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Nearly free phonons in a weak soliton potential and the case of twisted bilayer graphene
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Structural relaxation in slightly misaligned bilayer graphene leads to the formation of domains separated by
topological solitons. The influence of such a soliton lattice on phonons is investigated in the framework of
the Frenkel-Kontorova model, where a solution is derived in the continuum limit. A nearly free phonon model is
developed to explain the characteristic features in the phonon band structure derived from the Frenkel-Kontorova
model. Its 2D extension is discussed and applied on the specific case of twisted bilayer graphene. This model
explains a number of computational results reported until now and can be used directly to investigate other
misaligned two-dimensional networks as found in van der Waals heterostructures.
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I. INTRODUCTION

With the recent discovery of unconventional supercon-
ductivity and strongly correlated physics in twisted bilayer
graphene (tBLG) [1,2], this system has become a platform of
choice to observe exotic phenomena in 2D materials [3–5].
Recent theoretical works have aimed at providing an expla-
nation on the origin of these phenomena, both by considering
their electronic [1,5–9] and vibrational [10–15] properties, as
well as the coupling between them [11,14,16–19]. In con-
trast to the aligned bilayer case where the graphene layers
are stacked rigidly on top of each other, the in-plane re-
laxation of tBLG is significant, especially for small twist
angles [6,8,9,11,14,20–26] and are related to the formation
of a superlattice, the so-called moiré pattern. The influence
of this relaxation on the electronic and vibrational properties
has already been highlighted previously [1,5–9,12,27]. This
relaxation can be interpreted as the formation of domains.
Some domains are favored energetically. They correspond
to the AB and BA stacking arrangements and they become
predominant for small twist angles. In contrast, other domains
are disfavored and thus minimized. They correspond to the
AA stacking arrangement. The AB and BA domains are sep-
arated from each other by domain walls or, in other words,
topological solitons, since they are energetically equivalent.

Solitons can be encountered in a broad variety of non-
linear problems in physics, including, nonexhaustively, the
Sine-Gordon, Korteweg–de Vries, or nonlinear Schrödinger
equations [28,29]. Accordingly, they are of particular rele-
vance in the Frenkel-Kontorova (FK) model [29,30], which
consists of a 1D chain of atoms placed onto a periodic po-
tential with a different periodicity. In this case, one possible
ground-state configuration corresponds to the periodic repe-
tition of solitons, referred to in the following as the soliton
lattice, which modulates the chain lattice in a nonlinear fash-
ion and separates domains where the atoms of the chain are
in close registry with the minima of the external potential
[30]. Within this approximation, interactions between solitons
and other quasiparticles of the system, such as phonons, can

be investigated. Notably, previous theoretical and numerical
investigations have highlighted the emergence of band gaps
in the phonon band structure at specific wave vectors [29,31–
35] as well as the appearance of an optical phonon branch
[33–35], but have mostly focused on an incommensurate soli-
ton lattice or a specific solution. Similar features have been
observed numerically in the phonon band structure of tBLG
[12,27] but also experimentally [36], with the appearance of
spatially localized phonon side-bands close to the G peak in
the nano-Raman hyperspectral imaging.

In this paper, we examine theoretically how phonons are
affected, in general, by the formation of the periodic soliton
network, first in the FK model (Sec. II) and, second, in tBLG
(Sec. IV). For the former, our results are consistent with previ-
ous theoretical and numerical reports on the incommensurate
soliton network, and additional features are highlighted in the
periodic case analyzed here. Notably, the position and magni-
tude of the band gap openings are entirely characterized as a
function of the parameters of the problem. Then, we rational-
ize the results obtained in the FK model with the introduction
of the nearly free phonon (NFP) model, which is the phonon
counterpart of the nearly free electron (NFE) model [37]. The
differences between these two models are highlighted. Next,
the case of tBLG is discussed as well as how it is related to
the NFP model. We discuss how, by geometrical construction
of the problem, the phonon band structure is no longer char-
acterized by band-gap openings but instead by the emergence
of subbands. This model provides a theoretical account for
recent numerical [12,27] and experimental [36] findings.

