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Nonlinear edge modes from topological one-dimensional lattices
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We propose a method to address the existence of topological edge modes in one-dimensional (1D) nonlinear
lattices, by deforming the edge modes of linearized models into solutions of the fully nonlinear system. For
sufficiently large nonlinearites, the energy of the modified edge modes may eventually shift out of the gap,
leading to their disappearance. We identify a class of nonlinearities satisfying a generalized chiral symmetry
where this mechanism is forbidden, and the nonlinear edge states are protected by a topological order parameter.
Different behaviors of the edge modes are then found and explained by the interplay between the nature of the
nonlinarities and the topology of the linearized models.
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Since the discovery of the quantum Hall effect [1], the
number of physical systems exhibiting topological bound-
ary modes has been constantly increasing. Originally found
in condensed matter, robust edge states are now found in
virtually all wave systems [2–4] showing the ubiquity of
topological edge modes independently of their physical im-
plementation. The robustness of the edge modes is understood
through the celebrated bulk-boundary correspondence that re-
lates the number of edge modes to a topological invariant of
the bulk bands as long as the spectrum is gapped [5–8].

From the beginning, the theory of topological edge modes
has been tied to linear systems concepts such as eigen-
modes and energy spectra. Actually, many platforms used
to implement those topological properties, such as polari-
tons, photonic lattices, fluids, and networks of springs and
electric circuits, also naturally exhibit nonlinear behaviors.
This recently stimulated a growing interest in the interplay
of topology with nonlinearities [9–11], with applications to
topological lasing [12,13] and topological synchronization
[14]. Regarding the edge states in nonlinear systems, inves-
tigations in specific cases showed the existence of nonlinear
bulk and edge solitons with some similarities with the linear
case [15–21]. In some examples in one dimension (1D), the
energy of the edge modes was found to depend on the ampli-
tude [16,19,22–24], while in others, the energy was found to
be fixed [17,18,25]. These results suggest that the concept of
stationary topological edge mode seems generalizable to the
nonlinear realm, with, however, a lack of a systematic theo-
retical understanding that goes beyond the scope of sporadic
examples.

In this work, we provide criteria for the existence of
nonlinear topological edge states. We focus on nonlinear
Schrödinger equations on 1D lattices, whose nonlinear Hamil-
tonian Hψ splits into a linear topological part Htopo and a
nonlinear one Hψ,NL as

i∂t |ψ〉 = Hψ |ψ〉 = (Htopo + Hψ,NL) |ψ〉 . (1)

The burning question to ask is then the following: What are
the conditions for the edge states of the linear topological
model Htopo to survive the presence of nonlinearities Hψ,NL?
To answer this question, we propose a method based on exact
perturbation theory that generates the edge modes and their
energy of nonlinear systems of the form (1). The idea is to
start with the edge mode of the linearised system at small
amplitude and then increase smoothly the amplitude of the
mode. As the relative strength of the nonlinearities increases,
we are then able to deform the initial linear edge mode in a
way that it remains a stationary edge solution of the nonlinear
dynamics. The method can eventually reach nonlinear edge
modes with a high amplitude as long as their energy remains
in the spectral gap of the linearized dynamics. If this condition
stops being fulfilled, the nonlinear edge state is then quickly
delocalized into the bulk [19] and becomes unstable [26].
Then, we extend the notion of chiral symmetry to nonlinear
systems and show that chiral symmetric nonlinearities prevent
such a delocalization, thus protecting the nonlinear edge state.
We then characterize those robust nonlinear edge modes with
a local topological index. Our theory is illustrated with two
nonlinear generalizations of the Su-Schrieffer-Heeger (SSH)
model—one being chiral and one which is not—and con-
firmed numerically.

A concrete situation where the nonlinear Schrödinger
equation modifies a 1D topological lattice model is that of an
SSH chain with couplings t1 and t2 between nearest neighbors
and an on-site Kerr-like nonlinearity [11,16] similar to those
appearing in the Gross-Pitaevskii equation for Bose-Einstein
condensates [27]:{

i∂t a j = t1b j + t2b j−1 + |a j |2a j

i∂t b j = t1a j + t2a j+1 + |b j |2b j .
(2)

A state |ψ〉 of the system can be decomposed in the basis of
the two sublattices as

|ψ〉 =
(|ψA〉

|ψB〉
)

=
(∑

j a j | j, A〉∑
j b j | j, B〉

)
, (3)
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where j labels the unit cell. The application of Hψ to such a
state then gives the vector Hψ |ψ〉 which expands as

