
(e.g., InAs and InSb) [51–53], and magnetic atomic chains
on superconductors [54–60]. Both classes of systems have
provided promising experimental evidence for the existence of
Majorana end states [61,62]. Platforms based on the combina-
tion of helical magnetism and superconductivity may provide
the most fruitful route to exploring 2D architectures and weak
TSC phases. Aiming to generalize the setup based on 1D mag-
netic atomic chains, initial theoretical proposals have explored
the possibility of exploiting modulated magnetic phases in
2D systems to generate effective spin-orbit coupling and local
Zeeman splittings. In principle, this allows for the realization
of effectively spinless gapped p + ip superconductors [63]
as well as nodal 2D superconductors [64]. The latter may
be viewed as an intermediate nodal phase separating a triv-
ial SC from a weak TSC. It is important to note, however,
that all these proposals and platforms or realizing engineered
1D or 2D TSCs rely on proximity-coupled (conventional s-
wave) superconductivity. This presents an important challenge
since our construction of the toric-code insulator relies on
intrinsic superconductivity with a fluctuating phase. Hence,
even if realized, disordering the resulting weak TSC may be
challenging.

A third class of systems relevant to 2D weak TSCs is
characterized by quasi-1D Fermi surfaces associated with or-
bital degrees of freedom. The anisotropic nature of non-s-shell
orbitals can give rise to directionally anisotropic and strongly
quasi-1D hopping. When electrons on such quasi-1D Fermi
surfaces form unconventional pairing states of p-wave type
with a full pairing gap, the resulting phase can realize a weak
TSC. This scenario has indeed been proposed for Sr2RuO4

[65], which has quasi-1D Fermi surfaces coming from dxz,yz

orbitals, in addition to a 2D Fermi surface sheet derived from
a dxy orbital. Although the nature of the superconducting order
parameter of Sr2RuO4 remains an unsettled question, at least
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FIG. 5. Idealized square-lattice model for a weak TSC in two
dimensions. (a) The square-lattice model of Eq. (4.3) is defined
by staggered alternating hoppings in the x direction, t1 (intracell
hopping) and t2 (intercell hopping), giving rise to a two-site unit
cell (dashed square). The horizontal rows, indicated in light blue, are
interpreted as 1D wires (see text). (b) Brillouin zone of the two-site
square lattice model. The location of the Dirac nodes which occur
when tx = (t1 + t2)/2 = 0 are shown by bold blue dots. The splitting
of the Dirac nodes into Bogoliubov-Dirac nodes is indicated by open
blue dots.

partially, one compelling proposal for the pairing state as-
sumes dominant pairing of the quasi-1D Fermi surfaces [66],
which would imply nontrivial weak indices [65].

When taking the spin degree of freedom of electrons into
account and assuming absence of spin-orbit coupling (SOC)
in the normal state, such pairing leads to a state which is
equivalent to two copies of a weak TSC, one for a spin sector
[65]. As argued before, each copy can be disordered into a Z2

toric-code insulator. Hence, in the limit of vanishing spin-orbit
coupling, a possible fate of such systems is a Z2 × Z2 frac-
tionalized insulator with translation symmetry enrichment.
Being a fully gapped topological order, this exotic state is ex-
pected to survive when SOC is switched on adiabatically. We
thus believe that Sr2RuO4, and systems alike, could provide a
route to exploring generalizations of the toric-code insulator
introduced in this work.

B. Model realization

To further aid the identification of experimental platforms,
we now introduce a square-lattice tight-binding model for
the weak TSC. Without pairing, this square-lattice model
describes the transition between a trivial and a (inversion-
symmetric) weak TI in 2D, which necessarily occurs via
a 2D Dirac semimetallic phase. Including pairing terms of
the Kitaev type gives rise to a weak TSC. Notably, as we
will argue below, the 2D model presented here enables an
interesting connection with recent proposals for achieving
fractionalized phases in 3D weak TSCs, particularly for those
realized by gapping 3D Weyl semimetals [67,68]. This sug-
gests that the toric-code insulator fits into a broader and more
general framework for studying and realizing fractionalization
in strongly interacting weak topological phases.

