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Topological charge distributions of an interacting two-spin system
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Quantum systems are often described by parameter-dependent Hamiltonians. Points in parameter space where
two levels are degenerate can carry a topological charge. Here we theoretically study an interacting two-spin
system where the degeneracy points form a nodal loop or a nodal surface in the magnetic parameter space,
similarly to such structures discovered in the band structure of topological semimetals. Key results of our work
are that (1) we determine the topological charge distribution along these degeneracy geometries and (2) we show
that these nonpointlike degeneracy patterns can be obtained not only by fine-tuning but they can be stabilized by
spatial symmetries. Since simple spin systems such as the one studied here are ubiquitous in condensed-matter
setups, we expect that our findings, and the physical consequences of these nontrivial degeneracy geometries,
are testable in experiments with quantum dots, molecular magnets, and adatoms on metallic surfaces.
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I. INTRODUCTION

Quantum systems are often described by parameter-
dependent Hamiltonians, with many models incorporating
multiple tunable parameters [1–7]. For example, the three
Cartesian components of the external magnetic field provide
N = 3 parameters in the Hamiltonian of an interacting multi-
spin system [7–11].

Let us summarize a few generic features for the case when
the only constraint on the parametrized Hamiltonian is its
Hermiticity. In this case, it requires at least N = 3 param-
eters to find points in the parameter space where two of
the energy levels are degenerate [12,13]. If the dimension
of the parameter space is exactly N = 3, then the generic
degeneracy points are isolated. If N > 3, then the degen-
eracy points form (N − 3)-dimensional geometrical patterns
in the N-dimensional parameter space, e.g., lines in a four-
dimensional parameter space, surfaces in a five-dimensional
parameter space, etc. Moreover, in the vicinity of a generic
isolated degeneracy point in a three-dimensional parameter
space (a so-called Weyl point), the energy splitting between
the two levels depends linearly on the distance from the Weyl
point.

It is customary to associate a topological charge to a
pointlike degeneracy in a three-dimensional parameter space
[7,9,11,14]. For example, take a single localized electron in a
magnetic (Zeeman) field,

H = B · S, (1)

where B is the magnetic field and S is the spin–1/2 vector op-
erator, that is, 1/2 times the Pauli matrices. For simplicity, we
use dimensionless quantities, i.e., we omit the Bohr magneton
μB from the Hamiltonian. In this example, the degeneracy
point is at the origin, B0 = 0. Calculating the surface integral
of the ground-state Berry curvature vector field on a closed
surface surrounding this degeneracy point yields 1, indepen-
dent of the shape of the surface. For a closed surface whose
interior does not contain the degeneracy point, this integral
is zero. Using the analogy to electrostatics of a point charge
and Gauss’s law justifies the terminology that the degeneracy
point carries unit topological charge. As electric charge is the
source of electric field, we define topological charge as the
source of Berry curvature.

Fine-tuning or the presence of symmetries can lead to
anomalous, nongeneric situations when degeneracy points in
a three-dimensional parameter space are (i) isolated but the
energy splitting is not linear, but of higher order [15–18] or (ii)
not isolated but they form a continuous line or surface [16,19–
26]. These anomalous features have been demonstrated in
electronic band structure models of three-dimensional solids,
where the parameters are the Cartesian components of crystal
momentum, and also in interacting spin systems with a three-
dimensional magnetic parameter space [11].

In this paper, we consider the three-dimensional parameter
space, and focus on case (ii), when either a degeneracy line or
a degeneracy surface is present. As we illustrated above, the
topological charge of an isolated degeneracy is concentrated
in a single point and is characterized by the total charge. How-
ever, for an extended degeneracy line or degeneracy surface, it
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FIG. 1. Interacting two-spin system and its nonpointlike mag-
netic degeneracy patterns. (a) Two localized spinful electrons in
a double quantum dot, in the presence of spin-orbit coupling, in-
teracting with each other via exchange interaction (J , R̂), and an
external magnetic (Zeeman) field B via g tensors ĝL and ĝR. Figure
shows one potential realization [7] defined in a nanowire (brown) by
electrostatic gates (yellow). (b) Nonpointlike magnetic degeneracy
patterns of the two-spin system. (II) Two degeneracy points with unit
(+1) topological charge each (red) and a neutral degeneracy ellipse.
(IV) Degeneracy ellipsoid surface carrying a total topological charge
of +2. (V) Degeneracy ellipse carrying a total topological charge of
+2. Classes (II), (IV), (V) were defined in Table I of Ref. [11].

is a natural question to ask: How is the net topological charge
distributed on the line or surface? As the central result of this
paper, we formulate the topological charge density on these
higher dimensional manifolds using the analogy to electro-
statics. In the line degeneracy case, we also show, in general,
that any point with linear energy splitting in all transverse
(nontangential) directions must be neutral.

As an experimental motivation and an illustrative example,
we take the spin-orbit-coupled interacting two-spin problem
we studied in the experiment of Ref. [7] and in the theory
work Ref. [11], and we use the labels defined in Table I of
the latter reference. The setup is illustrated in Fig. 1(a). A
degeneracy line appears in the magnetic parameter space in
cases (II) and (V), and a degeneracy surface appears in case
(IV). The degeneracy patterns are sketched in Fig. 1(b), and
introduced in more detail in Sec. II below.

For the neutral ellipse in case (II), we find that the topolog-
ical charge distribution along the ellipse is identically zero.
For the charged ellipse in case (V), the net topological charge
+2 is evenly distributed between two opposite points of the
degeneracy ellipse, and all further points of the ellipse are
neutral. These results illustrate our general finding that points
of a degeneracy line with linear energy splitting are always
neutral. For the charged ellipsoid in case (IV), the net topo-
logical charge of +2 is distributed continuously, in striking
similarity to how electric charge is distributed on the surface
of a charged metallic ellipsoid. Furthermore, we show that
these nonpointlike degeneracy geometries can be obtained
not only by fine-tuning but they can be stabilized by spatial

symmetries; we exemplify this for the case when the two-spin
system has C3v symmetry.

The rest of the paper is structured as follows. In Sec. II, we
discuss the Hamiltonian of the spin-orbit coupled interacting
two-spin model that we consider throughout this paper, and
review our earlier results regarding the possible geometrical
patterns formed by the ground-state degeneracy points of the
magnetic parameter space. In what follows, we call the de-
generacy patterns labeled (II), (IV), and (V) of Ref. [11] as
the nonpointlike degeneracy patterns of the two-spin model.
In Secs. III and IV, we present and derive the topological
charge distributions characterizing these nonpointlike degen-
eracy patterns. We provide a discussion of our results and
general analytical arguments in Sec. V, and conclude in
Sec. VI.

II. SETUP AND BACKGROUND: SPIN-ORBIT-COUPLED
TWO-SPIN SYSTEM

The physical system we describe in this paper is a
spin-orbit-coupled double quantum dot in the (1,1) charge
configuration, that is, when both quantum dots are occupied
by a single electron. In the past two decades, this setup has
been used as a workhorse for a multitude of experiments in
the field of spin-based quantum information processing. For
example, it was used to demonstrate Pauli blockade [27],
and the latter has been utilized as a spin readout mechanism
in electron spin resonance [28], electrically driven spin res-
onance [29], and gate-controlled two-qubit gates [30]. Our
Fig. 1(a) shows such a double dot formed by bottom gates
(gold) in a nanowire (brown), similar to those measured in,
e.g., Refs. [7,31,32].

A recent experimental work [7] realized such a double
quantum dot in an InAs semiconducting nanowire, where
spin-orbit interaction is very significant. Spin-orbit interaction
plays a very important role in the physics of double dots,
in general, and spin-based quantum bits in particular. The
experiment [7] focused on the singlet-triplet anticrossing of
the Zeeman spectrum of the (1,1) charge configuration.

In the absence of spin-orbit coupling, the interacting two-
spin system in a double dot subject to a homogeneous
magnetic field B is described by the following well-known
Hamiltonian:

H = B · g(SL + SR) + JSL · SR. (2)

Here, the first term is the Zeeman interaction with the external
homogeneous magnetic field B, where SL and SR are the spin
vector operators represented by 1/2 times the spin-1/2 Pauli
matrices, g denotes the electronic g factor, and J is the strength
of the Heisenberg exchange interaction.

The Hamiltonian of Eq. (2) is isotropic and its spectrum
is well-known. At zero magnetic field, the ground state is the
nondegenerate singlet, whereas the excited state is a threefold
degenerate level with three triplet energy eigenstates. For any
direction of the magnetic field, at the specific field value
B0 = J/g, the ground state becomes twofold degenerate, as
the energy level of the singlet and one of the polarized triplets
coincide. This implies that the points in the magnetic-field
parameter space where the ground state is degenerate form
a sphere of radius B0.
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This sphere of ground-state degeneracy points is dissolved
immediately when the isotropy of the problem is broken by
spin-orbit interaction. Modeling spin-orbit interaction in the
interacting two-spin system is often done by the following
generalization [7,11,33] of Eq. (2):

H = B · (ĝLSL + ĝRSR) + JSL · R̂SR. (3)

Here, the first term is the spin-orbit-affected Zeeman term,
where ĝL and ĝR are the real-valued g tensors that are distorted
by spin-orbit coupling with respect to their isotropic form in
Eq. (2). The g tensors are not necessarily symmetric, but we
assume that both have a positive determinant [11].

The second term in Eq. (3) is the exchange interaction
between the two electrons, which deviates from the standard
Heisenberg exchange of Eq. (2) due to spin-orbit interaction.
In the second term of Eq. (3), J > 0 is the strength of the
exchange interaction and R̂ is a real, 3 × 3 special orthog-
onal matrix accounting for the spin-orbit interaction in the
exchange term. The origin of this Hamiltonian is discussed
in detail in Refs. [7,11,33].

Note that numerous experiments have shown that g tensors
of electrons confined in semiconductors can be tuned in situ
by electric fields [31,34–37]. Therefore, we regard the spin-
orbit-affected parameters, that is, the matrix elements of the
g tensors, the exchange strength J , and the exchange rotation
R̂, as tunable parameters. In what follows, we will refer to the
magnetic-field space as the parameter space and will use the
term secondary parameters for the further parameters of
the Hamiltonian: the g tensors, the exchange strength J , and
the exchange rotation R̂.

The key finding of Ref. [7] is that, even in this anisotropic
configuration with spin-orbit interaction, there are always
ground-state degeneracy points in the magnetic-field pa-
rameter space, guaranteed by topological properties of the
Hamiltonian. If the secondary parameters are not fine-tuned,
then two or six ground-state degeneracy points (Weyl points)
remain [7] after switching on spin-orbit interaction, that is,
upon moving from Eq. (2) to Eq. (3). However, as shown
in Ref. [11], with appropriate fine-tuning of the secondary
parameters, more exotic ground-state degeneracy patterns,
including nodal lines and nodal surfaces, can be achieved.
The complete list of seven different ground-state degeneracy
patterns for this particular model is provided in Table I of
Ref. [11] and are labeled as (I)–(VII).

Experimental observation of the seven ground-state de-
generacy patterns in the spin-orbit-coupled two-spin system
seems challenging but feasible. As mentioned above, fine-
tuning of the secondary parameters of the model can be done
by fine-tuning the confinement gate voltages of the quantum
dots. Measuring the energy gap between the ground state
and the first excited state can be done by, e.g., cotunneling
spectroscopy [7], Landau-Zener spectroscopy [38,39], or two-
tone spectroscopy [40–43], i.e., these techniques can reveal
the existence and locations of Weyl points. Furthermore, the
topological charge of the degeneracy points and the Berry
curvature associated to the ground-state manifold can also be
measured [10], as demonstrated with superconducting qubits
[44]. The existence of these experimental tools serves as ad-
ditional motivation to analyze the geometrical and topological

features of the spin-orbit-coupled two-spin model and its ex-
otic ground-state degeneracy patterns.

Throughout this paper, we will focus on the nonpointlike
ground-state degeneracy patterns (II), (IV), and (V), which
are illustrated in Fig. 1(b). Degeneracy pattern (II) consists of
two Weyl points with topological charge +1 each, and a nodal
loop (ellipse) which has a vanishing total topological charge.
Degeneracy pattern (IV) describes the case when the ground
state of the two-spin system is degenerate along an ellipsoid in
the magnetic-field parameter space. This ellipsoid has a total
topological charge of +2: If surrounded by a closed surface
in the magnetic-field parameter space, the ground-state Chern
number for that surface is +2. A special case of the ellipsoid
is the isotropic situation described by the textbook Heisen-
berg exchange interaction, i.e., lack of spin-orbit interaction,
as described by Eq. (2). For that special case, the ellipsoid
simplifies to a sphere. Finally, degeneracy pattern (V) is a
nodal loop, which has a total topological charge of +2.

The other degeneracy patterns have isolated point degen-
eracies. Pattern (I) and (VII) are the generic cases that do
not require fine-tuning. These contain, respectively, 6 and 2
ordinary Weyl points, which have linear energy splitting in
every direction and their topological charge is ±1. Degen-
eracy pattern (III) has four points: two ordinary Weyl points
with +1 charge and 2 quadratic Weyl points. The latter type
of degeneracy has quadratic energy splitting in one specific
direction and linear in the other directions; furthermore, it is
neutral. Pattern (VI) has two cubic Weyl points with +1 charge
each.

