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Effect of paramagnon drag on thermoelectric transport properties: Linear response theory
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Paramagnetic materials exhibit a unique thermoelectric effect near the ferromagnetic transition point due to
spin fluctuations. This phenomenon is referred to as paramagnon drag. In this study, we calculate the contribution
of this paramagnon drag to the Seebeck coefficient microscopically based on the linear response theory. Conse-
quently, we obtain a general formula for the contribution to the Seebeck coefficient due to the paramagnon drag
and then clarify the conditions in which the Seebeck coefficient is enhanced near the ferromagnetic transition
point for a single-band and isotropic system. Moreover, we calculate the Seebeck coefficients for a mixture of
free-electron-like and flat bands.
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I. INTRODUCTION

Thermoelectric phenomena have attracted significant
attention in recent years as an innovative technology that can
extract energy from waste heat [1,2]. The Seebeck effect is a
thermoelectric effect that produces a voltage difference �V
from a temperature difference �T . The Seebeck coefficient
S is defined as S = −�V/�T . Recently, attempts have been
made to achieve high thermoelectric efficiency using mag-
netism [3–7]. From a theoretical perspective, the semiclassical
Boltzmann transport theory is commonly used as a valid an-
alytical method. However, in this method, it is difficult to
include the effect of mutual interaction between electrons.

For microscopic analysis, the linear response to an ex-
ternal field applied to a thermal equilibrium state can be
addressed using the Kubo formula [8]. After its establishment,
the formulation of the linear response theory based on the
thermal Green’s function [9] was a major breakthrough in the
theoretical description of transport phenomena. In terms of
thermoelectric phenomena, the Kubo formula was applied to
calculate the thermal transport coefficients [10].

The effect of spin fluctuations on the thermoelectric effect
in ferromagnets has been extensively studied both theoreti-
cally and experimentally [11–15]. In ferromagnets, spin waves
“drag” electrons and cause a unique thermoelectric effect.
The spin waves are quantized and described by quasiparticles,
known as magnons; thus, this effect is called “magnon drag.”
In magnon drag theory, the electron-magnon interaction is
treated perturbatively, and the heat flow is described by cal-
culating Green’s function. A diagrammatic representation of
the magnon drag has also been clarified [12,13]. Originally,
the drag effect of the elementary excitation was proposed
in the phonon case, which is called phonon drag [16,17].

However, in the paramagnetic state, that is, above the
magnetic transition temperature, some materials have been
reported to exhibit a unique thermoelectric effect due to spin
fluctuation. Fe2V0.9Cr0.1Al0.9Si0.1 is one of such materials,

whose absolute value of the Seebeck coefficient decreases
when a magnetic field is applied [3]. The origin has been
proposed to be the suppression of the spin fluctuations in the
magnetic field. Furthermore, in materials such as RCo2 (R =
Sc, Y, Lu) and AFe4Sb12 (A = Ca, Sr, Ba), a peculiar tempera-
ture dependence of the Seebeck coefficient has been observed,
which is believed to be due to spin fluctuations [18–22].
The Seebeck effect due to spin fluctuation has been studied
theoretically by Boltzmann theory, which introduces Kondo
s-d coupling [23]. In this study, the qualitative behavior of the
Seebeck coefficient at low temperatures was investigated.

In the present paper, we discuss the Seebeck coefficient of
the Hubbard model near the ferromagnetic transition point
based on linear response theory. We identify the dominant
perturbation terms and heat flows and calculate the quanti-
tative dependence of the Seebeck coefficient on the energy
dispersion of electrons. The Seebeck coefficient near the
transition point is obtained quantitatively by considering the
contribution of the Feynman diagrams corresponding to the
paramagnon drag effect, referring to the diagrammatic repre-
sentation of magnon drag. This results in a general expression
for the correlation function due to the drag effect, assuming
that the relaxation rate � is small and constant. Because the
theory is microscopic and rigorous, it applies to behavior at
high temperatures. We apply this method to obtain transport
coefficients in an isotropic system. In addition, we derive the
conditions under which the Seebeck coefficient is enhanced
by the paramagnon drag effect and then show that the en-
hancement occurs in a mixture of free-electron-like and flat
bands.