Here we consider a tight-binding model of spinless elec-
trons on the square lattice with alternating hoppings t1,2 in
the x direction, as depicted in Fig. 5. The alternating hoppings
give rise to a two-site unit cell and we label the two sublattices
as A and B. The two-component electron operator c†

k and the

Hamiltonian H0 are given by

c†
k = (c†

kA, c†
kB), H0 =

∑
k

c†
khkck. (4.1)

The Hamiltonian matrix can be expressed as hk = γk σ+ +
γ ∗

k σ−, where σ± = (σx ± iσy)/2 are Pauli matrices and γk is
given by

γk = 2ty cos ky + t1eikx + t2e−ikx . (4.2)

The lattice constant has been set to unity. It is useful to
decompose the hopping in the x direction into a uniform (tx)
and a staggered (t0 > 0) component by writing t1,2 = tx ∓ t0.
With this parametrization, hk takes the form

hk = εkσx + 2t0 sin kxσy, (4.3)

where εk = 2(tx cos kx + ty cos ky) describes an anisotropic
square-lattice dispersion. The Hamiltonian has two important
symmetries: time-reversal (T ) and inversion (P) symmetry.
T symmetry is defined by h∗

k = h−k, and P symmetry by
σxhkσx = h−k.

To understand the electronic phases described by this
model, it is instructive to consider two special cases, which
correspond to setting either tx or ty to zero. First, consider
the case ty = 0. We may then view the system as a collection
of decoupled 1D wires in the x direction, each realizing a
Su-Schrieffer-Heeger (SSH) chain with Hamiltonian h(kx ) =
2tx cos kxσx + 2t0 sin kxσy. In each chain, two distinct insu-
lating phases are possible: a trivial phase and a topological
phase. The topological phase is characterized by a fractional
charge polarization and is protected by inversion symmetry
[69,70]. This motivates an interpretation of the square-lattice
model as a collection of 1D wires of spinless electrons stacked
and coupled in the y direction.

A second special case is realized when tx = 0 and corre-
sponds to an ordinary square-lattice model with anisotropic
nearest-neighbor hopping in the x and y directions and a flux
� = π piercing through each square plaquette. As a result of
the π flux, the spectrum exhibits linear Dirac nodes located
at ±K, where K = (0, π/2) [see Fig. 5(b)], which shows
that the square-lattice model describes a 2D Dirac semimetal
when tx = 0. Nonzero tx shifts the location of the Dirac nodes
along the ky axis, either towards � (tx < 0) or towards M
(tx > 0) of the Brillouin zone (BZ) (see Fig. 5), where the two
nodes can annihilate and gap the spectrum. Importantly, the
two insulating phases resulting from Dirac node annihilation,
either at � or at M, are topologically distinct. Gapping at �

corresponds to a trivial insulator, while gapping at M cor-
responds to a weak topological insulator in 2D protected by
inversion symmetry [70]. The weak TI phase is adiabatically
connected to a stack of decoupled inversion-symmetric SSH
chains in the topological phase (i.e., with filling anomaly),
whereas the trivial insulator is adiabatically connected to a
stack of 1D trivial insulators. This further emphasizes the
interpretation of the square-lattice model as a wire model.
Note that here the presence of inversion symmetry is crucial
for a robust topological distinction of the electronic phase in
1D, and therefore also for the weak TI.

This analysis demonstrates that the square-lattice model of
Eq. (4.3) describes the transition between a trivial insulator
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and a (inversion-symmetric) weak TI, which necessarily oc-
curs via an intermediate 2D Dirac semimetal [70]. The case
tx = 0, with Dirac points at ±K, can be viewed as the exact
“halfway point” of this transition. Our next step is to introduce
pairing terms and show that this can promote the square-
lattice model to a weak TSC. We first consider BCS-type
zero-momentum pairing and introduce a mean field pairing
Hamiltonian of the form

H� = 1

2

∑
k

(�k )αβc†
kαc†

−kβ + H.c. (4.4)

Here, α, β label the sublattice degree of freedom and �k
is the pairing potential, which satisfies �T

