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The optical absorptance of a single graphene layer over a wide range of wavelengths is known to be remark-
ably constant at the universal value πα where α is the fine structure constant. Using atomistic tight-binding
calculations, we show that the absorptance spectra of nanometer-thin layers (quantum wells) of group-IV, III-V,
II-VI, or IV-VI semiconductors are characterized by marked plateaus at integer values of πα, in the absence
of excitonic effects. In the case of InAs, the results obtained are in excellent agreement with the currently
available experimental data. By revisiting experimental data on semiconductor superlattices, we show that πα is
also a metric of their absorption when normalized to a single period. We conclude that the πα quantization
is universal in semiconductor quantum wells provided that excitonic effects are weak and is therefore not
specific to the zero-gap graphene case. The physical origin of this universality and its limits are discussed
using analytical models that capture the main underlying physics of the lowest optical transitions in III-V and
II-VI semiconductor quantum wells. These models show that the absorptance is ruled by πα independent of the
material characteristics because of the presence of a dominant term in the Hamiltonian, linear in the wave vector
k (∼ V · k), which couples the conduction band to the valence bands. However, the prefactor in front of πα is
not unity as in graphene due to the different nature of the electronic states. In particular, the spin-orbit coupling
plays an important role in bringing the absorptance plateaus closer to integer values of πα. The case of IV-VI
semiconductor (PbSe) quantum wells characterized by a rocksalt lattice and multivalley physics is very similar
to that of graphene, with the specification that a “massful gap” is formed around the Dirac points.
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I. INTRODUCTION

The fine structure constant α, introduced by Arnold Som-
merfeld [1], characterizes the strength of the interactions
between charged particles and the electromagnetic field [2].
In condensed matter physics, this constant quantifies the re-
sponse to electromagnetic excitation of a large number of very
different systems, such as materials with topological phases
[3] including the quantum Hall effect [4], graphene [5–10],
black phosphorus multilayers [11], or plasmonic networks
[12]. In particular, if an undoped graphene monolayer is ir-
radiated, the amount of absorbed light in a wide range of
wavelengths is given by the universal constant πα ≈ 2.3%.
Remarkably, this same value appears in the quantization of
optical absorption through InAs nanometer thick layers (here-
inafter referred to as quantum wells) [13]. In this case, after
correction of local-field effects, the absorptance spectrum is
characterized by a succession of several plateaus whose re-
spective heights are very close to πα. Surprisingly, however,
the case of quantum wells of semiconductors other than InAs
has not been studied so far.

*christophe.delerue@iemn.fr

This quantization is not universal. For example, ultrafine
monolayers obtained by exfoliation of van der Waals mate-
rials, such as transition metal dichalcogenides, often show
spectra of great richness, with bound exciton absorptances
much higher than πα, especially under the action of strong
excitonic effects [14–19]. These effects are also very strong
in ultrathin (�2 nm) layers of semiconductors synthesized by
colloidal chemistry, often called nanoplatelets [20,20,21].

These observations have inspired theoretical attempts to
identify the origin of the πα quantization and its intrinsic
limits [22–28]. In the case of graphene, deviations from πα

appear when electrons lose their Dirac fermion character as
a nonzero mass, for example at high energy relative to the
Dirac point [26–28]. The same effect appears when a gap is
opened at the Dirac point, for example under the action of
spin-orbit coupling (SOC), as predicted in the case of silicene,
germanene, and stanene [25], and as shown in Sect. S8 of the
Supplemental Material [29] (see also Refs. [30–33] therein).

All previous theoretical studies [22–28] were based on
two-band models from which it was concluded that the πα

quantization of the absorptance results from a numerical com-
pensation between the joint density-of-states (JDOS) and the
oscillator strength. However, this cancellation of terms is
only perfect in the case of pristine graphene, for which the
Fermi velocity determines both the band dispersion and the

2469-9950/2022/105(3)/035421(14) 035421-1 ©2022 American Physical Society

https://orcid.org/0000-0002-0427-3001
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.035421&domain=pdf&date_stamp=2022-01-19
https://doi.org/10.1103/PhysRevB.105.035421


MICHEL LANNOO et al. PHYSICAL REVIEW B 105, 035421 (2022)

TABLE I. Summary of the results for the different types of materials considered in this work. CB and VB stand for conduction and valence
bands, respectively. The number of bands per valley must be multiplied by two if spin is taken into account. In the case of Ge, we consider the
direct bands at �. The integer n > 0 indicates that the absorptance present several plateaus, multiple of πα or 2πα.

Material Lattice Valleys Number of bands Band dispersion SOC Absorptance Unit
per valley plateaus per valley

Graphene Honeycomb K (×2) CB:1 VB:1 Linear No πα πα/2
III-V or II-VI Zinc-blende �(×1) CB:1 VB:3 CB: Parabolic at the edge, Yes, sets VB ∼nπα ∼πα

semiconductor nonparabolic beyond SOC splitting
Ge Diamond �(×1) VB: Complex,

anisotropy, warping
IV-VI Rocksalt L (×4) CB:1 VB:1 Parabolic at edges, Yes, ∼2nπα ∼πα/2
semiconductor almost linear beyond opens the gap

momentum matrix elements over a large energy range
[5–10,28]. In the case of quantum wells of zinc-blende
semiconductors which are characterized by heavy, light, and
split-off hole bands with marked anisotropies that couple
under the effect of the confinement, a two-band model is
not justified [34]. Previous theoretical studies [13,23,24,26]
assumed a constant JDOS, typical of two-dimensional (2D)
materials with parabolic bands. In reality, however, InAs
is characterized by marked nonparabolic effects due to a
very strong coupling between valence and conduction bands
[35–37]. As a result, the fundamental physical reasons for the
πα quantization of the absorptance in InAs quantum wells
remains largely to be revealed and so does the universality of
this characteristics. In this paper, we show that absorptance
quantization can be found in 2D materials characterized by
very different band structures, such as graphene, group-IV,
III-V, and II-VI semiconductors, and even in IV-VI semicon-
ductors with a rocksalt lattice.

In the following, we present detailed atomistic tight-
binding calculations of electronic structures and absorptance
spectra of semiconductor quantum wells. As summarized in
Table I, we predict that, despite band structures of great
variety and complexity, quantum wells of many semicon-
ductors are characterized by simple absorptance spectra with
marked plateaus, directly interpretable in terms of the uni-
versal constant πα. We show that InAs is not a singular
example but is on the contrary representative of other conven-
tional semiconductors with weak excitonic effects, which is
already the case for InAs layers thicker than 3 nm [13]. These
predictions are reinforced by published absorption measure-
ments in semiconductor superlattices whose results we revisit
[23].

