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There were errors in Eqs. (A6) and (A7) of the published version of the paper. These should be corrected to
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These two errors affect the BCS+ZS′ loop results involving the tensor disorder vertices only, thus changing the corresponding
contributions to the RG flow equations in the main text. However, they do not affect our main results and conclusions, which
remain that: (1) tensor disorder flows to strong coupling more slowly than time-reversal symmetry preserving disorder, and thus
does not affect the fixed point structure; (2) this conclusion remains robust in the presence of unequal band masses. Corrections
to the main text are listed below:

(1) Equations (21)–(23), and the lines following them had errors. These should be corrected as follows:
Adding these together, we get
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where we have used Eq. (A7). This corrects both the scalar and the vector disorder terms by δλ0 = 6 λ2
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where we have used Eq. (A7). This corrects the tensor disorder term by δλ2 = 3
5 λ0 λ2 l .
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where we have used Eq. (A7). This corrects the tensor disorder term by δλ2 = 34
5 λ1 λ2 l .

2469-9950/2022/105(3)/039901(5) 039901-1 ©2022 American Physical Society

https://orcid.org/0000-0001-6981-5329
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.039901&domain=pdf&date_stamp=2022-01-04
https://doi.org/10.1103/PhysRevB.105.039901


ERRATA PHYSICAL REVIEW B 105, 039901(E) (2022)

(2) There was a small typo in the cells corresponding to the (λ0 λ1) and (λ1 λ0) entries in Table I – the entries were
interchanged. Hence, Table I should be corrected to

TABLE I. Contributions to the β-functions from the VC diagrams without the k2

2m′ term. Here, λα = 2 m2 Wα

π2 , u = m e2

8 π2 c
, and l is the RG flow

parameter. Terms not involving W2 are taken from Ref. [8].

Coupling λ0 λ1 λ2 u

λ0 δλ0 = λ2
0 l δλ0 = N λ0 λ1 l δλ0 = N (N−1)λ0 λ2 l

2 0

λ1 δλ1 = − (N−2)λ0 λ1 l
N δλ1 = (N−2)2 λ2

1 l

N δλ1 = − (N−1)(N−2)(N−4)λ1 λ2 l
2N δλ1 = 2(N−1)λ1 u l

N

λ2 δλ2 = (N−4)λ0 λ2 l
N δλ2 = (N−4)2λ1 λ2 l

N δλ2 = (N−4)(N2−9N+16)λ2
2 l

2N dλ2 = 4 λ2 u l
N

u δu = λ0 u l δu = N λ1 u l δu = N (N−1)λ2 u l
2 0

(3) Due to the changes in the results for the BCS+ZS′ diagrams, Table II should be corrected to

TABLE II. Sum of the contributions to the β functions from the BCS and ZS′ diagrams without the k2

2m′ term, using the same conventions
as Table I.

Coupling λ0 λ1 λ2 u

λ0 δλ1 = 1
N λ2

0l δλ0 = 2λ0λ1l δλ2 = 3
10 λ0λ2l 0

λ1 Included in the (λ0, λ1) cell δλ1 = 3N−2
N λ2

1l δλ2 = 34
5 λ1λ2l 0

λ2 Included in the (λ0, λ2) cell Included in the (λ1, λ2) cell δλ0 = 6λ2
2l , 0

δλ1 = 34
5 λ2

2l

u 0 0 0 0

(4) Due to the above changes, Eqs. (24)–(26) should be corrected to
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(5) Due to the changes in Table II, Eqs. (30)–(32) should be corrected to
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(6) The three paragraphs below Eq. (33) should be replaced by:
Let us examine these equations. Just as in Ref. [8], the flow dλ1

dl for λ1 continues to be strictly positive, for a positive initial
value of λ1, and as a result, λ1 grows under RG for ranges encompassing small values of the coupling constants. Next, note that
λ2 = 0 is a fixed point - if the action has time-reversal symmetry, the RG flow does not break it. Thus, the flow from Ref. [8]
is contained in the λ2 = 0 subspace of the above equations. Moreover, if λ1, λ2, and u start out from zero values, these are
driven to positive values by a positive λ1, as long as the flowing coupling constants remain small enough to justify a perturbative
treatment. We may, therefore, restrict our attention to regions of non-negative λ0, λ1, λ2, and u. Eventually, however, λ1 must
undergo a runaway flow to strong disorder, when the RG framework will break down. Consequently, there is no new fixed point
at finite disorder emerging as a result of introducing λ2, and the result, as in Ref. [8], is a runaway flow to strong disorder.
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(7) Due to the above changes, Eqs. (34) and (35) should be corrected to
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(8) Due to the above changes, Eqs. (37)–(40) should be corrected to
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ũ