−k = −�k. We
focus on pairing along the wires in the x direction and con-
sider a nearest-neighbor pairing potential of the form �k =
�0 cos kxσy. Setting the chemical potential μ to zero, we
obtain a quasiparticle spectrum with four branches given by
the equation (E±

k )2 = (2t0 sin kx )2 + (εk ± |�0| cos kx )2. To
understand the quasiparticle spectrum, it is useful to consider
the case tx = 0 and examine the existence of nodes. Given the
solution for the quasiparticle spectrum, the condition for van-
ishing pairing gap is 2ty cos ky ± |�0| = 0, which implies that
nonzero (and small) pairing |�0| splits each Dirac node into
two Bogoliubov-Dirac nodes. The Bogoliubov-Dirac nodes
move in opposite directions along the ky axis as |�0| is
changed, as is indicated in Fig. 5(b). When |�0| = 2|ty| the
four Bogoliubov-Dirac nodes merge and annihilate in pairs at
both � and M, and the resulting fully gapped superconductor
realizes a weak TSC in 2D. This may be understood by taking
ty to zero, which does not close the quasiparticle gap, but
yields decoupled 1D superconducting wires, each realizing
a Kitaev chain [34]. This shows that for sufficiently strong
BCS pairing of the Kitaev type (i.e., nearest-neighbor pairing
along the wires), the square-lattice model describes a weak
TSC composed of coupled 1D Kitaev chains coupled in the y
direction.

Whereas zero-momentum BCS pairing does not immedi-
ately lead to a full gap (but instead gives rise to nodal points),
finite-momentum Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
pairing directly gaps out the quasiparticle spectrum, and simi-
larly leads to a weak TSC phase. To describe this, we consider
finite-momentum pairing of the form

H� = 1

2

∑
k

(�k )αβc†
kαc†

−k+Qβ + H.c., (4.5)

where Q = (0, π ) is the wave vector connecting � to M [see
Fig. 5(b)]. The wave vector Q also connects the Dirac points
located at K and −K when tx = 0, and we therefore set tx to
zero at first. Including the FFLO pairing term, we obtain the
Hamiltonian matrix

Hk =
(

hk �k

�
†
k −hT

−k+Q

)
, (4.6)

where �k satisfies �T
−k+Q = −�k due to Fermi statistics. As

a result, the admissible nearest-neighbor pair potential takes
the same form as in the case of BCS pairing. As before, we
focus on pairing of the form �k = �0 cos kxσy and determine
the quasiparticle spectrum; we find two degenerate branches

given by

E2
k = (2t0 sin kx )2 + (2ty cos ky)2 + |�0|2 cos2 kx. (4.7)

This describes a fully gapped superconductor for arbitrary
strength of pairing �0 and the resulting gapped phase is a
weak TSC. Note that due to the commensurability of Q, this
FFLO pairing state does not break translation symmetry. In-
deed, density modulations of finite-momentum Q pairing have
wave vector 2Q, which is equal to a reciprocal lattice vector.

It is interesting and enlightening to connect this analysis to
recent work on Weyl semimetals and weak topological super-
conductors in 3D. Conceptually, T -breaking Weyl semimetals
can be viewed as gapless phases describing the topological
transition between a trivial insulator and a 3D quantum Hall
insulator, i.e., a weak topological phase equivalent to stacks of
2D Chern insulators. Recent work explored different ways of
introducing a full pairing gap in this type of Weyl semimetal,
with the aim of realizing a 3D weak TSC equivalent to a
stack of 2D chiral p + ip superconductors [67,68]. In particu-
lar, it was shown that commensurate finite-momentum FFLO
pairing leads to a direct pairing gap [67,71,72], whereas zero-
momentum BCS pairing requires sufficiently strong pairing
in order to induce a merging and pairwise annihilation of
Bogoliubov-Weyl nodes at high-symmetry points [68,73]. In
both cases, the resulting gapped superconductor realizes a 3D
weak chiral TSC with one chiral Majorana mode per stacked
layer on any side surface. The case of the T -breaking Weyl
semimetal is the direct 3D analog of the square-lattice model
we have introduced and analyzed in this section.

C. Impurity effects

To conclude our discussion on experimental realizations,
let us address the fate of toric-code insulator in the presence
of impurities, which locally breaks the translation symmetry.
This begs the question of whether the advertised notion of
“translation symmetry enrichment” still applies to realistic
materials. As argued for other topological phases protected
by crystalline symmetries, such as weak topological insulators
and topological crystalline insulators, their classification and
physical features indeed survive random disorders provided
that the symmetry is respected on average [74–76]. Here we
argue that the same rationale applies to the toric-code insula-
tor.