We close this section by recalling a few simple technical
details regarding the spin-orbit-coupled two-spin system [11].
As noted earlier, we focus on the values of the magnetic field
B0 where the ground state of the 4 × 4 Hamiltonian of Eq. (3)
is twofold degenerate. Here we recall how to identify such
magnetic degeneracy points analytically. If it holds for a unit
vector b that

bTĝRR̂
−1 || bTĝL, (4)

then there is a unique ground-state degeneracy point at a
certain magnetic field B+ = B0b with B0 > 0, and another one
at B− = −B0b. (Note that in our notation, ‖ includes that the
two vectors point to the same direction.) In turn, condition
Eq. (4) is fulfilled if and only if b is a left eigenvector of the
matrix

M̂ = ĝLR̂ĝ−1
R , (5)

corresponding to a positive eigenvalue a. The absolute value
of the magnetic field where the ground-state degeneracy oc-
curs is

B0 =
(

1 + 1

a

)
J

2gR
, (6)

where gR = |ĝT
Rb| (see Appendix C of Ref. [11]).

The above condition Eq. (4) is sufficient to guarantee the
existence of two degeneracy points. We do not have a rigor-
ous proof that Eq. (4) is also a necessary condition, but an
extensive numerical search for degeneracy points found no
counterexample, so we conjecture that it is.

The matrix M̂ defined in Eq. (5) is a 3 × 3 nonsymmetric
real-valued matrix with positive determinant. The possible
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degeneracy geometries are classified by its eigenstructure, i.e.,
the Jordan normal form of this matrix, see Table I in Ref. [11].
As shown there, the degeneracy points can be isolated, as in
the electronic dispersion relation of a Weyl semimetal [4] or
multi-Weyl semimetal [15], or they can form lines or surfaces,
as in nodal-loop [21] or nodal-surface [22] semimetals.

In Ref. [11], we have already described these nonpointlike
degeneracy patterns, and have established their total topolog-
ical charge. In this paper, we address the question for line
and surface degeneracies in general: How is their topological
charge distributed along them? To answer this question, we
use the two-spin system as a demonstrating example, but we
also provide proofs in Appendices E and G for the general re-
sults of the line and surface degeneracies in quantum systems.

There are well-known analogies between electrostatics and
geometric properties of parameter-dependent energy eigen-
states: The electric field distribution created by a charged
object is analogous to the Berry curvature in the vicinity of a
degeneracy pattern, and the total charge of a charged object
is the surface integral of the field for an arbitrary closed
surface enclosing the object, much like the topological charge
(Chern number) of a degeneracy pattern is the surface integral
of the Berry curvature for an arbitrary surface surrounding
that pattern. Can we define and compute a quantity in the
quantum-mechanical setting that is analogous to the spatial
(linear, surface) charge distribution of electrostatics?

III. LINEAR CHARGE DENSITY ALONG
DEGENERATE LINES

To answer this question, we follow intuition from classical
electrostatics. Since in our two-spin problem the degeneracy
lines are closed loops, we take such an example from electro-
statics.

As shown in Fig. 2, consider a loop l (blue), chosen to
be circular with radius R for concreteness, parametrized by
the path length variable s ∈ [0, 2πR). Assume that this loop
has a linear electrostatic charge distribution ν(s). The charge
creates an electric field E(r). Can we deduce the linear charge
density if only the induced electric field is known? Yes, in the
following way:

ν(s)

ε0
= lim

r→0

∫ 2π

0
dϑ E(pr (s, ϑ )) · (∂ϑ pr × ∂s pr )s,ϑ . (7)

In this formula, pr : [0, 2πR) × [0, 2π ) is the parametrization
of a torus surrounding the loop as shown in Fig. 2, with s ∈
[0, 2πR) used as the longitude path length and ϑ ∈ [0, 2π )
used as the meridian angle of the torus. Furthermore, r is the
meridian radius characterizing the thickness of the torus, that
is, r → 0 corresponds the thickness shrinking and the torus
surrounding the loop infinitely tightly. Note that the dimension
of s is a length (meter) whereas ϑ is an angle parameter hence
is dimensionless.

In other words, Eq. (7) expresses that the distribution of
the electric flux density on the torus provides an increasingly
accurate picture of the charge density ν(s), as the torus ra-
dius is shrinking and the torus tightens around the charged
loop. We prove this classical electrostatics relation Eq. (7) in
Appendix A.

r

R

0 π
2 R πR 3π

2 R 2πR

s

0

π
2

π

3π
2

2π

ϑ

pr

(a)

(b)

FIG. 2. Inferring the linear charge density of a charged loop from
the electric field it creates. (a) Charged loop (blue) and a torus
(colored) enclosing the loop, with meridian radius r. (b) The torus
is parametrized by the map pr : [0, 2πR) × [0, 2π ) → R3, using the
longitude path length s and the meridian angle θ . The electric flux
density on a torus reveals the linear charge density of the loop as
meridian radius of the torus shrinks to zero, r → 0, see Eq. (7).

Using the relation of Eq. (7), we identify the linear topo-
logical charge density along a degeneracy line. Patterns (II)
and (V) are degeneracy loops (ellipses), hence we can again
surround any of them by a shrinking torus, described by
the parametrization pr (s, ϑ ), where s has the dimension of
magnetic field (Tesla) and ϑ is dimensionless. For an iso-
lated degeneracy point, the ground-state topological charge or
Chern number associated to the point reads

Q = 1

2π

∫
S

dA · B, (8)

where the integral is calculated for a closed surface S enclos-
ing the isolated degeneracy point, and B is the Berry curvature
vector field associated to the the ground-state wave function
ψ0(B) defined as

B(B) = i〈∇Bψ0(B)| × |∇Bψ0(B)〉, (9)

or writing componentwise

Bi(B) = iεi jk〈∂Bj ψ0|∂Bk ψ0〉. (10)

Therefore, for a degeneracy line, the formula revealing the
linear topological charge density reads

ν(s) = 1

2π
lim
r→0

∫ 2π

0
dϑ B(pr (s, ϑ )) · (∂ϑ pr × ∂s pr )s,ϑ . (11)

This is the quantity that we study in the following.
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FIG. 3. Neutral degeneracy ellipse has vanishing linear topological charge distribution. (a) Berry flux density Bn (temperature map) on the
surface of a torus surrounding a neutral degeneracy circle (black). Meridian radius, r/R = 0.2 (b) Two-dimensional Berry curvature B2D(s, ϑ )
[Eq. (12)] on the preimage of the torus, i.e., as a function of longitude path length s and meridian angle ϑ . (c) Apparent linear topological
charge density ν̃r (s) [Eq. (13)] as function of longitude path length s and meridian radius r. As r → 0, this function converges to the constant
zero function (white), showing that the linear topological charge density vanishes, ν(s) = 0. (d) A benchmark for the numerical integration:
Numerically evaluated ground-state Chern number Q on the torus, as function of the meridian radius r. Numerical error grows slightly as
r → 0, due to the divergence of the Berry curvature in the vicinity of the degeneracy circle, but it remains well below 10−5 even for the
smallest r values considered.

For future reference, we introduce the two-dimensional
(2D) Berry curvatureB2D via

B2D(s, ϑ ) = B(pr (s, ϑ )) · (∂ϑ pr × ∂s pr )s,ϑ , (12)

i.e., the integrand in Eq. (11). We also introduce the apparent
topological charge densityν̃r (s), which is the right-hand side
of Eq. (11), without taking the limit r → 0:

ν̃r (s) = 1

2π

∫ 2π

0
dϑB2D(s, ϑ ), (13)

related to the charge density defined above as

ν(s) = lim
r→0

ν̃r (s). (14)

Since we use the Hamiltonian of Eq. (3) depending on
dimensionless parameters B as our starting point, all these
newly introduced quantities are also dimensionless. Reinstat-
ing physical dimensions in Eq. (3) is done by multiplying
the first term with the Bohr magneton and reinterpreting B
as a magnetic field and J as an energy. Then, the physical
dimension of the Berry curvature and the Berry flux density
is magnetic field−2, whereas the dimension of the 2D Berry
curvature, the apparent topological charge density, and the
topological charge density is magnetic field−1.

A. Pattern (II): Neutral ellipse

First, we consider the neutral ellipse degeneracy pattern
(II) in Fig. 1(b). For this pattern, having zero total charge,
one can envision two qualitatively different scenarios: (a) the
charge distribution is identically zero at all points of the ellipse
and (b) there is a nonzero linear charge density along the
ellipse, but the negative and positive contributions cancel each
other when added up for the entire ellipse. Speculation based
on classical electrostatics intuition actually suggest scenario
(b): If we think of the ellipse as a globally charge-neutral
metal, then the two point charges outside the ellipse would

polarize the ellipse (cf. the interesting analogy with electro-
statics in Sec. IV).

Here, we provide evidence that scenario (a) is the case;
the local charge distribution along the degeneracy ellipse van-
ishes. This is the first key result of this paper. This conclusion
will be drawn from Fig. 3(c), but let us arrive there through a
few intermediate steps.

In Fig. 3(a), we show the degeneracy patterns, two red
points, and a black ellipse. We use the specific choice of
parameters where the g tensors are

ĝL,II =
⎛
⎝2 0 0

0 2 0
0 1 4

⎞
⎠, ĝR,II = 13×3, (15)

and the exchange interaction is characterized by JII = 1 and
R̂II = 13×3. For simplicity, energy and magnetic field are di-
mensionless, unless noted otherwise.

The total topological charge carried by the red degeneracy
points in Fig. 3(a) is +2. These degeneracy points are located
at opposite magnetic fields,

B± = ±
√

5

8

⎛
⎝0

1
2

⎞
⎠, (16)

and each of them carries a topological charge +1. The degen-
eracy ellipse shown as the black loop in Fig. 3 is actually a
circle in the xy plane for this parameter set, centered at the
origin, with radius R = 3

4 .
Figure 3(a) shows the Berry flux density on a torus sur-

rounding the degeneracy circle. The Berry flux density is
defined as the normal-to-surface component of the Berry cur-
vature vector field. For example, for point B on the torus, the
Berry flux density reads

Bn(B) = B(B) · n(B) (B ∈ torus), (17)

where n(B) is the normal vector of the torus at point B.
The torus in Fig. 3(a) is colored according to the nonzero
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FIG. 4. Charged degeneracy ellipse has two charged points. (a) Berry flux density Bn (temperature map) on the surface of a torus
surrounding a charged degeneracy circle (black). Meridian radius, r/R = 0.2 (b) Two-dimensional Berry curvature B2D(s, ϑ ) [Eq. (12)] on the
preimage of the torus, i.e., as a function of longitude path length s and meridian angle ϑ . (c) Apparent linear topological charge density ν̃r (s)
[Eq. (13)], as function of longitude path length s and meridian radius r. As r → 0, this function converges to the constant zero function (white),
showing that the linear topological charge density vanishes, ν(s) = 0. (d) A benchmark for the numerical integration: Numerically evaluated
ground-state Chern number on the torus, as function of the meridian radius r. Numerical error grows slightly as r → 0, but it remains well
below 10−3 even for the smallest r values considered.

Berry flux density. (Numerical techniques to obtain Fig. 3 are
described in Appendix B.)

On the way toward the linear topological charge density, to
be expressed via Eq. (11), we specify the parametrization of
the torus surrounding the degeneracy line as

pr (s, ϑ ) = Rerad(s) + r[cos ϑ ez + sin ϑ erad(s)], (18)

with

erad(s) =
⎛
⎝cos(s/R)

sin(s/R)
0

⎞
⎠, ez =

⎛
⎝0

0
1

⎞
⎠. (19)

Note that the normal vector of the torus can be expressed from
the parametrization via

n(pr (s, ϑ )) = ∂ϑ pr × ∂s pr

|∂ϑ pr × ∂s pr |
. (20)

With the parametrization in Eq. (18), in Fig. 3(b) we plot
the 2D Berry curvature B2D [see Eq. (12)] on the torus, with
meridian radius r = 0.2R. The data in Fig. 3(b) is used to
infer the linear topological charge density by numerically
performing the integration over parameter ϑ and dividing by
2π to obtain the apparent charge density ν̃r (s), and then taking
the limit r → 0. The apparent charge density as function of s
and r is shown in Fig. 3(c). Although the value of the apparent
charge density is nonzero for finite r, it does converge to zero
for all values of s as r → 0. This is numerical evidence that the
degeneracy circle is charge neutral. To illustrate the accuracy
of our result shown in Fig. 3(c), we numerically evaluate the
ground-state Chern number Q on the torus as the function
of the meridian radius r, by integrating the apparent charge
density over the longitude path length s. The result, shown
in Fig. 3(d), is indeed zero, exhibiting a numerical error less
than 10−5, illustrating that our numerical procedure is rather
accurate.

Up to now, we considered a specific parameter set, and
we performed numerical calculations for that special case.
This leads us to the finding that the neutral ellipse has an

everywhere-vanishing linear charge density. Does this hold
only for this special case or is it generic for any neutral degen-
eracy ellipse within the spin-orbit-coupled two-spin model?
We claim that the latter is true, and we outline the proof in
Sec. V A.

B. Pattern (V): Charged ellipse

Next we consider the charged ellipse degeneracy pattern
(V) in Fig. 1. The question is: How is the topological charge
distributed along the ellipse? Using the method of the previous
subsection, we show that the topological charge is concen-
trated at two opposite points of the ellipse, i.e., it is not
continuously distributed along the ellipse. This is the second
key result of this paper.

The example parameter set we use consists of g tensors

ĝL,V =
⎛
⎝2 0 0

0 2 0
0 1 2

⎞
⎠, ĝR,V = 13×3, (21)

and the interaction is described by JV = 1 and R̂V = 13×3.
The degeneracy ellipse is a circle with radius R = 3

4 again,
shown as a black line in Fig. 4(a).