II. PHONONS IN PERIODIC SOLITON
NETWORK (1D FK MODEL)

The mathematical derivations that will be presented here-
after rely essentially on the FK model [29,30,38,39], whose
extended solution can be found in the literature [30]. This
model consists of a 1D chain of atoms placed onto a periodic
potential of different periodicity. For notation, the (initial)
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interatomic distance in the chain is denoted a0, its spring
constant is λ, the amplitude of the external potential is Ṽ0,
and its period is b. The chain consists of 2N + 1 atoms, each
labeled by an index n and positioned at the xn coordinate along
the x axis. The total energy of this system can be written as
(for a finite-size system):

E =
N−1∑

n=−N

λ

2
(xn − xn−1 − a0)2 −

N∑
n=−N

Ṽ0 cos

(
2π

b
xn

)
. (1)

The force experienced by the nth atom is

Fn = −λ(2xn − xn−1 − xn+1) − Ṽ0
2π

b
sin

(
2π

b
xn

)
, (2)

which must vanish at equilibrium for each atom of the chain.
The problem can be solved analytically in the continuum
limit [30], i.e., considering that the atoms continuously ac-
commodate the external potential as a function of the index
n. The influence of the lattice discreteness on the static and
dynamical solutions of the FK problem are discussed in detail
in Ref. [38]. In the context of the continuum limit [30], it is
more convenient to work with the phase factor ϕn,

xn = nb + b

2π
ϕn, (3)

which varies continuously and thus implies that 2xn − xn−1 −
xn+1 ≈ −(b/2π ) ∂2ϕn/∂n2. It can be shown then that the (gen-
eral) solution of Eq. (2) is

sin
(ϕ

2
+ π

2

)
= sn

(
βn

k
, k2

)
, (4)

where sn(n, k2) is the Jacobi elliptic sine function [40,41]. For
eccentricity k with β = (2π/b)(Ṽ0/λ)1/2. In the description
of elliptic integrals, k is also called the elliptic modulus and
k2 the elliptic parameter. In the present case, it is also an
integration constant of the problem. For the sake of clarity, the
second argument of the Jacobi elliptic function will be omitted
in the following, i.e., sn(n) � sn(n, k2).

Equation (4) corresponds to a periodic array of solitons
(kinks), in which the chain is either in compression or in ex-
pansion depending on its mismatch with the potential period
[38]. Away from these solitons, the atoms of the chain tend to
fall into the bottom of the external potential. The solitons are
spaced periodically from each other with a periodicity

P = 2k

β
K (k2), (5)

where K (k2) is the complete elliptic integral of the first kind
[40], whose argument was already encountered in Eq. (4). If
the chain ends are free, the value of k is determined by [30]

E (k2)

k
= π

4

√
λ

Ṽ0
|b − a0| � π

2
√

2

√
�Eelast

−Ecoher
, (6)

where E (k2) is the complete elliptic integral of the second
kind [40] and where we have defined

�Eelast = k

2
(b − a0)2, (7)

the elastic cost to exactly match the chain with the potential
period, and

Ecoher = −Ṽ0, (8)

which is known as the coherency energy, resulting from the
accommodation of the chain with the external potential. Note
that the solution discussed hitherto in Eq. (4) is only valid
provided [30]

Ṽ0 < γFK
λ

2
(b − a0)2, (9)

with γFK = π2/8. Indeed, when the external potential ampli-
tude overcomes this threshold, the solution of the problem
is a coherent interface, i.e., a structure where the atoms of
the 1D chain are in exact registry with the potential minima
(xn = nb).

We now turn to the dynamics of the system. The equation
of motion for atom n is

m
∂2xn

∂t2
= −λ(2xn − xn−1 − xn+1) − Ṽ0

2π

b
sin

(
2π

b
xn

)
,

(10)
where m is the mass of the atoms constituting the chain (we
assume that each atom has an identical mass). In the con-
tinuum limit, this equation is the Sine-Gordon equation [38],
whose solutions can be obtained using the inverse scattering
method [42] and consist of the asymptotic superposition of
phonons, solitons, and breathers. Since the Sine-Gordon equa-
tion is exactly integrable [38], all these quasiparticles interact
elastically with one another. Phonons are already solutions of
the equation of motion for the isolated chain, while solitons
and breathers directly arise from the nonlinear character of
the differential equation. Solitons have already been encoun-
tered in the static solution of the FK problem [see Eq. (4)]
and are related to localized compression/expansion of the
lattice. Breathers correspond to nonlinear periodic oscillations
localized in space [38], in contrast with phonons, which are
delocalized. Both solitons and breathers are relativistic parti-
cles, i.e., their speed cannot overcome the speed of sound in
the medium.

