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Disorder-driven phase transitions in bosonic fractional quantum Hall liquids
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We investigate the disorder-driven phase transitions in bosonic fractional quantum Hall liquids at filling factors
f = 1/2 and f = 1 in the lowest Landau level. We use the evolution of ground-state entanglement entropy,
fidelity susceptibility, and Hall conductance with increasing disorder strength to identify the underlying phase
transitions. The critical disorder strengths obtained from these different quantities are consistent with each other,
validating the reliability of our numerical calculations based on exact diagonalization. At f = 1/2, we observe a
clear transition from the bosonic Laughlin state to a trivial insulating phase. At f = 1, we identify a direct phase
transition from the non-Abelian bosonic Moore-Read state to a trivial insulating phase, although some signs of a
disorder-induced intermediate fractional quantum Hall phase were recently reported for the f = 5/2 fermionic
cousin.

DOI: 10.1103/PhysRevB.105.045104

I. INTRODUCTION

The phase transition is one of the most classical and
long-standing problems in condensed matter physics. While
Landau’s symmetry-breaking theory gains great success in
describing phase transitions, the discovery of integer [1] and
the more complex, interaction-induced fractional quantum
Hall (FQH) effects [2] in two-dimensional electron gases
(2DEGs) penetrated by strong magnetic fields clearly indi-
cates the existence of novel topological phases [3] beyond the
symmetry-breaking paradigm. Since the 1980s, various FQH
states, their competing phases, and the transitions between
them have been extensively studied [4–23].

Disorder is a ubiquitous ingredient that may drive phase
transitions in FQH systems. Although weak disorder is re-
sponsible for the characteristic plateaus of Hall conductance
when the FQH effect occurs, sufficiently strong disorder can
destroy FQH phases by closing the spectral and mobility gaps.
Unfortunately, due to the exponentially large Hilbert space of
the underlying many-body system as well as the breaking of
spatial symmetry, it is challenging to study in the microscopic
level how disorder affects FQH phases. In the past decades,
only a few numerical studies tackle this problem for fermionic
FQH systems [24–29]. By tracking the evolution of the
ground-state energy gap, Hall conductance, and entanglement
entropy as a function of disorder strength, disorder-driven
transitions from Abelian and non-Abelian FQH phases to triv-
ial phases were identified in microscopic models. In particular,
for electrons at filling f = 5/2 where numerical simulations
support either the non-Abelian fermionic Moore-Read (MR)
state or its particle-hole (PH) conjugate anti-MR state as
the ground state in the zero-disorder limit [7,8,20,30–34], it
was found that enhancing disorder with a finite correlation
length might first drive the system into an intermediate FQH
phase before completely ruining the topological order [29].
This observation may provide deep insight into the nature

of the mysterious f = 5/2 FQH effect, which is still under
debate [35–41].

Most studies of FQH physics focus on electrons because
of the direct relevance to 2DEG experiments. However, it has
been proposed that bosons in rapidly rotating atomic gases or
optical lattices can also form FQH states, where an effective
magnetic field is created by rotation or laser beams [42–50].
From the viewpoint of the wave function, there is a corre-
spondence between the fermionic and bosonic Read-Rezayi
series [42,51], including the Laughlin [4] and MR states,
in which one can obtain a bosonic state from a fermionic
one by simply removing a proper Jastrow factor to ensure
the correct statistics. This fact immediately raises several in-
teresting questions. How does disorder affect bosonic FQH
states? Is the disorder-driven physics for bosonic FQH states
similar to the corresponding fermionic cases? In particular, is
there a disorder-induced intermediate FQH phase between the
bosonic MR state and the trivial strong-disorder limit?

To investigate these problems, in this paper we study the
effect of disorder on bosonic FQH liquids at filling fractions
f = 1/2 and f = 1 in the lowest Landau level (LLL). For
contact-interacting bosons at f = 1/2, we observe a direct
phase transition from the bosonic Laughlin state to a trivial
insulator, which is identified by the special behavior of the
ground-state entanglement entropy, fidelity susceptibility, and
Hall conductance at the critical disorder strength. This transi-
tion is similar to the one from the f = 1/3 fermionic Laughlin
state to an insulating phase reported in Refs. [24,25,27]. How-
ever, such a similarity between bosons and fermions seems
to be absent at the MR filling. As reported in Ref. [29],
a disorder-induced intermediate FQH phase for f = 5/2
Coulomb-interacting fermions might exist. By contrast, we
have checked f = 1 bosons interacting via either the con-
tact repulsion or the Coulomb potential, but do not find any
clear signature of an intermediate phase. Instead, we iden-
tify only a single transition from the bosonic MR state to a
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trivial insulating phase. Promising candidates for the disorder-
induced intermediate phase of f = 5/2 fermions include a
PH symmetric puddle structure composed of fermionic MR
and anti-MR domains [29,40,41,52] and a PH symmetric
state [14,37,53,54]. As the usual PH transformation is only
defined for fermions, the absence of an intermediate phase
for f = 1 bosons in our models does not contradict with the
possible existence of an intermediate PH symmetric phase for
f = 5/2 fermions.