Figure 4 (in analogy with Fig. 3) shows (a) the Berry
flux density Bn on a torus surrounding the degeneracy circle,
(b) the two-dimensional Berry curvature B2D(s, ϑ ) on the
preimage [0, 2πR) × [0, 2π ) of the torus, (c) the apparent
topological charge density ν̃r (s) of the degeneracy circle, and
(d) the numerically evaluated ground-state Chern number on
the torus.

Figures 4(a) and 4(b) reveal a remarkable difference com-
pared to Figs. 3(a) and 3(b): from Figs. 4(a) and 4(b), the
Berry flux is concentrated in narrow regions (red spots) in
the neighborhoods of two opposite points of the ellipse. Fig-
ure 4(c) suggests that the linear topological charge density,
which corresponds to the plotted data ν̃r (s) in the r → 0 limit,
consists of two Dirac deltas: the degeneracy circle is neutral
in all points except two discrete points opposite to each other,
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each carrying a topological charge of +1. In Sec. V A, this
numerical evidence is supported by analytical results.

Figure 4(d) shows that the numerical error of the Chern
number is below 10−3, illustrating the accuracy of our numer-
ical procedure. The feature that the error grows as the radius
decreases is rather natural: For a smaller radius, the Berry flux
gets more focused on a smaller area, hence our numerical
integration using an equidistant grid on the preimage of the
torus gets less accurate.

The direction of the charged points is (0, 1, 0)T, as de-
termined by the Jordan decomposition of M̂, according to
Eq. (C8). From Eq. (6), the position of these points is ex-
pressed as

B± = ±3

4

⎛
⎝0

1
0

⎞
⎠. (22)

This result is in agreement with Fig. 4(c), where the charge
density has two peaks at s ∈ {π

2 R, 3π
2 R}.

Figure 4(b) shows pronounced peaks of the two-
dimensional Berry curvature. These peaks appear because at
each charged degeneracy point there are two opposite direc-
tions perpendicular to the tangent vector of the degeneracy
circle in which the energy splitting grows quadratically as
we move away from the circle, and the Berry flux density is
typically greater where the splitting is smaller.

For both degeneracy points, we determine these directions
analytically using Eq. (D25), and we find (0,−1, 6)T. This
feature appears in the (s, ϑ ) torus of Fig. 4(b) as red spots
where the flux density is high; the spot locations can be
determined analytically as

(s1, ϑ1) =
(

π

2
R, π − tan−1 1

6

)
,

(s2, ϑ2) =
(

π

2
R, 2π − tan−1 1

6

)
,

(s3, ϑ3) =
(

3π

2
R, π + tan−1 1

6

)
,

(s4, ϑ4) =
(

3π

2
R, tan−1 1

6

)
,

(23)

matching the peaks seen in the numerical data.
To conclude, in this section we provided numerical evi-

dence that the neutral degeneracy ellipse, pattern (II) of [11],
has vanishing linear topological charge density, whereas the
charged degeneracy ellipse, pattern (V) of [11], has all its
topological charge focused in two opposite points of the el-
lipse. Even though the numerical results are obtained here
for a specific choice of secondary parameters (g-tensors,
exchange strength J and exchange rotation matrix R̂), the
statements are general, see Sec. V A for the outline of the
analytical proof. For example, if the secondary parameters
are changed with respect to those in section III A, such that
the resulting matrix M̂ still has the eigenpattern (II), then the
degeneracy circle generically deforms into an ellipse, but all
of its points remain charge-neutral. Results of section III B are
generalized analogously. For details of these generalizations,
we refer to Sec. V A.

B
x

−0.75

0.00

0.75
By

−0.2 0.0 0.2

B
z

−0.2

0.0

0.2

0

8
σ

FIG. 5. Topological surface charge distribution on a degeneracy
ellipsoid. See Sec. IV for parameter values. This topological charge
distribution is the same as the electric charge distribution on the
surface of a charged conducting ellipsoid.

IV. PATTERN (IV): CONTINOUS SURFACE CHARGE
DISTRIBUTION ON AN ELLIPSOID

Consider now the degeneracy pattern (IV) from Fig. 1,
the charged ellipsoid. Again, we will follow the electrostatics
analogy to determine the surface topological charge distribu-
tion on this ellipsoid, see also Ref. [45]. In electrostatics the
surface charge density σ (rS ) of surface S and the electric field
E(r) created by the surface charge density are related by the
following formula:

σ (rS )

ε0
= En(rS+) − En(rS−), (24)

where En(rS+)(En(rS−)) is the normal component of the elec-
tric field outside (inside) the surface at point rS on the surface.
Analogously, the surface topological charge density of the
degeneracy ellipsoid S is related to the Berry curvature vector
field via

σ (BS ) = 1

2π
[Bn(BS+) − Bn(BS−)], (25)

where BS is a point of the degeneracy surface.
Figure 5 shows this surface topological charge distribution

σ (BS ) for the example parameter set with g tensors

ĝL,IV =
⎛
⎝2 0 0

0 6 0
0 0 18

⎞
⎠, ĝR,IV =

⎛
⎝1 0 0

0 3 0
0 0 9

⎞
⎠, (26)

and interaction described by JIV = 1 and R̂IV = 13×3. With
these parameters, the degeneracy ellipsoid has its principal
axes aligned with the (Bx, By, Bz ) reference frame. The semi-
axes of the ellipsoid are

α = 3

4
, β = 1

4
, γ = 1

12
. (27)

In contrast to the result of Sec. III B, Fig. 5 shows a contin-
uous charge distribution, which reads

σ (BS ) = 1

2παβγ

1√
B2

Sx
α4 + B2

Sy

β4 + B2
Sz

γ 4

. (28)
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This formula is obtained from the general result for the surface
topological charge distribution:

σ (BS ) = a det ĝR

π (a + 1)
∣∣ĝRĝT

RBS

∣∣ . (29)

Here, a is the only eigenvalue of the matrix M̂ = a · 13×3 [11].
Equation (29), which is the third key result of this paper, is
derived in Appendix G.

Interestingly, the surface charge density in Eq. (28) has
the same functional form as the electrical charge distribution
of an electrically charged conducting ellipsoid [46]. Figure 5
exhibits the curvature effect known from electrostatics: The
greater the curvature of the surface, the greater the topological
charge density. A further similarity is that the Berry curvature
inside the ellipsoid is zero, similarly to the electric field inside
a charged ideal conductor. A difference, however, is that the
Berry curvature in our example exits the surface radially with
respect to the origin (i.e., it is proportional to B/B), in contrast
to the electric field which exits the conductor’s surface in
the surface normal direction [i.e., it is proportional to n(B)].
Another difference is that the curl of the Berry curvature is
nonzero [45], however, the curl of the electric field induced
by the charged conductor vanishes.

Given a degeneracy surface in a three-dimensional param-
eter space, is it a generic feature that it carries a continuous
topological surface charge density? Here we argue that it is.
Such a degeneracy surface divides the parameter space to two
disjoint regions—in our example, the inside and outside of
the ellipsoid. The ground state changes continuously in both
regions as the function of the parameters, generically implying
a nonzero and continuous Berry curvature vector fields in both
regions separately. But at the degeneracy surface, the ground
state changes suddenly—in our example, from a singletlike
state at the inside and a tripletlike state at the outside—and
hence the Berry curvature also jumps, leading to a finite sur-
face charge density according to Eq. (25).

V. DISCUSSION

A. Topological charge density vanishes for rank-2
points of degeneracy lines

In this section, we outline analytical results that support the
numerical evidence of topological charge distributions studied
in Sec. III. To this end, we define the rank of degeneracy
points, establish the ranks of the degeneracy points forming
the linear degeneracy patterns studied in Sec. III, and relate
the rank of a degeneracy point to the topological charge of
that point. In particular, we find that a rank-2 degeneracy point
embedded in a linear degeneracy pattern carries no topological
charge.

The effective g tensor ĝeff(B0) of a degeneracy point B0 is
a 3 × 3 real matrix that characterizes the Hamiltonian in the
parameter-space vicinity of the degeneracy point B0, focusing
on the two levels that are degenerate at the degeneracy point.
Formally, we introduce the relative parameter vectorδB =
B − B0 measured from the degeneracy point, project the
Hamiltonian H (B0 + δB) to the two-dimensional ground-
state subspace of the degeneracy point B0 using an arbitrary
orthonormal basis (|0〉, |1〉), and express that the projected

Hamiltonian in terms of Pauli matrices τ = (τx, τy, τz ), e.g.,
τz = 1

2 (|0〉〈0| − |1〉〈1|), leading to the form [11]

Hp(δB) = δB · ĝeff(B0) τ. (30)

Here, we have omitted the projected Hp(B0), since it is pro-
portional to the 2 × 2 unit matrix, owing to the degeneracy
of the relevant two-dimensional subspace at B0. By the rank
of a degeneracy point B0, we mean the matrix rank of the
effective g tensor of that degeneracy point. Even though the
effective g tensor depends on the choice of the basis (|0〉, |1〉),
its determinant and rank do not.

In Appendix D 1, we show that all degeneracy points of
the neutral degeneracy ellipse are rank 2. Furthermore, in
Appendix D 2 we show that in the charged degeneracy ellipse,
the two points where the Berry flux density is concentrated
in Fig. 4 are rank 1, and all other degeneracy points are rank
2. Finally, in Appendix E, we prove that the linear topolog-
ical charge density at a rank-2 degeneracy point of a line
degeneracy is zero, supporting the numerical evidence seen in
Figs. 3(c) and 4(c). We also observe that the electrostatic anal-
ogy is not perfect: While the local charge density vanishes,
hence there is no source of the Berry curvature on rank-2
degeneracy lines, there is always a linelike π flux tube along
the degeneracy; for details, see Appendix E.

It is tempting to think about the charged ellipse degeneracy
pattern (V) as a result of fine-tuning pattern (II): Upon tuning
the secondary parameters (g tensors, exchange parameters),
two charged points of pattern (II) merge with the neutral
degeneracy ellipse of pattern (II), forming the charged de-
generacy ellipse of pattern (V). (Note the related discussion
on the conversion between Weyl point and nodal lines in
band structures [47].) This picture is reinforced by the fact
that pattern (V) is less stable than pattern (II), signalled by
their stability codimensions 4 and 3, respectively (see Table
I. of Ref. [11]). Furthermore, in Appendix C 2, we show an
example where tuning a single parameter explicitly leads to
two Weyl points merging with the neutral degeneracy ellipse.

B. Symmetries can stabilize nongeneric degeneracy patterns

Nongeneric band degeneracy points and patterns in solids
can be stabilized by the presence of symmetries [15,23]. Here,
we show that interacting spin systems are similar: Nongeneric
degeneracy points can be stabilized by symmetries. This is the
fourth (and final) key result of this paper.

We focus on a special case, when the two-spin system
described by Eq. (3) has C3v symmetry, and leave it for future
work to explore further symmetry groups. We show that in
this case, pattern (II) with two Weyl points and the neutral
degeneracy circle is stabilized, even though it is unstable
(codimension 3, see Table I in Ref. [11]) without the sym-
metry constraint.

Consider the case when the Hamiltonian is invariant under
the isometries of group C3v , which are generated by the three-
fold rotation R around the z axis and the reflection on the
xz plane, M. These isometries are represented by the 3 × 3
matrices

R =
⎛
⎝cos 2π

3 − sin 2π
3 0

sin 2π
3 cos 2π

3 0
0 0 1

⎞
⎠ (31)
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and

M =
⎛
⎝−1 0 0

0 1 0
0 0 −1

⎞
⎠ (32)

on the pseudovectors (or axial vectors) appearing in the
Hamiltonian of Eq. (3), i.e., the magnetic field B and the
electron spins SL and SR.

The presence of spatial symmetries is formalized
as H (B, SL, SR) = H (RB,RSL,RSR) and H (B, SL, SR) =
H (MB,MSL,MSR). These conditions restrict the forms of
ĝL, ĝR, and R, in particular, ĝL = diag(gLx, gLx, gLz ), ĝR =
diag(gRx, gRx, gRz ), and R = 13×3 or R = diag(−1,−1, 1).
For concreteness, we still assume positive determinants for
the g tensors, which implies gLz, gRz > 0.

Combining these symmetry constraints with the definition
in Eq. (5) leads to M̂ = diag(a, a, b), where b > 0 and a might
be either positive or negative. This matrix M̂ is its own Jordan
normal form, so we can directly apply the Jordan classification
in Table I of Ref. [11] to determine the degeneracy patterns
arising in the magnetic parameter space. For a < 0, we find
eigenpattern (VII), which has two Weyl points. For a > 0,
we find eigenpattern (II), with two Weyl points and a neutral
ellipse (circle, in this case), as studied in Sec. III A. Remark-
ably, as long as the C3v symmetry is intact, the neutral ellipse
survives without fine-tuning. In other words, the degeneracy
pattern (II), which is unstable in the absence of symmetries,
and hence is characterized by a positive codimension, be-
comes stable with zero codimension in the presence of C3v

symmetry.

C. Topological charge distributions in various quantum systems

The topological charge distribution along 1D or 2D degen-
eracy geometries in a 3D parameter space, which we studied
throughout this paper, is a very natural and intuitive concept
due to the strong analogy with electrostatics. So far, it has
been rarely discussed and studied in the literature [45], but we
expect an increasing interest in this concept for the following
reasons.

