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Quantum bits based on Majorana zero modes are expected to be robust against certain noise types, and hence
provide a quantum computing platform that is superior to conventional qubits. This robustness is not complete,
though: imperfections can still lead to qubit decoherence and hence to information loss. In this work, we theo-
retically study Majorana-qubit dephasing in a minimal model: in a Kitaev chain with quasistatic disorder. Our
approach, based on numerics as well as first-order nondegenerate perturbation theory, provides a conceptually
simple physical picture and predicts Gaussian dephasing. We show that as system parameters are varied, the
dephasing rate due to disorder oscillates out-of-phase with respect to the oscillating Majorana splitting of the
clean system. In our model, first-order dephasing sweet spots are absent if disorder is uncorrelated. We describe
the crossover between uncorrelated and highly correlated disorder, and show that dephasing measurements can
be used to characterize the disorder correlation length. We expect that our results will be utilized for the design
and interpretation of future Majorana-qubit experiments.
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I. INTRODUCTION

Theoretical proposals [1–3] suggest that Majorana zero
modes (MZMs) can be engineered in quasi-one-dimensional
semiconducting-superconducting hybrid systems [4,5]. The
past decade has witnessed intense experimental activities to
establish MZMs [4,6–20]. It is expected that MZMs could
serve as building blocks in experiments demonstrating topo-
logically protected quantum memories, quantum dynamics,
or even quantum computing [21–28]. In that context, under-
standing the decoherence of Majorana qubits [26,29–40] is an
important task.

The minimal model hosting MZMs (see Fig. 1) is the
Kitaev chain [41]. It can be used to describe the dephasing
process of a Majorana qubit. The ground state of a finite-
length topological Kitaev chain hosts two MZMs at the two
ends of the chain, implying that the ground state is approx-
imately twofold degenerate, with one ground state being of
even fermion parity and the other being of odd fermion parity.
In a chain with a finite length, a small energy splitting ε0

separates the two ground states. If random components, such
as disorder [29,42], are incorporated in the model, then the
splitting becomes a random variable. To encode a single qubit
with MZMs, two wires and hence four MZMs are needed [43].
In such a two-wire Majorana qubit, the random splittings in
the two wires add up to a random Larmor frequency of the
qubit, leading to qubit dephasing.

In this work, we theoretically study dephasing of Majorana
qubits in the presence of slow charge noise. A key target in
topological quantum computing is the experimental demon-
stration of a topologically protected quantum memory based
on MZMs; hence it is imperative to understand the potential

sources of qubit decoherence, to assess future device func-
tionality and provide optimization guidelines. Furthermore,
qubit dephasing measurement is an established tool to reveal
the noise structure of the qubit’s environment [44–47]; un-
derstanding dephasing is important for that application, too.
In our work, we focus on the model of quasistatic disorder
[48–53], a minimal model of slow (low-frequency) charge
noise or 1/ f noise [40,44,46,47,54–57], which has been a
very important source of qubit dephasing both in semi- and
superconductor environments.

Naturally, Majorana qubit dephasing due to weak and slow
(quasistatic) charge noise is determined by the probability
distribution of the splitting; see, e.g., our Sec. IV. First we
study that splitting distribution for uncorrelated disorder by
both numerical and analytical methods, and show that it is
Gaussian for weak disorder. We argue that this result is consis-
tent with the log-normal splitting-envelope distribution found
by Ref. [29] in our Appendix C.

Having the splitting distribution at hand, we use it to char-
acterize the dephasing of a Majorana qubit subject to weak
quasistatic disorder. In simple models, the time dependence
of qubit dephasing often follows a Gaussian function [26,58].
Here we show that this is also the case for the qubit studied
here. Our key results for the spatially uncorrelated disorder
model are that (i) we provide an analytical formula for the
dephasing susceptibility [see Eq. (29)] and the dephasing
time [see Eq. (35)], (ii) we reveal an out-of-phase oscillation
between the splitting of the clean system and the dephasing
susceptibility to disorder [see Fig. 2(b) and Figs. 3(a) and
3(b)], and (iii) we highlight the absence of dephasing sweet
spots in our model (see Sec. IV). Finally, we show that the
spatial correlation length of the disorder has a strong impact

2469-9950/2022/105(3)/035413(17) 035413-1 ©2022 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.035413&domain=pdf&date_stamp=2022-01-12
https://doi.org/10.1103/PhysRevB.105.035413


PÉTER BOROSS AND ANDRÁS PÁLYI PHYSICAL REVIEW B 105, 035413 (2022)

FIG. 1. Spectrum and Majorana wave functions in a topological
superconductor wire. (a) Schematic spectrum of the Bogoliubov–de
Gennes matrix. (b) Electron and hole components of the antibonding
Majorana wave function.

on a dephasing experiment. As a consequence, we expect that
in future Majorana-qubit experiments, measuring the dephas-
ing time as function of control parameters (e.g., chemical
potential) will provide information about the spatial structure
of noise.

The rest of the paper is organized as follows. In Sec. II,
we show numerical results for the splitting distribution of the
disordered chain, highlighting the Gaussian distribution of the
splitting, and the out-of-phase oscillation between the clean
splitting and the splitting susceptibility to disorder. In Sec. III,
we use the continuum version of the Kitaev chain, together
with mode matching and first-order perturbation theory, to
establish the semianalytical description of the splitting distri-
bution, and to derive approximate analytical results for that.
Furthermore, we compare the results of the two models. In
Sec. IV, we relate the splitting distribution and the dephasing
dynamics of a Majorana qubit based on two Kitaev chains. In
Sec. V, we show that the parameter dependence of the dephas-
ing time is sensitive to the correlation length of the disorder.
We discuss implications and follow-up ideas in Sec. VI, and
conclude in Sec. VII.

II. DISORDER-INDUCED SPLITTING DISTRIBUTION
IN THE KITAEV CHAIN

We use the Kitaev-chain tight-binding model [41] to
numerically investigate Majorana qubit dephasing. In this
section, we numerically determine the disorder-induced distri-
bution of the signful splitting (see definition below), using the
Kitaev chain. We anticipate that this distribution is Gaussian
for weak quasistatic disorder (see below within this section
for details), and that the Majorana qubit dephasing time T ∗

2 in
a two-chain setup is determined by the standard deviation σε0

of the signful splitting ε0 [see Eq. (35) in Sec. IV].

TABLE I. Parameter values used in the numerical and analytical
calculations.

Parameter/scale Notation Value

Continuum model:
Effective mass (of InAs) m 0.023me

Chemical potential μC 1 meV
Superconducting gap �C 200 μeV

Kitaev chain:
Normal hopping amplitude t 6.62 eV
Lattice constant a 0.5 nm
Chemical potential μK −13.3 eV
Superconducting pairing potential �K 8.14 meV

Length scales:
Fermi wavelength λF 511a
Fermi wave number kF 0.0123/a
Superconductor coherence length ξ 814a
Inverse coherence length κ 0.00123/a

The Hamiltonian of a finite-length Kitaev chain in real
space reads [41]

HK = −
N∑

n=1

(
μK + δμ(K)

n

)
c†

ncn − t
N−1∑
n=1

(c†
ncn+1 + H.c.)

− �K

N−1∑
n=1

(cncn+1 + H.c.), (1)

where c†
n and cn are the electron creation and annihilation

operator on site n, respectively, t is the hopping amplitude,
μK is the chemical potential, �K is the superconducting pair
potential, and N is the number of sites. We model disorder as
a random on-site potential, independent on each site, drawn
from Gaussian distribution with zero mean and standard de-
viation σμ, that is, δμ(K)

n ∼ N (0, σμ). For a discussion of the
relation between this model and disorder in real samples, see
Sec. VI.

We obtain the splitting ε0 using the Bogoliubov–de Gennes
(BdG) transformation [59], i.e., by numerically finding the
smallest positive eigenvalue of the corresponding real-space
2N × 2N BdG Hamiltonian [60]. We will calculate the split-
ting ε0 for a clean system, i.e., in the absence of any disorder,
as well as for random on-site disorder realizations. In the latter
case, ε0 becomes a random variable—with a Gaussian distri-
bution for weak disorder, as shown in Fig. 2(a) and discussed
below.