The remainder of this paper is organized as follows. In
Sec. II, we introduce our model and method in detail, in-
cluding the many-body Hamiltonian, the disorder model, and
the definitions of ground-state entanglement entropy, fidelity
susceptibility, and Hall conductance which are used to iden-
tify the phase transitions. In Sec. III, we discuss the results
at f = 1/2, which will also benchmark the validity of our
method. Then we will move to f = 1 in Sec. IV. Finally, our
conclusions, discussion, and outlook are presented in Sec. V.

II. MODEL AND METHOD

A. Model

We consider N bosons in a two-dimensional (2D) random
potential U (r) on an L1 × L2 rectangular torus penetrated by
a uniform perpendicular magnetic field. Bosons interact with
each other via a translationally invariant two-body interaction
V (r). After using the magnetic length �B as the length unit
and choosing the Landau gauge, we can write the LLL single-
particle orbitals as

ψm(r) =
(

1√
πL2

) 1
2

+∞∑
n=−∞

ei 2π
L2

(m+nNφ )y

× e− 1
2 [x− 2π

L2
(m+nNφ )]2

, (1)

where r = (x, y) is the real-space coordinate, Nφ is the num-
ber of magnetic flux quanta penetrating the torus, and m =
0, . . . , Nφ − 1 is the orbital index. As required by the mag-
netic translational invariance on the torus, we have L1L2 =
2πNφ [55]. To approach the 2D limit and preclude other
competing phases such as the stripe phase [56–58], we choose
the square torus with L1 = L2 = √

2πNφ ≡ L throughout this
paper.

We focus on the strong-field situation such that both the
interaction and disorder are small compared with the Lan-
dau level spacing. In this case, the system’s Hamiltonian is∑N

i< j V (ri − r j ) + ∑N
i=1 U (ri ) projected to the LLL, where ri

is the coordinate of the ith boson. In the Fock space spanned
by the single-particle orbitals [Eq. (1)], the LLL-projected
Hamiltonian after second quantization takes the form of

H =
Nφ−1∑

m1,m2,m3,m4=0

Vm1,m2,m3,m4 c†
m1

c†
m2

cm3 cm4

+
Nφ−1∑

m1,m2=0

Um1,m2 c†
m1

cm2 , (2)

where c†
m (cm) creates (annihilates) a boson in the LLL orbital

m, and the interaction and disorder matrix elements are

V{mi} = 1

2
δ

mod Nφ

m1+m2,m3+m4

+∞∑
s,t=−∞

δ
mod Nφ

t,m1−m4
Vq

× e− 1
2 |q|2 e

i 2πs
Nφ

(m1−m3 )
(3)

and

U{mi} =
+∞∑

s,t=−∞
δ

mod Nφ

t,m1−m2
Uqe− 1

4 |q|2 e
i πs

Nφ
(2m1−t )

, (4)

respectively. In Eqs. (3) and (4), δ
mod Nφ

i, j is the
periodic Kronecker delta function with period Nφ ,
q = (qx, qy) = (2πs/L1, 2πt/L2) with |q|2 = q2

x + q2
y , and

Vq = 1
2πNφ

∫
V (r)e−iq·rdr and Uq = 1

2πNφ

∫
U (r)e−iq·rdr

are the Fourier transforms of V (r) and U (r), respectively.
To study the effects of correlated disorder, we use the
Gaussian correlated random potential for U (r), which

satisfies 〈U (r)U (r′)〉 = W 2

2πξ 2 e
− |r−r′ |2

2ξ2 and 〈UqUq′ 〉 =
W 2

2πNφ
δq,−q′e−q2ξ 2/2, where ξ is the characteristic correlation

length, W is the disorder strength, and 〈· · · 〉 represents the
sample average. If ξ = 0, we return to the Gaussian white
noise. When averaging over Ns samples, we estimate the error
bar of quantity A by

√
(〈A2〉 − 〈A〉2)/(Ns − 1).

B. Entanglement entropy

Topologically ordered phases are characterized by the un-
derlying pattern of quantum entanglement [59–61]. Previous
works have found that the ground-state entanglement entropy
and its derivative with respect to the disorder strength provide
sharp signatures of the disorder-driven phase transitions in
FQH systems [27–29]. Here, we will apply this diagnosis to
bosonic systems. For all cases that we consider, the system
at zero and weak disorder is in a topological FQH phase (the
bosonic Laughlin state at f = 1/2 and the bosonic MR state at
f = 1) with a well-defined ground-state manifold consisting
of D approximately degenerate states, which are separated
by a finite energy gap from other highly excited states. This
ground-state degeneracy is a character of the underlying FQH
topological order [62]. Therefore it is natural to extract the
entanglement entropy from this ground-state manifold at weak
disorder. For consistency, we will always choose the low-
est D eigenstates |�i=1,...,D〉 of the many-body Hamiltonian
equation (2) as the ground-state manifold and calculate its
entanglement entropy at all disorder strengths, even if the
quasidegeneracy among states in this manifold disappears
after the FQH phase is destroyed by strong disorder.