We show that this universality of the absorptance quan-
tization has a common fundamental origin that we are able
to reveal through simple analytical models. The nature of
the electronic states involved in the optical transitions plays
essentially only on the prefactor in front of πα, which dif-
fers according to the categories of materials. This universal
behavior thus provides simple rules for the design of pho-
todetectors based on semiconductor quantum wells. It creates
an unexpected bridge with the world of graphene, not by
coincidence but due to very fundamental reasons. Finally, we
remark that reports show that the fine structure constant also
rules spontaneous emission and gain, a topic beyond the scope
of the present work [23].

II. METHODOLOGY

A. Expression for the absorptance

The absorptance A is the measure of the absorbed light
flux, such that R + A + T = 1 where T is the transmittance
and R is the reflectance. In the case of a single quantum well
deposited on a transparent substrate, the absorptance at photon
energy h̄ω can be written as

A(h̄ω) = F 2A0(h̄ω), (1)

where F is equal to 2/(ns + 1) in which ns is the refrac-
tive index of the substrate (assumed to be very thick). The
prefactor F 2, which is a local-field factor, describes the fact
that the quantum well experiences interfering incident and
reflected electric fields. In the case of a sample irradiated
perpendicularly, a quantum well being a quasi-2D system,
the external electric field (plus its reflected component) is
unscreened (for wavelength � thickness), the polarization
charges being repelled at the edges.

The rate for an optical transition between a valence
subband v and a conduction subband c at wave vec-
tor k is determined by the oscillator strength fc,v (k) =
(2/m0)|〈 c, k | p · e | v, k 〉|2/[Ec(k) − Ev (k)] where e is the
light polarization vector, p is the momentum operator, m0 is
the free electron mass, and Ec(k) [Ev (k)] is the energy in
the conduction [valence] subband. In the absence of excitonic
effects, the bare absorptance of a quantum well is given by
[38,39]

A0(h̄ω) = π h̄e2

2m0cε0S

∑
c,v,k

fc,v (k)δ(h̄ω − Ec(k) + Ev (k)),

(2)

where S is the area of the sample on which we apply pe-
riodic boundary conditions that define the components of
k. For numerical implementation, the number of k vectors
is increased until the results are converged, the Dirac delta
function δ(x) in Eq. (2) being replaced by a Gaussian function
exp[−x2/(2η2)]/(η

√
2π ) where η characterizes all sources of

broadening. Unless otherwise specified, η is fixed at 10 meV.

B. Tight-binding calculations of the absorptance

The electronic structure of (001) quantum wells is calcu-
lated using an atomistic tight-binding method. Each atom of
the compound is described by a set of 20 atomic orbitals,
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sp3d5s∗ for each spin degree of freedom where s∗ repre-
sents a second s orbital. The dangling bonds at quantum well
surfaces are saturated with pseudohydrogen atoms described
by a single s orbital [38], except for PbSe for which it is
not necessary [40]. The Hamiltonian matrix elements are re-
stricted to the nearest-neighbor interactions and onsite terms.
Spin-orbit coupling is included. We used the tight-binding
model of Ref. [41] for InAs, Ref. [40] for PbSe, Ref. [42]
for (zinc-blende) CdSe, Ref. [43] for GaAs, Ref. [44] for Ge,
Ref. [45] for HgTe. We have verified that very similar results
have been obtained with other sets of parameters for PbSe
[46] and for Ge [47]. Following a well-established recipe for
the description in tight binding of the optical properties of
semiconductors [38,48], the momentum matrix elements are
determined by those of the Hamiltonian H(k),

〈 c, k | p · e | v, k 〉 → m0

h̄
〈 c, k | ∇H (k) · e | v, k 〉 (3)

in which the gradient of H(k) is relative to k.

C. Condition for the existence of plateaus in the absorptance

It is interesting to consider the case where the system
is isotropic, i.e., where all quantities depend only on k, the
modulus of k. As shown in Appendix A, and as already found
by Huang et al. [28], the bare absorptance can be written from
Eq. (A4) as

A0(h̄ω) = 2πα
∑
c,v

|〈 c, k | ∇H (k) | v, k 〉|2
∂|Ev (k) − Ec(k)|2/∂ (k2)

(4)

with k such that Ec(k) − Ev (k) = h̄ω. ∇H , the gradient of the
Hamiltonian with respect to k, comes from the expression of
the momentum [Eq. (3)]. The numerator and denominator of
Eq. (4) have thus the same unit, i.e., (energy.length)2. Within
one constant, the inverse of the numerator is equal to the joint
density of states divided by h̄ω (Appendix A).

Equation (4) shows that, for the absorptance to be con-
stant, there must be compensation between the optical matrix
element |〈 c, k | ∇H (k) | v, k 〉|2 and the denominator. As we
show in the following, this is likely to occur when a nondiag-
onal term of the Hamiltonian, linear in k (∼V · k where V is a
constant vector), coupling conduction and valence subbands,
dominates. In this case, both the numerator and denominator
are proportional to |V|2 and A0(h̄ω) is a constant determined
by the symmetry of the electronic states.

III. RESULTS AND DISCUSSION

A. InAs

Figure 1 presents the absorptance for InAs quantum wells.
The results of the calculations are compared with the experi-
mental data of Ref. [13]. We have adjusted the thickness of the
quantum wells in order to obtain the correct optical threshold
(gap) compared to experiments. A reduction in thickness of
the order of 2 nm is needed (Fig. 1), which can be understood
by band-bending effects which are well known in the case of
InAs surfaces, due to the pinning of the Fermi level by surface
states [49].

The agreement between theory and experiments in Fig. 1 is
quite remarkable, showing that excitonic effects which are not

FIG. 1. Crosses: measured absorptance [13] for InAs quantum
wells of different thickness, 6.0 nm (red), 9.0 nm (blue), 14 nm
(green), 19 nm (brown). Solid lines: absorptance A(h̄ω) calculated
for quantum wells with slightly smaller thickness, 4.0 nm (red),
6.0 nm (blue), 12.5 nm (green), 17.5 nm (brown). Broadening: η =
20 meV.

taken into account in our calculations are weak in these InAs
quantum wells. The absorptance is characterized by very clear
steps. Their position, their amplitude, and even their shape
when they exhibit fine structures are well described by the
calculations. The main plateaus in the spectra correspond to a
πα quantization of the bare absorptance A0(h̄ω).