A clean Kitaev chain has a splitting that decreases in an
oscillatory fashion as the chain length is increased [61–64].
This is shown in Fig. 2(b), where we plot the numerically
calculated length dependence of ε0 (red solid line) for a pa-
rameter set shown in the “Kitaev chain” section of Table I.

Now we introduce disorder and study the splitting distri-
bution. Figure 2(a) shows three examples of that distribution,
for a fixed disorder strength σμ = 100 μeV, for three differ-
ent chain lengths N = 2000, 3000, 4000. The figure clearly
shows a Gaussian character for all three distributions. Further-
more, the figure also shows the trend that both the mean and
the standard deviation of these distributions decrease as the
chain length increases.
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FIG. 2. Splitting, its probability distribution, and its standard deviation from the Kitaev chain model. (a) Numerically obtained probability
density functions (pdf’s) of the splitting for three different lengths in disordered system. Gray lines are fitted Gaussian pdf’s. (b) Splitting of
the clean system (red line) and standard deviation of the signful splitting (blue points) are shown as a function of chain length, for the disorder
strength σμ = 100 μeV. Out-of-phase oscillation can be observed between the splitting and its standard deviation. (c) Standard deviation of
the signful splitting is shown as a function of the strength of the on-site disorder for three different lengths. The dependence on the disorder
strength is linear for the shown range. Results for disordered systems are calculated using 10 000 realizations.

Figure 2(c) shows a more systematic analysis of the
length and disorder-strength dependence of the standard de-
viation σε0 of the signful splitting ε0. Note the difference
between the signful splitting ε0 and the splitting ε0. The
signful splitting is defined by ε0 ≡ εo − εe, where εo (εe)
is the energy of the odd (even) ground state. We have
defined the splitting [see Fig. 1(a)] as the absolute value
of the signful splitting, i.e., ε0 ≡ |ε0|. The distinction be-
tween ε0 and ε0 is motivated by the observation that the
dephasing dynamics is related to the signful splitting ε0; see
Eq. (35).

For all lengths displayed in Fig. 2(c), the standard deviation
σε0 of the signful splitting shows a clear linear dependence
on the disorder strength σμ. This linear dependence motivates
the definition of the dimensionless dephasing susceptibility
to disorder, χ = σε0/σμ. In Eq. (28), we will provide an
approximate analytical formula for this susceptibility.

The Gaussian character of the splitting distribution, and
the linear dependence of the splitting standard deviation on
the disorder strength, can be qualitatively understood in three
steps. We briefly summarize these here, and will use these

considerations in the next section in our quantitative deriva-
tions.

(i) The bonding and antibonding Majorana levels, see
Fig. 1(a), are particle-hole symmetric partners of each other.
This implies that disorder (or any other perturbation) can not
couple them directly.

(ii) Therefore, there is no need to use degenerate or
quasidegenerate perturbation theory to describe the leading-
order effect of disorder on the energy levels. It is sufficient to
do first-order nondegenerate perturbation theory for, say, the
antibonding level. This explains the linear dependence of the
splitting standard deviation on the disorder strength.

(iii) The first-order perturbative description implies that the
first-order energy correction δε

(1)
0 due to disorder in our model

(independent random on-site energies) is a sum of many inde-
pendent random variables for long chains, N � 1, and hence
the central limit theorem ensures the Gaussian character of
that energy correction.

Finally, we point out an out-of-phase oscillation effect be-
tween the standard deviation σε0 of the signful splitting and
the clean splitting ε0. In Fig. 2(b), the blue points show the

FIG. 3. Comparison of continuum-model (lines) and Kitaev-model (dots) results for the splitting and its standard deviation. (a) Splitting
as a function of length for the clean system. (b) Dephasing susceptibility to disorder—that is, the ratio χ = σε0/σμ of the standard deviation
of the splitting and the strength of the on-site disorder—is shown as a function of the length. See Table I for parameter values. In both panels,
star and diamond denote two specific chain lengths, for which the dephasing curves are shown in Fig. 4.
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length dependence of the standard deviation σε0 of the signful
splitting, for the disorder strength σμ = 100 μeV. Note that
the y axis for these blue points is the right y axis which is
also colored blue. Figure 2(b) shows that the splitting standard
deviation σε0 oscillates and decays as the length increases,
similarly to the splitting of the clean system. However, there
is an out-of-phase oscillation between the splitting and its
disorder-induced standard deviation: e.g., the standard devi-
ation has a maximum wherever the splitting reaches zero.

Note that with our numerical approach, it is straightforward
to estimate the standard deviation σε0 of the splitting; how-
ever, Majorana-qubit dephasing is determined by the standard
deviation σε0 of the signful splitting [Eq. (35)]. To estimate
the latter, we do the following. If the expectation value of the
splitting ε0 is much larger than its standard deviation, then
σε0 ≈ σε0 ; hence we use the splitting statistics to estimate
σε0 . If the above condition does not hold, then we convert
the statistics of the splitting to the statistics of the signful
splitting, and from the latter we estimate σε0 , as described in
Appendix B.

III. SPLITTING IN THE CONTINUUM VERSION OF THE
KITAEV CHAIN

Numerical computation of the splitting from the Kitaev
chain model or other tight-binding models can be computa-
tionally expensive for larger system size. To establish a more
efficient calculational tool, and to enable analytical results for
the splitting absolute value and its standard deviation, here
we study the continuum version of the Kitaev chain. These
analytical results serve also as a benchmark against which the
numerical results can be checked.

First, we use mode matching to obtain the BdG wave func-
tion of the quasi-zero-energy mode in a clean (disorder-free)
wire [63]. Second, we use this wave function and first-order
nondegenerate perturbation theory to determine the standard
deviation σε0 of the splitting.

A. Splitting and antibonding Majorana wave function in a clean
wire

The continuum model has the following momentum-space
Hamiltonian [29]:

HC(k) =
(

h̄2k2

2m
− μC

)
σz − �′

Ch̄kσx, (2)

where m is the effective mass, μC is the chemical potential,
and σx and σz are Pauli matrices acting in Nambu space. The
index C stands for “continuum.” For future use, we define

kF =
√

2mμC/h̄, (3a)

vF = h̄kF/m, (3b)

�C = �′
Ch̄kF, (3c)

ξ = h̄vF/�C, (3d)

where kF is the Fermi wave number, vF is the Fermi velocity,
�C is the superconducting gap, and ξ is the superconductor

coherence length. We will describe a finite-length wire with
length L and hard-wall boundary conditions. The relation of
this Hamiltonian and the Kitaev chain Hamiltonian is detailed
in Appendix A.

We use mode-matching to determine the Majorana anti-
bonding state and its energy (the splitting). The first step is
to establish the evanescent modes close to zero energy in
a homogeneous system. With that aim, we insert the stan-
dard plane-wave ansatz to the BdG equation HC(−i∂x )ψ (x) =
εψ (x) defined by Eq. (2).

It is straightforward to show that this approach
yields four evanescent solutions for energies 0 � ε <√

�2
C − (�2

C/2μC)2, with complex wave numbers k1 =
K + iκ , k2 = −K + iκ , k3 = K − iκ , and k4 = −K − iκ .
Here

K = 1

h̄

√
m

(√
μ2

C − ε2 + μC − �2
C

2μC

)
, (4a)

κ = 1

h̄

√
m

(√
μ2

C − ε2 − μC + �2
C

2μC

)
. (4b)

Furthermore, K and κ are positive numbers for 0 �
ε <

√
�2

C − (�2
C/2μC)2. The corresponding non-normalized

wave functions have the form

ψki (x) =
(

uki

vki

)
eikix =

(
�′

Ch̄ki

h̄2ki
2

2m − μC − ε

)
eikix, (5)

where uki and vki represent the electron and hole components
of the wave function in the momentum space.