In this paper, we focus exclusively on phonons. To the best
of our knowledge, they have generally been studied without
considering the underlying soliton network accompanying the
atomic relaxation of the chain, except for the works of Suther-
land [32] and of McMillan [31] where a particular solution
was found. We hereafter derive a more general solution. In
the case of a coherent interface, the dispersion relation can be
easily derived, as done, e.g., in Ref. [38],

mω2 = 4λ sin2 q

2
+ Ṽ0

(
2π

b

)2

, (11)

where ω is the phonon frequency and q the phonon wave
number. Compared to an isolated 1D chain, the only effect of
the external potential is thus to transform an acoustic mode
into an optical one. This expresses the fact that, when the
chain is translated rigidly, there is now an increase of total
energy since the atoms are moved away from the bottom of the
external potential. This translates into a resistance to sliding,
i.e., a nonzero phonon (ω �= 0) at the zone center (q = 0).
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More generally, we are interested in the dispersion rela-
tion for the semicoherent interface, i.e., the one where the
formation of a superlattice is observed. We investigate here the
solution far from the chain ends, i.e., within the periodic array
of solitons. To investigate the corresponding phonon disper-
sion, we introduce the time-dependent atomic displacement
with respect to the equilibrium position un(t ),

xn(t ) = x0
n + un(t ), (12)

where x0
n is the static solution of the FK problem, as deter-

mined by Eq. (4) following the continuum approach of Frank
and Van der Merwe [30]. The equation of motion becomes

m
∂2un

∂t2
= −λ(2un − un−1 − un+1) + λb

2π

∂2ϕ0
n

∂n2

− Ṽ0
2π

b

[
sin ϕ0

n cos

(
2π

b
un

)

+ cos ϕ0
n sin

(
2π

b
un

)]
. (13)

Considering sufficiently small atomic displacements (un � b),
the sine and cosine functions of these atomic displace-
ments can be linearized around the origin. In addition, note
that

λb

2π

∂2ϕ0
n

∂n2
− Ṽ0

2π

b
sin ϕ0

n = 0 (14)

since at equilibrium, the force on each atom vanishes. With
these considerations, equation of motion Eq. (13) becomes

m
∂2un

∂t2
= −λ(2un − un−1 − un+1) − Ṽ0

(
2π

b

)2

cos ϕ0
nun.

(15)
One can directly see that un = un(ω) exp (− jωt ) is an accept-
able solution of this equation. Thus,

mω2un = λ(2un − un−1 − un+1) + Ṽ0

(
2π

b

)2

cos ϕ0
nun.

(16)
The dispersion relationship is not as straightforward as the
one obtained for the coherent interface, since cos ϕ0

n depends
explicitly on n, i.e.,

cos ϕ0
n = 2 sin2

(
ϕ0

n

2
+ π

2

)
− 1 = 2 sn2

(
βn

k

)
− 1. (17)

Inserting the last expression into Eq. (16) leads to the discrete
counterpart of the Lamé differential equation [43]. While the
solutions of this particular problem can be expressed at the
continuum limit in terms of ellipsoidal harmonics [32,43], we
present hereafter another approach that relies on perturbation
theory [44]. This approach greatly simplifies the analytical
expressions.

We first note that Eq. (17) is periodic, and thus can be
expanded as a Fourier series (αt Fourier coefficients). Since
it is directly related to Jacobi elliptical functions, it can also

α1

α0

α2

α3

A1

A0

A2

A3

FIG. 1. Left: Variation of the four first Fourier coefficients αt of
the external potential cos (ϕ0

n ) as a function of the elliptic modulus
k. Note that the functions have been truncated to k ∈ [0, 0.99989]
for sake of clarity; all of them, except α0, go asymptotically to 0
when k → 1. Right: Variation of the corresponding amplitude At [see
Eq. (21)] as a function of the ratio between coherency and elastic
energies [see Eqs. (7) and (8)]. The lattice mismatch has been fixed
to 10% for illustration. The dashed vertical line corresponds to the
asymptotic value for the semicoherent interface. Beyond this line, the
coherent interface [whose phonon dispersions are given by Eq. (11)]
becomes energetically favored.

be written as a Lambert series [41],

cos ϕ0
n =

∞∑
t=0

αt cos (tQn) = 2
K (k2) − E (k2)

k2 K (k2)
− 1

− 4π2

k2 [K (k2)]2

∞∑
t=1

tξ t

1 − ξ 2t
cos (tQn), (18)

where E (k) is the complete elliptic integral of the second kind
and where we have introduced the nome of k,

ξ = exp

(−πK (1 − k2)

K (k2)

)
, (19)

and Q, the characteristic wave number of the system, i.e.,

Q = 2π

P
= βπ

kK (k2)
. (20)

The variation of the top four coefficients of the Fourier decom-
position in Eq. (17) as a function of k is shown in Fig. 1. As
one can see, the Lambert series converges rapidly when k is
sufficiently small. It is only at the extreme vicinity of k → 1
that a high number of harmonics of Q has to be considered.
In this case, this Fourier decomposition may not be the most
suitable approach to solve the problem. A better option may
be to expand the Jacobi sine function in terms of hyperbolic
functions instead (see Ref. [40] for further details). This aspect
will not be discussed further here.