As shown in Fig. 2(a) for a 4 nm quantum well, the band
structure is composed of subbands due to the vertical quantum
confinement effect. The valence subbands [Fig. 2(b)] exhibit a
complex dispersion, due to the contribution of the heavy-hole
(HH), light-hole (LH), and split-off (SO) bands [34]. In spite
of this complexity, the absorptance shown in Fig. 1 has rela-
tively simple behavior, with main plateaus of A0(h̄ω) at nπα

with n ∈ N (for additional results for a thickness of 12.5 nm,
see Fig. S1 of Supplemental Material [29]).

Figure 2(c) presents the absorptance calculated using a
smaller broadening to reveal the details. This shows that the
first plateau is in fact composed of three steps correspond-
ing to the transitions from valence subbands HH1, LH1, and
SO1 to the lowest conduction subband CB1 [Fig. 2(a) and
Fig. 2(b)]. Here the index 1 represents the first quantum mode
induced by the vertical confinement in the quantum well.
Similarly, a detailed analysis shows that the plateau at nπα

can be associated with transitions (HH+LH+SO)n → CBn

(Supplemental Material [29], Fig. S1 in Sec. S1).
It is important to point out that the description of the

valence subbands in the form HHn, LHn, and SOn is only
a simplified representation. Indeed, it is not easy to follow
the HH, LH, SO character of the subbands as a function of
k because of their nonparabolicity, their warping, and their
k-dependent mixing under quantum confinement, which lead
to complex dispersion including band crossings and anticross-
ings [Fig. 2(b)]. However, as shown in Appendix B and in the
following sections, this simple representation is justified by
extracting a 2D k · p model from the atomistic tight-binding
calculations. In other words, this very common description
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FIG. 2. (a) Lowest conduction subbands and highest valence
subbands of a 4 nm thick InAs quantum well. (b) Zoom on the
highest valence subbands and, facing each other, (c) plot of the
bare absorptance calculated with a smaller broadening (η = 6 meV)
than in Fig. 1 in such a way that each absorptance plateau can be
associated to a transition from a valence subband (HH1, LH1, SO1)
to the lowest conduction subband (CB1). Red crosses: experiments
[13] for a 6 nm thick quantum well. High symmetry points of the
Brillouin zone: W = π/a[1, 1, 0], X = 2π/a[1, 0, 0], a being the
bulk lattice parameter.

[34] of the bands in terms of HH, LH, and SO is well jus-
tified as long as we only want to describe the main optical
transitions which tend to hide the subtle features of the band
structure.

B. Other semiconductors

InAs is a semiconductor characterized by a small band gap.
It is therefore interesting to test the quantization of absorption
in the case of semiconductors with a higher band gap. Fig-
ure 3 shows that the absorptance spectra of GaAs and CdSe
quantum wells are also characterized by several well-marked
steps close to multiples of πα. The deviations from πα are
here larger than for InAs but remain relatively modest.

FIG. 3. Bare absorptance A0(h̄ω) calculated for 6 nm thick
quantum wells of CdSe (brown dashed line), Ge (red dotted line),
GaAs (green dotted-dashed line), and for a 3.9 nm thick quantum
well of HgTe (blue solid line).

Remarkably, the first step of A0(h̄ω) at ≈ πα is also
clearly visible in the case of a Ge quantum well, yet an
indirect semiconductor. In fact, in bulk Ge, the minimum of
the conduction band at � is just above the minima at L points,
so the first step corresponds to the vertical transitions in the
vicinity of �. At higher energy, the steps are less visible, due
to the complex conduction band structure of Ge in this region
[50].

Another particularly interesting system is HgTe, a
semimetal, which can be seen as an inverted band semicon-
ductor due to the strong SOC. Under the effect of a weak
quantum confinement, a band gap opens, leading to the forma-
tion of a topological insulator as long as band remains inverted
[51–53]. When the thickness of the layers is reduced, the band
gap closes and then opens again. In this case, the band order of
a conventional semiconductor is restored. Remarkably, a band
gap of the order of one electron volt can even be obtained in
ultrathin layers, colloidal nanoplatelets [54]. We have there-
fore considered a 3.9 nm thick (001) HgTe quantum well,
characterized by a band gap of 0.19 eV, thin enough to be
in the noninverted regime, thick enough to minimize the ex-
citonic effects. Figure 3 shows that the absorptance spectrum
is again characterized by a very marked plateau at πα. How-
ever, this plateau is preceded by several intermediate steps,
which are relatively long, but whose contributions converge
towards πα. These steps, as well as the sharp peaks visible at
higher energy, are due to the complex energy dispersion of the
valence subbands with heavy-hole and light-hole components
(Supplemental Material [29], Fig. S2).

C. Role of spin-orbit coupling

Figure 4 illustrates the effect of the SOC. In the absence
of SOC, A0(h̄ω) in InAs and CdSe quantum wells is still
quantized, but the height of the first plateau is closer to 1.5πα

than πα. This is also true for the following steps which are
clearly larger than πα. When the SOC is restored, the quanti-
zation in πα becomes remarkable. In the following, in order
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FIG. 4. Bare absorptance A0(h̄ω) calculated in tight binding for
6-nm-thick layers of InAs (red curves) or CdSe (blue curves), with
(solid lines) or without (dashed lines) SOC.

to understand these behaviors, we will work in two steps, first,
by proposing an analytical model of A0(h̄ω) in the absence
of SOC, second, by understanding the effect of SOC on the
absorptance step height.

IV. FUNDAMENTALS OF THE ABSORPTANCE PLATEAUS

A. The prototypical model of graphene

To illustrate the compensation mechanism in Eq. (4), it is
interesting to return to the case of graphene to understand
what is happening in semiconductor quantum wells. In each
valley K or K ′ of graphene, the Hamiltonian matrix near the
Dirac point (zero of energy) can be written, in the basis of the
Bloch functions made of pz orbitals on the two sublattices of
the honeycomb, as follows [55]

H =
[

0 V (kx + iky)
V ∗(kx − iky) 0

]
, (5)

where V = h̄vF is related to the Fermi velocity vF .
By defining bottom (
−) and top (
+) band states, the

numerator and the denominator of Eq. (4) are given by

|〈
+ | ∇H (k) | 
− 〉|2 = |V |2 (6)

∂|E+(k) − E−(k)|2/∂k2 = 4|V |2. (7)

There is a total compensation between these two terms in
Eq. (4), so that |V |2 disappear [28]. The bare absorptance
per valley is therefore A0(h̄ω) = πα/2, independent of V and
any material characteristics [5–10]. This compensation is no
longer effective in the case of massive Dirac bands (Sec. S8 in
Supplemental Material [29] and Refs. [25–28]).