The antibonding Majorana wave function must be a linear
superposition of the four evanescent modes at a given energy:

ψ (x) =
(

ψe(x)

ψh(x)

)
=

4∑
i=1

αi

(
uki

vki

)
eikix, (6)

where ψe(x) and ψh(x) are the electron and hole components
of the Majorana bound state; furthermore, the αi’s are complex
coefficients. This wave function ψ (x) must satisfy the hard-
wall boundary conditions:

ψ (0) = ψ (L) =
(

0

0

)
. (7)

This condition is fulfilled by coefficient vectors satisfying the
following homogeneous linear set of equations:

M

⎛
⎜⎜⎜⎝

α1

α2

α3

α4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0

0

0

0

⎞
⎟⎟⎟⎠, (8)

where the ε-dependent matrix M is defined as

M =

⎛
⎜⎜⎜⎝

uk1 uk2 uk3 uk4

vk1 vk2 vk3 vk4

uk1 eik1L uk2 eik2L uk3 eik3L uk4 eik4L

vk1 eik1L vk2 eik2L vk3 eik3L vk4 eik4L

⎞
⎟⎟⎟⎠. (9)
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As follows from Eq. (8), for a given length L, the condition

det [M(ε)] = 0 (10)

gives the energy ε0 of the antibonding Majorana state. In
general, Eq. (10) leads a transcendental equation, which
can be solved numerically: ε0,num. Power-series expansion
of det (M) in ε up to second order provides an analytical

solution that in the limit of L � 1/kF, ξ reads

ε0(L) ≈ 2�CkFe−L/ξ

∣∣∣∣∣∣∣
sin

(√
k2

F − 1/ξ 2L
)

√
k2

F − 1/ξ 2

∣∣∣∣∣∣∣, (11)

where we use K|ε=0 =
√

k2
F − 1/ξ 2 and κ|ε=0 = 1/ξ .

Depending on the relative magnitude of kF and 1/ξ , from
Eq. (11) we obtain

ε0(L) ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�C
2kF√

k2
F−1/ξ 2

e−L/ξ

∣∣∣sin
(√

k2
F − 1/ξ 2L

)∣∣∣, if kF > 1/ξ,

(12a)

�C
kF√

1/ξ 2 − k2
F

e−(1/ξ−
√

1/ξ 2−k2
F )L, if kF < 1/ξ . (12b)

If kF > 1/ξ (i.e., when μC > �C/2), the splitting has an
oscillatory part, but if kF < 1/ξ , the splitting decreases purely
exponentially as the length increases. For a physically feasible
parameter set shown in Table I, including a chemical potential
(e.g., set by a gate voltage) μC = 1 meV, we obtain kF > 1/ξ .
This is the case we focus on from now on. To reach kF < 1/ξ ,
the chemical potential needs to be suppressed as 0 < μC <

0.1 meV; we do not treat this case here.
Our result (12a) is in fact a generalization of an earlier

result; see below Eq. (5) in Ref. [62] and Eq. (18) in Ref. [65].

The only difference is the appearance of
√

k2
F − 1/ξ 2 in our

result. The earlier result can be obtained by taking the limit
kF � 1/ξ of our formula (12), i.e., by applying the approxi-

mation
√

k2
F − 1/ξ 2 ≈ kF.

Next, we describe the antibonding Majorana wave func-
tion. To simplify the description, we utilize the symmetries
of the setup. The clean system has inversion symmetry. The
corresponding operator has the form � = π ⊗ σz, where π

is the inversion with respect to the point x = L/2, acting in
real space, and σz acts in Nambu space. Inversion symmetry,
together with the assumption that the antibonding Majorana
energy level is nondegenerate, implies that(

ψe(x)

ψh(x)

)
=
(±ψe(L − x)

∓ψh(L − x)

)
. (13)

The Hamiltonian Eq. (2) also has bosonic time-reversal
symmetry with the operator T = (1 ⊗ σz )K, where K is the
complex conjugation, and it fulfills the relation T 2 = 1. Time-
reversal symmetry restricts the form of the nondegenerate
energy eigenstate as

T

(
ψe(x)

ψh(x)

)
=
(

ψ∗
e (x)

−ψ∗
h (x)

)
= eiϕ

(
ψe(x)

ψh(x)

)
, (14)

where ϕ depends on the global phase of the wave function. For
concreteness, we fix this global phase such that ϕ = 0. Given
an eigenstate ψ with an arbitrary global phase, the eigenstate
with ϕ = 0 is obtained as ψ (x) + T ψ (x). This choice ϕ = 0
leads to

Im[ψe(x)] = 0, (15a)

Re[ψh(x)] = 0. (15b)

Equations (7), (13), and (15) constrain the form of the wave
function:

ψ (x) =
(

Ae{e−κx sin (Kx − φe) + pe−κ (L−x) sin [K (L − x) − φe]}
iAh{e−κx sin (Kx − φh) − pe−κ (L−x) sin [K (L − x) − φh]}

)
, (16)

where Ae and Ah are normalization factors,

φe = arctan

[
pe−κL sin(KL)

1 + pe−κL cos(KL)

]
, (17a)

φh = arctan

[ −pe−κL sin(KL)

1 − pe−κL cos(KL)

]
(17b)

are phases, and p = +1 (p = −1) corresponds to the behavior
under inversion, that is, to the upper (lower) sign in Eq. (13).

In the limit L � ξ > 1/kF, the following approximations
can be made:

p = sgn
[
sin

(√
k2

F − 1/ξ 2L
)]

, (18a)

φe = −φh = φ ≈ e−L/ξ
∣∣∣sin

(√
k2

F − 1/ξ 2L
)∣∣∣, (18b)
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Ae = Ah = A ≈ 1√
ξ

2

(
1 − cos(φ/2)

k2
F ξ 2

) . (18c)

We note that p changes sign where the splitting vanishes.
To obtain Eq. (18), we compare the wave function in

Eqs. (6) and in (16), yielding

φe = arctan

[
α1uk1 + α2uk2

i(α2uk2 − α1uk1 )

]
. (19)

The coefficient vector (α1, α2, α3, α4)ᵀ is the null space of the
matrix M, which we find analytically by Gauss elimination.
Comparing Eqs. (17) and (19) up to leading order in e−L/ξ , we
find Eq. (18). Furthermore, we find the approximate formula
for the phases in Eq. (18 b) using Eqs. (17), by taking the
leading-order approximation in e−L/ξ , and utilizing Eq. (18).
To obtain Eq. (18), we assumed that the electron and hole
character of the wave function has exactly equal probabil-
ity in the limit of L � ξ > 1/kF, which results in Ae = Ah.
We derived Eq. (18) from the norm of the wave function in
Eq. (16) by taking the limit for L → ∞. We will use Eqs. (18)
to derive an approximate analytical formula for the dephasing
susceptibility to disorder shown in Eq. (29).

B. Standard deviation of the splitting

Now we describe the broadening of the splitting distri-
bution due to on-site disorder. The full Hamiltonian of the
disordered system can be written as

HC = HC(−ih̄∂x ) + Hdis, (20)

where Hdis = δμC(x)σz is the disorder Hamiltonian, repre-
senting disorder in the chemical potential. We model disorder
as a collection of potential steps, where the lengths of the steps
are equal and denoted by adis:

δμC(x) =
Ndis∑
i=1

δμ
(C)
i �i(x), (21)

where

�i(x) =
{

1, i − 1 � x/adis < i,

0, otherwise.
(22)

This model is a natural analog of the disorder model we used
in the Kitaev chain, with the identification a = adis, where a
is the lattice constant of the Kitaev chain.

We regard disorder as a perturbation, and calculate the
first-order energy shift. Naively, one should do degenerate
perturbation theory, since the antibonding and bonding Majo-
rana energies are close to each other. However, disorder does
not couple them; hence nondegenerate perturbation theory is
sufficient. The proof of this is as follows.