It is also important to note that, although α1 → −1 when
k → 0, this asymptotic value does not correspond to the min-
imal amplitude of the corresponding harmonic in Eq. (16).
Indeed, the integration constant k is determined by Eq. (6) and
is a function of the amplitude potential, which is also involved
in Eq. (16). Introducing the speed of sound in the medium
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v2
s = k/m and the lattice mismatch � = (b − a0)/b between the chain and the potential, Eq. (16) can be written as

ω2un = v2
s

(
2un − un−1 − un+1 +

∑
t

αt
−Ecoher

�Eelast
2π2�2 cos(tQn)un

)
= v2

s

(
2un − un−1 − un+1 +

∑
t

At cos(tQn)un

)
, (21)

where At � 2π2�2αt (−Ecoher/�Eelast ). The variation of the
amplitude At of the top four components of the Fourier de-
composition as a function of the ratio between coherency and
elastic energy are shown in the right panel of Fig. 1. As one
can see, A1 varies approximately linearly with respect to the
energy ratio, except in the vicinity of π2/8, where it reaches
a minimal value. Note that all amplitudes except A0 go to 0
when −Ecoher/�Eelast → π2/8. Their decreasing part is not
represented in Fig. 1 for clarity.

Next, we can truncate Eq. (18) to keep only the static term
(α0 coefficient) and the first harmonic of Q frequency (α1

coefficient). In this case, the differential equation to be solved
is

mω2un = λ(2un − un−1 − un+1) + Ṽ0

(
2π

b

)2

α0un

+ Ṽ0

(
2π

b

)2

α1 cos (Qn) un, (22)

which could be interpreted as the discrete counterpart to Math-
ieu’s diffential equation [40]. To solve this problem, we rely
on perturbation theory [44] where the external potential term
is treated as a perturbation to the system. It is thus assumed
that the external potential term is small compared to the elastic
term. We rewrite Eq. (22) as

εun = ̂un + γ V̂ un, (23)

where we have introduced ε = mω2 and γ the dimensionless
perturbation parameter. The operator ̂ is defined as

̂un � λ(2un − un−1 − un+1), (24)

while the operator V̂ is defined as

V̂ un � Ṽ0

(
2π

b

)2

α0un + Ṽ0

(
2π

b

)2

α1 cos (Qn)un. (25)

The eigenvalues are expanded in terms of γ ,

ε = ε (0) + γ ε (1) + γ 2ε (2) + . . . , (26)

and similarly for the eigenvectors

un = u(0)
n + γ u(1)

n + γ 2u(2)
n + . . . . (27)

The unperturbed solution is ε (0) = 4λ sin2 q associated with
the eigenvector u(0)

n = (P)−1/2e± jqn, where P is the period of
the superlattice as defined by Eq. (5). The first-order correc-
tion to the energy is

ε (1) = 〈
u(0)

n

∣∣V̂ ∣∣u(0)
n

〉 = Ṽ0

(
2π

b

)2

α0, (28)

since the average of cos (Qn) over the period P is zero. Using
first-order perturbation theory, the effect of the external po-
tential is a rigid translation in ω2, and thus corresponds to the
transformation of an acoustic phonon into an optical phonon

(see Fig. 2). This is observed for any value of the integration
constant k, although the shift reduces to 0 for k → 0. This
effect is exactly the same as the one described for a coherent
interface [see Eq. (11)], still in a weaker form: The atoms
are not all situated at the bottom of the external potential in
the case of a semicoherent interface. The resistance to sliding
of this system is thus smaller, since it is averaged over all
the atomic sites in the superlattice. In parallel, if there is
no accommodation of the external potential, i.e., the atomic
sites equally cover the positions corresponding to positive and
negative values of the external potential, translating the chain
does not modify the energy of the system since it falls back to
an equivalent energy configuration (translational invariance).