B. A prototypical analytical model
for semiconductor quantum wells

In this section, we present a three-band model based on the
Kane Hamiltonian [56] that provides the simplest description
of the absorptance in III-V or II-VI semiconductor quantum

wells, in the absence of SOC. A0(h̄ω) is calculated analyt-
ically as the sum of two components, the first of which is
equal to πα, the second depends only on the quantum well
gap energy and tends to zero at high energy. This model thus
sheds light on the fundamental origins of the quantization of
the absorptance and its relative invariance from one semicon-
ductor to another.

The model Hamiltonian H is defined in a basis of three
vectors, corresponding to the Bloch states at k = 0, one of s
character (| s 〉) for the conduction band, two of p character
(| x 〉, | y 〉) for valence bands, translating the 2D character of
the system. Keeping only the principal coupling terms at the
first-order in k (∝ P), we write

H =
⎡
⎣ Eg iPkx iPky

−iPkx 0 0
−iPky 0 0

⎤
⎦, (8)

where Eg is the energy gap of the quantum well. Introducing
two vectors,

| p‖ 〉 = kx| x 〉 + ky| y 〉
k

,

| p⊥ 〉 = ky| x 〉 − kx| y 〉
k

, (9)

the Hamiltonian in the basis {| s 〉, | p‖ 〉, | p⊥ 〉} becomes

H =
⎡
⎣ Eg iPk 0

−iPk 0 0
0 0 0

⎤
⎦. (10)

The solutions are | 
hh 〉 = | p⊥ 〉 of energy Ehh = 0 (flat
band), and the states | 
e 〉 and | 
lh 〉 of energy

E e
lh

(k) =
(Eg

2

)
±

√(Eg

2

)2

+ P2k2, (11)

respectively. Ee(k) is the energy of the conduction subband.
Ehh(k) and Elh(k) are the energies of HH and LH subbands, re-
spectively. Interestingly, the energy dispersions in this model
are basically the same as for massive Dirac fermions.

The absorptance coming from transitions | 
hh 〉 → | 
e 〉
and | 
lh 〉 → | 
e 〉 is written as A0(h̄ω) = Ahh−e(h̄ω) +
Alh−e(h̄ω) and is calculated analytically using Eq. (4), re-
placing (| v, k 〉, | c, k 〉) by (| 
hh 〉, | 
e 〉) or (| 
lh 〉, | 
e 〉),
respectively. Details on the calculations are given in Supple-
mental Material [29], Sec. S4.

1. Calculation of the absorptance for the
heavy-hole electron transition

For the transition 
hh → 
e at the energy h̄ω = Ee(k) −
Ehh(k), the optical matrix element is given by (Supplemental
Material [29], Sec. S4.1)

|〈
e | ∇H (k) | 
hh 〉|2 = P2 h̄ω

2h̄ω − Eg
(12)

and the denominator of Eq. (4) by

∂|Ee(k) − Ehh(k)|2
∂k2

= 2P2h̄ω

2h̄ω − Eg
. (13)
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We deduce the absorptance

Ahh−e(h̄ω) = πα θ (h̄ω − Eg), (14)

where θ (x) is the unit step function.
Remarkably, as in the case of graphene, there is a com-

plete compensation between the different terms so that
the absorptance is a constant, independent of P, Eg, and
h̄ω. This compensation takes place while the JDOS is
not constant (Supplemental Material [29], Sec. S4.1), un-
like the ideal case of 2D parabolic valence and conduction
bands.

2. Calculation of the absorptance for the
light-hole electron transition

For the transition 
lh → 
e at the energy h̄ω = Ee(k) −
Elh(k), the optical matrix element is given by (Supplemental
Material [29], Sec. S4.2)

|〈
e|∇H |
lh〉|2 =
(EgP

h̄ω

)2

(15)

and the denominator of Eq. (4) by

∂|Ee(k) − Elh(k)|2/∂k2 = 4P2. (16)

The absorptance is thus given by

Alh−e(h̄ω) = πα

2

( Eg

h̄ω

)2

θ (h̄ω − Eg). (17)

Also remarkably, this contribution does not depend on P, is
equal to πα/2 when h̄ω = Eg and tends to 0 when h̄ω � Eg.

This is at variance with graphene where the transition
between the two band gives a plateau at πα/2. Note that,
as in the case of graphene, the JDOS is proportional to h̄ω

[Eq. (S32) in Supplemental Material [29]]. The difference is
therefore due to different local 2D symmetries, i.e., to the
different nature of the Bloch states.

3. Comparison to tight-binding calculations

The total absorptance in this simple model is therefore
given by

A0(h̄ω) = πα

[
1 + 1

2

( Eg

h̄ω

)2]
θ (h̄ω − Eg). (18)

Figure 5 shows that, despite its great simplicity, the analytical
model reproduces remarkably well the results obtained by
the tight-binding method, in the absence of SOC. This model
describes the essential characteristics of the optical transitions
from valence subbands to the first conduction subband. It
gives a simple explanation to the quantization of the absorp-
tance, and to its universal character since the Eq. (18) only
involves the energy gap as a characteristic quantity of the
semiconductor quantum well. As in the case of graphene, πα

is a metric of the absorptance.

4. Justification of the simple analytical model

We have shown in the previous sections that the valence
band structure of III-V or II-VI semiconductor quantum wells
is in general of great complexity. In this context, it is not

FIG. 5. Bare absorptance A0(h̄ω) for 4.2-nm-thick layer of InAs
calculated in tight-binding (TB, dashed curves) with (red) or without
(blue) SOC. The blue solid line shows A0(h̄ω) given by the simple
analytical model, Eq. (18) with Eg = 0.79 eV. For the sake of com-
parison, the tight-binding calculations were performed with a small
broadening η of 2 meV.

obvious that a three-band model, including one flat band and
two fully symmetric bands is representative of real systems.

The general justification of a 2D k · p model, starting from
a bulk Kane Hamiltonian, is presented in Supplemental Mate-
rial [29], Sec. S3. We also present and justify in Appendix B a
more elaborate (3 × 3) 2D k · p model whose parameters are
directly deduced from tight binding calculations, following
the methodology described in Supplemental Material [29],
Sec. S5. This model includes all matrix elements up to the sec-
ond order in components of k. We deduce from Appendix B
that the simple analytical model described above is justified
because the terms of the form Pkx and Pky of the 2D k · p
Hamiltonian dominate in the expression of the different com-
ponents of the absorptance. The simple analytical model is
justified even more when the energy gap of the semiconductor
is small. The deviations from the absorption values predicted
by Eq. (18) remain nevertheless small even for large gap
materials.