(1) Recent theoretical and experimental works have re-
vealed nonpointlike degeneracy patterns (nodal lines, nodal
surfaces) in electronic band structures, which are topo-
logically charged in the same sense as the nodal lines
and nodal surfaces in our work. For a theoretical work
predicting charged nodal lines, see Ref. [48]. For a theoretical-
experimental study discovering a charged nodal surface, see
Ref. [49]. In those systems as well, it is natural to ask how
the topological charge is distributed along the nonpointlike
degeneracy pattern. We expect that similar features will be
analyzed in topologically nontrivial band structures of other
quasiparticles as well, such as magnons and phonons. We
regard our paper as an initial step in this direction.

(2) We expect further advancements in the field of con-
trolled quantum systems, such that nonpointlike degeneracy
structures and their topological charge distributions will be
studied in theory and in experiment. A prominent example
besides the interacting spin systems studied in our paper is the
field of multiterminal Josephson junctions (e.g., Ref. [50]),
where nodal-loop degeneracy patterns in the space of control

parameters (gate voltages, magnetic fluxes) have been pre-
dicted. We expect that in such setups, an appropriate level
of control of quantum states will be achieved, and thereby
the Berry curvature and the topological charge density of the
nodal loop will actually be measured.

(3) We anticipate a general mathematical classification of
degeneracy points (both for pointlike and for nonpointlike
degeneracy patterns) of multi-parameter-dependent Hamilto-
nians, where the concept of the topological charge density will
play an important role. This anticipation is based on similar
classification schemes for band structures (e.g., Table I in
Ref. [51]), and our own preliminary unpublished results in that
direction.

VI. CONCLUSIONS

We have exemplified the concepts of linear topologi-
cal charge density and surface topological charge density
through the example of a simple parameter-dependent quan-
tum system, the spin-orbit-coupled two-spin problem where
the parameters are the Cartesian components of the magnetic
field acting on the spins. We have shown that the neutral
degeneracy ellipse has vanishing topological charge density
in all of its points, whereas the charged degeneracy ellipse
has a charge distribution that is concentrated in two oppo-
site points in the magnetic-field parameter space. Moreover,
we have shown that the surface topological charge density of
the degeneracy ellipse is continuous, and this charge density is
identical to the surface charge density of a charged conduct-
ing ellipsoid. We extended these results by proving that, in
general, the linear topological charge density is zero for line
degeneracies with linear splitting in transverse directions, and
the surface topological density is nonzero for surface degen-
eracies splitting the parameter space into two disjoint regions.

We have also shown that if the two-spin system has cer-
tain spatial symmetries, then this can stabilize an otherwise
unstable, nongeneric degeneracy pattern, e.g., a neutral circle.

The nodal loops and surfaces are fragile for breaking
the fine-tuning or symmetries which protect them. It is also
true for the topological charge density. However, if we mea-
sure the Berry curvature of the system at a finite distance from
the degeneracy, i.e., we look at the flux density on a thick
torus in the parameter space surrounding a broken degeneracy
ellipse [Figs. 3(b) and 4(b)], we don’t observe any abrupt
change. This robustness gives possibility to the experimental
validation of our results.

The topological features described in this paper have
numerous physical consequences, e.g., they determine the
experimentally measurable Berry curvature [10,44,52], and
also influence dynamical properties, such as paramagnetic
resonance [28], Landau–Zener-type processes [38,39], and
quantized frequency conversion [53,54]. Hence, we expect
that our findings are testable in few-spin experiments, e.g.,
using quantum dots [7,11,35], molecular magnets [8,9,55], or
adatoms on metallic surfaces [56,57].
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APPENDIX A: PROOFS OF EQ. (7)

1. First proof

In the main text, Eq. (7) expresses the linear charge density
ν(s) of a charged loop in terms of the electric field E(r)
created by the loop. Here, we provide an elementary proof
of that result.

Consider a cylindrical section of the torus, together with
its top base and bottom base, surrounding a section of the
degeneracy circle in Fig. 2(a). Without loss of generality, we
can take the section defined by the interval s ∈ [0, s0] with
0 < s0 < 2πR. From Gauss’s law, the total charge enclosed
by the cylinder is expressed from the electric field as

1

ε0

∫ s0

0
dsν(s) =

∫
cylinder

dA · E. (A1)

Up to now, we assume that the cylinder has a nonzero merid-
ian radius r. Splitting the cylinder’s surface integral to its three
parts, we obtain

1

ε0

∫ s0

0
dsν(s) =

∫
top base

dA · E +
∫

bottom base
dA · E

+
∫

side
dA · E. (A2)

For r → 0, the top and bottom base contributions converge to
zero (see below); hence we find

1

ε0

∫ s0

0
dsν(s) = lim

r→0

∫
side

dA · E. (A3)

Using the parametrization pr (s, ϑ ) of the main text, this can
be written as

1

ε0

∫ s0

0
dsν(s) = lim

r→0

∫ s0

0
ds

×
∫ 2π

0
dϑE(pr (s, ϑ )) · [∂ϑ pr × ∂s pr]s,ϑ .

(A4)

Assuming that the limit and the s integral can be exchanged,
and considering that the boundaries of the s integral were
arbitrary, we arrive to Eq. (7).

In the remaining part of this subsection, we prove that
the flux contributions of the top and bottom bases approach

FIG. 6. Electric flux created by a charged wire (red) through a
disk (blue). Appendix A 1 proves that the flux converges to zero as
the disk radius r approaches zero.

zero as the radius r of the cylindrical section of the torus
approaches zero. To prove this, we consider a rather gen-
eral setting depicted in Fig. 6. Here, the red curve is a
charged wire, parametrized as x(s) = (x(s), y(s), z(s)) by its
path length s, such that its left end corresponds to s = 0. The
linear charge density of the wire is ν(s). Our goal is to show
that the electric flux piercing the disk (blue) of radius r at
s = 0, chosen to be perpendicular to the wire, converges to
zero as the radius r approaches zero. This in turn ensures
that the top-base and bottom-base integrals in the preceding
paragraph vanish in the limit r → 0.

The flux created by a small line element of the charged
wire between x(s) and x(s + ds) is (4πε0)−1�r (x(s))ν(s)ds,
where �r (x(s)) is the solid angle under which the disk is seen
from the point x(s), see Fig. 6. Without loss of generality,
we assume that ν(s) is positive. Then, the flux created by the
charged wire is expressed as

�E =
∫

disk
E · dA = 1

4πε0

∫ smax

0
�r (x(s))ν(s)ds

= 1

4πε0

∫ zmax

0
�r (x(s(z)))ν̃(z)dz. (A5)

Here, smax is the path length parameter value corresponding
to the right end of the wire, zmax = z(smax) is the corre-
sponding z coordinate, and s(z) is the inverse function of
the parametrization component z(s) which is assumed to be
invertible. In the last step of Eq. (A5), we substituted the
integration variable s by the z coordinate and, accordingly, we
introduced the modified linear charge density ν̃(z) = ν(s(z)) ·
ds
dz = ν(s(z))

√
1 + ( dx

dz )2 + ( dy
dz )2, which specifies the charge

on the wire per unit distance along the z axis.
Now we give an upper bound to the flux by substituting the

modified charge density by its maximum, ν̃max:

�E � �
(1)
E = ν̃max

4πε0

∫ zmax

0
�r (x(s(z)))dz. (A6)

We give a further, looser upper bound to the flux by uti-
lizing the relation between the solid angles of the points of
the wire and the points of the z axis, namely, �r (x(s(z))) �
�r (0, 0, z), see Fig. 6:

�E � �
(1)
E � �

(2)
E = ν̃max

4πε0

∫ zmax

0
�r (0, 0, z)dz. (A7)
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Using �r (0, 0, z) = 2π (1 − z√
r2+z2 ) yields

�
(2)
E = ν̃max

2ε0

∫ zmax

0

(
1 − z√

z2 + r2

)
dz

= ν̃max

2ε0

(
zmax + r −

√
z2

max + r2
)

(A8)

This upper bound �
(2)
E converges to zero as r → 0, and hence

the same is true for the flux �E .

2. Second proof

To give an alternative proof of the charge density formula
Eq. (7), we start with the electrostatic field created by a linear
charge density,

E(r) = 1

4πε0

∫
ds ν(s)

r − r(s)

|r − r(s)|3 , (A9)

where r(s) = (0, 0, s) is the parametrization of the line charge.
For simplicity, we assume that the line charge is located along
the z axis. We justify this assumption a posteriori by the fact
that the contribution of the charge distribution far from the
point in question to the surface integral vanishes in the r → 0
limit. If the degeneracy line is smooth, in the r → 0 limit it is
locally well approximated by a straight line.

Substituting this into the integral for a cylinder surrounding
the charge density,

lim
r→0

∫ 2π

0
dϑE(pr (s, ϑ )) · [∂ϑ pr × ∂s pr]s,ϑ

= lim
r→0

1

ε0

∫
ds′ ν(s′)

1

2r
[
1 + (

s−s′
r

)2] 3
2

= ν(s)

ε0
, (A10)

where pr (ϑ, s) = (r cos ϑ, r sin ϑ, s). In the last step, we used
that the fraction in the integrand converges to δ(s − s′) in the
r → 0 limit.

APPENDIX B: NUMERICAL TECHNIQUES
TO OBTAIN THE FIGURES

In this Appendix, we outline the numerical techniques we
used to obtain Figs. 3 and 4 of the main text.

1. Berry flux density—Figs. 3(a) and 4(a)

Figures 3(a) and 4(a) show the Berry flux density Bn,
defined via Eqs. (17) and (10), on the surface of the torus
surrounding the circular degeneracy line. To obtain Fig. 3(a),
our first step was to define a 300 × 300 square grid on the
s, ϑ parameter space, and the corresponding grid of points
on the torus, obtained via the parametrization pr (s, ϑ ). The
second step was to numerically approximate the derivatives in
Eq. (10) on the grid points of the torus as

|∂Bα
ψ0(B)〉 ≈ |ψ0(B + δeα )〉 − |ψ0(B − δeα )〉

2δ
. (B1)

Here, α ∈ {x, y, z}, eα is the canonical unit vector pointing in
direction α, and we used δ = 10−9. The gauge of the ground-
state wave functions in the vicinity of a given B was fixed such
that the greatest-magnitude component of the four-component
wave function was chosen to be real and positive. Having the

Berry curvature vector field B at hand, our final step was to
evaluate the Berry flux density by taking the normal projection
in Eq. (17). The data shown in Fig. 4(a) is obtained similarly.

2. 2D Berry curvature—Figs. 3(b) and 4(b)

The 2D Berry curvature B2D(s, ϑ ), plotted in Figs. 3(b) and
4(b), is defined in Eq. (12) of the main text. We claim that
this 2D Berry curvature is related to the Berry flux density
discussed in the previous section via

B2D(s, ϑ ) = r
(

1 + r

R
sin ϑ

)
Bn(pr (s, ϑ )). (B2)

Using this relation, we converted the data in Fig. 3(a)
[Fig. 4(a)] to the data in Fig. 3(b) [Fig. 4(b)]. The proof of
Eq. (B2) is straightforward: Eq. (20) is used at the right-hand
side of Eq. (12), then Eq. (17) is used, and finally the absolute
value |∂ϑ pr (s, ϑ ) × ∂s pr (s, ϑ )| is evaluated using the specific
parametrization in Eq. (18).

As a side remark, we also claim that the 2D Berry curvature
can be expressed as

B2D(s, ϑ ) = −2 Im 〈∂ϑψ̃0|∂sψ̃0〉, (B3)

where ψ̃0(s, ϑ ) = (ψ0 ◦ pr )(s, ϑ ). This is proven using the
chain rule, which implies

〈∂ϑψ̃0| =
∑

α∈{x,y,z}
(∂ϑ pr,α )〈∂Bα

ψ0|, (B4)

|∂sψ̃0〉 =
∑

β∈{x,y,z}
(∂s pr,β )|∂Bβ

ψ0〉. (B5)

With these, we find

−2 Im 〈∂ϑψ̃0|∂sψ̃0〉 =
∑

α,β∈{x,y,z}

− 2 Im(∂ϑ pr,α )(∂s pr,β )〈∂Bα
ψ0|∂Bβ

ψ0〉.
(B6)

Using Eq. (10), the right-hand side is transformed as

−2 Im 〈∂ϑψ̃0|∂sψ̃0〉 =
∑

α,β∈{x,y,z}
(∂ϑ pr,α )(∂s pr,β )εαβγBγ

= [(∂ϑ pr ) × (∂s pr )] · B. (B7)

This, together with Eq. (12), concludes the proof.

3. Apparent linear topological charge density—
Figs. 3(c) and 4(c)

The apparent linear topological charge density ν̃r (s) is de-
fined in Eq. (13). To obtain the data shown in panels Fig. 3(c)
and Fig. 4(c), we performed a numerical ϑ integration of
B2D(s, ϑ ), using an N × N grid in (s, ϑ ) space,

ν̃r (s) = 1

2π

∫ 2π

0
B2D(s, ϑ )dϑ ≈ 1

N

N∑
k=1

B2D

(
s, k · 2π

N

)
,

(B8)
with N = 300 [N = 1000].