II. PARAMAGNON DRAG CONTRIBUTION
TO TRANSPORT COEFFICIENTS

To study the transport phenomena near the phase transition
point from a paramagnetic state to a ferromagnetic state, we
consider the ring approximation for the Hubbard interaction
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FIG. 1. (a) Feynman diagram of the ring approximation between
up spin and down spin in the Hubbard model. For each loop, we take
the sum of the Matsubara frequency and wave number. (b) Feyn-
man diagrams of the first order of U (q, ω). These contributions are
small (see Appendix A). (c) Feynman diagrams for paramagnon drag
effects.

U0. A diagram of this approximation is presented in Fig. 1(a).
The obtained effective interaction is related to Stoner’s the-
ory of ferromagnetism, and its divergence corresponds to the
transition to ferromagnetism. The effective interactions can be
written as:

U↑↓(q, ω) = U0

1 − (U0χ (q, ω))2 , (1)

U↑↑(q, ω) = U↓↓(q, ω) = U 2
0 χ (q, ω)

1 − (U0χ (q, ω))2 , (2)

where χ (q, ω) denotes the dynamic susceptibility.
U0χ (0, 0) = 1 is Stoner’s criterion for the transition point.
Because U0χ � 1 is near the ferromagnetic transition point,
we assume that U↑↓ and U↑↑ are equal for simplicity.

For further discussion, we considered two assumptions.
First, the system is isotropic, and then εk depends only on
k = |k|. Second, εk is a monotonic function of k. Therefore,
there is at most a single k that satisfies εk = εF . By performing
a Taylor expansion of χ (q, ω) around q = 0 and ω = 0 under
these assumptions, U = U↑↓ = U↑↑ can be parameterized as

U R,A(q, ω) = U0

η + Aq̃2 ∓ iCω̃/q̃
, (3)

where q̃ = q/kF , ω̃ = ω/εF [24], and the superscript R(A)
represents the retarded (advanced) interaction that will be later
used. In this parametrization, we assume that q̃, ω̃/q̃ � 1.
As η → +0, U (0, 0) approaches infinity, which corresponds
to a ferromagnetic transition. Simply, η represents the dis-
tance from the critical point. Because we assume that the

system is isotropic, the Taylor expansion |k − q| � k −
q cos θ + q2 sin2 θ/2k for small q can be used to generate
Eq. (3). Using self-consistent renormalization theory, we can
determine the parameters A and C in a self-consistent man-
ner [25]. However, the specific values of these parameters are
not important in the following discussion.

In this paper, we focus on the Seebeck coefficient S =
L12/T L11, where Li j is the thermoelectric linear-response co-
efficient

J1 = L11E + L12

(
−∇T

T

)
. (4)

Here J1, E, and ∇T are the electric current density, electric
field, and temperature gradient, respectively. The Kubo for-
mula can be used to obtain Li j . The correlation function is
defined by

	i j
μν (q, iωλ) = 1

V

∫ β

0
dτ

〈
Ĵ i

H,q,μ(τ )Ĵ j
H,−q,ν (0)

〉
eiωλτ , (5)

where V and iωλ are the volumes of the system and the
Matsubara frequency, respectively. The subscript H of Ĵ rep-
resents the Heisenberg representation, and μ, ν represents
the direction x and y. With the analytic prolongation of the
Matsubsra frequency to the real frequency as iωλ → h̄ω + iδ,
Li j can be calculated as

Li j = lim
ω→0

	
i j
xx(0, h̄ω) − 	

i j
xx(0, 0)

i(ω + iδ)
. (6)

For the Hubbard model with energy dispersion εk, the
electric current density operator becomes