Due to the particle-hole symmetry of the BdG Hamilto-
nian, 〈ψ |Hdis|Pψ〉 = 〈Pψ |Hdis|ψ〉 = 0, where |ψ〉 and |Pψ〉
are the positive and negative energy solution of the BdG
Hamiltonian, and P = (1 ⊗ σx )K is the operator of the

particle-hole symmetry. This can be seen by

〈ψ |H |Pψ〉 = − 〈ψ |PH |ψ〉
= − 〈Pψ |H |ψ〉∗ = − 〈Hψ |Pψ〉 = − 〈ψ |HPψ〉 ,

(23)

where the first equation is implied by the fact that H anti-
commutes with P, the second equation is a consequence of
the antiunitary property of P, the third equation is obtained by
flipping the scalar product, and the fourth equation is implied
by H being Hermitian.

Applying the relation 〈ψ |Hdis|Pψ〉 = 0 to the antibonding
|ψ〉 and bonding |Pψ〉 Majorana wave functions, we conclude
that they are uncoupled and therefore the first-order disorder-
induced shift of the signful splitting is δε

(1)
0 = 〈ψ |Hdis|ψ〉.

Using Eqs. (6) and (21), this shift can be written as

〈ψ |Hdis|ψ〉 =
Ndis∑
i=1

δμ
(C)
i �i, (24)

where

�i =
∫ iadis

(i−1)adis

[|ψe(x)|2 − |ψh(x)|2]dx. (25)

In analogy with our disorder model in the Kitaev chain,
discussed in Sec. II, we assume independence and a normal
distribution for the chemical potential disorder, which we de-
note as δμ

(C)
i ∼ N (0, σμ), where σμ is the disorder strength,

and the δμ
(C)
i ’s are independent of each other. From Eq. (24),

we conclude that the disorder matrix element also follows a
Gaussian distribution:

〈ψ |Hdis|ψ〉 ∼ N (0, σε0 ), (26)

where σε0 = σμ

√∑Ndis
j=1 �2

j , the standard deviation of the dis-
tribution of the signful splitting.

Let us suppose that |ψe(x)|2 − |ψh(x)|2 varies slowly on
the scale of adis. This implies

Ndis∑
i=1

�2
i ≈

Ndis∑
i=1

a2
dis[|ψe(iadis)|2 − |ψh(iadis)|2]2

≈ adis

∫ L

0
[|ψe(x)|2 − |ψh(x)|2]2dx. (27)

Therefore, the dephasing susceptibility to disorder is obtained
as

χ ≡ σε0

σμ

=
√

adis

∫ L

0
[|ψe(x)|2 − |ψh(x)|2]2dx. (28)

By solving Eq. (8) numerically, we obtain the values αi,num

of αi. Substituting these numerical values αi,num and ε0,num

into Eqs. (4) and (16), we obtain the semianalytical wave
function ψe(x) and ψh(x). After normalization, Eq. (28) can
be performed. The results, shown in Fig. 3(b) as “exact,” are
discussed below.

As an alternative to the above semianalytical approach, an
approximate analytical formula can be obtained by substitut-
ing the form of the wave function in Eqs. (16) into Eq. (28)
using Eqs. (18). After the integration over x, and taking series
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expansion in κe−κL, the dephasing susceptibility to disorder
in the limit of L � ξ > 1/kF can be written as

χ=
√

adis

2ξ
e−L/ξ

√
8L

ξ
− 3 +

(
4L

ξ
+ 3

)
cos(2

√
k2

F − 1/ξ 2L).

(29)

Equation (29) is the key result of our work. It reveals that
the dephasing susceptibility (and hence the dephasing rate)
as a function of system parameters exhibits oscillations that
are out-of-phase with the oscillations of the clean splitting
given in Eq. (12). This is apparent as Eq. (12) contains a sine
whereas Eq. (29) contains a cosine.

Furthermore, Eq. (29) also suggests the absence of dephas-
ing sweet spots in this setting: the long expression below the
square root in Eq. (29) is always positive due to the condition
L � ξ .

In conclusion, we have described a semianalytical proce-
dure, and an approximate analytical procedure, to estimate
the disorder-induced broadening of the distribution of the
signful splitting in a continuum model of a 1D topological
superconductor.

C. Comparing the results of the two models

Here, we show the correspondence of the Kitaev chain
and continuum model results for the splitting ε0, the
disorder-induced standard deviation σε0 , and the dephasing
susceptibility χ . In Appendix A, we show how to connect the
parameters of the continuum and discrete (Kitaev) models.

In Fig. 3(a), we plot the splitting of the clean system as a
function of the chain length. Red points show the numerical
result from the Kitaev chain model, whereas the red solid
line shows the semianalytical exact result from the continuum
model, obtained by solving Eq. (10) numerically. The dashed
green line shows the result of Eq. (12). Parameter values are
those listed in Table I. In Fig. 3(a), the Kitaev chain result (red
points) and the exact result from the continuum model (red
solid line) are indistinguishable. The analytical approximate
result (green dashed line) shows a slight deviation from the
other two data sets for a short chain, but becomes indistin-
guishable from those for long chains.

In Fig. 3(b), we plot the dephasing susceptibility, that is,
the ratio of splitting standard deviation σε0 and the disorder
strength σμ, as a function of the chain length. The Kitaev
model result (points) is obtained numerically, using 10 000
random disorder realizations for each length. Here again, the
two models show satisfactory agreement.

IV. SIGNFUL SPLITTING DISTRIBUTION
AND MAJORANA QUBIT DEPHASING

In this section, we complete our primary task, and describe
the dephasing dynamics of a Majorana qubit subject to qua-
sistatic disorder.

A. Noise model: Quasistatic disorder

Let us start this description by defining our noise model of
quasistatic disorder, and relating it to device physics. Elec-
trical potential fluctuations are generically present in qubit

devices, and often dominate qubit decoherence. In many
experiments, this noise has been found to follow a frequency-
dependent power spectrum S( f ) ∝ 1/ f . Due to dominance of
the low-frequency component, one can refer to this type of
noise as slow charge noise.

In this work, we account for the most prominent feature of
this noise, i.e., that it detunes the electrostatic potential felt
by the electrons in the Majorana wire. Regarding the spatial
structure of the noise, we first focus on short-range corre-
lations (Sec. IV), but later we also describe Majorana qubit
dephasing as the spatial correlation length is varied (Sec. V).

Regarding the temporal structure of noise, we follow
numerous earlier works by applying the quasistatic approxi-
mation. To define the quasistatic approximation, we first recall
how a dephasing-time experiment (Ramsey experiment) is
performed. First, a balanced superposition of the two compu-
tational basis states, with a Bloch vector aligned with, say, the
x axis, is prepared. Then, this state is allowed to evolve freely
for a waiting time τw much shorter than the dephasing time.
After time τw, the qubit is measured in the x basis. This is of-
ten called one “shot” of the experiment. This shot is repeated
many (Nrep � 1) times to gain statistics and eliminate shot
noise, and the whole sequence of Nrep shots is repeated for
Nτ � 1 different, stepwise increasing values of the waiting
time. Typically, the largest τw value is a few times greater than
the dephasing time.

As applied to this scheme, the quasistatic approximation of
noise is composed of two assumptions: (i) for each run, the
noise is considered time-independent, i.e., it is static disorder,
and (ii) for the Nrep shots with a single waiting time, the
different static disorder configurations acting during the dif-
ferent runs provide a good statistical coverage of all disorder
configurations.

B. Majorana qubit dephasing

Consider a Majorana qubit encoded in two identical topo-
logical superconducting wires. All parameters are assumed
to be equal, including the disorder strength. The two wires
are assumed to be decoupled from each other (no tunneling
between the two wires). We restrict our attention to the glob-
ally even ground state of this setup, which is spanned by the
basis states |0〉 ≡ |e1, e2〉 and |1〉 ≡ |o1, o2〉, where the names
e and o refer to the even and odd fermion parities of the
corresponding states, and the indices 1 and 2 refer to the first
and second wire, respectively.