035414-11



GYÖRGY FRANK et al. PHYSICAL REVIEW B 105, 035414 (2022)

4. Chern number—Figs. 3(d) and 4(d)

The ground-state Chern number Q on the torus, as a func-
tion of the meridian radius r, is shown in Figs. 3(d) and
4(d). This quantity is obtained from the apparent topological
charge density of panel c, via a numerical integration over the
longitude path length s, following

Qr = 1

2π

∫
S

dA · B

= 1

2π

∫ 2πR

0

∫ 2π

0
B2D(s, ϑ )dϑds

=
∫ 2πR

0
ν̃r (s)ds ≈ 2πR

N

N∑
k=1

ν̃r

(
k · 2πR

N

)
. (B9)

APPENDIX C: JORDAN NORMAL FORMS FOR THE
EXAMPLES IN THE MAIN TEXT

In this Appendix, we revisit the Jordan decomposition
of 3 × 3 real matrices, and discuss the relation between the
matrix M̂ introduced in Eq. (5) of the main text, its Jordan
decomposition, and the magnetic degeneracy points.

In the main text, we have introduced the real valued non-
symmetric matrix M̂ in Eq. (5) as the central quantity of the
two-spin problem. Also, we claimed that the directions of the
degeneracy points in the magnetic-field parameter space are
described by the left eigenvectors (left ordinary eigenvectors)
of this matrix M̂. Because of the nonsymmetric property, M̂ is
not always diagonalizable. Instead, it can be written as

M̂ = p̂Ĵ p̂−1 = [w1 w2 w2]Ĵ

⎡
⎣vT

1

vT
2

vT
3

⎤
⎦, (C1)

which is called the Jordan decomposition [58]. Here, P̂
−1

(P̂) is a nonsingular matrix whose rows (columns) are the
left (right) generalized eigenvectors of M̂. From P̂

−1
P̂ = 1,

it follows that vT
i w j = δi j . It is important to note that the

left (right) generalized eigenvectors are not necessarily or-
thogonal to each other and not necessarily normalized. Also,
the transformation matrix P̂ is not unique. The matrix Ĵ is
the Jordan normal form of M̂, which has a block-diagonal
structure formed of Jordan blocks. In our case, Jordan blocks
are matrices with the following structure:

Ĵ1×1(λ) = (λ),

Ĵ2×2(λ) =
(

λ 1
0 λ

)
,

Ĵ3×3(λ) =
⎛
⎝λ 1 0

0 λ 1
0 0 λ

⎞
⎠, (C2)

where the diagonal elements are filled with the eigenvalue λ

and the superdiagonal is composed of ones.
A left generalized eigenvector of rank m ∈ {1, 2, 3} corre-

sponding to eigenvalue λ satisfies

vT(M̂ − λ1)m = 0 (C3)

and

vT(M̂ − λ1)m−1 �= 0. (C4)

The parallel condition in Eq. (4) is fulfilled by the left ordinary
eigenvectors denoted as b which are the rank-1 generalized
left eigenvectors. The ith row in P̂

−1
is an ordinary left

eigenvector of M̂ if the ith row in Ĵ does not contain a
superdiagonal 1 element. Linear combinations of ordinary
eigenvectors corresponding to the same eigenvalue are also
ordinary eigenvectors.

In the following subsections, we provide the Jordan nor-
mal forms corresponding to the Hamiltonians and degeneracy
patterns discussed in Secs. III A, III B, and IV. Note that in
examples (II) and (V) discussed in the main text, we set
both the interaction matrix R̂ = 13×3 and the right g tensor
ĝR = 13×3 as the 3 × 3 unit matrix, and hence the matrix M̂
equals the left g tensor ĝL.

1. Degeneracy pattern (II), Sec. III A

For the example Hamiltonian producing the degeneracy
pattern (II), treated in Sec. III A, the left g tensor was specified
in Eq. (15), leading to

M̂II = ĝL,IIR̂IIĝ−1
R,II = ĝL,II =

⎛
⎝2 0 0

0 2 0
0 1 4

⎞
⎠. (C5)

The matrices of the Jordan decomposition [see Eq. (C1)] of
this matrix M̂II read

ĴII =
⎛
⎝4 0 0

0 2 0
0 0 2

⎞
⎠, P̂II = 1

2

⎛
⎝0 0 2

0 2 0
1 −1 0

⎞
⎠,

P̂
−1
II =

⎛
⎝0 1 2

0 1 0
1 0 0

⎞
⎠. (C6)

The Jordan normal form ĴII is diagonal, it consists of three
Jordan blocks: two blocks of the form Ĵ1×1(2), and one block
of the form Ĵ1×1(4).

As seen from Eqs. (C1) and (C6), the left eigenvector
corresponding to eigenvalue 4 is v1 = (0, 1, 2)T . As claimed
in Eq. (16), there are two magnetic Weyl points, forming a
time-reversed pair, along the B-field direction set by v1. It is
also seen in Eq. (C6) that two left eigenvectors corresponding
to eigenvalue 2 are v2 = (0, 1, 0)T and v3 = (1, 0, 0)T . In
fact, all vectors in the subspace Span(v2, v3) are eigenvec-
tors with eigenvalue 2. According to Eqs. (6) and (15), the
corresponding magnetic degeneracy points form a circle with
radius R = 3/4.

2. Degeneracy pattern (V), Sec. III B

In Sec. III B, describing the charged ellipse degeneracy
pattern (V), the left g tensor and hence matrix M̂ was set to

M̂V =
⎛
⎝2 0 0

0 2 0
0 1 2

⎞
⎠. (C7)
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A Jordan decomposition of this matrix is

ĴV =
⎛
⎝2 1 0

0 2 0
0 0 2

⎞
⎠, P̂V =

⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠,

P̂
−1
V =

⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠. (C8)

The Jordan normal form ĴV consists of the Jordan blocks
Ĵ1×1(2) and Ĵ2×2(2). There is a superdiagonal 1 element in
the first row, hence v1 = (0, 0, 1)T is not an ordinary left
eigenvector but a rank-2 generalized left eigenvector.

The ordinary eigenvectors are in the subspace
Span(v2, v3), similarly to the previous case. As a consequence
of this, and Eq. (6), the corresponding degeneracies are on
a circle with radius R = 3/4 in the xy plane again. This is
similar to the degeneracy circle of pattern (II), but there the
circle was neutral while here it is charged.

Using Figs. 4(a)–4(c), we argued in the main text that the
topological charge of this charged degeneracy circle is local-
ized on two opposite points of the circle. Here we claim that
the charge is located in the v2 direction. This can be illustrated
by studying a parameter-dependent matrix M̂ that exemplifies
a transition from the degeneracy pattern (II) formed by two
equally charged Weyl points and a neutral circle to the degen-
eracy pattern (V) formed by the charged circle:

M̂II→V(ε) =
⎛
⎝2 0 0

0 2 0
0 1 2 + ε

⎞
⎠. (C9)

For ε > 0, this matrix has a Jordan decomposition analogous
to Eq. (C6), i.e., it implies the degeneracy pattern (II). In
particular, its largest eigenvalue is 2 + ε, with an ordinary
left eigenvector v1 = (0, 1, ε)T. As ε is tuned continuously to
zero, then v1 coalesces with the (ε-independent) second left
ordinary eigenvector v2 = (0, 1, 0)T. During this transition,
the Weyl points approach the neutral ellipse and then merge
with it at ε = 0.

3. Degeneracy pattern (IV), Sec. IV

In Sec. IV, describing the charged ellipsoid degeneracy
pattern (IV), the matrix M̂ was set to

M̂IV = 2 · 13×3. (C10)

Every vector is an eigenvector, hence there are degeneracies
in every direction. The distance of the degeneracy points from
the origin is given by Eq. (6).

APPENDIX D: RANK OF THE EFFECTIVE g TENSOR IN
THE POINTS OF THE DEGENERACY ELLIPSES

Figure 3 of the main text provides numerical evidence
that the topological charge density of the neutral degeneracy
ellipse, of pattern (II), is zero. Similarly, Fig. 4 shows that the
topological charge density of the charged degeneracy ellipse,
pattern (V), is concentrated at two charged points, whereas the
linear charge density in all other points of the ellipse is zero.
In this Appendix, we show that the above charge distributions

are related to the ranks of the effective g tensors ĝeff(B0)
of the degeneracy points, defined in Eq. (30), namely, the
effective g tensor is a rank-1 matrix for the charged points
of the charged ellipse and a rank-2 matrix for the uncharged
points of the charged ellipse and for every point of the neutral
ellipse too. The rank-2 property implies a first-order energy
splitting of the degeneracy as we leave the degenerate line in
any perpendicular direction. In the case of a rank-1 effective
g-tensor, there exists a direction perpendicular to the tangent
vector of the degeneracy circle, with the property that the
energy splitting is of higher-than-linear order if we leave the
circle in that particular direction.

The effective g tensor for a ground-state degeneracy point
at B0 = B0b reads (Eq. (E11) of Ref. [11])

ĝeff(B0)Ô =
(

M̂ + a2

1 + a2
− M̂ − a√

1 + a2

)
ĝRR̂

−1
b̃b̃

T

+ M̂ − a√
1 + a2

ĝRR̂
−1

, (D1)

where

b̃ = R̂ĝT
Rb

/∣∣ĝT
Rb

∣∣. (D2)

Note that, here, we use a slightly different notation, compared
to that in Ref. [11]: Here we denote the dyadic product as
a matrix product b̃b̃

T
of a column vector and a row vector,

instead of the alternative notation b̃ ⊗ b̃. The orthogonal ma-
trix Ô, which is defined (see Eq. (C2) of Ref. [11]) as an
(ambiguous) rotation fulfilling Ôb̃ = ez, e.g., the π rotation
around the bisector of b̃ and ez.

Equation (D1) for the effective g tensor is too complicated
to determine rank[ĝeff(B0)] directly. Instead, in the forthcom-
ing calculation, we show that the rank is reflected by the
rank of a a simpler matrix ÂQ, which we express below in
Eq. (D17). Then, in Appendices D 1 and D 2, we use this
matrix ÂQ to derive the rank of the effective g tensor on
degeneracy ellipses.

As a first step in our calculation, we substitute b̃ with b
according to Eq. (D2), into Eq. (D1), and multiply the latter
with Ô

−1
from the right:

ĝeff(b) =
[(

M̂ + a2

1 + a2
− M̂ − a√

1 + a2

)
ĝRĝT

RbbT

bTĝRĝT
Rb

+ M̂ − a√
1 + a2

]

× ĝRR̂
−1

Ô
−1

. (D3)

Here, we use b instead of B0 in the argument of ĝeff, because
the latter quantity does not depend on the norm B0.

In cases (II) and (V), where degeneracy ellipses appear,
the directions of the magnetic degeneracy points are in the
subspace of the second and third left generalized eigenvectors.
That is, the degeneracy points can be parameterized by the
angle ϕ ∈ [0, 2π [ via

b = β2v2 + β3v3 = β(v2 cos ϕ + v3 sin ϕ), (D4)

with β =
√

β2
2 + β2

3 . Since v2 and v3 are not necessarily
orthogonal and normalized, β is not necessarily |b| and ϕ is
not necessarily the angle between b and v2.

The forthcoming steps lack an a priori intuitive justifica-
tion, but a posteriori they prove to be particularly useful. First,
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let us recall that according to Eq. (C1), the left generalized
eigenvectors form the rows in the similarity transformation
matrix P̂

−1
in the Jordan decomposition of M̂. Using this, bT

can be written as the second row of the matrix Q̂P̂
−1

, that is,

bT = (Q̂P̂
−1

)2,., (D5)

where

Q̂ = β

⎛
⎝1 0 0

0 cos ϕ sin ϕ

0 − sin ϕ cos ϕ

⎞
⎠. (D6)

Inserting a unit matrix in the form of P̂
−1

P̂ to Eq. (D5)
yields

bT = (P̂
−1

P̂Q̂P̂
−1

)2,. ≡ (P̂
−1

Q̂
′
)2,. = vT

2 Q̂
′
. (D7)

Here the sign ≡ denotes the definition of Q̂
′

and in the last
step, we used Eq. (C1).

Substituting Eq. (D7) to the effective g-tensor of Eq. (D3),
we obtain

ĝeff(Q̂
′T

v2) =
[(

M̂ + a2

1 + a2
− M̂ − a√

1 + a2

)
D̂ + M̂ − a√

1 + a2

]

× ĝRR̂
−1

Ô
−1

, (D8)

where we introduced the shorthand

D̂ = ĝRĝT
RQ̂

′T
v2v

T
2 Q̂

′

vT
2 Q̂

′
ĝRĝT

RQ̂
′T

v2

, (D9)

which is a dyadic product.
Next, we further transform M̂ and D̂ in Eq. (D8), starting

with the latter. Substituting unit matrices into Eq. (D9) yields

D̂ = (Q̂
′−1

P̂P̂
−1

Q̂
′
)ĝRĝT

RQ̂
′T

v2v
T
2 Q̂

′

vT
2 (P̂P̂

−1
)Q̂

′
ĝRĝT

RQ̂
′T

v2

. (D10)

Then, using the associative nature of matrix multiplication, we
obtain

D̂ = Q̂
′−1

P̂(P̂
−1

Q̂
′
ĝRĝT

RQ̂
′T

v2)vT
2 Q̂

′

vT
2 P̂(P̂

−1
Q̂

′
ĝRĝT

RQ̂
′T

v2)
= Q̂

′−1
P̂rvT

2 Q̂
′

vT
2 P̂r

, (D11)

where we introduced

r = P̂
−1

Q̂
′
ĝRĝT

RQ̂
′T

v2. (D12)

Then, we substitute the definition of Q̂
′

from Eq. (D7) to
Eq. (D11), yielding

D̂ = P̂Q̂
−1

P̂
−1

P̂rvT
2 P̂Q̂P̂

−1

vT
2 P̂r

= P̂Q̂
−1 r

r2
(0 1 0)Q̂P̂

−1
.