Having defined the ground-state manifold, we divide the
whole system into two subsystems A and B to calculate the
entanglement entropy between them. We consider two kinds
of half-half bipartition: (i) the orbital cut [63], for which A
consists of orbitals m = 0, . . . , �Nφ/2	 − 1 while B consists
of the remaining orbitals, respectively, where �a	 is the integer
part of a; and (ii) the real-space cut [64,65], for which A is the
region with x ∈ [0, L/2], y ∈ [0, L] and B is the complement
of A. The entanglement entropy between A and B can be
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measured by the von Neumann entropy S(ρ) = − Tr ρA ln ρA,
where ρ is the density matrix of the ground-state manifold
and ρA = TrB ρ is the reduced density matrix of part A. Here,
ρ can be chosen as either the average over all states in the
ground-state manifold, i.e., ρ̄ = 1

D

∑D
i=1 |�i〉〈�i|, or a single

state ρi = |�i〉〈�i|. These two choices correspond to the en-
tanglement entropy S(ρ̄) and S̄ = 1

D

∑D
i=1 S(ρi ), respectively.

Both S(ρ̄) and S̄ include the contributions of all |�i〉’s, thus
minimizing the finite-size effect. We have checked that they
give similar results, but S̄ suffers from larger finite-size ef-
fects. Therefore our discussion will be based on the results of
S(ρ̄ ) in what follows.

C. Fidelity susceptibility

We will also use the ground-state fidelity and fidelity sus-
ceptibility to identify the disorder-driven phase transitions.
For a parameter-dependent Hamiltonian, fidelity is originally
the overlap between two ground states at different values of
parameters [66]. In our case, it can be generalized to the
total overlap between two ground-state manifolds at disorder
strength W and W + 
W , i.e.,

F (W,
W ) =
(

1

D

D∑
i, j=1

|〈�i(W )|� j (W + 
W )〉|2
)1/2

. (5)

Since the fidelity measures the similarity between states, the
change in the ground-state manifold at the phase transition
should be reflected by a dramatic drop in the fidelity across
the critical point. A closely related quantity is the fidelity
susceptibility, defined as

χ (W ) = lim

W →0

−2 ln F (W,
W )


W 2
, (6)

which should show a sharp peak diverging with the increas-
ing system size at the phase transition and can describe the
universality class of the transition [67,68].

D. Hall conductance

The Hall conductance σH can unambiguously distinguish
FQH phases with nonzero quantized σH from insulating
phases with σH = 0 that could exist at strong disorder [24,25].
σH is simply proportional to the many-body Chern number of
the ground state [69]. After imposing the twisted boundary
condition Tμψm(r) = eiθμψm(r) on the single-particle-orbital
equation (1), where Tμ is the magnetic translation opera-
tor [55] in the μ = x, y direction and θμ is the boundary phase,
we can calculate the many-body Chern number

Cj = i

2π

∫∫ 2π

0
dθxdθy

(〈
∂� j

∂θx

∣∣∣∣∂� j

∂θy

〉
−

〈
∂� j

∂θy

∣∣∣∣∂� j

∂θx

〉)
(7)

for the state |� j〉 in the ground-state manifold. Numerically,
we separate the θx-θy space into dense meshes and calculate
the sum of the accumulated Berry phase (divided by 2π ) in
|� j〉 along the edges of each mesh to get Cj . Then we com-
pute the total many-body Chern number C = ∑D

j=1 Cj of the
ground-state manifold, which gives the average ground-state
Hall conductance σH = (C/D)q2/h with q being the boson’s
charge. For an FQH phase at filling f , we expect C = f D and

σH = f q2/h. For an insulating phase, we expect C = 0 and
σH = 0.

III. f = 1/2 BOSONIC LAUGHLIN FILLING

Let us first study the effect of disorder on the f = 1/2
bosonic Laughlin state to examine the validity of the diag-
noses proposed in Secs. II B–II D. In this section we assume
that the bosons interact via the two-body contact repulsion
with constant Vq = 2/Nφ in Eq. (3), i.e., the zeroth Haldane’s
pseudopotential [5]. In this case, the ground state in the ab-
sence of disorder is the model bosonic Laughlin state which
is exactly twofold degenerate on the torus. The corresponding
wave function on an infinite plane [4] takes the simple form

�
f =1/2

Laughlin =
∏
j<k

(z j − zk )2 exp

[
−1

4

∑
i

|zi|2
]
, (8)

where z j = x j − iy j is the complex coordinate of the jth bo-
son on the plane. For the disorder term in Eq. (4), we first
consider the Gaussian white noise. One can imagine that the
ground state stays in the bosonic Laughlin phase when the
disorder is weak but enters an insulating phase at strong dis-
order with all bosons pinned at the minimum of the disorder
potential. Therefore at least one phase transition must occur at
an intermediate disorder strength.

To identify the phase transition, we measure the orbital-cut
entanglement entropy (OEE), So(ρ̄), as a function of disorder
strength. At each W , we consider different disorder configura-
tions and calculate the sample-averaged OEE 〈So(ρ̄)〉. Unlike
for the f = 1/3 fermionic Laughlin state, where 〈So(ρ̄)〉
monotonically decreases with increasing W [27,28], here we
find that 〈So(ρ̄)〉 first grows and then decays when disorder
strength grows [Fig. 1(a)]. A peak in 〈So(ρ̄)〉 develops near
W = 0.7 for all system sizes, which seems to indicate a phase
transition at W ≈ 0.7.