To perform a qubit dephasing experiment, one usually cre-
ates an initial state |ψi〉 that is a balanced superposition of the
two basis states, e.g., with a qubit polarization vector along
the x direction

|ψi〉 = 1√
2

(|0〉 + |1〉). (30)

The qubit polarization vector (Bloch vector) for this state is

�p ≡ 〈ψi|�σ |ψi〉 = (1, 0, 0), (31)

where �σ = (σx, σy, σz ) is the vector of Pauli matrices. Note
that the preparation of this initial state itself can be corrupted
by disorder, a complication that we disregard here.
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FIG. 4. Dephasing of a Majorana qubit due to quasistatic disorder. (a) Dephasing curves. The x component of the disorder-averaged
polarization vector as a function of time for two different lengths (see star and diamond in Fig. 3). The envelopes of the curves follow Gaussian
dephasing. The finiteness of the mean of the signful splitting is responsible for the oscillations of the solid line. The out-of-phase oscillation
between the clean splitting and dephasing susceptibility is illustrated: the longer chain (dashed line) shows faster dephasing but no Larmor
precession. (b) Inhomogeneous dephasing time as a function of the length for disorder strength σμ = 2.8 μeV when disorder is uncorrelated
(black) and when fully correlated (green). Table inset shows the results corresponding to uncorrelated disorder for specific lengths.

After preparation, the relative phase between the two basis
states evolves in time due to the excess energy ε

(1)
0 of o1 with

respect to e1 in wire 1, and the excess energy ε
(2)
0 of o2 with

respect to e2 in wire 2. In particular, the time-dependent wave
function, up to an irrelevant global phase, reads

|ψ (t )〉 = 1√
2

( |0〉 + e−i(ε (1)
0 +ε

(2)
0 )t/h̄ |1〉 ). (32)

Then, the quasistatic assumption implies that on average, for
a large number of measurements, the qubit polarization vector
evolves in time as

〈 �p(t )〉 ≡ 〈ψ (t )|�σ |ψ (t )〉 =
∫

dε ρ(ε)

⎛
⎝ cos(εt/h̄)

− sin(εt/h̄)

0

⎞
⎠, (33)

where ε = ε
(1)
0 + ε

(2)
0 is the random qubit energy splitting, and

ρ(ε) is its pdf.
We illustrate the dephasing dynamics by calculating

〈px(t )〉, the x component of the disorder-averaged polarization
vector as the function of time. We will refer to this function as
the dephasing curve. We evaluate the dephasing curve based
on the observation that the signful splitting has a Gaussian
pdf in the parameter range we consider. Based on Eq. (33),
this implies the following well-known result [58,66] for the
dephasing curve:

〈px(t )〉 = e−( σε0
h̄ t )2

cos

(
2ε0,c

h̄
t

)
, (34)

where ε0,c is the clean splitting. This result implies that
dephasing follows Gaussian decay, and this decay is charac-
terized by the timescale

T ∗
2 = h̄

σε0

= h̄

σμχ
, (35)

which is often called the inhomogeneous dephasing time.
Figure 4(a) shows two dephasing curves for the parameter

set shown in Table I, the solid line showing fast oscilla-

tions (i.e., Larmor precession), and the dashed line showing
no oscillations. The dashed line corresponds to the diamond
(N = 3083) in Fig. 3, with chain length fine-tuned such that
the clean splitting vanishes. The solid line corresponds to the
star (N = 2947) in Fig. 3, with chain length fine-tuned such
that the clean splitting has a local maximum. For both chain
lengths, the pdf of the signful splitting is Gaussian. However,
the mean of the signful splitting (which is the same as the
clean splitting ε0,c) is zero for the N = 3083 case, and finite
for the N = 2947 case, the latter being responsible for the
oscillations in Fig. 4(a). This figure also illustrates the out-
of-phase relation between the clean splitting and dephasing
susceptibility [see, e.g., Fig. 2(b)]: the smaller the clean split-
ting, the faster the dephasing.

It is also interesting to note that the oscillation (Larmor
precession) induced by the finite clean splitting, as shown
by the solid line in Fig. 4(a), has a much smaller timescale
than the dephasing time. It would be interesting to study in
detail how this fast Larmor precession influences the fidelity
of quantum gates, e.g., based on braiding of MZMs [21].

The black solid line Fig. 4(b) shows the inhomogeneous
dephasing time as a function of the length. (The green solid
line will be discussed in the next section.) The dephasing
time is calculated analytically by substituting the approximate
formula of χ given by Eq. (29) into Eq. (35). Aside from the
oscillations seen in Fig. 4(b), the dependence of the dephasing
time on the chain length is dominated by the exponential
factor T ∗

2 ∝ eL/ξ . The figure corresponds to a disorder strength
σμ = 2.8 μeV, which implies a dephasing time T ∗

2 = 200 ns
for L/ξ = 5. The oscillatory nature of the black solid result
in Fig. 4(b) is responsible for the feature of Fig. 4(a) that
the shorter chain (star) has a longer T ∗

2 than the longer chain
(diamond).

The inset of Fig. 4(b) shows the calculated inhomogeneous
dephasing time values for specific chain lengths. We use this
table, in particular the inhomogeneous dephasing time value
T ∗

2 = 200 ns at L/ξ = 5, to relate our results the earlier
dephasing-time estimates of Ref. [35] (see Table I therein).
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FIG. 5. Effect of the spatial correlation of disorder on dephasing. (a), (b) Dephasing susceptibility as a function of the chemical potential
for uncorrelated disorder (a) and for fully correlated disorder (b). Points show results from the Kitaev chain model with spatially correlated
disorder. Solid lines show analytical results of the continuum model in the two limits. (c) Adjacent minimum and maximum values of the
dephasing susceptibility as a function of the correlation length. (d) Ratio of the minimum and the maximum values as a function of the
correlation length. This ratio is constant in the uncorrelated and weakly correlated regimes (ζ � 10a), and goes to zero as the correlation
length increases. The latter feature corresponds to the dephasing sweet spots of the fully correlated regime seen in (b).

Reference [35] predicts this T ∗
2 value from intrinsic sources,

without any disorder in the sample. Therefore, our parameter
value σμ = 2.8 μeV provides an estimate for the crossover
disorder strength, that is, the disorder strength above which
dephasing due to quasistatic disorder dominates the intrinsic
dephasing mechanisms of a clean system (homogeneous 1/ f
charge noise, phonons, equilibrium quasiparticles).

Experimental data indicate that the typical energy scale of
local electrostatic fluctuations in state-of-the-art semiconduc-
tor quantum devices is of the order of a few μeV; see, e.g.,
Table II of Ref. [35]. This suggests that the mechanism we
describe here will be relevant for early-stage Majorana-qubit
experiments.

V. DEPHASING DYNAMICS AS A PROBE OF SPATIAL
DISORDER CORRELATIONS

Up to this point, we have focused on the case where the
on-site disorder is uncorrelated between different sites. This
model represents short-range-correlated disorder that leads to
the absence of a dephasing sweet spot. On the other hand,
if dephasing is caused by the fluctuation of a global control
parameter, e.g., the chemical potential, then a dephasing sweet

spot is expected when the clean splitting has a maximum as
the function of that parameter. This is exemplified, e.g., by
Eq. (5) of Ref. [35].

In this section, we go beyond the uncorrelated disorder
model to highlight the relation of the spatial correlations of the
disorder and the dephasing curve. To this end, we generalize
our disordered Kitaev chain model by regarding the on-site
energies as correlated normal random variables, described by
a multivariate normal distribution with zero means and the
covariance matrix

�i j = σ 2
μe−|i− j|a/ζ , (36)

where i, j are site indices and ζ is the correlation length. For
further details of the model see Appendix D; for a discussion
between our model and disorder in real devices see Sec. VI.
Parameter ζ controls the spatial correlation in the disorder re-
alizations: ζ � a indicates uncorrelated disorder; furthermore,
ζ � L corresponds to the homogeneous, fully correlated case.