C. Influence of the SOC on the absorptance

We have seen in Fig. 4 and Fig. 5 that the SOC contributes
to bring the plateaus from about 1.5πα (at Eg) to about πα.
Here we discuss the reasons, on the one hand with the help of
a simplest-as-possible analytical model describing the main
underlying effects, on the other hand by analyzing the results
of the tight binding calculations.

1. A prototypical analytical model including SOC

We start from the Kane Hamiltonian [56] including SOC
in the basis of Bloch states | s ↑ 〉, | x ↑ 〉, | y ↑ 〉, | z ↑ 〉, | s ↓ 〉,
| x ↓ 〉, | y ↓ 〉, | z ↓ 〉, where Oz remains perpendicular to the
quantum well. We write the Hamiltonian as two identical 4 ×
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FIG. 6. Band structure in the analytical model including SOC.
The energies are noted by the Greek letter ε instead of E to distin-
guish from the case without SOC.

4 blocks [34]

H =

⎡
⎢⎢⎢⎢⎣

εg i
√

2
3 Pk − i√

3
Pk 0

−i
√

2
3 Pk 0 0 0

i√
3
Pk 0 −� 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ (19)

for one block in the basis | s ↑ 〉, | 3
2 , 1

2 〉, | 1
2 , 1

2 〉, | 3
2 , 3

2 〉, for
the other one in the basis | s ↓ 〉, | 3

2 ,− 1
2 〉, | 1

2 ,− 1
2 〉, | 3

2 ,− 3
2 〉,

eigenvectors of J and JZ with Z oriented along k. εg is the
gap in the presence of SOC, and � is the splitting between
J = 3/2 and J = 1/2 states due to the SOC. The expression
of the J = 3/2 and J = 1/2 states in terms of | x ↑ 〉 . . . | z ↓ 〉
is given in Sec. S7 of the Supplemental Material [29].

In the same spirit as before, following Sec. S3 of the
Supplemental Material [29], we treat the 2D problem with
kz = 0 (k ≡ k‖). The corresponding band structure is shown
schematically in Fig. 6. The heavy-hole band is flat [εhh(k) =
0] and is degenerate at k = 0 with the light-hole band [εlh(k)].
The electron band εe(k) starts at εg at k = 0; the top of the
split-off band εso(k) is at −�.

Therefore in this model, the absorptance spectrum exhibits
two steps, the first one at h̄ω = εg that include two con-
tributions (heavy and light holes → electrons), the second
one at h̄ω = εg + � (split-off → electrons). As described
in Sec. S7 of the Supplemental Material [29], the height of
these steps can be calculated analytically at k‖ = 0, the energy
dispersions of the different bands being obtained by treating
Pk terms within second order perturbation theory (becomes
unvalid when � → 0). The height of the first and second steps
is given by

A0,1(εg) = πα

[
3

4
(
1 + εg

2(εg+�)

) + 1

2
(
1 + εg

4(εg+�)

)
]

(20)

δA0,2(εg + �) = πα

⎡
⎣ 1

2
(
1 + εg+�

εg

)
⎤
⎦ (21)

where δA0,2 in the second equation means that it must be
added to the other contributions at h̄ω = εg + � to get the
total absorptance.

Using the data corresponding to the InAs quantum well of
4.2 nm (Fig. 5), i.e., εg ≈ 0.7 eV and � ≈ 0.4 eV, the height
of the first step [Eq. (20)] is about πα, and the height of the
second step [Eq. (21)] is about 0.2πα, in excellent agreement
with the tight binding results of Fig. 5 and the experimental
data of Ref. [13]. Remarkably, Eq. (20) and Eq. (21) only de-
pend on x = εg/�, and A0(εg) is found to be very close to πα

in a wide range of values of x. Figure S5 of the Supplemental
Material [29] shows a deviation of Eq. (20) from πα below
10% for x between 0.5 and 5. This explains the universality
of the πα quantization of the absorptance in the presence of
SOC.

2. Comparison to tight-binding calculations

Figure 5 allows to understand the effect of the SOC on
the absorptance spectrum calculated in tight-binding. The first
step found in absence of SOC transforms in three steps. A
short plateau at about 0.7πα is followed, after a small bump,
by a long plateau close to πα. This corresponds to transitions
from HH and LH bands, respectively, which were degenerate
at k‖ = 0 by construction in the analytical model. Then, at
higher energy (∼1.1 eV), there is a third small step (split-off)
such that the absorptance finally reaches the value obtained
without SOC. Apart from the fact that it does not give a
splitting between LH and HH bands, the analytical model
accounts for this behavior very well. Note that the respective
weights of the steps from HH and LH depend significantly on
the nature of the semiconductor, the spin-orbit coupling, and
the vertical confinement.

3. Summary of our understanding

Figure 7 summarizes our understanding of the origin of
absorptance quantization in III-V or II-VI semiconductor
quantum wells and in graphene. This quantization comes
from the compensation between numerator and denominator
in Eq. (4). In the case of graphene, this compensation is exact
which leads to an absorptance πα/2 for each of the two K
valleys.

In the case of a semiconductor quantum well, the situation
seems at first sight very different because there are optical
transitions between valence bands mainly derived from p or-
bitals and a conduction band of strong s character. However,
under strong vertical confinement, in the absence of SOC, the
valence band can be described by two bands coupled to the
conduction band by terms like Pkx and Pky. Transitions be-
tween the LH subband and the conduction subband lead to an
absorptance of the order of πα/2 at the threshold, decreasing
to zero at higher energy. Transitions between the HH subband
and the conduction subband give a constant absorptance at
πα. In the absence of SOC, the total absorptance is thus char-
acterized by a single step at ∼3πα/2 which decreases to πα

at higher energy (Fig. 5). This reasoning remains correct as
long as P2/Eg is large compared to the other terms of the k · p
Hamiltonian (Appendix B), which is the situation in many
conventional semiconductors [34]. The height of the different
contributions of the absorptance can vary from one compound
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FIG. 7. Schematic representation of electronic bands and optical
transitions in graphene (a), in a rocksalt (RS) semiconductor quan-
tum well (b), in a zinc-blende (ZB) semiconductor quantum well
without (c) or with (d) SOC. The intensity at the optical thresholds
of the absorptance steps is indicated (the values are indicative, they
may slightly vary from one material to another). The corresponding
data are also summarized in Table I.

to another, but the previous description remains nevertheless
qualitatively correct for all the studied zinc-blende materials,
especially those with a small band gap.