We further locate the critical point Wc and extract the criti-
cal exponent ν of the correlation length via a scaling analysis
of the OEE. As the OEE evolves smoothly with the disorder
strength, we expect a continuous phase transition at Wc, with
the correlation length

λ ∝ |W − Wc|−ν (9)

near the critical point, where ν is the critical exponent. Con-
sidering that the entanglement entropy obeys the area law, we
argue the scaling form

So(W ) − So(Wc) ∝ Lg[L
1
ν (W − Wc)] (10)

for the OEE, where g is a universal function. By plotting
the linear density of the OEE [So(W ) − So(Wc)]/L versus
L

1
ν (W − Wc), we find that all data points in Fig. 1(a) (except

those of the smallest system size N = 4) collapse onto a
single curve when we choose Wc ≈ 0.7 ± 0.05 and ν ≈ 0.6
[Fig. 1(c)]. Such a scaling analysis provides a convincing
indication of a phase transition at Wc ≈ 0.7 ± 0.05. Note that
the critical exponent ν obtained here is close to the value for
f = 1/3 fermions [27].

Compared with the entanglement entropy itself, its deriva-
tive with respect to the disorder strength may provide
a sharper fingerprint of the underlying phase transition
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FIG. 1. The orbital-cut entanglement entropy So(ρ̄ ) for N = 4–9 contact-interacting bosons at f = 1/2. Disorder is modeled by the
Gaussian white noise. (a) 〈So(ρ̄)〉 vs W . (b) 〈dSo(ρ̄)/dW 〉 vs W . For the finite-size scaling analysis of 〈So(W )〉 and 〈dSo/dW 〉, we plot
[〈So(W )〉 − 〈So(Wc )〉]/L and 〈dSo/dW 〉/L1+1/ν vs L1/ν (W − Wc ) in (c) and (d), respectively, where we use Wc = 0.7 and ν = 0.6 and neglect
the smallest system size N = 4. We average over 10 000 samples for N = 4–7, 3500 samples for N = 8, and 700 samples for N = 9. Markers
in (a)–(d) with the same color refer to the same system size.

[27,28]. We approximate dSo(ρ̄)/dW in each sample as
[So(ρ̄)|W +
W − So(ρ̄)|W ]/
W with 
W = 0.001W , where
So(ρ̄)|W +
W is evaluated by only changing the magnitude of
W by a small percentage but keeping the disorder configura-
tion fixed. The sample-averaged result is shown in Fig. 1(b).
We observe one peak and one valley in 〈dSo(ρ̄)/dW 〉 when
〈So(ρ̄)〉 grows and decays with increasing W , respectively.
The magnitudes of both the peak and valley grow with in-
creasing system size. While it is difficult to confirm by our
exact-diagonalization calculations in relatively small systems,
we may expect that the peak and valley both move to the
critical Wc and their magnitudes diverge in the thermodynamic
limit. In this case, 〈dSo(ρ̄)/dW 〉 goes to positive (negative)
infinity when W → Wc from the left (right) side, which is
a sharp signature of the phase transition. For finite systems,
such divergence to positive and negative infinity is replaced by
the peak and valley, respectively. Naively, we can estimate Wc

as the position where 〈dSo(ρ̄)/dW 〉 ≈ 0, which again gives
Wc ≈ 0.7. Moreover, according to Eq. (10), we suggest the
scaling form

dSo(W )/dW ∝ L1+1/νg′[L
1
ν (W − Wc)] (11)

to the entropy derivative, where g′ means the derivative of the
function g. In Fig. 1(d), we plot 〈dSo(W )/dW 〉/L1+1/ν as a
function of L

1
ν (W − Wc) for Wc = 0.7 and ν = 0.6. Indeed,

all data points in Fig. 1(b) (except those of the smallest system
size N = 4) collapse to a single curve near the critical point.

At first glance, the nonmonotonic behavior of the orbital-
cut entanglement entropy in Fig. 1(a) seems counterintuitive.
With increasing disorder strength, bosons are more likely
trapped at the minima of the disorder potential, and thus we
would expect weaker real-space entanglement between dif-
ferent regions of the system. Since the OEE is often argued
to be a reasonable, approximated measure of the real-space
entanglement between two subregions of the system due to
the Gaussian localization of LLL orbitals [63,70], one may
expect a monotonically decaying OEE when disorder be-
comes stronger. However, this is contrary to our numerical
observation that the OEE evolves nonmonotonically with the
disorder strength. We attribute this discrepancy to the impre-
cise capture of the real-space entanglement by the orbital cut:
All LLL orbitals have nonzero support across the whole torus,
so the orbital cut cannot precisely match the true real-space
cut [64,65]. Compared with fermions, this mismatch between
orbital-cut and real-space entanglement may be more obvious
for bosons due to their multiple occupation in each LLL or-
bital. Indeed, we did not observe the nonmonotonic behavior
of the OEE for fermions in previous works [27,28].