(D13)

The denominator r2, which is the second vector component of
r, appears from the scalar product of r with vT

2 P̂ ≡ (0 1 0).
Note that r2 = |ĝT

Rb|2, which follows, e.g., from Eqs. (D12)
and (D7), and it guarantees that the denominator in Eq. (D13)
is nonzero.

According to Eq. (D13), the matrix D̂ can be thought of
as a result of a similarity transformation generated by P̂Q̂

−1
.

Now, we transform the terms of Eq. (D8) containing M̂ to

a similar form. Multiplying M̂ with appropriately composed
unit matrices, using its Jordan decomposition, and introducing
the transformed Jordan normal form via

ĴQ = Q̂ĴQ̂
−1

, (D14)

we find

M̂ = (P̂Q̂
−1

Q̂P̂
−1

)(P̂ĴP̂
−1

)(P̂Q̂
−1

Q̂P̂
−1

) = P̂Q̂
−1

ĴQQ̂P̂
−1

.

(D15)

Inserting Eqs. (D13) and (D15) into Eq. (D8), we find the
following expression for the effective g tensor:

ĝeff(b) = P̂Q̂
−1

ÂQQ̂P̂
−1

ĝRR̂
−1

Ô
−1

, (D16)

where we introduced

ÂQ =
(

ĴQ + a2

1 + a2
− ĴQ − a√

1 + a2

)
r
r2

(0 1 0) + ĴQ − a√
1 + a2

.

(D17)

Matrix ÂQ has the same rank as the effective g tensor because
they only differ by multiplications of nonsingular matrices. In
what follows, we will determine the rank of the g tensor at the
points of the degeneracy ellipses by determining the rank of
ÂQ.

1. Neutral ellipse

In Eq. (C6), we have shown an example Jordan decomposi-
tion corresponding to a degeneracy pattern including a neutral
ellipse. More generally, the normal form of that degeneracy
pattern has a twofold degeneracy of the following kind (see
Table I of Ref. [11]):

ĴII =
⎛
⎝b 0 0

0 a 0
0 0 a

⎞
⎠, (D18)

where a, b > 0 and a �= b. Since its second Jordan block is
proportional to the 2 × 2 unit matrix, the transformation with
Q̂ defined in Eq. (D6) leaves the normal form invariant,

ĴQ,II = ĴII, (D19)

for every ϕ. That means that every point of a neutral ellipse
has the same rank effective g tensor. Then, expressing ÂQ from
Eqs. (D17), (D19), and (D18) yields

ÂQ =

⎛
⎜⎝

b+a2

1+a2 − b−a√
1+a2 0 0

0 a+a2

1+a2 0

0 0 a+a2

1+a2

⎞
⎟⎠

⎛
⎝r1/r2

1
r3/r2

⎞
⎠(0 1 0)

+
⎛
⎝

b−a√
1+a2 0 0
0 0 0
0 0 0

⎞
⎠

=

⎛
⎜⎝

b−a√
1+a2

[
b+a2

1+a2 − b−a√
1+a2

] r1
r2

0

0 a(1+a)
1+a2 0

0 a(1+a)
1+a2

r3
r2

0

⎞
⎟⎠. (D20)

ÂQ cannot be a dyadic product because the condition
AQ,11AQ,22 = AQ,12AQ,21 cannot be satisfied as AQ,11, AQ,22 �= 0
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and AQ,21 = 0. That means rank(ĝeff ) > 1. The determinant
of the effective g tensor is zero [Eq. (E23) of Ref. [11] with
c = a], therefore rank(ĝeff ) < 3. This way, we proved that the
rank is 2 for every points of the neutral degeneracy ellipse.

2. Charged ellipse

In Eq. (C8), we have shown an example for a Jordan
decomposition corresponding to a degeneracy pattern of a
charged ellipse. More generally, the Jordan normal form of
that degeneracy pattern has a threefold eigenvalue degeneracy

and a single 1 element in the superdiagonal,

ĴV =
⎛
⎝a 1 0

0 a 0
0 0 a

⎞
⎠, (D21)

with a > 0. Now ĴQ,V does depend on the angle ϕ parametriz-
ing the degeneracy point along the degeneracy ellipse:

ĴQ,V =
⎛
⎝a cos ϕ − sin ϕ

0 a 0
0 0 a

⎞
⎠. (D22)

Expressing ÂQ from Eqs. (D17) and (D22) yields

ÂQ =

⎛
⎜⎝

a+a2

1+a2 cos ϕ
[

1
1+a2 − 1√

1+a2

] − sin ϕ
[

1
1+a2 − 1√

1+a2

]
0 a+a2

1+a2 0

0 0 a+a2

1+a2

⎞
⎟⎠

⎛
⎝r1/r2

1
r3/r2

⎞
⎠(0 1 0) +

⎛
⎝0 cos ϕ√

1+a2

− sin ϕ√
1+a2

0 0 0
0 0 0

⎞
⎠

=
⎛
⎝0 AQ,12 − sin(ϕ)√

1+a2

0 a(1+a)
1+a2 0

0 AQ,32 0

⎞
⎠, (D23)

where the elements AQ,12 and AQ,32 are given by lengthy but
unimportant expressions. Similarly to the neutral ellipse, the
condition AQ,12AQ,23 = AQ,13AQ,22 is not satisfied for sin ϕ �=
0, hence the rank of the effective g-tensor is 2 for those points.
However, if sin ϕ = 0, i.e., if the magnetic field is along the
direction of v2, the matrix Â is clearly a dyadic product and
not a zero matrix, hence its rank is 1, implying that the rank
of the effective g tensor is also 1.

Finally, let us consider this latter case, when the rank of the
effective g tensor is 1. Starting at the degeneracy point B0, and
changing the magnetic field by δB along the degeneracy line
as B = B0 + δB, the energy splitting induced by δB is at least
of second order in δB. Since the rank of the effective g tensor
is 1, there must be a plane of higher-order splitting, that is,
a plane along which the energy splitting is at least of second
order in δB. Which is the second direction, which spans this
plane together with the direction of the degeneracy ellipse?

This question can be answered by recasting the rank-1
effective g tensor as a dyadic product of two vectors. Without
the derivation, we claim that one way this can be done is as
follows:

ĝeff(v2) = d1dT
2 , (D24)

where

d1 = 1

1 + a2

[
a(1 + a)

ĝRĝT
Rv2

vT
2 ĝRĝT

Rv2
+ w1

]
, d2 = ÔR̂ĝT

Rv2,

(D25)

where w1 is the right generalized eigenvector defined in
Eq. (C1). The column vector d1 in the square bracket defines
the direction of maximal linear splitting in δB, cf. Eq. (30).
If δB lies in the plane perpendicular to that vector, then the
energy splitting is at least second order in δB.

APPENDIX E: RANK-2 POINTS OF A DEGENERACY LINE
CARRY ZERO LINEAR TOPOLOGICAL

CHARGE DENSITY

In this Appendix, we show that, in general, degeneracy
lines consisting of rank-2 points carry zero linear topological
charge density. For simplicity, we assume that the degeneracy
line is along the Bz axis.

We use x ≡ Bx, y ≡ By, and z ≡ Bz for brevity, and we
shift the coordinate system of the magnetic parameter space
such that the rank-2 point we consider is in the origin, where
(x, y, z) = 0. From now on, we further simplify notation by
using ψ0(s, ϑ ) instead of ψ̃0(s, ϑ ) [cf. Eq. (B3)].

According to Eq. (13), our goal is to evaluate

ν(0) = 1

2π
lim
r→0

∫ 2π

0
dϑB2D(s, ϑ )

= 1

2π
lim
r→0

∫ 2π

0
dϑ (−2) Im [〈∂ϑψ0|∂sψ0〉]. (E1)

For the parameter-space geometry we consider, the relation
between the Cartesian coordinates and the torus parameters is
x = r cos ϑ , y = r sin ϑ , and s = z. Our strategy is to evaluate
the above ϑ integral, i.e., to show that it vanishes, by using
an approximate ground state ψ0 for r → 0, obtained via a z-
dependent two-level effective Hamiltonian.

Along the z axis, in the small neighborhood of the degen-
eracy point, we take an orthonormal basis (η(z), χ (z)) of the
degenerate ground-state subspace for each z, such that the
two basis states depend on z continuously. Using this basis,
we define the effective Hamiltonian of the degeneracy point
(0, 0, z) as follows:

Heff(z) = P(z)H (x, y, z)P(z), (E2)
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where P(z) = |η(z)〉〈η(z)| + |χ (z)〉〈χ (z)| projects on the
two-dimensional ground-state subspace (this projector P
should not be confused by the similarity transformation P̂).

This effective Hamiltonian can also be written as

Heff(z) = x · ĝ2×3(z)τ(z), (E3)

where x = (x, y)T and τ = (τx, τy, τz )T are the Pauli operators
acting on the states (η(z), χ (z)), e.g., τ (z) = 1

2 (|η(z)〉〈η(z)| −
|χ (z)〉〈η(z)|). Furthermore, ĝ2×3 is a 2 × 3 matrix of the form

ĝ2×3 =
(

gxx gxy gxz

gyx gyy gyz

)
. (E4)

The coordinate z is absent from Eq. (E3), since our degeneracy
point is on a degeneracy line of direction z, i.e., the two energy
levels of the Hamiltonian must be degenerate as we move
along the z axis.

The matrix ĝ2×3(z) is of size 2 × 3 and of rank 2, hence
it can be further simplified to a block matrix with a nonzero
2 × 2 block and a vanishing 2 × 1 block [see Eq. (E9) be-
low], using a z-dependent unitary transformation of the basis
(|η(z)〉, |χ (z)〉). To this end, we introduce the vectors gx =
(gxx, gxy, gxz )T and gy = (gyx, gyy, gyz )T, which are linearly in-
dependent because of the rank. We further introduce the vector

g⊥(z) = gx(z) × gy(z), (E5)

for which it holds that

ĝ2×3g⊥ = 0. (E6)

Now we introduce the orthogonal matrix Ô(z) which ro-
tates g⊥(z) to the z direction,

Ôg⊥ = gez, (E7)

with g(z) = |g⊥(z)|. One possible choice for Ô(z) is an or-
thogonal matrix which rotates 180◦ around the bisector t (z)
of ez and g⊥(z). Now we substitute the identity Ô

−1
Ô into

Eq. (E6) to obtain

ĝ2×3g⊥ = (ĝ2×3Ô
−1

)(Ôg⊥) = ĝ′
2×3gez = 0, (E8)

where we introduced ĝ′
2×3(z) = ĝ2×3(z)Ô

−1
(z), which has the

form

ĝ′
2×3 =

(
g′

xx g′
xy 0

g′
yx g′

yy 0

)
. (E9)

After these steps, we finally simplify the effective Hamil-
tonian defined in Eq. (E3) with a unitary transformation.
Substituting Ô

−1
Ô yields

Heff(z) = x · ĝ2×3(z)Ô
−1

(z)Ô(z)τ(z) = x · ĝ′
2×3(z)τ ′(z),

(E10)

where the new Pauli operator reads

τ ′(z) = Ô(z)τ(z) = U (z)τ(z)U †(z). (E11)

After the first equation sign, Ô transforms the vector com-
ponents of τ, while after the second equation sign, the
corresponding unitary matrix U (z) = exp(−iπt (z) · τ(z)) =
−it (z) · τ(z) transforms the operators in the Hilbert space. In
Eq. (E10), the Pauli operator τ ′

z does not appear, thus we can
simplify the effective Hamiltonian by introducing the 2 × 2

nonzero block ĝ2×2 of the matrix ĝ′
2×3 in Eq. (E9), and the

two-component vector operator τ2 = (τ ′
x, τ

′
y)T, yielding

Heff(z) = x · ĝ2×2(z)τ2(z). (E12)

This two-level effective Hamiltonian is straightforward to
diagonalize, and its diagonalization provides a formula for the
unique ground state away from the z axis,

|ψ0(s, ϑ )〉 ≡ |ψ0(z, ϑ )〉 ≈ 1√
2

(|η′(z)〉 − eiα(z,ϑ )|χ ′(z)〉),
(E13)

where

|ν ′(z)〉 = U (z)|ν(z)〉, (E14)

|χ ′(z)〉 = U (z)|χ (z)〉 (E15)

are the transformed basis states and α(z, ϑ ) is the polar angle
of the vector ĝT

2×2x. A key property of this angle is

α(z, ϑ + π ) = α(z, ϑ ) + π. (E16)

As we show below, this property implies B2D(s, ϑ ) =
−B2D(s, ϑ + π ), and hence a vanishing result of the integral
in Eq. (E1).

To compute the integrand of Eq. (E1), we first evaluate the
derivatives of the ground state Eq. (E13):

|∂ϑψ0〉 = −i√
2

(∂ϑα)eiα|χ ′〉, (E17)

|∂zψ0〉 = 1√
2

(|∂zη
′〉 − eiα|∂zχ

′〉 − i(∂zα)eiα|χ ′〉). (E18)

Then, the scalar product in the integrand of Eq. (E1) reads

〈∂ϑψ0|∂zψ0〉 = 1
2 [i(∂ϑα)e−iα〈χ ′|∂zη

′〉 + i(∂ϑα)〈χ ′|∂zχ
′〉

+ (∂ϑα)(∂zα)]. (E19)

The second term in the square bracket is real, since

Re〈χ ′|∂zχ
′〉 = 1

2 (〈χ ′|∂zχ
′〉 + 〈∂zχ

′|χ ′〉) = 1
2∂z〈χ ′|χ ′〉 = 0.