Ĵ1
q=0,x =

∑
k,σ

evk,xc†
kσ

ckσ , (7)

where vk,x = ∂εk/h̄∂kx, and e < 0. The heat current-density
operator is Ĵ2

q=0,x = Ĵ2,kin
q=0,x + Ĵ2,e−e

q=0,x , where [26–28]

Ĵ2,kin
q=0,x =

∑
k,σ

(εk − μ)vk,xc†
kσ

ckσ , (8)

Ĵ2,e−e
q=0,x = 1

V

∑
k,k′,q′,αβ

U0vk,xc†

k+ q′
2 ,α

c†
k′−q′,βck′,βck− q′

2 ,α
. (9)

Here Ĵ2,kin
q=0,x is due to the kinetic energy of electrons, and Ĵ2,e−e

q=0,x
is due to the electron-electron interactions.

As discussed in Ref. [28], without the heat current of a
long-range Coulomb interaction, a heat current of phonons,
and a part of the heat currents occurring from the electron-
phonon interaction, the following can be obtained:

L11 =
∫

dε (− f ′(ε))σ (ε, T ), (10)

L12 = 1

e

∫
dε (− f ′(ε))(ε − μ)σ (ε, T ), (11)

where σ (ε, T ) is the spectral conductivity, and here it is re-
ferred to as the Sommerfeld-Bethe relation. Note that for the
Hubbard model, we have Ĵ2,e−e

q=0,x , but the Sommerfeld-Bethe
relation holds [27].

To discuss the essence of the paramagnon drag effect,
we consider the Feynman diagrams shown in Fig. 1(b)
(Maki-Thompson type) and Fig. 1(c) (Aslamazov-Larkin
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type). First, we show that the contribution of the first order
of U (q, ω) in Fig. 1(b) is smaller than that of the second order
shown in Fig. 1(c) in q̃, ω̃ � 1, as shown in Appendix A.
Therefore we consider that the main contribution of the para-

magnon drag effect originates from the diagram in Fig. 1(c).
In particular, in certain situations, it has been shown to rep-
resent the effects of spin fluctuations [29,30]. Therefore the
contributions of the diagram in Fig. 1(c) are as follows.

	
i j
drag(iωλ) = 4(kBT )3

V 3

∑
k1,k2,q

∑
l,m,n

G(k1, iεm−)G(k1, iεm)G(k2, iεn−)G(k1 − q, iεm − iωl )G(k2 − q, iεn − iωl )

× U (q, iωl−)U (q, iωl )J
i
x(k1)

(
G(k2, iεn)J j

x (k2) + G(k2 − q, iεn− − iωl )J
j

x (k2 − q)
)
, (12)

where factor 4 is derived from spin summations [see Fig. 1(c)], εm = (2m + 1)πkBT and εn = (2n + 1)πkBT are fermion
Matsubara frequencies, ωl = 2lπkBT is a boson Matsubara frequency, and εm− = εm − ωλ. We assume that the electron thermal
Green’s function satisfies G(k, iεn) = (iεn − εk + μ + i�sign(εn) − �)−1, where � is the relaxation rate of the electrons due to
impurity scattering, and � is the self-energy due to the spin fluctuation. In this study, we consider � and neglect � for simplicity.
The effects of the real and imaginary parts of � will be discussed qualitatively in Section IV. Note that we have used Ĵ2,kin

q=0,x as

the heat current operator; thus Ĵ2
x (k) = (εk − μ)vkx and Ĵ1

x (k) = evkx. In Eq. (12), we reveal that the main contribution in the
summation of ωl is derived from the region of 0 < ωl < ωλ, where U (q, iωl−)U (q, iωl ) becomes U AU R and the derivative
of Bose distribution function N ′(ε) appears. We consider the summation of l, m, n and assume the analytic continuation
iωλ → h̄ω + iδ. In the summation of m and n, the terms GRGRGR and GAGAGA can be neglected for �/εF � 1. Here GR and GA

are the retarded and advanced Green’s functions, respectively. In addition, we use the relation GR(k, ε)GA(k, ε) � πδ(ε − εk)/�,
and GR(k, ε) − GA(k, ε) � −2π iδ(ε − εk) for �/εF � 1. Using these approximations, we obtain the following equation:

	
i j
drag(h̄ω + iδ) = −2π ih̄ω

�2V 3

∑
k1,k2,q

N ′(�ε1)( f (εk1 ) − f (εk1−q))( f (εk2 ) − f (εk2−q))