When the SOC is switched on, the absorptance remains
quantized because of the compensation effect due to the dom-

inance of the coupling terms Pki. However, the bands are
split and a certain part of the oscillator strength is transferred
to the SO band which is lower in energy. This leads to an
absorptance ≈0.7πα for the transitions from HH subband,
≈0.3πα for those from LH subband, and ≈0.2πα for those
from SO subband [Fig. 7(d)]. The total contribution from
transitions from HH and LH subbands is thus close to πα,
which explains the wide plateau in Fig. 5. Of course, the πα

quantization of the absorptance is not exact, numbers slightly
depend on the nature of the semiconductor, the plateaus are
not totally flat because the compensation is not perfect, and
therefore do not form a standard for the fine structure constant
[24]. However, our calculations show that the quantization is
universal, provided that excitonic effects can be neglected.

This quantification of the absorptance is visible as long as
the energy gap between the πα steps remains smaller than the
broadening factors. This gap becomes smaller and smaller as
the thickness of the quantum well decreases. In III-V and II-VI
materials, this gap is essentially determined by the quantum
confinement in the conduction band and thus varies approxi-
mately as the inverse of the well thickness square.

V. REVISITING EXPERIMENTAL DATA
ON SUPERLATTICES

The physical effects explaining the quantization of absorp-
tion should be operative also in semiconductor superlattices,
provided that the barriers are high and the couplings between
quantum wells are weak (multilayers). As already proposed
in Ref. [23], this invites us to revisit experimental results
obtained on these systems. Typically, the experiments consist
of measuring the transmission through relatively thick layers
composed of a large number (25–50) of periods, each formed
by a quantum well and a barrier. The absorption coefficient
a(h̄ω) of the medium, deduced from these measurements, is
given quite generally by

a(h̄ω) = ω

cn
ε′′(h̄ω) (22)

where ε′′ is the imaginary part of the dielectric constant and
n is the refractive index of the medium. Consequently, the
absorptance of a single period can be defined as

A(h̄ω) = a(h̄ω)Lp (23)

where Lp = Lw + Lb is the length of the period, Lw (Lb) being
the thickness of the quantum well (barrier). However, we
can deduce from Eq. (22) and the theory that we discussed
above, that the quantity of interest, the one to be quantized
in units of πα, should be nA(h̄ω) [23]. In the following, we
revisit experimental results from the literature, deliberately
presenting them by increasing width of their band gap.

Figure 8 presents the absorptance per period which was
measured in HgTe/HgxCd1−xTe superlattices. The spectra are
characterized by a wide plateau for which nA(h̄ω) is approxi-
mately equal to πα. Just at the optical threshold, there is also a
smaller step at approximately 3πα/4, which can be attributed
to transitions to the heavy-hole subband. Interestingly, the
absorptance spectrum that we predicted for a 3.9-nm-thick
quantum well of HgTe (Fig. 3) is close to that obtained for
HgTe/Hg0.37Cd0.63Te superlattices with Lw = 3.47 nm and
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FIG. 8. Absorptance per period in HgTe/HgxCd1−xTe superlat-
tices deduced from the measurement of their absorption coefficient
(period = well thickness Lw plus barrier thickness Lb). The vertical
axis on the right gives the absorptance multiplied by the sample
refractive index n normalized by πα. Red line: data of Ref. [57]
for x = 0.05, Lw = 4.15 nm, Lb = 8.95 nm. Brown line: data of
Ref. [58] for x = 0.15, Lw = 5.8 nm, Lb = 4.2 nm. Green line: data
of Ref. [59] for x = 0.37, Lw = 3.47 nm, Lb = 7.60 nm. Blue line:
data of Ref. [60] for x = 0.32, Lw = 3.4 nm, Lb = 7.70 nm.

Lb = 7.60 nm. However, the experimental spectra exhibit
clear bumps at the step edges, which are absent in calculated
ones and can be attributed to excitonic effects.

The quantity nA(h̄ω) measured in InSb/Al0.09In0.91Sb su-
perlattices at 4.2 K is also characterized by clear steps at πα

and 2πα (Fig. 9), plus marked peaks which were attributed to
excitonic effects [61]. These peaks tend to decrease at higher

FIG. 9. Absorptance per period in InSb/Al0.09In0.91Sb super-
lattices deduced from the measurement [61] of their absorption
coefficient (well thickness = 22.5 nm, barrier thickness = 50 nm) at
different temperatures, 4.2 K (red line), 160 K (green line), or 300 K
(blue line). The right vertical axis gives the absorptance multiplied
by the sample refractive index (n = 3.9) normalized by πα. Spectra
at 160 K and 300 K were measured in a limited energy range [61].

FIG. 10. Absorptance per period in a
Ga0.47In0.53As/Al0.48In0.52As superlattice deduced from the
measurement [34] of its absorption coefficient (well thickness
= 8.5 nm, barrier thickness = 8.5 nm) at 77K (red line). The
right vertical axis gives the absorptance multiplied by the sample
refractive index (n = 3.4) normalized by πα.

temperature. The πα quantization is also clearly visible in the
case of a Ga0.47In0.53As/Al0.48In0.52As superlattice (Fig. 10),
although the excitonic peaks become more prominent.

Figure 11 presents results for GaAs/AlAs superlattices,
deduced from measurements made at 2 K [62]. The average
value of nA(h̄ω) is clearly above πα. Similar values are
obtained in GaAs/AlGaAs (not shown) [63]. These values
higher than πα must be seen as a consequence of strong
excitonic effects. However, πα remains a good metric of the
absorptance.

FIG. 11. Absorptance per period in GaAs/AlAs superlattices
deduced from the measurement [62] at 2 K of their absorption coeffi-
cient (period = well thickness Lw plus barrier thickness Lb). The right
vertical axis gives the absorptance multiplied by the sample refractive
index n normalized by πα. Red line: Lw = 4.3 nm, Lb = 6.2 nm.
Blue line: Lw = 5.8 nm, Lb = 7.1 nm. Green line: Lw = 7.6 nm,
Lb = 3.3 nm. Brown line: Lw = 9.6 nm, Lb = 9.1 nm.
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It is important to realize that deviations from πα are ex-
pected to be stronger in materials characterized by a wide
band gap. On the one hand, P2/Eg becomes less dominant
compared to the other components of the k · p Hamiltonian
[the A, L and M terms in Eq. (B6) and Eq. (B9) of Ap-
pendix B]. Larger deviations are clearly visible in Fig. 3 and
Fig. 4. On the other hand, the dielectric constant is lower,
the effective masses are usually higher (especially in the con-
duction and light-hole bands where 1/me,lh ∝ P2/Eg), which
tends to increase the excitonic effects.