(E20)

Furthermore, the third term is also real, since α, defined as an
angle, is real valued.

As a consequence, the imaginary part of the scalar product
in the integrand of Eq. (E1) reads

Im 〈∂ϑψ0|∂zψ0〉 = 1
4 [(∂ϑα)e−iα〈χ ′|∂zη

′〉 + c.c.]. (E21)

From this result, using Eq. (E16), it follows that

Im 〈∂ϑψ0(z, ϑ + π )|∂zψ0(z, ϑ + π )〉
= − Im 〈∂ϑψ0(z, ϑ )|∂zψ0(z, ϑ )〉. (E22)

Finally, Eq. (E22) implies that the ϑ integral of Eq. (E1)
vanishes.

While the topological charge density vanishes at rank-2
points of a degeneracy line, the Berry curvature, even at an
isolated degeneracy line, is not identically zero. To see this, we
consider a small disk D intersecting the degeneracy line and
calculate the integral of the Berry connection A = i〈ψ0|∇ψ0〉
around the perimeter of the disk, which is a loop surrounding
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the line degeneracy:
∮

∂D
A · dl = i

∫ 2π

0
〈ψ0|∂ϑψ0〉dϑ

= 1

2

∫ 2π

0
∂ϑα(z, ϑ )dϑ

= 1

2
[α(z, 2π ) − α(z, 0)] = π. (E23)

This result is independent of the radius of the disk chosen.
If the degeneracy is broken by some perturbation, the Berry

curvature becomes well-defined and finite everywhere, with
a large Berry curvature along the position of the degeneracy
line. In this case, the integral of the Berry curvature for the
disk equals the integral of the Berry connection around the
perimeter: ∫∫

D
B · dA =

∮
∂D

A · dl . (E24)

The connection integral changes continuously with pertur-
bations of the Hamiltonian, while the curvature diverges at
the degeneracy. This allows us to interpret this result in the
degenerate case as half a quantum of Berry flux concentrated
in a linelike flux tube along the line degeneracy.

APPENDIX F: EXAMPLE FOR FINITE LINEAR
TOPOLOGICAL CHARGE DENSITY

In Eq. (11), we defined the linear topological charge den-
sity but showed later that it is either zero or is concentrated
to single points akin to a Dirac delta. Here, we provide an
example Hamiltonian with a degeneracy line in its parameter
space, such that the degeneracy line carries a finite, continu-
ously varying linear topological charge density.

Our example is a spin-1/2 Hamiltonian which is a nonlin-
ear function of its parameters B = (Bx, By, Bz ):

H (B) = (
B2

x − B2
y

)
Sx + 2BxBySy + (

B2
x + B2

y

)
BzSz

= Beff · S. (F1)

We will call the quantity Beff the effective magnetic field. The
Hamiltonian in Eq. (F1) has a degeneracy line along the Bz

axis. For small but finite Bx and/or By, the degenerate ground
state splits in energy, quadratically in Bx and By. To calculate
the linear topological charge density of the degeneracy line
along the Bz axis, we follow the route introduced in Sec. III,
utilizing Eq. (11).

We consider a cylinder of finite radius r surrounding the
Bz axis. We parametrize the points of this cylinder with cylin-
drical coordinates, via (Bx, By, Bz ) = (r cos ϑ, r sin ϑ, s). At a
given point of this cylinder, specified by (r, ϑ, s), the effective
magnetic field reads

Beff =
⎛
⎝ r2 cos2 ϑ − r2 sin2 ϑ

2r2 cos ϑ sin ϑ

(r2 cos2 ϑ + r2 sin2 ϑ )s

⎞
⎠ =

⎛
⎝r2 cos 2ϑ

r2 sin 2ϑ

r2s

⎞
⎠. (F2)

The ground state can be expressed as

|ψ0〉 =
(

sin ϑeff
2

−eiϕeff cos ϑeff
2

)
, (F3)

where

ϕeff = 2ϑ, (F4)

ϑeff = tan−1

(
1

s

)
(F5)

are the spherical angles of the effective magnetic field. For this
specific Hamiltonian, these angles do not depend on the radius
r, hence the r → 0 limit of Eq. (11) will be omitted below.

Having the ϑ and s dependence of the ground state |ψ0〉
at hand, it is straightforward to calculate the two-dimensional
Berry curvature according to Eq. (12),

B2D(s, ϑ ) = −2 Im 〈∂ϑψ |∂sψ〉 = 1√
(s2 + 1)3

, (F6)

which depends only on s. From this, using Eq. (11), we eval-
uate the linear topological charge density,

ν(Bz ) ≡ ν(s) = 1√
(s2 + 1)3

, (F7)

which is indeed finite and depends continuously on the coor-
dinate Bz ≡ s along the degeneracy line.

APPENDIX G: SURFACE CHARGE DENSITY
OF THE CHARGED ELLIPSOID

Here, we derive the surface charge density of the charged
ellipsoid, a result quoted in the main text as Eq. (28). To do
this, first we transform the Hamiltonian to a simple form,
where the Berry curvature is easy to determine, then we trans-
form it back to obtain the surface charge density.

1. Berry curvature in a simplified Hamiltonian

The Hamiltonian introduced in Eq. (3) can be simplified
with the following steps. A global unitary transformation U
which changes the right spin as S′

R = R̂SR changes the inter-
action to be isotropic:

H ′(B) = UH (B)U † = B · (ĝLSL + ĝRR̂
−1

S′
R) + JSL · S′

R.

(G1)

This transformation changes the right g tensor too. Now, we
simplify the Zeeman term of the right spin with a linear
transformation:

B′ = R̂ĝT
RB. (G2)

To do this, we substitute the unit matrix ĝRR̂
−1

R̂ĝ−1
R ; we get

H ′(B) = B · ĝRR̂
−1(

R̂ĝ−1
R ĝLSL + S′

R

) + JSL · S′
R. (G3)

This changes the left g tensor to a transformed M̂ matrix:

R̂ĝ−1
R ĝL = ĝ−1

L ĝLR̂ĝ−1
R ĝL = ĝ−1

L M̂ĝL = M̂
′
. (G4)

The result is a Hamiltonian with R̂
′ = 13×3 and ĝ′

R = 13×3

H ′(B′) = B′ · (M̂
′
SL + S′

R) + JSL · S′
R. (G5)

The global unitary transformation leaves the Berry curvature
invariant but the linear transformation in the parameter space
changes it, as we derive it in the next subsection.

035414-17



GYÖRGY FRANK et al. PHYSICAL REVIEW B 105, 035414 (2022)

For degeneracy ellipsoids, M̂ = a13×3 is proportional to
the unit matrix:

H ′(B′) = B′ · (aSL + S′
R) + JSL · S′

R. (G6)

The result is an isotropic Hamiltonian. It has a degeneracy
sphere with radius

R = 1

2

(
1 + 1

a

)
, (G7)

carrying a total topological charge 2. The Berry curvature
in the transformed parameter space can be calculated using
Gauss’s law because of the isotropy

B′(B′) =
{

0 B′ < R
B′
B′3 B′ > R.

(G8)

2. Transformation of the Berry curvature
in three-dimensional parameter space

To obtain an isotropic Hamiltonian, we did a global uni-
tary transformation on the Hilbert space which preserves the
Berry curvature, but we also did a linear transformation on
the parameter space which, however, changes the curvature.
In this subsection, we derive the transformation of the Berry
curvature in three-dimensional parameter spaces.

We assume that Berry curvature with the transformed ar-
gument x′(x) is known; this transformed curvature is given
by B′

i (x
′) ≡ iεi jk〈∂ ′

jψ |∂ ′
kψ〉, where ∂ ′

k is the derivative with
respect to x′

k . We want to find the curvature with respect to
the variable x, given by Bi(x) ≡ iεi jk〈∂ jψ |∂kψ〉. For the ith
component, we get

Bi(x) = iεi jk〈∂lψ |∂mψ〉
= iεi jk〈∂ jψ (x′(x))|∂kψ (x′(x))〉
= iεi jk (∂ jx

′
l )(∂kx′

m)〈∂ ′
lψ |∂ ′

mψ〉, (G9)

where we used the chain rule. The partial derivative ∂ jx′
l =

Jl j is an element of the Jacobian matrix. This shows that the
Berry curvature transforms as a two-form. Multiplying with
the Jacobian from the left yields

JniBi(x) = iεi jkJniJl jJmk〈∂ ′
lψ |∂ ′

mψ〉
= i(det Ĵ)εnlm〈∂ ′

lψ |∂ ′
mψ〉

= (det Ĵ)B′
n(x′(x)), (G10)

where the Berry curvature with the transformed argument
B′(x′) appeared. From this, we write the transformation rule
specific to three-dimensional parameter space:

B(x) = (det Ĵ)Ĵ
−1B′(x′(x)). (G11)

For a linear transformation x′(x) = Ĵx, the Jacobian is the
coefficient matrix.

3. Berry curvature in the parameter space of the ellipsoid

Now we can use the transformation of the Berry curvature
derived in Eq. (G11) to the Berry curvature in Eq. (G8) with
the transformation introduced in Eq. (G2):

B(B) = (det Ĵ)Ĵ
−1B′(B′(B)). (G12)

Here Ĵ = R̂ĝT
R. Outside the ellipsoid, we get

B(BS+) = det
(
R̂ĝT

R

)(
R̂ĝT

R

)−1 R̂ĝT
RBS∣∣R̂ĝT

RBS

∣∣3

= det (ĝR)
BS∣∣ĝT

RBS

∣∣3 ; (G13)

inside we get

B(BS− ) = 0. (G14)

From Eq. (6), we get the equation for the degeneracy ellip-
soid BS = BSb:

∣∣ĝT
RBS

∣∣ = BS

∣∣ĝT
Rb

∣∣ = BSgR = 1

2

(
1 + 1

a

)
. (G15)

To get an expression for the surface normal of the ellipsoid,
we consider the scalar field

f (B) = (
ĝT

RB
)2

(G16)

that is constant on the degeneracy ellipsoid. Hence the gradi-
ent

∇ f = 2ĝRĝT
RB (G17)

is proportional to the normal vector of the surface. Thus, the
normal vector for the degeneracy ellipsoid at BS reads

n(BS ) = ĝRĝT
RBS∣∣ĝRĝT
RBS

∣∣ . (G18)

The surface topological charge density is proportional to the
jump of the normal component of the Berry curvature

σ (BS ) = 1

2π
[B(BS+) − B(BS−)] · n(BS )

= det ĝR

2π
∣∣ĝT

RBS

∣∣ · ∣∣ĝRĝT
RBS

∣∣
= a det ĝR

π (a + 1)
∣∣ĝRĝT

RBS

∣∣ , (G19)

where in the last step Eq. (G15) was used.
This calculation shows that the topological surface charge

density is finite if the degenerate surface separates the param-
eter space into two regions with different Berry curvatures.

[1] C. Herring, Accidental degeneracy in the energy bands of crys-
tals, Phys. Rev. 52, 365 (1937).

[2] M. V. Berry, Quantal phase factors accompanying
adiabatic changes, Proc. R. Soc. London A 392, 45
(1984).

[3] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[4] N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac
semimetals in three-dimensional solids, Rev. Mod. Phys. 90,
015001 (2018).

035414-18

https://doi.org/10.1103/PhysRev.52.365
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.90.015001


TOPOLOGICAL CHARGE DISTRIBUTIONS OF AN … PHYSICAL REVIEW B 105, 035414 (2022)

[5] J. K. Asbóth, L. Oroszlány, and A. Pályi, A Short Course on
Topological Insulators (Springer, Heidelberg, 2016).

[6] R.-P. Riwar, M. Houzet, J. S. Meyer, and Y. V. Nazarov,
Multi-terminal Josephson junctions as topological matter, Nat.
Commun. 7, 11167 (2016).

[7] Z. Scherübl, A. Pályi, G. Frank, I. E. Lukács, G. Fülöp, B.
Fülöp, J. Nygård, K. Watanabe, T. Taniguchi, G. Zaránd, and
S. Csonka, Observation of spin–orbit coupling induced Weyl
points in a two-electron double quantum dot, Commun. Phys.
2, 108 (2019).

[8] W. Wernsdorfer and R. Sessoli, Quantum phase interference and
parity effects in magnetic molecular clusters, Science 284, 133
(1999).

[9] P. Bruno, Berry Phase, Topology, and Degeneracies in Quantum
Nanomagnets, Phys. Rev. Lett. 96, 117208 (2006).

[10] V. Gritsev and A. Polkovnikov, Dynamical quantum Hall effect
in the parameter space, Proc. Natl. Acad. Sci. 109, 6457 (2012).

[11] G. Frank, Z. Scherübl, S. Csonka, G. Zaránd, and A. Pályi,
Magnetic degeneracy points in interacting two-spin systems:
Geometrical patterns, topological charge distributions, and their
stability, Phys. Rev. B 101, 245409 (2020).

[12] J. von Neumann and E. P. Wigner, Über das Verhalten von
Eigenwerten bei adiabatischen Prozessen, Phys. Z. 30, 467
(1929) [On the behaviour of eigenvalues in adiabatic processes].

[13] V. I. Arnold, Remarks on eigenvalues and eigenvectors of
Hermitian matrices, Berry phase, adiabatic connections and
quantum Hall effect, Selecta Math. 1, 1 (1995).

[14] B. Simon, Holonomy, the Quantum Adiabatic Theorem, And
Berry’s Phase, Phys. Rev. Lett. 51, 2167 (1983).