Figures 5(a) and 5(b) show the dephasing susceptibility
as a function of the chemical potential for ζ = 0.01a (un-
correlated disorder) and ζ = 106a (fully correlated disorder),
respectively. The system size is fixed to 3000 sites. The chem-
ical potential δμK is measured from μK given in Table I. The
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blue points correspond to a numerical calculation based on
the Kitaev chain model with correlated on-site energy disor-
der. The red line of Fig. 5(a) shows the analytically obtained
dephasing susceptibility of the continuum model, see Eq. (29),
with adis = a. The red line in Fig. 5(b) shows the dephasing
susceptibility of the continuum model against homogeneous
chemical potential disorder, which can be obtained by taking
the derivative of the clean splitting formula in Eq. (12) with
respect to μK. We find furthermore that the corresponding
lengthy formula can be approximated (not shown) as

χfcorr = 2L

ξ

k2
F

k2
F − 1/ξ 2

e−L/ξ
∣∣∣cos

(√
k2

F − 1/ξ 2L
)∣∣∣. (37)

The main observations in Figs. 5(a) and 5(b) are as fol-
lows: (i) the dephasing susceptibility oscillates as a function
of the chemical potential in both panels, (ii) the magnitude
of the oscillations is greater in the case of fully correlated
disorder [Fig. 5(b)] than in the case of uncorrelated disor-
der [Fig. 5(a)], and (iii) the case of fully correlated disorder
[Fig. 5(b)] exhibits dephasing sweet spots, where the dephas-
ing susceptibility χ vanishes. See, e.g., at δμK ≈ −30 μeV.

In a future Majorana-qubit dephasing experiment, oscilla-
tions such as those shown in Figs. 5(a) and 5(b) are directly
observable, e.g., by tuning the chemical potential via a back-
gate voltage. Here we argue that such an oscillatory data set
can be used to infer the disorder correlation length.

To illustrate this opportunity, we take two adjacent extrema
in Figs. 5(a) and 5(b): a minimum (χmin) and a maximum
(χmax), located closest to δμK = 0 (see labels in figure). In
Fig. 5(c), we show how χmin and χmax evolve as functions of
the correlation length ζ . Results from the Kitaev chain model
are depicted by black markers, whereas red lines show the an-
alytical results in the uncorrelated regime (ζ � a), the weakly
correlated regime (a � ζ � 10a; derivation discussed below),
and the fully correlated regime (ζ � L). For uncorrelated
disorder (ζ � a), the extremal dephasing susceptibilities are
approximately constants. However, for weakly correlated dis-
order (a � ζ � 10a), χmin and χmax increase as the correlation
length is increased. This means that qubit dephasing is more
sensitive to correlated disorder than to the uncorrelated one.
In the fully correlated disorder limit (ζ � L), χmax saturates,
whereas χmin decreases, in accordance with the dephasing
sweet spot seen for this limit in Fig. 5(b).

To introduce a procedure which estimates the correlation
length from the dephasing curves, we plot the ratio χmin/χmax

as a function of the correlation length in Fig. 5(d). In the
uncorrelated and weakly correlated regimes (ζ � 10a), the
ratio is a constant; for longer correlation length, it tends to
zero due to the existence of dephasing sweet spots.

The ratio χmin/χmax as a function of the correlation length
is monotonic, which provides an opportunity to character-
ize the correlation length experimentally, in the following
way: one can measure the dephasing curves by varying the
chemical potential and determine the corresponding dephas-
ing times. By fine-tuning the chemical potential, two adjacent
minima and maxima of the dephasing times can be deter-
mined: T ∗

2,min and T ∗
2,max. The ratio of the extremal dephasing

times equals the inverse ratio of the extremal dephasing
susceptibilities, i.e., T ∗

2,max/T ∗
2,min = χmin/χmax, which can be

seen from Eq. (35). Using Fig. 5(d), one can infer the corre-
lation length, or at least can distinguish between short-range
and long-range disorder correlations.

In order to support our numerical results in the uncorre-
lated, weakly, and fully correlated regimes in Fig. 5(c), we
provide analytical results from the continuum model, shown
as the three solid red line segments in Fig. 5(c). In the uncor-
related limit (ζ � a), we make use of the extrema of Eq. (29)
with adis = a in order to determine χmin and χmax. In the fully
correlated regime (ζ � L), we take the maximum of Eq. (37).

To obtain an analytical result for the weakly correlated
regime (a � ζ � 10a) from the continuum model, we make
use of Eq. (29), which expresses the dephasing susceptibility
χ as function of the parameter adis. [Recall that in our con-
tinuum model, the disorder is modeled by series of potential
steps of length adis; see Eq. (21).] We substitute adis = 2ζ in
Eq. (29) to express χ as the function of the disorder correla-
tion length ζ . In what follows, we argue why we identify adis

with 2ζ .
The covariance function of the disorder in the continuum

model can be written as

CC(x, y) =
{
σ 2

μ, if �x/adis� = �y/adis�,
0, otherwise.

(38)

Matching is based on the following relation∫∞
0 x CC(x, 0)dx∫∞
0 CC(x, 0)dx

=
∫∞

0 x CK(x, 0)dx∫∞
0 CK(x, 0)dx

, (39)

where we use the continuum form of the covariance matrix
�i j [cf. Eq. (36)]:

CK(x, y) = σ 2
μe−|x−y|/ζ . (40)

Equation (39) leads to adis = 2ζ . By substituting it into
Eq. (29), we find good agreement between the numerical
(black points) and analytical (red solid lines) results; see the
weakly correlated disorder regime (a � ζ � 10a) in Fig. 5(c).

Finally, we discuss the dephasing time for fully correlated
disorder, which is shown in Fig. 4(b) by the green solid line,
as a function of the length. The dephasing time is calculated
analytically by substituting Eq. (37) into Eq. (35). Results
from fully correlated disorder oscillate in phase with the
results arising from uncorrelated disorder (black solid line).
Dephasing sweet spots appear as singularities, showing di-
verging dephasing time. This is the consequence of our limited
dephasing model which is based on the linear approximation
1/T ∗

2 ∝ σμ; see Eq. (35). A higher-order approach would
resolve the singular behavior.

In conclusion, our results in Fig. 4 provide important prac-
tical insights on how to optimize a Majorana qubit setup for
a dephasing experiment. The effect of homogeneous charge
noise, that is, a uniform random shift of the chemical potential,
can be mitigated by fine-tuning the chemical potential: the de-
phasing time can be strongly enhanced by such a fine-tuning.
If the noise is not spatially homogeneous, then the magnitude
of the improvement depends on the correlation length of the
disorder: for uncorrelated noise, fine-tuning could yield at
most a factor of two improvement [cf. Fig. 5(a)], but this im-
provement factor gradually increases for increasing disorder
correlation length.
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VI. DISCUSSION

In the main part of this work, we used a model of short-
range-correlated disorder. This is admittedly a minimal model
of disorder in real samples; nevertheless we find it important
and relevant to provide the corresponding results, because (i)
this is a conceptually simple, canonical model, often used
in the literature, applied to effects ranging from Anderson
localization to Majorana physics [29,42], and (ii) these re-
sults also serve as a benchmark for more realistic models.
Also, the level of disorder in state-of-the-art hybrid nanowires
seems to be too strong to allow for the clear observation
of Majorana zero modes, which suggests that disorder will
likely play a dominant role also in the initial Majorana-qubit
experiments, e.g., qubit dephasing time measurements. In real
nanowire samples, disorder might arise due to various phys-
ical mechanisms [67], e.g., fluctuating charge traps in the
substrate, atoms, ions, and molecules contaminating the wire
surface, impurity atoms built in to the crystal upon growth,
electron scattering on rough or oxidized wire surfaces and
the core-shell interface, inhomogeneous strain patterns due to
thermal expansion coefficient mismatch and metal deposition
(shell, gates, contacts), gate-voltage fluctuations, etc. It is an
important ongoing effort to mitigate these mechanisms; alter-
natively, it is useful to characterize and control their effects on
Majorana qubit decoherence.

In our dephasing calculation, we have chosen the qua-
sistatic approximation also for its conceptual simplicity and
widespread use in the literature [49,51]. In real devices,
classical or quantum noise often follows a characteristic
noise spectrum, e.g., 1/ f noise [35,40,46,47,55–57,68–70],
Johnson-Nyquist noise, quantum noise of phonons [35,36],
gate-voltage fluctuations [31,35,39,40], etc. Going beyond the
quasistatic approximation by incorporating these frequency-
dependent noise features would be an important addition to
this work. An especially appealing task is to describe the
combined effect of static spatial disorder and fluctuating elec-
tric fields; this direction might actually reveal connections
between actual device physics and the minimal model used
in our present work. A conceptually different but equally
important information loss mechanism for Majorana qubits is
quasiparticle poisoning [27,32,33,71–73].