VI. QUANTUM WELLS OF PbSe

By comparison with InAs and other III-V or II-VI com-
pounds, the case of PbSe (and other IV-VI semiconductors
with rocksalt lattice) is interesting since the bulk material
is characterized in conduction and valence bands by four
nonequivalent valleys at the L point of the Brillouin zone
[40]. In the absence of experimental data, we have performed
calculations of the absorptance for a 6 nm thick (001) PbSe
quantum well. The results, presented in Fig. 12(a), show that
A0(h̄ω) is also characterized by clear plateaus but of height
2πα instead of πα.

Figure 12(b) shows the band structure of the quantum
well. Due to the quantum confinement, the energy spectrum is
characterized by subbands which are (almost) twofold degen-
erate, fourfold with spin degeneracy (there is small splitting
due to intervalley coupling [40]). In addition, there are two
nonequivalent W (π/a[1, 1, 0]) valleys in the Brillouin zone
of the 2D layer. This behavior can be understood by the pro-
jection of the four nonequivalent L points (π/a[1, 1, 1]) of the
bulk on the 2D Brillouin zone. The different absorption steps
correspond to the transitions allowed only between subbands
sharing the same quantum number associated with vertical
confinement, i.e., Hi → Ei [Fig. 12(b)].

Since there are four valleys, absorptance plateaus at 2πα

mean πα/2 contributions from each valley. This behavior is
attributed to quasilinear dispersions of the conduction and
valence subbands as one moves away from the band gap
[Fig. 12(b)], for reasons which are discussed in Ref. [40]. We
then find the situation of graphene where the absorptance per
valley is πα/2. According to the k · p theory, in each valley,
subbands Hi and Ei can be described by a 2 × 2 Hamiltonian
in which the nondiagonal coupling, of the form T · k where
T is a 2D vector, becomes dominant when moving away from
the edges of the subbands. Our tight-binding calculations thus
show that the absorptance quantization in PbSe quantum wells
has a physical origin much closer to the case of graphene than
to the case of III-V or II-VI semiconductors [Fig. 7(b)].

However, the subbands are parabolic in the vicinity of
their edges [Fig. 12(b)]. Consequently, if the broadening η is
reduced, the absorptance spectrum develops peaks just above
each optical threshold [Fig. 12(a)]. We then recover the situa-
tion of tight-binding models on honeycomb lattices in which a
band gap is opened under the effect of SOC or an asymmetry
between the two sublattices of the honeycomb (see Sec. S8 in
the Supplemental Material [29]). The peaks followed by the
plateaus reflect the transformation from massive particles to
massless particles [26–28].

FIG. 12. (a) Bare absorptance A0(h̄ω) calculated for a 6 nm thick
PbSe quantum wells for two values of the broadening, η = 10 meV
(blue solid line) or η = 1 meV (red dashed line). (b) Zoom on the
electron (Ei ) and hole (Hi ) subbands in the vicinity of the gap. The
red dotted lines show a linear variation of the subbands. The full band
structure is presented in Fig. S8, Sec. S9 of Supplemental Material
[29].

VII. CONCLUSION

In conclusion, we have shown that the quantization of the
absorptance in semiconductor quantum wells in units of πα

is universal. It is predicted for a large number of compounds,
provided that the excitonic effects are small. This behavior
results from several factors, the main one being the strong
coupling of the form Pkx and Pky, between conduction and va-
lence subbands. Using a minimum model incorporating only
these dominant terms in the Hamiltonian, which nevertheless
describes the main underlying physics, the absorptance is
found to be directly related to πα, independent of P, largely
independent of the physical quantities characterizing the semi-
conductor, as in graphene. The SOC also helps bring the
absorptance steps closer to integer values of πα, redistributing
the oscillator strengths. Experimental results obtained on InAs
layers, and on superlattices of other materials, support these
conclusions. The situation for IV-VI semiconductors such as
PbSe is extremely close to that of graphene in the presence of
a band gap. We believe that this work will provide a simplified
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view of optical absorption phenomena in 2D or quasi-2D
materials for which excitonic effects are not too strong.

APPENDIX A: ALTERNATIVE EXPRESSION
FOR THE ABSORPTANCE

1. General case

Using Eq. (3), Eq. (2) can be rewritten in the following
form

A0(h̄ω) = α

h̄ω

∑
c,v

∫
|〈 c, k | ∇H (k) | v, k 〉|2

δ(h̄ω − Ec(k) + Ev (k))d2k (A1)

where we are assuming that, in a cubic semiconductor, the
absorptance does not depend on the in-plane orientation of
the polarization vector, we can sum the contributions for the
two in-plane polarizations and divide by 2 (|〈|∇H (k) · x|〉|2 +
|〈|∇H (k) · y|〉|2 = |〈|∇H (k)|〉|2). For functions f and g de-
fined over a n-dimensional space, we have:∫

(n)
f (x)δ(g(x))dx =

∫
(n−1)

f (x)

|∇g|dσ (x) (A2)

where the second integral is on the (n − 1)-dimensional sur-
face defined by g(x) = 0. Equation (A1) can be rewritten as

A0(h̄ω) = α

h̄ω

∑
c,v

∫
Lvc

|〈 c, k | ∇H (k) | v, k 〉|2
|∇(Ev (k) − Ec(k))| dl (A3)

where Lvc is the path in k space defined by h̄ω − Ec(k) +
Ev (k) = 0.

2. Isotropic case

In the case where all terms only depend on k = |k|,
Eq. (A3) becomes

A0(h̄ω) = 2παk

h̄ω

∑
c,v

|〈 c, k | ∇H (k) | v, k 〉|2
∂|Ev (k) − Ec(k)|/∂k

(A4)

with k such that Ec(k) − Ev (k) = h̄ω. This expression can be
rewritten in another form given in Eq. (4).

The JDOS per unit area can be calculated in a similar way.
For the pair of bands v and c, the JDOS is

Jc,v (h̄ω) = 1

S

∑
k

δ(h̄ω − Ec(k) + Ev (k)) (A5)

which, in the isotropic case, transforms into

Jc,v (h̄ω) = 1

π

k

∂|Ec(k) − Ev (k)|/∂k
. (A6)

The bare absorptance can be written as

A0(h̄ω) = 2π2α

h̄ω

∑
c,v

Jc,v (h̄ω)|〈 c, k | ∇H (k) | v, k 〉|2 (A7)

with k such that Ec(k) − Ev (k) = h̄ω.
|〈 c, k | ∇H (k) | v, k 〉|2/(h̄ω) is related to the oscillator
strength.