The analysis so far indicates that only the static term is
involved in the first-order perturbation theory. However, the
first overtone of the external potential will be involved in the
second order and beyond. This requires a careful treatment of
the energy degeneracy between the different eigenvectors of
the unperturbed case. In the unperturbed solution, there are
two phonon branches, corresponding to positive and negative
wave vectors. A linear combination of these solutions is

un = 1√
P

(
c+ e jqn + c− e− jqn

)
, (29)

where c+ and c− are the coefficients of the linear combination.
One finds

〈un|̂|un〉

= 1

P
(c∗

+ c∗
−)

(
4λ sin2(q/2) 0

0 4λ sin2(q/2)

)(
c+
c−

)
(30)

and

〈un|V̂ |un〉 = Ṽ0

(
2π

b

)2 1

P
(c∗

+ c∗
−)

(
α0

α1
2 (δ2q,−Q + δ2q,Q)

α1
2 (δ2q,−Q + δ2q,Q) α0

)(
c+
c−

)
,

(31)

where δi j denotes the Kronecker delta. To derive these expres-
sions, the orthogonality between the e jqn and e− jqn functions
has been used. The effects of the α0 terms correspond to
the first-order perturbation theory described above. Thus, one
can directly see that, at second order, the external potential
only affects two points, i.e., Q/2 and −Q/2. At Q/2, the
degeneracy between ω2

Q/2 and ω2
−Q/2 states is lifted, leading

to the two following phonon states:

mω2
∓(Q/2) = 4λ sin2

(Q

4

)
+ Ṽ0

(
2π

b

)2

α0 ± Ṽ0

(
2π

b

)2
α1

2
.

(32)
By convention, ω− is defined as the lowest energy state at q =
Q/2, while ω+ is the highest one. The eigenvectors associated
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ω

0 π-π -Q/2 Q/2

Δω (0), first order 

Δω (1) Δω (1),Second 
order and 

beyond

q

1D chain

Soliton center Soliton center

xn

V
po

t(
x

0 n
)

Optical soliton mode

Soliton center Soliton center

xn

V
po

t(
x

0 n
)

Breathing soliton mode

Folding Folding

FIG. 2. Left: Schematic representation of the influence of the external potential on the phonon band structure of a 1D chain of atoms. The
unperturbed case is depicted in dash blue while the perturbed case is shown in red. The soliton potential transforms the acoustic mode into
an optical mode (�ω(0) frequency shift at q = 0) and opens band gaps in the phonon band structure at q = ±Q/2 (solid red: �ω(1) opening;
only the first harmonic is represented for clarity). Since the system is periodic, one can equivalently only consider the superlattice’s Brillouin
zone. The states outside of this zone are then folded inside the superlattice’s Brillouin zone (dotted red onto solid red). Right: Schematic
representation of the phonon states at the band-gap opening, where each circle represents an atom of the chain. The y axis corresponds to the
external potential energy for a given atom and is only represented for clarity. Arrows represent the norm of the phonon eigenvector. The modes
at the band-gap opening can either be interpreted as an optical soliton vibration (upper mode) or as a breathing soliton vibration (lower mode).

with these phonon states are

u−
n (Q/2) = 1√

2P

(
e jQn/2 + e− jQn/2

) = 2√
2P

cos (Qn/2)

(33)
and

u+
n (Q/2) = 1√

2P

(
e jQn/2 − e− jQn/2

) = 2 j√
2P

sin (Qn/2),

(34)
and correspond to stationary waves, which are either localized
around the soliton core [Eq. (33)] or, on the contrary, away in
the coherent domains [Eq. (34)]. The phonon states at −Q/2
are associated with the same frequencies as the ones at Q/2,
but their eigenvectors are complex conjugates of Eqs. (33)
and (34). They are schematically represented in Fig. 2 and
could be interpreted as optical soliton [Eq. (33)] and breathing
soliton [Eq. (34)] excitations, respectively.

The effect of the first potential harmonic is represented
graphically in Fig. 2 and corresponds to a band-gap opening at
the Q/2 and −Q/2 points. This adds to the already discussed
effect of the static term (transformation of an acoustic mode
into an optical mode). Note that, referring to Fig. 1, the band-
gap opening varies approximately linearly over a large portion
of the function domain, reaching a maximum in absolute value
when the ratio between the coherency and elastic energies lies
in the close vicinity of π2/8.

It can easily be shown that the effect of the higher har-
monics of the external potential [Eq. (18)] is almost identical
to the one derived for its first harmonic, i.e., the opening of
band gaps at the tQ/2 wave numbers, where t is the index of
the corresponding t th harmonics and t ∈ Z0, the ensemble of
nonzero integers. Let us now consider the soliton lattice, asso-
ciated with its own Brillouin zone, i.e., [−Q/2, Q/2], which

contains all the information on phonons and is a fraction of the
1D chain’s Brillouin zone. Compared to the 1D chain’s case,
the details coming from wave numbers away from this su-
perlattice Brillouin zone are simply folded on the irreducible
Brillouin zone (see Fig. 2 for a graphical sketch). The even
harmonics fold onto the zero wave number, thus opening a
band gap at the zone center, while the odd harmonics open a
band gap at the zone borders, i.e., Q/2 and −Q/2.