In Fig. 2(a), we show the real-space-cut entanglement
entropy (REE) Sr (ρ̄) obtained by a true real-space biparti-
tion of the system instead of an orbital cut. Unlike 〈So(ρ̄ )〉,
〈Sr (ρ̄)〉 indeed monotonically decays with increasing disorder
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FIG. 2. (a) The sample-averaged real-space-cut entanglement
entropy 〈Sr (ρ̄ )〉 and (b) the entropy derivative 〈dSr (ρ̄)/dW 〉 vs W for
N = 4–6 contact-interacting bosons at f = 1/2. Disorder is modeled
by the Gaussian white noise. We average over 10 000 samples for
N = 4–5 and 1500 samples for N = 6. Markers in (a) and (b) with
the same color refer to the same system size.

strength, which is consistent with the picture that bosons are
more likely trapped at minima of the disorder potential such
that the REE becomes smaller. The derivative of 〈Sr (ρ̄)〉 with
respect to the disorder strength exhibits a single minimum
which gets deeper and flows to smaller W for larger system
sizes [Fig. 2(b)]. Although we can only calculate the REE for
at most six bosons because its computational cost is larger
than that of the OEE [64,65], we still try a linear fitting of
the minimum position of 〈dSr (ρ̄)/dW 〉 versus 1/N and obtain
Wc ≈ 0.78 in the thermodynamic limit, which is consistent
with the critical point indicated by the OEE.

The diagnoses above based on entanglement measures sug-
gest a single phase transition with increasing W . To confirm
this, we look for a clue of the phase transition directly at
the wave-function level. At each W , we fix the disorder con-
figuration and change W by 
W = 0.001W to evaluate the
fidelity F (W,
W ) in Eq. (5). Then the fidelity susceptibility
χ (W ) is obtained from Eq. (6), which is further averaged over
different disorder configurations. We find a single pronounced
maximum in 〈χ (W )〉 which grows for larger system sizes and
probably diverges in the thermodynamic limit (Fig. 3). Such a
single peak indicates a single abrupt change in the ground-
state manifold, i.e., a single phase transition. The location
of the peak for the largest three system sizes gives a rough
estimate of Wc ≈ 0.75, agreeing with the prediction of the
entanglement analysis.
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FIG. 3. The sample-averaged fidelity susceptibility 〈χ (W )〉 vs
W for N = 4–9 contact-interacting bosons at f = 1/2. Disorder is
modeled by the Gaussian white noise. We average over 10 000
samples for N = 4–7, 3500 samples for N = 8, and 700 samples
for N = 9. The vertical dashed line indicates W = 0.7, which is the
critical disorder strength extracted from the entanglement quantities
in Fig. 1.

In the end, we track the evolution of the many-body Chern
number C of the ground-state manifold as a function of dis-
order strength, which can unambiguously distinguish trivial
insulators from FQH states. In the Laughlin phase, we should
have C = 1, while we expect C = 0 in the insulating phase.
For each disorder configuration, we twist the boundary con-
ditions and evaluate C by Eq. (7). Then we average C over
various disorder configurations. Indeed, we observe 〈C〉 = 1
for weak disorder strengths (Fig. 4). A decaying of 〈C〉 starts
at W ≈ 0.7, signaling the collapse of the Laughlin phase. The
drop in 〈C〉 becomes steeper for larger system sizes, tending
towards a step function in the thermodynamic limit. Note that
this critical disorder strength obtained from the many-body
Chern number is consistent with the values extracted from the
entanglement analysis and fidelity susceptibility, thus validat-
ing the reliability of all these diagnoses.
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FIG. 4. The sample-averaged many-body Chern number 〈C〉 vs
W for N = 4–7 contact-interacting bosons at f = 1/2. Disorder is
modeled by the Gaussian white noise. We average over 10 000
samples for N = 4–5, 3000 samples for N = 6, and 1500 samples
for N = 7. The vertical dashed line indicates W = 0.7, which is the
critical disorder strength extracted from the entanglement quantities
in Fig. 1.
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Beside the Gaussian white noise, we have also checked
the Gaussian correlated random potential with nonzero cor-
relation length ξ for f = 1/2 contact-interacting bosons and
obtain similar results (not shown here to avoid repetition).

IV. f = 1 BOSONIC MOORE-READ FILLING

Having diagnosed the disorder-driven collapse of the f =
1/2 bosonic Laughlin state, we now study the fate of the f =
1 bosonic MR state in the presence of disorder. This bosonic
MR state can be chosen as the model MR state, whose wave
function on an infinite plane is

�
f =1

MR = Pf

(
1

zi − z j

) ∏
i< j

(zi − z j ) exp

[
−1

4

∑
k

|zk|2
]
, (12)

with “Pf” standing for Pfaffian. Alternatively, we can also
choose the ground state of a two-body interaction which is in
the same topological phase as the model MR state. Previously,
the Coulomb interaction was used to study the disorder-driven
phase transitions and the disorder-induced intermediate FQH
phase for fermions at the MR filling f = 5/2 [29]. Therefore,
for a better comparison with fermions, in this section we also
use a two-body interaction and focus on the disorder effect on
its ground state in the f = 1 bosonic MR phase. This choice
also reduces the computational cost, because obtaining the
model bosonic MR state requires the numerical diagonaliza-
tion of the three-body contact repulsion for an even number of
bosons [71].