× U R(q,�ε1)U A(q,�ε1)Ji
x(k1)

(
J j

x (k2) − J j
x (k2 − q)

)
δ(�ε1 − �ε2) + O(ω2), (13)

where N (x) is the Bose distribution function (eβx − 1)−1, and �εi = εki − εki−q. It seems that the expression in Eq. (13) diverges
when �ε1 → 0 because |N ′(x → 0)| → ∞. However, as ( f (εk1 ) − f (εk1−q))( f (εk2 ) − f (εk2−q)) → 0 when �ε1 = �ε2 → 0,
the divergence is merely a cosmetic singularity.

U R and U A become large, where |q| � kF and |�ε1| � εF , kBT . Therefore we consider the Laurent expansion around q = 0
and �ε1 = 0. With this expansion, we obtain N ′(�ε1) � −kBT/(�ε1)2. Using these expansions and integrating with respect to
k1 and k2, the following can be obtained:

L11
drag � 1

V

∑
q

e2U 2
0 εF q̃2

x

16π2h̄q̃�2

kBT

C(η + Aq̃2)

∫
dk2 k2(− f ′(εk2 ))

∫
dk1 k1(− f ′(εk1 )), (14)

L12
drag � 1

V

∑
q

eU 2
0 εF q̃2

x

16π2h̄q̃�2

kBT

C(η + Aq̃2)

∫
dk2 k2(− f ′(εk2 ))

∫
dk1 k1(εk1 − μ)(− f ′(εk1 )). (15)

The derivation of these results is presented in Appendix B. We
can observe that Eqs. (14) and (15) satisfy the Sommerfeld-
Bethe relation.

Note that for L12, there are other contributions due to
Ĵ2,e−e

q=0,x . The lowest-order Feynman diagram using Ĵ2,e−e
q=0,x , cor-

responding to the paramagnon drag effect, is shown in Fig. 2.

FIG. 2. The lowest-order Feynman diagram between J1 = Ĵ1
q=0,x

and J2,e−e = Ĵ2,e−e
q=0,x , which corresponds to the paramagnon drag ef-

fect. This contribution can be neglected, as shown in Appendix C.

However, we find that the contribution of this Feynman
diagram is significantly small compared with the contribu-
tions of Fig. 1(c) under the approximations of �/εF � 1
and �ε/εF � 1 (see Appendix C). Thus Eq. (15) with only
Ĵ2,kin

q=0,x satisfies the Sommerfeld-Bethe relation. Some approx-
imations have been utilized in the derivation of Eqs. (14)
and (15). We can confirm that these approximations are valid
for the case with η � 1 by computing the direct integration of
Eq. (13) by Monte Carlo integration with the replacement of
δ(x) � �/π (x2 + �2) (� � 1).

III. SEEBECK COEFFICIENT

The Seebeck coefficient becomes

S = 1

T

L12
free + L12

drag

L11
free + L11

drag

, (16)
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where L11
free and L12

free are the contributions in the order of (U0)0,

L11
free = h̄

�

1

V

∑
k

e2v2
k,x(− f ′(εk)), (17)

L12
free = h̄

�

1

V

∑
k

ev2
k,x(εk − μ)(− f ′(εk)). (18)