In this work, we focused on the case of low disorder, in the
hope that material growth and device fabrication advances will
convey qubit experiments in that parameter range. Current
devices might have much stronger disorder [74–76], and it is
an interesting extension of our work to study how Majorana
qubit dephasing occurs in the presence of strong disorder.
A further natural extension of our work is to step-by-step
move from the Kitaev chain minimal model to more realistic
real-space models, e.g., from 1D Rashba wire [1,2,77] to 3D
Schrödinger-Poisson models [76,78,79], and beyond.

One of the key result of the paper is that the dephasing
susceptibility oscillates as a function of system parameters
out-of-phase with respect to the oscillations of the clean split-
ting. This is shown in Fig. 2(b). How robust is this result upon
relaxing the simple hard-wall boundary condition leading to
the result in Fig. 2(b)? We have performed numerical simula-
tions exploring this question, by extending our model in two
ways: (1) We have relaxed the hard-wall boundary condition

to a confinement potential that has a steplike dependence at
the two edges of the 1D topological superconductor, and (2)
we have added a homogeneous electric field, that is, a chemi-
cal potential that varies linearly with position. In the parameter
range we studied, the two quantities were following the same
type of out-of-phase oscillations as shown in Fig. 2(b). We
see it as an interesting follow-up question to understand this
robustness.

VII. CONCLUSIONS

We have studied the Majorana splitting of the disordered
topological Kitaev chain, serving as a minimal model of de-
phasing of Majorana qubits. Focusing on the case of spatially
uncorrelated disorder, we characterized the Gaussian prob-
ability distributions of the signful splitting, using numerics
as well as simple semianalytical and approximate analytical
techniques. We established a Gaussian decay envelope for the
dephasing curve, as a consequence of the Gaussian distribu-
tion of the signful splitting. We have found that the standard
deviation of the signful splitting, and hence the dephasing rate,
oscillates as a function of system parameters out-of-phase
with respect to the oscillations of the clean splitting. We
have also pointed out the absence of dephasing sweet spots
in the case of spatially uncorrelated quasistatic disorder. Fur-
thermore, we have described how Majorana qubit dephasing
changes as a function of disorder correlation length, and ar-
gued that dephasing measurements can be used to characterize
the disorder correlation length. We expect that our results will
be used in the design and interpretation of future experiments,
aiming to demonstrate topologically protected quantum mem-
ory, quantum dynamics, or quantum computing, based on
Majorana zero modes.
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APPENDIX A: CONNECTING THE CONTINUUM MODEL
WITH THE KITAEV CHAIN

The Kitaev chain [Eq. (1)] is a discretized version of the
continuum model [Eq. (21)], and vice versa, the continuum
model can be obtained from the Kitaev chain via the envelope
function approximation. The relation of the two models is
outlined in Ref. [62], but for the sake of self-containedness,
we describe it here in detail. We match the parameters of the
two models via matching their dispersion relations as shown
in Fig. 6.
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FIG. 6. The Kitaev chain band structure (blue) and the continuum model band structure (red), (a) over the 1D Brillouin zone, (b) in the
vicinity of zero energy, with parameters chosen such that the band structures match each other in the vicinity of zero energy. See Table I for
parameter values.

To match the two models, we recall the BdG Hamiltonian
of the Kitaev chain in momentum space, which reads

HK(k) = [−2t cos(ka) − μK]σz + 2�K sin(ka)σy. (A1)

Here we note that the momentum-space superconducting
term 2�K sin(ka)σy of the Kitaev chain is proportional to
σy, whereas the corresponding term �′

Ch̄kσx of the contin-
uum model [Eq. (2)] is proportional to σx. This difference is
irrelevant and can be transformed away with a unitary trans-
formation in Nambu space, since the rest of both Hamiltonians
is proportional to σz.

Matching the continuum model and the Kitaev chain model
is based on the following criteria:

(1) The lengths in the two models are naturally matched as
L = Na, where L is the length of the wire and N is the number
of sites in the lattice model.

(2) In the absence of superconductivity, the effective mass
in the vicinity of k = 0 has to be the same in the two models,
which yields the condition

m = h̄2

2ta2
. (A2a)

(3) In the absence of the superconducting terms, the min-
ima of the bulk spectra have to be at the same energy. This is
achieved by adjusting the chemical potentials in the following
way:

μC = 2t + μK. (A2b)

(4) The low-energy (close to zero energy) spectra of the
two models will be similar if the minimum of the bulk normal
band is just slightly below zero energy; formally this can be
written as

0 < 1 + μK

2t
� 1. (A2c)

(5) In the presence of superconductivity, the supercon-
ducting gaps have to be equal, a condition approximately
satisfied by the identification

�′
C = �Ka

h̄

√
2 − μK

t
. (A2d)

We note that here we have already assumed that Eqs. (A2a)
and (A2b) are fulfilled. Equation (A2d) is an approximation in
the sense that we match energy gaps of the two models that are
opened at kF, i.e., at the wave number where the band touches
zero in the absence of the superconductivity. The actual gap
(i.e., the energy difference minimized over the wave number)
is in general located at a slightly different wave number k0,
but in the limit of Eq. (A2c), k0 ≈ kF.

Based on the above criteria, we choose the parameter val-
ues listed in Table I to compare the results of the Kitaev chain
and the continuum model.

The energy dispersion of the Kitaev chain (blue solid) and
that of the continuum model (red dashed) are compared over
the 1D Brillouin zone in Fig. 6(a), and in the vicinity of the
Brillouin zone center and the Fermi wave number in Fig. 6(b).

Below, we will need the following relations between the
parameters of the two models:

kF =
√

2 + μK

t

a
, (A3a)

�C = �K

√
4 −

(μK

t

)2
, (A3b)

ξ = 2ta

�K

√
2 − μK

t

. (A3c)

We obtain Eq. (A3a) from Eq. (3a) by substituting
Eqs. (A2a) and (A2b). We get Eq. (A3b) from Eq. (3c) by
substituting Eqs. (A2d) and (A3a). We obtain Eq. (A3c) from
Eq. (3d) by combining Eqs. (3b), (A2a), (3a), and (3c).

APPENDIX B: INFERRING THE STANDARD DEVIATION
OF THE SIGNFUL SPLITTING FROM SAMPLES OF THE

SPLITTING

Figure 2(b) shows the standard deviation of σε0 of the
signful splitting ε0 of a Kitaev chain due to disorder. How did
we compute σε0 ? The smallest non-negative eigenvalue of the
BdG matrix is the absolute value of the signful splitting; hence
its standard deviation taken over many disorder realizations
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does not provide σε0 . Here, we provide an indirect way to
compute σε0 by assuming that the signful splitting is normally
distributed, an assumption in accordance with our result (26).
Under that assumption, the absolute value of the signful split-
ting has a folded normal distribution. We have an easy access
to samples of the splitting by using BdG Hamiltonian, and
by following the procedure outlined below, we are able to
compute σε0 from samples of the splitting.