On the torus geometry, the model bosonic MR state is
threefold degenerate in the K = (0, 0), K = (0, N/2), and
K = (N/2, 0) momentum sectors [72], respectively. We hence
need to seek a two-body interaction whose lowest three eigen-
states are (i) in the same momentum sectors as the model MR
states, (ii) approximately threefold degenerate, (iii) separated
from higher-energy levels by a robust energy gap, and (iv)
close to the model MR states. One natural candidate for such a
two-body interaction is the contact repulsion used in Sec. III,
which is realistic for bosons in cold-atom setups. However,
we observe a strong finite-size effect for this type of interac-
tion. For relatively small systems of N = 6, 8, 10, 12 bosons,
although the ground states of the two-body contact repulsion
are in the same momentum sectors as the model bosonic
MR states and the overlaps with the model states are decent,
the energy gap protecting the ground-state manifold strongly
fluctuates with the system size and can even become smaller
than the splitting between the three ground states (see Table I).
Considering that we can only efficiently deal with at most
N = 12 bosons at f = 1 once disorder is turned on, the strong
finite-size effect of the two-body contact repulsion in small
clean systems will lead to messy results at nonzero disorder.
Indeed, in this case we find it very difficult to estimate Wc and
ν, as shown in Appendix.

Because the two-body contact repulsion is not ideal for our
purpose, we examine long-range interactions. Motivated by
the fact that the f = 5/2 fermionic MR phase can be signifi-
cantly enhanced by the Coulomb interaction with a finite layer
thickness w ≈ 4�B caused by the quasi-2D nature of the sys-
tem [73], we check the energy spectra and ground-state wave
functions of this interaction with w = 4�B for f = 1 bosons.

TABLE I. The ground-state energy gap 
 and the ground-state
splitting δ at zero disorder for f = 1 bosons. We consider both the
two-body contact repulsion and the Coulomb interaction corrected
by a finite layer thickness w = 4�B. We set q2/(4πε�B ) = 1 for
the Coulomb interaction, where ε is the dielectric constant. After
sorting all energy levels in ascending order, 
 is defined as the
energy difference between the fourth level and the third level, and δ

is the energy difference between the third level and the lowest level.
For both interactions, the lowest three eigenstates are always in the
same momentum sectors as the model bosonic MR state, forming the
ground-state manifold. The total overlaps O = ∑3

i=1 |〈�i|�MR
i 〉|2/3

between the ground-state manifold {|�i〉} and the model bosonic
MR states {|�MR

i 〉} are also given. For N = 8 and N = 10 contact-
interacting bosons, although the ground-state overlap with the model
MR state is decent, 
 drops a lot and becomes smaller than δ,
implying that the ground-state manifold of these two systems is not
in a robust MR phase.

Contact Coulomb with w = 4�B


 δ O 
 δ O

N = 6 0.2531 0.0997 0.9582 0.0758 0.0356 0.9648
N = 8 0.0864 0.2028 0.8939 0.0443 0.0212 0.9676
N = 10 0.0928 0.1374 0.8968 0.0663 0.0212 0.9412
N = 12 0.3328 0.0879 0.8080 0.1190 0.0114 0.9109
N = 14 0.2771 0.1252 0.8152 0.1010 0.0206 0.9018
N = 16 0.3074 0.0420 0.7215 0.1251 0.0026 0.8749

Although the Coulomb interaction is not as pertinent as the
contact repulsion for bosons in cold-atom setups, we think it
is a reasonable choice for theoretical interest, as it can provide
higher-order Haldane’s pseudopotentials [5]. In this case, with
the Vq given in Ref. [73], we find that there are indeed three
approximately ground states in the correct momentum sectors.
Remarkably, compared with the two-body contact repulsion,
the Coulomb ground states have higher overlaps with the
model bosonic MR state. Moreover, the energy gap suffers
from a much weaker finite-size effect and is always larger than
the ground-state splitting (Table I). We hence proceed to study
the disorder effect on the f = 1 bosonic MR state stabilized
by the the Coulomb interaction with w = 4�B. We empha-
size that the trick of using the Coulomb interaction is only
for suppressing the finite-size effect in numerically tractable
systems. The results of both contact and Coulomb interactions
are qualitatively similar, so the underlying physics should not
depend on the choice of the interaction.

Now we switch on disorder. One can imagine that the
system must enter an insulating phase at sufficiently strong
disorder as all bosons are pinned at the minimum of the
disorder potential. Therefore we expect at least one phase
transition from the bosonic MR state to an insulating phase.
Note that the f = 5/2 fermionic MR or anti-MR state is ulti-
mately replaced by a composite-fermion liquid rather than an
insulator [29]. This difference is due to the different statistics
between bosons and fermions. In the presence of disorder,
each Landau level is broadened into a Landau band, and
all single-particle states except those at the band center are
localized. While in the strong-disorder limit all bosons can
pile in one localized single-particle state with the lowest en-
ergy, f = 5/2 fermions must occupy half of all single-particle
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FIG. 5. The orbital-cut entanglement entropy So(ρ̄) for even N = 6–12 Coulomb-interacting bosons at f = 1. Disorder is modeled by
the Gaussian white noise. (a) 〈So(ρ̄)〉 vs W . (b) 〈dSo(ρ̄)/dW 〉 vs W . For the finite-size scaling analysis of 〈So(W )〉 and 〈dSo/dW 〉, we plot
[〈So(W )〉 − 〈So(Wc )〉]/L and 〈dSo/dW 〉/L1+1/ν vs L1/ν (W − Wc ) in (c) and (d), respectively, where we use Wc = 0.16 and ν = 0.5. We average
10 000 samples for N = 6 and 8, 2000 samples for N = 10, and 500 samples for N = 12. Markers in (a)–(d) with the same color refer to the
same system size.

states in the second Landau band including the delocalized
states at the band center, as two fermions cannot occupy the
same single-particle state.