Two main aspects of the effect of disorder can be ad-
dressed: one about the gapless edge and one about the gapped
bulk. For the edge, the symmetry-enriched toric-code insula-
tor has gapless Majorana modes, which is identical to the edge
of an undimerized weak TSC. In the latter context, the stabil-
ity of edge modes in the presence of random disorder has been
established by Morimoto and Furusaki [9]: the edge Hamil-
tonian has a unique mass term of the dimerization type, and
when the disorder average of the mass term vanishes, the edge
state remains critical and gapless. As for the bulk, the effect of
disorder is even simpler to understand: the gapped topological
order, including the anyon spectrum and braiding statistics,
cannot be altered by any weak disorder incapable of closing
the bulk gap. In particular, the fermion-parity-switching effect
would still constrain the motion of a single vison to hop across
two wires at a time. As long as the notion of “even link
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vs odd link” remains, there are always two types of visons
(me and mo), and they still have mutual semionic braiding
statistics. Last but not least, me and mo are still related by a
discrete translation across a wire (though it is not necessarily a
“symmetry” anymore). In short, the above reasoning provides
a realistic scenario for realizing the toric-code insulator in the
proposed experimental platforms.

V. DISCUSSION AND CONCLUSION

In this paper we have introduced and analyzed a coupled-
wire construction for a translation symmetry-enriched Z2

topological order, which is termed the toric-code insula-
tor. Our construction is based on the vortex-condensation
approach, for which the weak TSC in 2D (i.e., a gapped
superconductor equivalent to an array of 1D TSCs) serves as
the conceptual starting point. The nature of the 2D weak TSC
naturally suggests a coupled-wire model description. A key
feature of the weak TSC is the fractional Josephson effect,
which gives rise to a distinction between two types of vortices:
vortices on even and odd links. In this way, the fractional
Josephson effect is inextricably linked to the translational
properties of weak TSC, as well as to the implementation of
translation symmetry in the toric-code insulator phase. Start-
ing from the weak TSC, the latter is the result of proliferating
double vortices.

To describe double-vortex condensation, we have intro-
duced a three-fluid model for the coupled wires. In addition to
a Luttinger liquid of charge-e fermions and a Luttinger liquid
of charge-2e Cooper pairs in each wire, this model consists
of a third fluid, which arises from a Z2 gauge field defined
on the link. The Z2 gauge field is a consequence of gaug-
ing the superconducting phase-shift symmetry and achieves a
decoupling of the charge and neutral sectors of the two Lut-
tinger liquids. In this sense, the three-fluid model, particularly
the introduction of the Z2 gauge field, bears resemblance to
previously considered slave-particle approaches and parton
constructions [37]. Importantly, the magnetic flux of the Z2

gauge field corresponds to a single vortex in the phase of the
Cooper-pair fluid.

Our central result is the analysis of the three-fluid model
and the demonstration that it leads to a 2D gapped insulator
with topological order, a phase of matter which we refer to
as the toric-code insulator. The topological order is of the
Z2 type akin to the toric code, with the following anyons:
charge-e chargon (e), neutral fermion (f), and two types of
visons (m). An electron ψe can fractionalize into a chargon
and a neutral fermion, thus exhibiting a charge-statistics sep-
aration. Moreover, there is a translation symmetry enrichment
manifested in the toric-code insulator: translation symmetry
relates two types of visons me (on even links) and mo (on odd
links), which have a semionic mutual braiding statistics. One
can thus associate me to the e anyon and mo to the m anyon in
the original language of Kitaev’s toric code. Particularly, the
e ↔ m anyonic permutation (which is a “symmetry” for the
topological order as all the fusion and braiding properties are
preserved) has been realized here as a real-space translation.
The toric-code insulator is thus a tensor product of a physical
electron and a toric-code topological order enriched by trans-

lation symmetry: ψe ⊗ {me, mo, f}. The complete topological
data are summarized in Table I.