III. NEARLY FREE PHONON MODEL

This folded representation is reminiscent of the one de-
rived for electrons in the NFE model [37], where the effect
of the nucleus potential is to open forbidden band gaps at
the zone boundaries and at the zone center. This suggests
the introduction of the NFP model, for which the FK model
provides analytical results. Two major differences between
NFE and NFP models have to be discussed. The first one
comes from the fact that the first-order perturbation term,
arising from the static term in the Fourier decomposition, is
crucial for phonons since it leads to transformation of the
acoustic mode into an optical mode, instead of a simple energy
shift. Meanwhile, in the NFE model, this static term can be
discarded since it simply corresponds to a rigid shift in energy.
The second major difference arises from the fact that the
dispersion relation is unbound in the NFE model, while it is
bound for phonons. The band-gap openings thus happen in a
relatively narrow frequency window in contrast with the NFE
model. This latter point will be critical when we come back to
the slightly misaligned graphene bilayer case.

Following the derivation presented in this section, one can
see that the external potential has strong implications for the
dispersion relation of a 1D chain. Numerical investigations
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of phonons in the FK model [34,35] considering an incom-
mensurate phase (i.e., nonuniformly spaced solitons) have
already demonstrated the emergence of an optical branch and
of discontinuities in the phonon band structure at nonspe-
cific phonon wave vectors. While some traces of the acoustic
model remain in this incommensurate case, our investigations
reveal that this feature disappears for a periodically repeated
soliton network, as well as that the band-gap openings ap-
pear specifically at the superlattice Brillouin zone and at the
zone center. As mentioned previously, a specific solution for
phonons in the Sine-Gordon equation has also been derived
analytically in previous works [31,32]. This specific solution
corresponds exactly to the k → 0 case derived in this paper for
the free-end chain configuration (see Fig. 1), where no band
gap openings are predicted in the phonon band structure. More
general cases always lead to the transformation of the acoustic
mode into the optical mode.

IV. PHONONS IN TWISTED GRAPHENE BILAYER

We will now apply our findings to the specific case of
tBLG phonons. The following (geometrical) approach shares
many similarities with the studies presented in Refs. [6,13,14].
The problem will be approximated as a strictly two-
dimensional one. The graphene lattice before relaxation is
characterized by the lattice vectors a1 = (0, 1)a and a2 =
(−√

3/2, −1/2)a, where a is the lattice parameter of
graphene. The corresponding reciprocal lattice vectors are
a∗

1 = 2π/a(−√
3/3, 1) and a∗

2 = 2π/a(−2
√

3/3, 0). The
position of a given unit cell is Rkl = ka1 + la2. The atomic
positions in the unit cell are r1 = 0 and r2 = a1/3 + 2a2/3.
The corresponding atomic index is denoted κ . Furthermore,
to distinguish between the two layers, the superscripts B and
T are introduced to refer to the bottom and top layers, re-
spectively. For sufficiently small atomic displacements with
respect to the equilibrium positions (i.e., in the harmonic
approximation), the elastic energy of the system is given by

Eelast =
∑
κα,kl

∑
κ ′β,k′l ′

κα,κ ′β (Rkl , Rk′l ′ )uκα (Rkl )uκ ′β (Rk′l ′ ),

(35)
where κα,κ ′β (Rkl , Rk′l ′ ) are the interatomic force constants
between the atoms situated at rκ + Rkl and at rκ ′ + Rk′l ′

coordinates in the directions α and β, while uκα (Rkl )
expresses the displacement along the direction α of the atom
κ in the cell (k, l ) with respect to its equilibrium position. The
force experienced by the atoms when one of them is moved
away from its equilibrium position varies thus linearly in this
harmonic approximation.