To proceed, we first model disorder by the Gaussian white
noise. Similar to the Laughlin case, the OEE 〈So(ρ̄ )〉 first
increases and then decreases with increasing W for all system
sizes [Fig. 5(a)], leading to a peak and a valley in the entropy
derivative 〈dSo(ρ̄ )/dW 〉 [Fig. 5(b)]. By contrast, we find that
the REE decays monotonically (not shown here). We believe
that the critical point Wc can be identified by maximum of the
OEE, and the OEE derivative diverges to positive (negative)
infinity on the left (right) side of the critical point in the ther-
modynamic limit. Because the OEE data in Fig. 5, especially
the entropy derivative, suffer from a stronger finite-size effect
than the f = 1/2 Laughlin case, we use the data of the largest
two system sizes, N = 10 and N = 12, to do the scaling
analysis to extract Wc. We apply the scaling forms in Eqs. (10)
and (11) to 〈So(ρ̄)〉 and 〈dSo(ρ̄)/dW 〉, respectively. With the
rescaled variables, we find that all data points almost locate
on a single curve with Wc ≈ 0.16 and ν ≈ 0.5 [Figs. 5(c)
and 5(d)].

To examine the critical W extracted from the entanglement
quantities, we calculate the fidelity susceptibility 〈χ (W )〉
(Fig. 6). Similar to the Laughlin case, all 〈χ (W )〉 curves
exhibit a pronounced maximum which gets higher for larger
system size. While the position of the peak varies with the

system size, it is located at W ≈ 0.16 for the largest system,
N = 12, which matches the Wc extracted from the OEE.

The similar behavior of the OEE to the f = 1/2 Laugh-
lin case and the single peak in the fidelity susceptibility

0.0 0.1 0.2 0.3 0.4 0.5
W

0

40

80

120

160

200

〈χ
〉

N = 6

N = 8

N = 10

N = 12

FIG. 6. The sample-averaged fidelity susceptibility 〈χ (W )〉 for
even N = 6–12 Coulomb-interacting bosons at f = 1. Disorder is
modeled by the Gaussian white noise. We average 10 000 samples
for N = 6 and 8, 2000 samples for N = 10, and 500 samples for
N = 12. The vertical dashed line indicates W = 0.16, which is the
critical disorder strength extracted from the entanglement quantities
in Fig. 5.
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FIG. 7. The sample-averaged orbital-cut entanglement entropy 〈So(ρ̄)〉, entropy derivative 〈dSo(ρ̄)/dW 〉, fidelity susceptibility 〈χ (W )〉,
and many-body Chern number 〈C〉 for even N = 6–12 Coulomb-interacting bosons at f = 1. Disorder is modeled by the Gaussian correlated
random potential with ξ = 0.5�B [(a)–(d)] and ξ = �B [(e)–(h)]. In (a)–(c) and (e)–(g), we average 10 000 samples for N = 6 and 8, 2000
samples for N = 10, and 500 samples for N = 12. Due to the larger computational cost of the many-body Chern number, which requires
integrating over boundary conditions, we average 10 000 samples for N = 6, 5000 samples for N = 8, and 1000 samples for N = 10 in (d) and
(h). Markers in (a)–(h) with the same color refer to the same system size.

suggest a direct phase transition from the bosonic MR state
to an insulating phase when the disorder is modeled by the
Gaussian white noise. Motivated by the intriguing observa-
tion that f = 5/2 fermions subjected to disorder with a finite
correlation length ξ might evolve to an intermediate FQH
phase [29], we repeat the studies in Figs. 5 and 6 by using
the Gaussian correlated random potential with nonzero ξ . We
consider ξ/�B = 0.5–2, for which a disorder-induced interme-
diate FQH phase seems to exist for f = 5/2 fermions [29].
However, for f = 1 bosons, we cannot see any clear signature
of an intermediate phase within this range of ξ . The results for
ξ = 0.5�B and ξ = �B are shown in Fig. 7. In these cases, the
OEE and the fidelity susceptibility look qualitatively similar
to the ξ = 0 case (i.e., the Gaussian white noise). While the
curves at ξ > 0 are stretched compared with the ξ = 0 case
such that the critical W moves to larger values [Figs. 7(a)–7(c)
and 7(e)–7(g)], we can only observe the signature of a single
phase transition, as reflected by the single pronounced peak
in the fidelity susceptibility [Figs. 7(c) and 7(g)]. This is also
true for larger ξ despite stronger finite-size effects. We also
find that the many-body Chern number stays at 〈C〉 = 3 at
weak disorder and decays at sufficiently large W [Figs. 7(d)
and 7(h)], which confirms the transition from the bosonic MR
state to an insulating phase.