Our work suggests that strongly interacting weak SPT
phases are promising platforms for realizing SET phases
enriched by translation symmetry. In particular, neither the
Hamiltonian nor the ground state breaks translation symmetry,
yet translation has a nontrivial effect as permuting anyons
(here me ↔ mo). In other words, the pattern of anyonic
excitations breaks the symmetry of Hamiltonian. This phe-
nomenon has been termed “weak symmetry breaking” [29],
and is an intriguing consequence of symmetry enrichment
in topological order. There are celebrated spin-lattice mod-
els, such as Wen’s plaquette model and Kitaev’s honeycomb
model [21,29], which feature this effect. Recently, Rao and
Sodemann have proposed to understand the weak breaking
of translation symmetry in these models as a consequence of
the emergent spinons forming a weak TSC, which leads to
a mobility constraint for m particles in the toric code [30].
This is essentially the same pattern of symmetry enrichment
as realized in the toric-code insulator introduced here. There
is, however, a crucial difference: our system is built out of
itinerant electrons, instead of localized magnetic moments on
a lattice. This perspective has enabled us to consider several
material realizations, which include the surface of 3D weak
TI, 2D array of nanowires, or magnetic adatom chains, and
correlated materials with quasi-1D Fermi surfaces.

Furthermore, our work has an interesting connection with
recent proposals for strongly correlated fractionalized phases
in 3D Weyl semimetals [67,68]. In particular, Ref. [67] ex-
plored the possibility of realizing a 3D fractional quantum
Hall effect in Weyl semimetals by disordering a 3D weak
TSC. The 3D weak TSC can be realized by pairing fermions
within each Weyl node and is equivalent to a stack of 2D
chiral p + ip Read-Green superconductors. This is analogous
to the 2D weak TSC, which can be understood as a stack
of 1D Kitaev TSCs. As demonstrated in the previous sec-
tion, the 2D weak TSC is intimately related to topological
semimetals in 2D. Our work therefore shows that gapping
and disordering topological semimetals by proliferating de-
fects should be considered a general route towards realizing
novel types of topological order, both in 2D and 3D. The two
canonical examples of topological semimetals in 2D and 3D
suggest possible generalizations to other types of topological
semimetals, for which spatial symmetries play a prominent
role.
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APPENDIX A: GAUSS’S LAW CONSTRAINT

In the main text, we have treated the y component of gauge
field Ay,� as the density variable �� of a Luttinger liquid, and
the conjugate electric field is then Ey,� = ∂x��. To facilitate
this Luttinger-liquid representation, we have to adopt a gauge-
fixing condition: Ax = 0, but then the operator eiEx/2 which
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tunnels a π flux (of B = ∂xAy − �yAx) is incompatible with
this gauge. We thus look for a rewriting of this operator using
the Gauss’s law constraint, which we now derive.

Due to the discreteness of the gauge fields, one should not
attempt to perform an infinitesimal variation of At in hope of
obtaining an equation of motion that represents the Gauss’s
law. Instead, the Gauss’s law is obtained by integrating out
At in a discretized fashion. This procedure can be carried out
straightforwardly by viewing the Z2 gauge theory (coupled to
a compact ϕ2) as a Z gauge theory (coupled to a noncompact
ϕ2). In this case, the “basic” configuration of At takes the

following form:

At ( j, x, t ) = πnjH (x − x0)δ(t − t0), (A1)

with n j ∈ Z and H (x) being the Heaviside step function. Here
x0 and t0 label a reference space-time position where the gauge
field changes its discrete value. A more general form of At

results from the superposition of these “basic” configurations.
Now the functional integral

∫
DAt can be replaced by a dis-

crete sum
∑

n j
. Let us only consider the part of the action

associated to At , which arises from minimal coupling, and
integrate it out:

Z ∼
∫

DAt exp

{∑
j

∫
x,t

i

2π
[∂xθ2, j (∂tϕ2, j − 2At, j ) − Ex, j∂xAt, j − Ey,��yAt, j]

}

∼
∏

j

∑
n j∈Z

exp

{
in j

[
θ2, j − 1

2
Ex, j − 1

2
(�y�) j

]}
=

∏
j

∑
mj∈Z

4πδ(2θ2, j − Ex, j − (�y�) j − 4πmj ). (A2)

The second to last expression is obtained upon substituting
Eq. (A1). The last equality is obtained from the Poisson
summation, and the delta function imposes the Gauss’s law
constraint as quoted in Eq. (2.9b). In the above derivation, we
tentatively choose a field configuration as in Eq. (A1), so the
obtained constraint holds at (x0, t0) for every wire j. Since
we do not have to specify (x0, t0), and indeed the complete
functional integral should count all possible configurations,
the Gauss’s law constraint holds in general. The π -flux hop-
ping operator can thus be written as in Eq. (3.8):

e
i
2 Ex, j = ei[(θρ−θσ ) j− 1

2 (�y�) j ]. (A3)

Notice the right-hand side is consistent with the Ax = 0 gauge,
so this serves as a physical operator in our Luttinger-liquid
formalism. This is used in Sec. III A to study the motion of
visons in the toric-code insulator, which reveals a pattern of
translation symmetry enrichment.