Next, the bottom graphene layer is rotated by an angle
θ/2 clockwise, while the top layer is rotated by an angle θ/2
counterclockwise. The position of a graphene unit cell in the
bottom layer is thus given by

RB
kl = �−θ/2Rk,l =

(
cos(θ/2) sin(θ/2)

− sin(θ/2) cos(θ/2)

)
Rkl , (36)

while the position of a graphene unit cell in the top layer is
given by RT

kl = �θ/2Rkl . The interatomic force constants are

also transformed after rotation:

B
κ,κ ′ (Rkl , Rk′l ′ ) = �θ/2 

κ,κ ′ (Rkl , Rk′l ′ ) �−θ/2 (37)

and

T
κ,κ ′ (Rkl , Rk′l ′ ) = �−θ/2 

κ,κ ′ (Rkl , Rk′l ′ ) �θ/2. (38)

Without any lattice relaxation, the relative position of a cell
in the bottom layer with respect to the corresponding cell in
the top layer is given by

δkl = RB
kl − RT

kl

= 2a sin(θ/2)
[
(1, 0)k + (−1/2,

√
3/2

)
l
]
. (39)

For certain values of θ , it is possible to find values of k, l
that fulfill ||δkl || = a. In those cases, a superlattice can be
constructed based on the lattice vectors

L1 = a

2 sin(θ/2)
(1, 0) (40)

and

L2 = a

2 sin(θ/2)
(−1/2,

√
3/2). (41)

In this superlattice, some regions of space can be assimilated
to AA and AB stacking; between those areas, the stacking
arrangement evolves linearly in the absence of relaxation. The
corresponding reciprocal lattice vectors

L∗
1 = 4π

a
sin(θ/2)(1,

√
3/3) (42)

and

L∗
2 = 4π

a
sin(θ/2)(0, 2

√
3/3) (43)

form a hexagonal Brillouin zone, whose high-symmetry
points are KL = (1/3, 1/3, 0) and ML = (1/2, 0, 0) in re-
duced coordinates, respectively. By construction, these points
correspond exactly to the difference in positions between the
corresponding K and M high-symmetry points in the bottom
and top layers (see Fig. 3). It means that, in the absence of
any interlayer interaction, the phonon states at the KL and
ML include the folded graphene phonon states at the K and
M high-symmetry points upon a rotation of their phonon
eigendisplacements.

The influence of the interlayer interaction is now consid-
ered. In the classical picture, it can be written as a summation
over pairwise terms,

Einter =
∑
κ,kl

∑
κ ′,k′l ′

V
(
rB
κ,k,l − rT

κ ′,k′,l ′
)
, (44)

where V (rB
κ,k,l − rT

κ ′,k′,l ′ ) is a monotonously decreasing func-
tion of the distance between the atoms. Let us suppose that
this interlayer energy depends only on the (local) stacking
arrangement between the graphene sheets, determined by
Eq. (39), independently of the strain state in the layers. In this
case, the interlayer energy potential can simply be obtained
by spanning the translational energy landscape between the
layers in the Bernal bilayer graphene configuration as has
been done previously in the literature (see, e.g., Ref. [6]). The
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(a) (c)
(d)

(b)

FIG. 3. (a), (b) Schematic representations of the relaxed structures of (a) 1D FK model and (b) twisted bilayer graphene. Both show
domainlike solutions: In the FK model, coherent regions, where the atoms are in close registry with the external potential (in blue) are separated
by the other ones by solitons, where the atoms span the other part of the external potential (in red); meanwhile, in twisted bilayer graphene
(b), regions of optimal stacking arrangement are favored (in blue and green) and separated from the other by domain walls (solitons). (c) The
Brillouin zones of the superlattice (L superscript), and of the top (T superscript) and bottom (B superscript) layers. Right: Schematic application
of the NFP model on the graphene bilayer case (initial phonon states in solid blue). Only the first four graphene modes are represented and the
� → K branch, and we only illustrate the effect of the NFP model on the transverse acoustic mode here. The modes with in-plane character
are affected by the soliton potential, leading to band-gap openings at the K high-symmetry point (first harmonic of the potential in dashed red,
third in dashed green). Note the appearance of an optical mode at low frequency.

interlayer energy can be written in terms of a Fourier series

Einter =
∑

kl

∑
nm

Ṽnm exp
(

jGL
nm.δkl

)
, (45)

where Ṽnm are the Fourier coefficients and GL
nm are linear

combinations of the superlattice reciprocal lattice vectors, i.e.,
GL

nm = nL∗
1 + mL∗

2. The interlayer energy is minimum for the
AB stacking arrangement and maximum for the AA stacking
one. During relaxation, the system preferentially adopts these
AB stacking regions and tends to minimize the AA stacking
ones by further misaligning the layers locally around these re-
gions, as has already been shown several times in the literature
[6,11,14,20–24].

With this approximated interlayer potential, the problem
strongly resembles the FK model that has been described
previously, except that the problem is now 2D and the relevant
input parameters, i.e., elastic and external potentials, take
more complicated forms. Solving this extended problem goes
beyond the scope of this paper; nevertheless, the relaxation
observed in practice, both experimentally and computation-
ally, can still be interpreted as the formation of a soliton
network in the system [see Fig. 3(b)] [6,11,14,20–24]. The
NFP model described in the previous section can be applied on
slightly misaligned bilayer graphene and gives some insight
into the phonon band structure of the twisted system. Some
subtleties emerge in the specific case of twisted bilayers,
which will now be discussed.