As η approaches zero, that is, as the system approaches
the ferromagnetic transition point, or as the temperature ap-
proaches the Curie temperature (Tc), we expect that Li j

drag

dominates Li j
free. In this case, S can be expressed approximately

as

Sdrag = L12
drag

T L11
drag

� 1

eT

∫
dk k(εk − μ)(− f ′(εk ))∫

dk k(− f ′(εk ))
. (19)

However, as η increases, Li j
drag becomes smaller than Li j

free
and the Seebeck coefficient approaches

Sfree = L12
free

T L11
free

= 1

eT

∫
dk k2

(
∂εk
∂k

)2
(εk − μ)(− f ′(εk ))∫

dk k2
(

∂εk
∂k

)2
(− f ′(εk ))

. (20)

Therefore the Seebeck coefficient gradually changes from
Sfree to Sdrag as T → Tc.

A. The condition for |Sdrag| > |Sfree|
We can observe that the values of Sdrag and Sfree depend

only on the functional form of εk . It is difficult to determine
the exact condition for |Sdrag| > |Sfree| because they include
integrals. However, when kBT/μ � 1, the condition can be
achieved in a simple form using the Sommerfeld expansion.

We assume that εk is an increasing function of k, and kF is
in the Brillouin zone. Thus the Seebeck coefficients become

Sfree � −π2k2
BT

3|e|
2ε′(kF ) + kF ε′′(kF )

kF (ε′(kF ))2
, (21)

Sdrag � −π2k2
BT

3|e|
ε′(kF ) − kF ε′′(kF )

kF (ε′(kF ))2
. (22)

Here we used the Sommerfeld expansion after changing the
wave-number integral to the energy integral as k = k(ε). For
example, in the case of εk ∝ k2 (free electron), Sdrag/Sfree � 0.
Because we assume that ε′(kF ) > 0, |Sdrag| > |Sfree| holds
only when kF ε′(kF ) < −ε′(kF )/2. Thus the dispersion rela-
tion should be upwardly convex.

B. A model with a flat band and free-electron band

As an example, we study a two-band model that realizes
ε′′(kF ) < 0. The kinetic energy part of the Hamiltonian is
expressed by:

H =
(

h̄2k2/2m V
V ∗ E0

)
, (23)

where E0(> 0) is the energy of the flat band, and V represents
the mixing term between the dispersive electron band and the
flat band. The eigenenergies of this Hamiltonian are

E± = 1
2 (K2 + E0 ±

√
(E0 − K2)2 + 4|V |2), (24)

FIG. 3. Energy dispersion E− in comparison with that of the
free-electron band.

where K2 = h̄2k2/2m. For simplicity, assume that the chemi-
cal potential satisfies 0 < μ < E0 and consider only the band
corresponding to E−. This model can be used as an effective
model for the present work because the shape of the band,
similar to the flat band, increases the density of states and
facilitates the ferromagnetic transition.

On the basis of this model, we calculate the Seebeck coef-
ficient Sdrag due to the paramagnon drag effect induced by the
Hubbard interaction. We numerically perform the integration
of Eqs. (14) and (15) and evaluate Sdrag = L12

drag/T L11
drag in the

parameter set of E0 = 1.0 eV, V = 0.5 eV, and h̄2/2ma2 =
1.0 eV, where a is the lattice constant. With these parameters,
the energy dispersion E− is shown in Fig. 3, and the Seebeck
coefficients obtained are shown in Fig. 4. Figure 4(a) shows
the temperature dependence of Sdrag and Sfree for kF a = 0.93.
At low temperatures, the Seebeck coefficients are proportional
to the temperature, and Sfree � Sdrag is satisfied because we
chose kF that satisfies ε′(kF ) + 2kF ε′(kF ) � 0. At high tem-
peratures, it can be observed that Sdrag is larger than Sfree at
high temperatures. This is because the effect of the energy dis-
persion away from the Fermi surface starts to contribute. Note
that because the actual Seebeck coefficient S can be expressed
as in Eq. (16), therefore Sdrag < S < Sfree or Sfree < S < Sdrag.
It is considered that S � Sdrag near the Curie temperature.
Figure 4(b) shows the dependence of Sdrag and Sfree on the
Fermi wave number; −Sdrag becomes larger than −Sfree in
the region of kF a > 0.93, where the energy dispersion E− is
convex upward. In this region, −S is expected to increase as
the temperature approaches Tc because −Sdrag > −S > −Sfree

is satisfied and S approaches Sdrag as T → Tc. The sign change
of the Seebeck coefficient at large kF is caused by considering
only a single band and restricting the integration only in the
Brillouin zone.