Hψ |ψ〉 =
(∑

j (t1b j + t2b j−1 + |a j |2a j ) | j, A〉∑
j (t1a j + t2a j+1 + |b j |2b j ) | j, B〉

)
(4)

for the model (2). The linear SSH model is recovered when
|ψ〉 is small in amplitude. In that case, this model is known
to have a gap in energy around E = 0 when |t1| < |t2|, except
for stationary topological edge modes which are localized at
each end of the chain [28,29]. We then would like to know
how these edge modes survive the introduction of the nonlin-
earities, such as in (4). We show below that edge states exist
in nonlinear Schrödinger models when three conditions are
met:

(i) The linearized model has an edge state which is in the
gap of the bulk bands.

(ii) The differential of Hψ around any state |ψ〉 is Hermi-
tian, i.e., dH†

ψ = dHψ .
(iii) The nonlinear Hamiltonian Hψ verifies the U (1)-

symmetry Heiφψ (eiφ |ψ〉) = eiφHψ |ψ〉 for all |ψ〉.
Assumption (i) is quite natural, as we search nonlinear

edge states as resulting from the deformation of linear ones.
Assumption (ii) is made to guarantee that the energy E of the
state remains real, and assumption (iii) is needed to ensure
that finding nonlinear states of real energy E |ψ〉 = Hψ |ψ〉
also generates solutions of (1) of the form |ψ (t )〉 = |ψ〉 e−iEt .
Note that our model (2) satisfies these three conditions. Note
that those general hypothesis do not depend on the order of
the nonlinear terms. Our method is thus not specific to Kerr-
like terms and applies to arbitrary nonlinearities as long as the
three hypotheses above are satisfied.

We now provide an explicit method to construct the non-
linear edge modes assuming that the three conditions above
are met. For that, let us study the space of edge states |ψ〉 of
energy E of Hψ that we define as being spanned by the doublet
(E , |ψ〉). The key idea to explore this space is to parametrize
it with a continuous parameter s and to derive the evolution
equation for the states close in s. If (Es, |ψs〉) is a doublet such
that for all s, |ψs〉 is a solution of

Es |ψs〉 = Hψ |ψs〉 (5)

and then, by differentiating this equation along s, one finds
that the condition for this path to exist is to satisfy the follow-
ing evolution equation:

(dHψs − Es) |∂sψs〉 = (∂sEs) |ψs〉 , (6)

where the differential dHψ is a linear operator that describes
the variation of Hψ for a small perturbation |∂sψ〉 around |ψ〉.
One can thus interpret it as an effective Hamiltonian Heff,s ≡
dHψs when linearizing around |ψs〉.

The free variables of (6) are |∂sψs〉 and ∂sEs. It follows
that for a lattice with n sites, (6) is a system of n differential
equations with n + 1 variables. Thus, at fixed s, the space of
solutions (∂sEs, |∂sψs〉) of (6) is a vector space of dimension
at least one. Therefore, there exists (at least) a solution to
our evolution equation. Moreover, hypothesis (ii) implies that
there is solution with ∂sEs real. One can therefore recon-
struct from (6) the continuous family of stationary solutions

(Es, |ψs〉) of (5) along this path, given an initial condition at
s = 0, that we choose to be (Es=0, |ψs=0〉) = (0, 0).

For an infinitesimal deviation away from this initial con-
dition, Hψ can be linearized as Heff,0 = dH0. If this linear
model hosts at least one edge mode of zero-energy |ψ〉, like
in the SSH model, then ((∂sEs)s=0 = 0, |∂sψs〉s=0 = |ψ〉) is a
valid solution of (6) for s = 0. Solving this differential system,
one can therefore generate nonlinear edge states |ψs〉 with a
growing amplitude as s increases. If the linear model hosts
multiple zero-energy edge modes as the SSH model (one on
each edge), all of them could be used for the dynamic, leading
to different nonlinear edge modes.

So far, we have obtained the existence of solutions
(∂sEs, |∂sψs〉) for (5) but we have not shown yet that they
remain localized near the edge. The question is the following:
If the linear model at s = 0 has an edge mode, is |ψs〉 also
localized near the edge for s > 0? In systems where coupling
constants between sites decay quickly with their distance as in
our illustrative nonlinear SSH model (2), the answer is given
by the Combes-Thomas theorem [30,31]. This theorem states
that solutions |∂sψs〉 of (6) are localized around |ψs〉 as long
as Es lies in the bulk gap of Heff,s. If this condition stops being
satisfied, |ψs〉 can quickly be delocalized as |∂sψs〉 starts to
strongly resonate with the nearby bulk modes.