APPENDIX B: COUNTING GSD IN THE WIRE MODEL

The Wilson-loop argument in Sec. III B suggests there is
a topologically protected lower bound to the ground-state
degeneracy (GSD) of the symmetry-enriched toric-code insu-
lator on torus (T 2). Due to the interplay between topology and
translation symmetry, the torus GSD depends on the parity
of the number of wires, which is referred to as the even-odd
effect as summarized in Eq. (3.11). Here we count the GSD
on T 2 explicitly using the three-fluid wire model developed in
Sec. II C.

Ground states are determined by the interaction potentials
in Eq. (2.10):

Hint =
L∑

j=1

(u cos ϕσ, j + w cos 2θρ, j + h cos 2��) (B1)

with � ≡ j + 1
2 . We consider the system with L wires on a

torus by imposing periodic boundary conditions in both the
x (along the wire) and the y (along the stacking of wires)
directions, so wire j = L + 1 is identified with wire j = 1. In

the strong coupling limit, ground states are gapped and char-
acterized by the condensed values of ϕσ, j , θρ, j , and ��, which
are respectively pinned to the bottom of the cosine potentials.
Hence, ϕσ, j ∈ 2πZ, θρ, j ∈ πZ, and �� ∈ πZ. Notice that the
bosonic fields are compact:

ϕσ, j ≡ ϕσ, j + 4π ; (B2a)

θρ, j ≡ θρ, j + 2π ; (B2b)

�� ≡ �� + 2π, (B2c)

which imply that there are at most 23L distinct ground states.
On top of the above compactifications, there are other

redundancies in the definition of the bosonic fields, which
lead to identification in the 23L states we just naively counted.
The redundancies in the bosonic fields are revealed by local
operators that create kinks in them. Considering the local
electron operator ψe, in Eq. (2.1), we see that the charge and
neutral sectors have an intertwined identification:

IA, j : (ϕσ, j, θρ, j ) ≡ (ϕσ, j + 2π, θρ, j + π ). (B3)

To be precise, the above should also be accompanied by a
π shift in θσ, j , but for simplicity we would leave it implicit.
After all, what matters to the determination of ground states
are {ϕσ , θρ,�}, hence, we will only focus on these variables.
Next, there is an intertwined identification of fields on neigh-
boring wires, as revealed by the action of T�(f ) introduced in
Eq. (3.5). We have

IB,�: (ϕσ, j, ϕσ, j+1) ≡ (ϕσ, j + 2π, ϕσ, j+1 + 2π ). (B4)

Finally, by virtue of the Z2 gauge redundancy,

IC, j : (ϕσ, j,��,��−1) ≡ (ϕσ, j + 2π,�� + π,��−1 + π ),

(B5)

which is also revealed by the action of the twist operator
eiEx, j/2 in Eq. (3.8). The above three types of identification
fully capture the redundancies in the definition of fields. For
each wire j there are identifications IA, j and IC, j that can
be performed to relate equivalent ground-state configurations.
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Similarly, for each link � there is an identification IB,� that
can be used to relate equivalent configurations. Starting from
the 23L counting, each independent identification reduces the
number of distinct ground states by a factor of 2.

Crucially, not all redundancies introduced above are inde-
pendent. Due to the torus geometry,

L∏
j=1

IB, j+ 1
2

= 1. (B6)

This is because applying IB,� on every link leads to a 4π shift
of ϕσ for every wire, which have been considered already in
Eq. (B2). Hence, there are only (L − 1) independent redun-
dancies associated to Eq. (B4).

Now it comes the even-odd effect. If L is even, there is one
more relation (thus one less redundancy):

L∏
j=1

IC, j =
L/2∏
i=1

IB,2i+ 1
2
, (B7)

as the net effect of the left-hand side (after modding out the
compactification of ��) is to induce a 2π shift of ϕσ on
every wire, which is equivalent to applying Eq. (B4) on every
alternating link. Everything considered, the GSD on T 2 in the
three-fluid wire model is thus

GSD =
{

23L×2−(3L−2) = 4, for even L;
23L×2−(3L−1) = 2, for odd L.

(B8)
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