IV. DISCUSSION AND CONCLUSION

Finally, we discuss the additional contribution to the See-
beck effect from self-energy due to the spin-fluctuation �.
First, Im �(0) does not affect Sdrag because of the cancella-
tion similar to the cancellation of the constant � in L12/L11.
Second, when we consider the ω dependence of Im � and
the Sommerfeld-Bethe relation, an additional contribution
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FIG. 4. (a) Temperature dependence of the Seebeck coefficient
of E− band due to the drag effect (Sdrag) and one at U = 0 (Sfree )
with kF a = 0.93. At this kF , Sdrag � Sfree at low temperatures; (b) kF

dependence at T = 100 K.

proportional to d log(Im �)/dω will appear in the Seebeck
coefficient. However, it was shown that Im � is an even
function of ω near the Fermi energy [31,32], and thus we
can approximate the self-energy as −Im � � �0 + aω2. In
this case, the amplitude of d log(Im �)/dω is expected to

be smaller than that in Eq. (19). As for the real part of the
self-energy, the change as a function of k around k = kF is
found to be sufficiently slow [31]. Therefore the shape of the
band dispersion cannot change significantly, and the real part
of the self-energy simply renormalizes the effective mass and
chemical potential.

These arguments are qualitative, and we need a quantitative
discussion to obtain more precise results for the self-energy
due to the spin fluctuation. This can be achieved by con-
sidering Feynman’s diagrams we neglected in this study and
by examining the details of the self-energy for more specific
models. However, it is beyond our approximation, and this
remains a future problem.

In conclusion, we investigated the behavior of the Seebeck
coefficient near the ferromagnetic transition temperature in
the Hubbard model, considering the paramagnon drag effects.
In particular, for an isotropic system, Sdrag was calculated
using Eqs. (14) and (15). We found the condition of εk , where
the contribution of the paramagnon drag is large. In addition,
as a model for a large Seebeck coefficient near Tc, we per-
formed specific calculations for a mixture of free-electron-like
and flat bands. We showed that the paramagnon drag effect
can enhance the Seebeck coefficient near the ferromagnetic
transition temperature. The present method provides a basis
for the prediction of materials with large paramagnon drag
contributions.

ACKNOWLEDGMENTS

We are grateful to T. Mori and N. Tsujii for fruitful
discussions. This work was supported by Grants-in-Aid for
Scientific Research from the Japan Society for the Promo-
tion of Science (No. JP20K03802, No. JP18H01162, and No.
JP18K03482), and the JST-Mirai Program Grant Number JP-
MJMI19A1, Japan. J.E. was supported by the Japan Society
for the Promotion of Science through the Program for Leading
Graduate Schools (MERIT).

APPENDIX A: THE FIRST ORDER OF U

The contribution of the first order of U (q, ω) shown in Fig. 1(b) is

	i j,(1)
xx (iωλ) = 2(kBT )2

V 2

∑
l,n

∑
k,q

G(k, iεn−)G(k, iεn)Ji
x(k)

{
G(k − q, iεn− − iωl )G(k − q, iεn − iωl )J

j
x (k − q)

+ (G(k, iεn)G(k − q, iεn − iωl ) + G(k, iεn−)G(k − q, iεn− − iωl ))J
j

x (k)
}
U (q, iωl ). (A1)