[15] C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, Multi-Weyl
Topological Semimetals Stabilized by Point Group Symmetry,
Phys. Rev. Lett. 108, 266802 (2012).

[16] Z. Yan and Z. Wang, Floquet multi-Weyl points in crossing-
nodal-line semimetals, Phys. Rev. B 96, 041206(R) (2017).

[17] S. Ahn, E. J. Mele, and H. Min, Optical conductivity of multi-
Weyl semimetals, Phys. Rev. B 95, 161112(R) (2017).

[18] Z.-M. Huang, J. Zhou, and S.-Q. Shen, Topological responses
from chiral anomaly in multi-Weyl semimetals, Phys. Rev. B
96, 085201 (2017).

[19] B. Béri, Topologically stable gapless phases of time-reversal-
invariant superconductors, Phys. Rev. B 81, 134515 (2010).

[20] J.-M. Carter, V. V. Shankar, M. A. Zeb, and H.-Y. Kee,
Semimetal and topological insulator in perovskite iridates,
Phys. Rev. B 85, 115105 (2012).

[21] C. Fang, Y. Chen, H.-Y. Kee, and L. Fu, Topological nodal line
semimetals with and without spin-orbital coupling, Phys. Rev.
B 92, 081201(R) (2015).

[22] W. Wu, Y. Liu, S. Li, C. Zhong, Z.-M. Yu, X.-L. Sheng, Y. X.
Zhao, and S. A. Yang, Nodal surface semimetals: Theory and
material realization, Phys. Rev. B 97, 115125 (2018).

[23] C. Fang, H. Weng, X. Dai, and Z. Fang, Topological nodal line
semimetals, Chin. Phys. B 25, 117106 (2016).

[24] T. Bzdušek, Q. Wu, A. Rüegg, M. Sigrist, and A. A. Soluyanov,
Nodal-chain metals, Nature (London) 538, 75 (2016).

[25] Q.-F. Liang, J. Zhou, R. Yu, Z. Wang, and H. Weng, Node-
surface and node-line fermions from nonsymmorphic lattice
symmetries, Phys. Rev. B 93, 085427 (2016).

[26] Y.-M. Xie, X.-J. Gao, X. Y. Xu, C.-P. Zhang, J.-X. Hu, and
K. T. Law, Kramers nodal line metals, Nat. Commun. 12, 3064
(2021).

[27] K. Ono, D. G. Austing, Y. Tokura, and S. Tarucha, Current
rectification by Pauli exclusion in a weakly coupled double
quantum dot system, Science 297, 1313 (2002), https://science.
sciencemag.org/content/297/5585/1313.full.pdf.

[28] F. H. L. Koppens, C. Buizert, K. J. Tielrooij, I. T. Vink,
K. C. Nowack, T. Meunier, L. P. Kouwenhoven, and L. M. K.
Vandersypen, Driven coherent oscillations of a single elec-
tron spin in a quantum dot, Nature (London) 442, 766
(2006).

[29] K. C. Nowack, F. H. L. Koppens, Y. V. Nazarov, and L. M. K.
Vandersypen, Coherent control of a single electron spin with
electric fields, Science 318, 1430 (2007).

[30] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby,
M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard,
Coherent manipulation of coupled electron spins in semicon-
ductor quantum dots, Science 309, 2180 (2005).

[31] M. D. Schroer, K. D. Petersson, M. Jung, and J. R. Petta, Field
tuning the g Factor in InAs Nanowire Double Quantum Dots,
Phys. Rev. Lett. 107, 176811 (2011).

[32] S. Nadj-Perge, S. M. Frolov, E. P. A. M. Bakkers, and L. P.
Kouwenhoven, Spin-orbit qubit in a semiconductor nanowire,
Nature (London) 468, 1084 (2010).

[33] K. V. Kavokin, Symmetry of anisotropic exchange interactions
in semiconductor nanostructures, Phys. Rev. B 69, 075302
(2004).

[34] Y. Kato, R. C. Myers, D. C. Driscoll, A. C. Gossard,
J. Levy, and D. D. Awschalom, Gigahertz electron spin
manipulation using voltage-controlled g-tensor modulation,
Science 299, 1201 (2003), http://www.sciencemag.org/content/
299/5610/1201.full.pdf.

[35] M. Veldhorst, R. Ruskov, C. H. Yang, J. C. C. Hwang, F. E.
Hudson, M. E. Flatté, C. Tahan, K. M. Itoh, A. Morello, and
A. S. Dzurak, Spin-orbit coupling and operation of multivalley
spin qubits, Phys. Rev. B 92, 201401(R) (2015).

[36] A. Crippa, R. Maurand, L. Bourdet, D. Kotekar-Patil, A.
Amisse, X. Jehl, M. Sanquer, R. Laviéville, H. Bohuslavskyi,
L. Hutin, S. Barraud, M. Vinet, Y.-M. Niquet, and S. De
Franceschi, Electrical Spin Driving by g-Matrix Modulation in
Spin-Orbit Qubits, Phys. Rev. Lett. 120, 137702 (2018).

[37] S. D. Liles, F. Martins, D. S. Miserev, A. A. Kiselev, I. D.
Thorvaldson, M. J. Rendell, I. K. Jin, F. E. Hudson, M.
Veldhorst, K. M. Itoh, O. P. Sushkov, T. D. Ladd, A. S. Dzurak,
and A. R. Hamilton, Electrical control of the g-tensor of a single
hole in a silicon MOS quantum dot, Phys. Rev. B 104, 235303
(2021).

[38] J. R. Petta, H. Lu, and A. C. Gossard, A coherent beam splitter
for electronic spin states, Science 327, 669 (2010).

[39] T. Tanttu, B. Hensen, K. W. Chan, C. H. Yang, W. W. Huang, M.
Fogarty, F. Hudson, K. Itoh, D. Culcer, A. Laucht, A. Morello,
and A. Dzurak, Controlling Spin-Orbit Interactions in Silicon
Quantum Dots Using Magnetic Field Direction, Phys. Rev. X 9,
021028 (2019).

[40] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang,
J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Strong
coupling of a single photon to a superconducting qubit using
circuit quantum electrodynamics, Nature (London) 431, 162
(2004).

[41] Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng,
A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup,
M. F. Barthe, P. Bergonzo, and D. Esteve, Strong Coupling of

035414-19

https://doi.org/10.1038/ncomms11167
https://doi.org/10.1038/s42005-019-0200-2
https://doi.org/10.1126/science.284.5411.133
https://doi.org/10.1103/PhysRevLett.96.117208
https://doi.org/10.1073/pnas.1116693109
https://doi.org/10.1103/PhysRevB.101.245409
https://doi.org/10.1007/BF01614072
https://doi.org/10.1103/PhysRevLett.51.2167
https://doi.org/10.1103/PhysRevLett.108.266802
https://doi.org/10.1103/PhysRevB.96.041206
https://doi.org/10.1103/PhysRevB.95.161112
https://doi.org/10.1103/PhysRevB.96.085201
https://doi.org/10.1103/PhysRevB.81.134515
https://doi.org/10.1103/PhysRevB.85.115105
https://doi.org/10.1103/PhysRevB.92.081201
https://doi.org/10.1103/PhysRevB.97.115125
https://doi.org/10.1088/1674-1056/25/11/117106
https://doi.org/10.1038/nature19099
https://doi.org/10.1103/PhysRevB.93.085427
https://doi.org/10.1038/s41467-021-22903-9
https://doi.org/10.1126/science.1070958
https://science.sciencemag.org/content/297/5585/1313.full.pdf
https://doi.org/10.1038/nature05065
https://doi.org/10.1126/science.1148092
https://doi.org/10.1126/science.1116955
https://doi.org/10.1103/PhysRevLett.107.176811
https://doi.org/10.1038/nature09682
https://doi.org/10.1103/PhysRevB.69.075302
https://doi.org/10.1126/science.1080880
http://www.sciencemag.org/content/299/5610/1201.full.pdf
https://doi.org/10.1103/PhysRevB.92.201401
https://doi.org/10.1103/PhysRevLett.120.137702
https://doi.org/10.1103/PhysRevB.104.235303
https://doi.org/10.1126/science.1183628
https://doi.org/10.1103/PhysRevX.9.021028
https://doi.org/10.1038/nature02851


GYÖRGY FRANK et al. PHYSICAL REVIEW B 105, 035414 (2022)

a Spin Ensemble to a Superconducting Resonator, Phys. Rev.
Lett. 105, 140502 (2010).

[42] C. Janvier, L. Tosi, L. Bretheau, Ç. Ö. Girit, M. Stern, P. Bertet,
P. Joyez, D. Vion, D. Esteve, M. F. Goffman, H. Pothier, and C.
Urbina, Coherent manipulation of Andreev states in supercon-
ducting atomic contacts, Science 349, 1199 (2015).

[43] L. Tosi, C. Metzger, M. F. Goffman, C. Urbina, H. Pothier,
S. Park, A. L. Yeyati, J. Nygård, and P. Krogstrup, Spin-Orbit
Splitting of Andreev States Revealed by Microwave Spec-
troscopy, Phys. Rev. X 9, 011010 (2019).

[44] P. Roushan, C. Neill, Y. Chen, M. Kolodrubetz, C. Quintana, N.
Leung, M. Fang, R. Barends, B. Campbell, Z. Chen, B. Chiaro,
A. Dunsworth, E. Jeffrey, J. Kelly, A. Megrant, J. Mutus, P. J. J.
O’Malley, D. Sank, A. Vainsencher, J. Wenner et al., Observa-
tion of topological transitions in interacting quantum circuits,
Nature (London) 515, 241 (2014).

[45] T. Souza, M. Tomka, M. Kolodrubetz, S. Rosenberg, and A.
Polkovnikov, Enabling adiabatic passages between disjoint re-
gions in parameter space through topological transitions, Phys.
Rev. B 94, 094106 (2016).

[46] T. Curtright, Z. Cao, S. Huang, J. Sarmiento, S. Subedi, D.
Tarrence, and T. Thapaliya, Charge densities for conducting
ellipsoids, Eur. J. Phys. 41, 035204 (2020).

[47] X.-Q. Sun, S.-C. Zhang, and T. Bzdusek, Conversion Rules for
Weyl Points and Nodal Lines in Topological Media, Phys. Rev.
Lett. 121, 106402 (2018).

[48] R. González-Hernández, E. Tuiran, and B. Uribe, Topological
electronic structure and Weyl points in nonsymmorphic hexag-
onal materials, Phys. Rev. Materials 4, 124203 (2020).

[49] M. A. Wilde, M. Dodenhöft, A. Niedermayr, A. Bauer, M. M.
Hirschmann, K. Alpin, A. P. Schnyder, and C. Pfleiderer,
Symmetry-enforced topological nodal planes at the Fermi sur-
face of a chiral magnet, Nature (London) 594, 374 (2021).

[50] V. Fatemi, A. R. Akhmerov, and L. Bretheau, Weyl Josephson
circuits, Phys. Rev. Research 3, 013288 (2021).

[51] M. M. Hirschmann, A. Leonhardt, B. Kilic, D. H. Fabini, and
A. P. Schnyder, Symmetry-enforced band crossings in tetrago-
nal materials: Dirac and Weyl degeneracies on points, lines, and
planes, Phys. Rev. Materials 5, 054202 (2021).

[52] M. D. Schroer, M. H. Kolodrubetz, W. F. Kindel, M. Sandberg,
J. Gao, M. R. Vissers, D. P. Pappas, A. Polkovnikov, and K. W.
Lehnert, Measuring a Topological Transition in an Artificial
Spin-1/2 System, Phys. Rev. Lett. 113, 050402 (2014).

[53] I. Martin, G. Refael, and B. Halperin, Topological Frequency
Conversion in Strongly Driven Quantum Systems, Phys. Rev. X
7, 041008 (2017).

[54] S. Körber, L. Privitera, J. C. Budich, and B. Trauzettel, Inter-
acting topological frequency converter, Phys. Rev. Research 2,
022023(R) (2020).

[55] A. Garg, Berry phases near degeneracies: Beyond the simplest
case, Am. J. Phys. 78, 661 (2010).

[56] R. Wiesendanger, Spin mapping at the nanoscale and atomic
scale, Rev. Mod. Phys. 81, 1495 (2009).

[57] A. Spinelli, M. Gerrits, R. Toskovic, B. Bryant, M. Ternes, and
A. F. Otte, Exploring the phase diagram of the two-impurity
Kondo problem, Nat. Commun. 6, 10046 (2015).

[58] R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge
University Press, Cambridge, 1985).

035414-20

https://doi.org/10.1103/PhysRevLett.105.140502
https://doi.org/10.1126/science.aab2179
https://doi.org/10.1103/PhysRevX.9.011010
https://doi.org/10.1038/nature13891
https://doi.org/10.1103/PhysRevB.94.094106
https://doi.org/10.1088/1361-6404/ab806a
https://doi.org/10.1103/PhysRevLett.121.106402
https://doi.org/10.1103/PhysRevMaterials.4.124203
https://doi.org/10.1038/s41586-021-03543-x
https://doi.org/10.1103/PhysRevResearch.3.013288
https://doi.org/10.1103/PhysRevMaterials.5.054202
https://doi.org/10.1103/PhysRevLett.113.050402
https://doi.org/10.1103/PhysRevX.7.041008
https://doi.org/10.1103/PhysRevResearch.2.022023
https://doi.org/10.1119/1.3377135
https://doi.org/10.1103/RevModPhys.81.1495
https://doi.org/10.1038/ncomms10046