The NFP model indicates that one can expect band-gap
openings in the phonon band structure at the high-symmetry

points of the superlattice Brillouin zones, i.e., at �L, KL, and
ML. In the simple FK picture, the amplitude of these band-gap
openings would be directly proportional to the coefficients of
the Fourier decomposition given by Eq. (45), with Vnm → 0
for GL

nm → ∞. Still, not all the graphene modes are expected
to be affected by this soliton network potential. First, if the
corrugation (i.e., out-of-plane displacements) is neglected,
only the phonons with in-plane character will be perturbed.
This does not mean that the out-of-plane phonons should
not be impacted by the interlayer potential—of course, a
layer breathing mode emerges when the graphene layers are
stacked on top of the others independently of the formation of
a superlattice [45]—but the NFP model is unable to describe
them. This aspect also comes into play when a phonon mode
shares both in-plane and out-of-plane characters. For the sake
of simplicity, we suppose here that a mode corresponds to
atomic motions that are entirely in plane or out-of-plane.
Second, there is translational invariance: a rigid shift of the
system does not modify its energy. In a simple perturbation
picture, the translational mode in bilayer graphene arising
from the combination of the in-plane translational modes in
phase should not be affected by the soliton network formation
since the potential depends on the relative positions between
the atoms [see Eqs. (44) and (45)]. In contrast, the combina-
tion of modes in opposite phases are affected, leading to the
appearance of an optical mode in the phonon spectrum. This
is confirmed by a brute force computational approach [27].

At this stage, one expects the emergence of phonon
band gaps at the high-symmetry points of the superlattice’s
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Brillouin zone. By geometrical construction, these high-
symmetry points are directly related to their corresponding
high-symmetry points in the Brillouin zone of the graphene
bottom and top layers [see Fig. 3(c)]. This means that the
band-gap openings affect the phonon modes at these high-
symmetry points, i.e., the (in-plane) graphene phonon modes
at �, M, and K of the graphene Brillouin zone. We focus
here specifically on the high-symmetry line between the �

and K points [see Fig. 3(d)] and on the effect of the soliton
potential on the K point [46]. Its first harmonic along that
direction is expected to open a band gap for phonons with
in-plane character at the K, as represented schematically in red
in Fig. 3(d). We now consider the third harmonic of the soliton
potential in that direction, which falls on the K point of a
further graphene Brillouin zone. Since the dispersion relation-
ship of phonons is bound, this higher harmonic acts on the
very same initial phonon mode for the band gap opening, i.e.,
the phonon mode of graphene at the K high-symmetry point
[see Fig. 3(d) in dashed green]. This result contrasts with the
1D FK model presented in Sec. II, where—in general—the
higher harmonics of the potential were affecting different
phonon modes.

This feature, specific to slightly misaligned bilayers (i.e.,
not only to tBLG), has important consequences: Not only one
harmonic of the soliton potential, but an infinity, are acting on
the same initial phonon states at the high-symmetry points of
the layer Brillouin zones (see Fig. 3). This explains the obser-
vation of numerous subbands at the high-symmetry points of
the unfolded Brillouin zone in our previous numerical inves-
tigation of the TBLGs phonon band structures [12,27]. From
the 1D FK model, they should be associated to eigendisplace-
ments localized around the domain walls, or on the contrary

in the coherent domains. The effect of harmonics with really
large wave vectors are expected to be negligible except when
k → 1. A similar trend can be observed numerically in TBLG
for a small misalignment angle θ → 0◦ [27]. Experimentally,
Raman peaks, specifically localized in space either in the
soliton core or in the AA region, have been recently reported
[36]. Once again, they can be understood based on this NFP
model.

V. CONCLUSION

We have theoretically examined how the presence of a
periodic soliton lattice affects the phonons, as encountered in
the 1D FK model and in tBLG systems. The former case can
be solved analytically in the continuum limit and using per-
turbation theory, and the solutions suggest the introduction of
the NFP model. For tBLG, we use this NFP model to explain
the emergence of phonons subbands at the high-symmetry
points of the unfolded graphene Brillouin zone. While we
have focused exclusively on tBLG systems, the emergence
of numerous subbands in the phonon band structure is also
expected in other twisted bilayers like MoS2-MoS2 and other
transition-metal dichalcogenide bilayers.
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