V. CONCLUSIONS AND DISCUSSION

In this paper, we present a systematic exact-diagonalization
study of disorder-driven quantum phase transitions for the
f = 1/2 and f = 1 bosonic FQH systems. We identify the
phase transition by tracking the entanglement entropy, fidelity
susceptibility, and many-body Chern number (Hall conduc-
tance) of the ground-state manifold as a function of disorder
strength. The critical disorder strengths Wc obtained from dif-
ferent quantities are consistent with each other, validating the
reliability of our numerical results. At both f = 1/2 and f =
1, we identify a single phase transition from the FQH state
(bosonic Laughlin state for f = 1/2 and bosonic MR state for
f = 1) to an insulating phase, no matter whether the corre-

lation length in the disorder potential is zero or not. While
the location of the transition appears to be robust, the critical
exponent ν of the transition extracted from the finite-size
scaling analysis of the OEE data (ν ≈ 0.6 at f = 1/2 and ν ≈
0.5 at f = 1) violates the expected Harris-Chayes inequal-
ity ν � 2/d for d-dimensional disordered systems [74,75].
Such violation was also observed in fermionic FQH sys-
tems [27,28] and many-body localization transitions [76,77].
Our results may motivate further studies of the critical expo-
nent of disorder-driven phase transitions in FQH systems by
more powerful numerical techniques and experiments.

The fate of the f = 1 bosonic MR state in the presence of
disorder looks different from that of the f = 5/2 fermionic
MR or anti-MR state. At least for the interactions and the
range of the disorder correlation length considered by us
(ξ/�B = 0.5–2), we observe a direct transition to an insulating
phase for the former, while for the latter the system might
first enter an intermediate FQH phase before finally becoming
a composite-fermion liquid [29]. The suspected intermediate
phase in the fermionic case was argued to be a PH sym-
metric phase described by either the fermionic-MR–anti-MR
puddle structure [29,40,41,52] or a PH symmetric wave func-
tion [14,37,53,54]. Since the usual PH transformation is only
well defined for fermions, it is indeed impossible for bosons to
form a PH symmetric intermediate phase induced by disorder.
Therefore our results do not contradict with the existence
of a PH symmetric intermediate phase of f = 5/2 fermions.
In Ref. [78], a generalized PH transformation is defined for
bosons, by which one can construct a bosonic anti-MR state
at f = 1. However, unlike in the fermionic case where the MR
and anti-MR states have the same energies for PH symmetric
Hamiltonians, this bosonic anti-MR state could have a much
higher energy than the bosonic MR state. Indeed, the absence
of an intermediate phase in our numerical results seems to
suggest that the bosonic anti-MR state is not energetically
favored by the Hamiltonian we use.

A future direction following our work could be ex-
ploring the disorder effect on dipolar interacting bosons,
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FIG. 8. The sample-averaged orbital-cut entanglement entropy 〈So(ρ̄)〉, entropy derivative 〈dSo(ρ̄)/dW 〉, and fidelity susceptibility 〈χ (W )〉
for even N = 6–12 contact-interacting bosons at f = 1. Disorder is modeled by the Gaussian correlated random potential with ξ = 0 [(a)–(c)],
ξ = 0.5�B [(d)–(f)], and ξ = �B [(g)–(i)]. We average 10 000 samples for N = 6 and 8, 2000 samples for N = 10, and 500 samples for N = 12.
Markers in (a)–(i) with the same color refer to the same system size.

for which the FQH states compete with stripe and bubble
phases [57,58]. Alternatively, one can also consider disorder-
driven phase transitions when the MR state competes with
the composite-fermion liquid for bosons [79]. It would be
interesting to check whether an intermediate phase can appear
in these cases. Another future direction could be to study the
disorder-driven phase transitions for bosonic FQH states in
optical lattice setups, i.e., the bosonic fractional Chern insu-
lators [80–82]. In that case, the notable differences between a
Chern band and the LLL, such as the multiband structure and
high Chern number, may host new interesting phenomena.
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APPENDIX: f = 1 WITH THE CONTACT INTERACTION

Here, we study the disorder-driven phase transitions for
contact-interacting bosons at f = 1. In Fig. 8, we present

the orbital-cut entanglement entropy, the entropy derivative,
and the fidelity susceptibility for different correlation lengths
of disorder. Compared with Figs. 5–7, the results with the
contact interaction are qualitatively similar to the Coulomb-
interacting case. Overall, there is no sign of an intermediate
FQH phase. However, the data in Fig. 8 are much messier than
those in Figs. 5–7. As we argue in the main text, this is due
to the strong finite-size effect of the energy gap in small clean
systems of N = 6, 8, 10, 12. For these system sizes, once we
turn on disorder, the critical strength of disorder required to
destroy the MR state strongly fluctuates with the system size.
Even with the largest two systems, N = 10 and N = 12, we
find it difficult to make a reliable scaling analysis for the
entanglement entropy and its derivative to extract Wc and ν.
Moreover, with increasing system size, the peak position of
the fidelity susceptibility changes a lot, and the peak height
does not monotonically grow, making it difficult to estimate
Wc. All these results suggest that much larger system sizes
are needed to study the disorder-driven phase transitions for
contact-interacting bosons at f = 1. Alternatively, one can
choose the Coulomb interaction to suppress the finite-size
effect, as done in the main text.
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Phys. Rev. B 82, 075302 (2010).
[16] A. C. Archer and J. K. Jain, Phys. Rev. Lett. 110, 246801

(2013).
[17] S. Geraedts, M. P. Zaletel, Z. Papić, and R. S. K. Mong, Phys.
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