FIG. 13. Comparison between tight-binding (red dashed lines)
and 2D k · p (blue solid lines) calculations for 4.2-nm-thick InAs
quantum well. SOC is not included. (a) Band structure. (b) Bare
absorptance A0(h̄ω).

APPENDIX B: 2D k · p MODEL DEDUCED
FROM TIGHT BINDING

Section S3 of the Supplemental Material [29] gives the
rationale for describing, in quantum wells, the bands in the
vicinity of the band gap with a 2D k · p model. Here we
describe how we deduce a k · p Hamiltonian directly from
tight binding calculations, without adjusting any parameters.
We also present calculations of the absorptance in this model,
to go beyond the approximations made in the analytic model
of Sec. IV B.

1. Derivation of the 2D model

We consider a InAs quantum well of thickness 4.2 nm,
chosen because it is characterized by two symmetric surfaces.
The system is thus characterized by a perfect in-plane square
symmetry, which simplifies the derivation of a 2D k · p model.
Figure 13 shows that the band structure calculated without
SOC is again characterized by many subbands, with complex
dispersion in the valence band. However, the absorptance
spectrum exhibits a simple behavior (Fig. 5). The analysis
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of the optical matrix elements shows that the first plateau
corresponds to transitions from the two highest valence bands
(heavy hole and light hole), degenerate at k‖ = 0, to the lowest
conduction subband (Fig. S6 of the Supplemental Material
[29]).

Next, we deduce a 3 × 3 k · p matrix using the calcu-
lation of the first-order and second-order derivatives of the
tight-binding Hamiltonian matrix with respect to kx and ky,
restricted to the lowest conduction subband and the two high-
est valence subbands, but renormalizing the k · p parameters
to include the effects of the remote bands (see Sec. S5 of the
Supplemental Material [29] for the methodology). We obtain

H̃ =
⎡
⎣Ec + Ak2 iPkx iPky

−iPkx Ev + Lk2
x + Mk2

y Nkxky

−iPky Nkxky Ev + Lk2
y + Mk2

x

⎤
⎦

(B1)

in the basis of the three vectors | s 〉, | x 〉, and | y 〉. The
parameters directly derived from the tight-binding Hamil-
tonian are given by (in atomic units): A = 0.00242, P =
0.52684, Ec = 0.02288, Ev = −0.00604, L = 2.78493, M =
−0.81699, N = 2.71777. Ec and Ev differ from the bulk val-
ues, since they include the effect of the confinement along z
(Ev = 0 in the bulk).

Figure 13 presents the comparison between tight-binding
and 2D k · p band structures and the comparison between
absorptance spectra. In spite of its apparent simplicity, since it
only describes two valence subbands of the quantum well, the
2D k · p model gives a perfect description of the first step of
A0(h̄ω).

2. Simplified 2D k · p isotropic model

In order to obtain analytical expressions for the absorp-
tance, it is useful to derive a simpler 2D k · p isotropic model.
We use the two vectors | p‖ 〉 and | p⊥ 〉 previously defined
[Eq. (9)].

The Hamiltonian matrix element 〈 p‖ | H | p⊥ 〉 vanishes
when N = L − M. In the bulk, this takes place when the
Luttinger parameters γ L

2 and γ L
3 are equal, which corresponds

to the spherical symmetry [64]. In this condition, the Hamil-
tonian written in | s 〉, | p‖ 〉, and | p⊥ 〉 is simply given by:

H =
⎡
⎣Es(k) iPk 0

−iPk E‖(k) 0
0 0 E⊥(k)

⎤
⎦ (B2)

with

Es(k) = Ec + Ak2 E‖(k) = Ev + Lk2 E⊥(k) = Ev + Mk2.

(B3)

The solutions are | 
hh 〉 = | p⊥ 〉, | 
e 〉, | 
lh 〉 of energy
Ehh(k) and

E e
lh

(k) =
(

Es(k) + E‖(k)

2

)
±

√(
Es(k) − E‖(k)

2

)2

+ P2k2,

(B4)

respectively. Ee(k) is the energy of the conduction subband.
Ehh(k) and Elh(k) are the energies of the heavy and light hole
subbands, respectively.

3. Calculation of the absorptance

The absorptance A0(h̄ω) = Ahh−e(h̄ω) + Alh−e(h̄ω) is
calculated analytically using Eq. (A4) of Appendix A. In this
isotropic approximation, we use the previous parameters for
the 2D k · p model except that we set N = L − M. After
some algebra (Sec. S6 of the Supplemental Material [29]), the
different terms can be calculated to the second order in k as

Ahh−e(h̄ω) = πα(C0 + C2k2) + O
(
k3) (B5)

C0 = P2

(AEg − EgM + P2)
(B6)

C2 = − U

Eg(A − M + U )2
× (A2 + 2AL − 4AM

+ AU − 2LM + 4LU + 3M2 − 5MU ) (B7)

with U = P2/Eg and k is solution of Ee(k) − Ehh(k) = h̄ω.
Similarly, we obtain

Alh−e(h̄ω) = πα(D0 + D2k2) + O
(
k3) (B8)

D0 = P2

AEg − EgL + 2P2
(B9)

D2 = −U (5A2 − 10AL + 12AU + 5L2 − 12LU + 8U 2)

Eg(A − L + 2U )2

(B10)

in which k is solution of Ee(k) − Elh(k) = h̄ω.
With the parameters given above for the 4.2-nm-thick

InAs quantum well, C0 = 0.92, which is close to 1 because
P2/Eg � A − M. Numerical evaluations show that the varia-
tion with k and with h̄ω is weak (Fig. S4 of the Supplemental
Material [29]), i.e., C2k2 � C0. It means that Ahh−e(h̄ω) is
very close to πα but smaller. With the same parameters,
D0 = 0.58 is close to 1/2, because the term 2P2 is dominant
in the denominator of Eq. (B9). Alh−e(h̄ω) is equal to 0.58πα

at the energy gap but it decreases at higher energy as D2k2

becomes non-negligible compared to D0.
We conclude that the 2D k · p model and its simpli-

fied version under isotropic approximation explain very well
the absorptance spectrum calculated in tight binding in the
absence of SOC. This also completely justifies the simple
analytical model of Sec. IV B in which A, L, M, N = 0. An
additional discussion of compensation mechanisms leading
to absorptance quantization is presented in Sec. S6.4 of the
Supplemental Material [29].
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