]
+ λ̃2

0

N
+ 34λ̃2

2

5
, (40)

and we have set ε
λ1

to zero.
(9) The phrase “for any integer Nf � 1” before Eq. (41) needs to be updated to “for any value of Nf .” Hence, we show here

the updated paragraph until Eq. (44), which contains the results for generic Nf . Note that 4 + √
29 = 9.385 16, and only the

(1,3) element of the matrix M for the F1 case has been rewritten in terms of generic Nf rather than for Nf = 2. Also, we have
expressed the results now in terms of fractions and square roots, rather than their decimal equivalents:

What about nonzero λ2? We have verified that there is no new fixed point at nonzero λ2 for any value of Nf , i.e., the only
fixed points are in the λ2 = 0 subspace, given by
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√

29, 0, 0), F2 = (0, 0, 0), (41)
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∗
2, ũ∗). The linearized flow equations in the vicinity of a fixed point are given by
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The eigenvalues of M for these two fixed points are given by(
−
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√
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)
355

,
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, −19
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)
and

(
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,
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respectively.
(10) There was a minor typographical error below Eq. (47). The phrase “it becomes irrelevant” should be corrected to “the

k2

2 m′ term becomes irrelevant.”
(11) Table V should be corrected to
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TABLE V. Sum of contributions to the β functions from the BCS and ZS′ diagrams with the k2

2 m′ term, using the same conventions as
Table IV.

Coupling λ0 λ1 λ2 u

λ0 δλ1 = 1
N μ λ2

0 l δλ0 = 2 μ λ0 λ1 l δλ2 = 3
5 μ λ0 λ2 l 0

λ1 Included in (λ0, λ1) cell δλ1 = 3N−2
N μ λ2

1 l δλ2 = 34
5 μλ1 λ2 l 0

λ2 Included in (λ0, λ2) cell Included in (λ1, λ2) cell δλ0 = 6 μ λ2
2 l ,

δλ1 = 34
5 μ λ2

2 l 0

u 0 0 0 0

(12) Due to the changes in Table V, Eqs. (61)–(63) should be corrected to

dλ0

dl
=

[
ε + 2

(
1 + r2

m

)
μλ0 + {

2 + N
(
2 + r2

m

)}
μλ1 + N (N − 1)

(
2 + r2

m

)
μλ2

2
− 4(4 + 15Nf )u

15

]
λ0 + 6μλ2

2, (61)

dλ1

dl
=

[
ε +

(
2 + Nr2

m

)
μλ0

N
+

{
N

(
2 + r2

m

) + 2

N
− 1

}
μλ1 + (N − 1)

(
N2r2

m + 6N − 8
)
μλ2

2N
+

(
14

15
− 2

N

)
u

]
λ1

+μλ2
0

N
+ 34μλ2

2

5
, (62)

dλ2

dl
=

[
ε +

(
r2

m − 4

N
+ 13

5

)
μλ0 +

{
N

(
2 + r2

m

) + 16

N
− 6

5

}
μλ1 + 52 + N (N − 1)r2

m + 2 N (N − 7) − 64
N

2
μλ2

+
(

4

N
− 16

15

)
u
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(13) Due to the above changes, Eqs. (66) and (67) should be corrected to
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(14) Due to the above changes, Eqs. (70)–(74) should be corrected to
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(
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N
+

{
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N
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}
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N
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and we have set ε
λ1

to zero.
(15) The phrase “For any integer Nf � 1” before Eq. (75) has been updated to “For any Nf .” In Eq. (75), we have also

changed the decimal representation to one in terms of square root:
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For any Nf , we obtain the following non-negative fixed points,

F1 = (4 +
√

29, 0, 0, 0), F2 = (0, 0, , 0), (75)

corresponding to (λ̃∗
0, λ̃

∗
2, ũ∗, r∗

m).
(16) In another minor correction of phrasing the RG flow technique, the phrase ‘We will employ the momentum-shell RG

and take �UV/�IR = e−l ” in the second sentence in the paragraph containing Eq. (8), should be updated such that the full
sentence reads:

We will employ the momentum-shell RG, and consider the RG flow generated by changing �UV/�IR as e−l , where �UV (�IR)
is the UV (IR) cut-off for the energy/momentum integrals and l is the RG flow parameter.

039901-5