Considering the summation of the Matsubara frequencies and assuming �ε = εk − εk−q � εF , we obtain

	i j,(1)
xx (h̄ω + iδ) = h̄ω

2�2
N ′(�ε)( f (εk) − f (εk−q))(U R(q,�ε) − U A(q,�ε))Ji

x(k)(J j
x (k) − J j

x (k − q)). (A2)

We used the same approximation as in the text; that is, GRGRGRGR and GAGAGAGA were neglected, and −ωλ < ωl < ωλ was
assumed. When we calculate Eq. (A2) in the region of |q| � kF , we find that it is proportional to q̃3, which is in the higher order
than Eq. (13). Therefore, this contribution is smaller than that shown in Fig. 1(c).

APPENDIX B: THE DERIVATION OF EQS. (14) AND (15)

First, assuming that �ε1 = �ε2 � εF , Eq. (13) divided by iω becomes

2π h̄kBT

�2V 3

∑
k1,k2,q

f ′(εk1 ) f ′(εk2 )
U 2

0

(η + Aq̃2)2 + (Cε̃k1/q̃)2
× Ji

x(k1)
(
J j

x (k2) − J j
x (k2 − q)

)
δ(�ε1 − �ε2), (B1)

045101-5



ENDO, MATSUURA, AND OGATA PHYSICAL REVIEW B 105, 045101 (2022)

L12
drag can be calculated in the same manner. In an isotropic system,

�εi �
(

q cos θi − q2

2ki

)
ε′(ki ), (B2)

J1
x (k1) � cos θ1 cos α + sin θ1 sin ϕ1 sin α

h̄
eε′(k1), (B3)

J1
x (k2) − J1

x (k2 − q) � q cos α

h̄k2
eε′(k2), (B4)

where θi is the angle between ki and q, and α is the angle between the q and the x directions. After the integral of θ1, θ2, ϕ1, and
ϕ2, we obtain

L11
drag � kBT

(2π )3h̄�2V

∑
q

cos2 α

∫
dk2 k2(− f ′(ε(k2)))

×
∫

dk1 k2
1ε

′(k1)
1

η + Aq̃2

q̃

Ck1ε̃′(k1)
Arctan

((
1 − q̃/2k̃1

)
Cq̃ε̃′(k1)

η + Aq̃2

)
(− f ′(ε(k1))). (B5)

By approximating Arctan(x) as a constant, π/2, we obtain Eq. (14).

APPENDIX C: THE CONTRIBUTION OF J2,e−e
q=0,x

To certify that the contribution of J2,kin
q=0,x is dominant, our calculations are presented in Fig. 2. Writing down the diagram in

the form of thermal Green’s functions, we obtain

	12
e−e(iωλ) = 8(kBT )4

V 4

∑
k1,k2,k

′,q

∑
l,m1,m2,n

G(k1, iεm1−)G(k2, iεm2 )G(k′, iεn−)G(k′, iεn)

× G(k1 − q, iεm1 − iωl )G(k2 − q, iεm2 − iωl )G(k′ − q, iεn − iωl )U (q, iωl−)U (q, iωl )J
1
x (k′)J2,e−e

x

(
k1 − q

2

)
.

(C1)

Using the same approximations used in the derivation of Eq. (13), we obtain

	12
e−e(h̄ω + iδ) = 4π2ih̄ω

�V 4

∑
k1,k2,k

′,q

N ′(�ε′)( f (εk1 ) − f (εk1−q))( f (εk2 ) − f (εk2−q))
(

f (εk′ ) − f (εk′−q)
)

× δ(�ε1 − �ε′)δ(�ε2 − �ε′)U R(q,�ε′)U A(q,�ε′)J1
x (k′)J2,e−e

x

(
k1 − q

2

)
+ O(ω2). (C2)

In the limit of �ε1 = �ε2 = �ε′ → 0, this term disappears, whereas Eq. (13) approaches a constant. Therefore we can conclude
that the contributions from Fig. 2 are smaller than those in Fig. 1(c).
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