Let us use a general notation for easier readability. The
probability density function of the normal random variable X ,
representing the signful splitting, reads

fX (x) = 1√
2πσ

e− (x−m)2

2σ2 , (B1)

where m is the mean and σ is the standard deviation of X .
The probability density function of the random variable |X |,
representing the splitting, is

f|X |(x) = 1√
2πσ

e− (x−m)2

2σ2

(
1 + e

2mx
σ2

)
, (B2)

which is often called a folded normal distribution.
We estimate the parameters m and σ (mean and standard

deviation of signful splitting) from a sample {xi|i = 1, . . . , n}
of |X | (the splitting). Here n is the size of the sample. Our
estimation is based on the maximum likelihood estimation
procedure. The log-likelihood of the distribution estimated
from the sample {xi} can be written as

l ({xi}; m, σ ) = ln

[
n∏

i=1

f|X |(xi )

]
=

− n

2
ln
(
2πσ 2)−

n∑
i=1

(xi − m)2

2σ 2

+
N∑

i=1

ln
(

1 + e
2mxi
σ2

)
. (B3)

To estimate the value of m and σ , we need to find the
maximum point of the likelihood function; hence we take
∂ml ({xi}; m, σ ) = 0 and ∂σ l ({xi}; m, σ ) = 0, which lead to

m = 1

n

n∑
i=1

xi tanh
(mxi

σ

)
, (B4a)

σ 2 = m2 + 1

n

n∑
i=1

x2
i − 2m

n

n∑
i=1

xi tanh
(mxi

σ

)
. (B4b)

From Eqs. (B4a) and (B4b), we get

σ 2 =
(

1

n

n∑
i=1

x2
i

)
− m2. (B5)

In general, the coupled Eqs. (B4a) and (B4b) have to be
solved. However, in our case, to determine the standard devi-
ation of the signful splitting, Eq. (B5), it is sufficient as know
the square of the signful splitting mean m: it is equal to the
square of the splitting of the clean system ε0,c. This implies

the formula

σε0 =
√√√√(

1

n

n∑
i=1

ε2
0,i

)
− ε2

0,c, (B6)

where the ε0,i’s are splittings in disordered realizations and
ε0,c is the splitting for the clean system. We used this result to
compute the data in Fig. 2(b).

APPENDIX C: COMPARISON WITH THE RESULTS
OF BROUWER ET AL. [29]

In the main text, we predict a normal distribution for sign-
ful splitting ε0. On the other hand, the key result of Ref. [29]
is that the splitting envelope ε0,max [for clarification, see their
Fig. 1(c)] has a log-normal distribution. Although the two
quantities (signful splitting and splitting envelope) are not
the same, they are in fact interrelated. In this Appendix, we
identify a parameter range where both our results and the
results of Ref. [29] are valid, and establish the relation of
these results. Our comparison suggests that the two unknown
constants appearing in the analytical results of Ref. [29] (Cm

and Cv; see below) are actually zero.
The main result of Ref. [29] is as follows. The quantity

ln(ε0,max/2�C) has a normal distribution with mean and vari-
ance given by their Eq. (16), that is,

〈ln(ε0,max/2�C)〉 = −L[1/ξ − 1/2l] + Cm, (C1a)

var ln(ε0,max/2�C) = L/2l + Cv. (C1b)

Here, Cm and Cv are the unknown constants, that is, un-
known order-of-unity corrections independent of L, l , and ξ .
(Even though these constants are not displayed in Eq. (16)
of Ref. [29], they are introduced in the text following that
equation.) Furthermore, l = h̄2v2

F/γ is the mean free path,
where γ corresponds to the disorder strength in their model,
which is identified with our model as γ = adisσ

2
μ.

Their results stand if the following conditions are satisfied:

1/kF � ξ, (C2a)

ξ < 2l, (C2b)

ε0,max � min(�C, h̄/τ ), (C2c)

where τ = h̄vF/l . On the other hand, our result for the clean
splitting (12) is valid if L � ξ , and our result for the dephas-
ing susceptibility to disorder (29) is valid if L � ξ and if
disorder is weak.

First, we assume that the parameter ranges of validity of
the two results have some overlap, and show that in such
a common parameter range, the two results are consistent.
Second, we provide an example for the common parameter
range where both results should be valid and hence should be
consistent with each other.

To show the consistency of the two results, we suppose that

l � ξ, (C3a)
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L/2l � 1, (C3b)

Cm = 0, (C3c)

Cv = 0. (C3d)

Equation (C3) stands for weak disorder, whereas Eq. (C3 b)
together with Eq. (C3 d) provides that ln(ε0,max/2�C) has
a standard deviation much smaller than 1. Furthermore, the
choice of Cm and Cv in Eqs. (C3) and (C3 d) is required to
match the result of Ref. [29] with our results.

Our results, together with Eqs. (C3), imply that the splitting
envelope ε0,max approximately follows a normal distribution
with mean and standard deviation as follows:

〈ε0,max〉 = 2�Ce−L/ξ , (C4a)

σε0,max = �C

√
2L

l
e−L/ξ = σμ

√
2Ladis

ξ
e−L/ξ . (C4b)

We obtained Eq. (C4) from Eq. (12) by taking the limit
kF � 1/ξ and by omitting the sinusoidal oscillatory part in
the latter. Furthermore, we obtained Eq. (C4 b) from Eq. (29)
by taking the limit L � ξ , and by substituting the cosine
term with −1. The latter substitution is needed because the
disorder-induced standard deviation of the splitting has a local
minimum whenever the clean splitting has a local maximum
[see Fig. 3(a)].

The key mathematical statement we use to show the con-
sistency of Eq. (C1) and Eq. (C4) is the following: If X is a
log-normal random variable such that ln X is a normal ran-
dom variable with mean μ and standard deviation σ [that is,
ln X ∼ N (μ, σ )], and the standard deviation fulfills σ � 1,
then X is approximately a normal random variable with mean
eμ and standard deviation eμσ [that is, X ∼ N (eμ, eμσ )].
This follows from the fact that the exponential function can
be well approximated around any point by its linear series
expansion in a sufficiently small environment of the point. We
apply this approximation to Eq. (C1) using the assumptions
of Eq. (C3). This procedure yields Eq. (C4), implying that our
result is consistent with the earlier result.

Finally, we provide an example for the common parameter
range where both results are valid. Equation (C2) is satis-
fied for the parameter set in Table I. In the weak-disorder
limit, Eq. (C2 b) is fulfilled. For weak disorder, h̄/τ � �C;
furthermore, using Eq. (C4), the condition ε0,max � h̄/τ is

equivalent to the condition

ln(2l/ξ ) � L/ξ . (C5)

In addition, Eq. (C5) and Eq. (C3 d) can be combined as

ln(2l/ξ ) � L/ξ � 2l/ξ . (C6)

For weak disorder, there is a finite interval for the system
length L where Eq. (C6) is fulfilled. For example, for the
parameter values given in Table I, and for disorder strength
σμ = 10 μeV, Eq. (C6) is evaluated as

14 500 � L/a � 4.32 × 1010. (C7)
Note that our numerical results shown in the main text cor-
respond to system lengths that are one order of magnitude
smaller than the lower end of this interval.

To conclude, we have established the consistency between
the earlier analytical results of Ref. [29] for the statistics of the
splitting envelope, and our analytical results for the statistics
of the signful splitting described in the main text. To ensure
this consistency, we had to assume that the order-of-unity con-
stant offset parameters Cm and Cv, which were not calculated
in Ref. [29], are actually zero. This indirect determination of
the offset parameters is a useful by-product of the comparison.

APPENDIX D: CORRELATED DISORDER

In Sec. V, we study the effect of the spatial correlations
of the disorder on dephasing. To determine the dephasing
susceptibility of the disordered Kitaev chain, we have to gen-
erate numerous spatially correlated disorder realizations. In
this Appendix, we show a method allowing us to do that in an
efficient way.

The vector of the on-site energies δμK is an N-dimensional
random variable vector described by a multivariate normal
distribution, i.e., δμK ∼ N (0,�), where

[�]i j = σ 2
μe−|i− j|a/ζ (D1)

is the covariance matrix. Each component of δμK has zero
mean and standard deviation σμ; furthermore the length scale
of the correlations is ζ .

The Cholesky decomposition of � has the form

� = LLᵀ, (D2)

where L is a lower triangular matrix. We note that � is a
real-valued symmetric positive-definite matrix. Let Z be an N-
dimensional standard normal random vector. All components
of Z are independent and each is a zero-mean unit-variance
normally distributed random variable. It is straightforward to
see that δμK = LZ follows the desired distribution with the
covariance matrix described in Eq. (D1). Thus to generate
correlated random samples of on-site disorder, one can first
generate uncorrelated samples (according to Z), and then mul-
tiply them by the matrix L.
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