In most cases, the system (6) must be solved numerically,
using standard algorithmic methods [32]. In particular, we
can solve this system for the Kerr-like nonlinear SSH model
(2) as an illustration. As this is a model which verifies the
general hypotheses (i)–(iii), we can therefore generate left
edge states with a growing amplitude as s increases (see
Fig. 1). For small amplitude, their shape remains close to the
exponential shape of the edge states of the linearized model.
But as the relative strength of the nonlinearities increase, the
nonlinear edge states become more deformed. In particular,
we observe that the nonlinear edge states become less local-
ized as their energy Es approaches the bulk bands of Heff,s.
Around s ≈ 1.5 the energy touches those bands and the edge
state becomes strongly delocalized. Therefore, the edge state
is not topologically protected in the strong amplitude regime.
Moreover, since the system is nonlinear, one can ask about the
stability of such stationary solutions under small perturbations
[19,26,33]. In order to do so, we add a random perturba-
tion |δψ〉 to a stationary solution |ψs〉. Then, for the initial
condition |ψ (t = 0)〉 = |ψs〉 + |δψ〉, we evaluate how far the
solution |ψ (t )〉 of (1) deviates from the original stationary
solution |ψs〉 by measuring the time evolution of their distance
‖ |ψ (t )〉 − |ψs〉 ‖ = ∑

j |ψ j (t ) − ψs, j |, where ψi denotes the
i-site amplitude. If the deviation grows exponentially with
time, the state is unstable. We find (see Fig. 1) that the edge
state is stable as long as the energy Es does not enter the
bulk bands, which occurs at about s ≈ 1.2–1.5. Beyond this
threshold, the states |ψs〉 become strongly unstable, highlight-
ing again the criticality of this regime.

In practical situations, one would like to prevent this band
touching to occur by constraining the energy at zero, in the
middle of the gap of Heff,s. In 1D insulators, this protection
role is made by the presence of a chiral symmetry. To fol-
low that spirit, we introduce a generalization of the chiral
symmetry to nonlinear systems. This allows us to identify
nonlinearities that forbid the energy shift and therefore host

035410-2



NONLINEAR EDGE MODES FROM TOPOLOGICAL … PHYSICAL REVIEW B 105, 035410 (2022)

FIG. 1. Numerical resolution of (6) for the left edge modes of
model (2). We work with 100 pairs of sites and the constants t1 = 0.6
and t2 = 1. The amplitude of ψs is given on the sites of type A (upper
left) and B (upper right) for different s. (Center) The evolution of the
energy Es of ψs is drawn in red and the bulk bands of Heff,s in light
blue. (Bottom) Deviation ‖ |ψ (t )〉 − |ψs〉 ‖ between the stationary
solution |ψs〉 and an initially perturbed one by a random vector of
norm 10−3, for different values of s.

edge states that are robust and topologically protected. Be-
sides, unlike the general case discussed so far, the result does
not require Hψ to satisfy a U (1) symmetry, nor dHψ to be
Hermitian.

We say that a nonlinear operator Hψ satisfies a chiral
symmetry if there is a bipartition A and B of the degrees of
freedom—e.g., two sublattices—such that the state Hψ |ψ〉
decomposes onto a single sublattice (say B) if |ψ〉 decomposes
onto the other sublattice (say A). Put formally, one wants

|ψ〉B = 0 ⇒ (Hψ |ψ〉)A = 0 (same for A ↔ B). (7)

In the linear case, (7) imposes H to be off-diagonal when
written in the A and B basis. Our definition thus generalizes
the chiral symmetry.

For the sake of concreteness, let us illustrate whether this
symmetry is satisfied for a few different nonlinear terms. For
the Kerr nonlinearity of the model (2), we have HKerr,ψ |ψ〉 =∑

j a3
j | j, A〉 + b3

j | j, B〉, so (HKerr,ψ |ψ〉)A = ∑
j a3

j | j, A〉 �= 0
even when b j = 0. So the Kerr nonlinearity is not chiral sym-
metric. Instead, we can introduce the Kerr intersite nonlinear-
ity, of the form Hinter-Kerr,ψ |ψ〉 = ∑

j b3
j | j, A〉 + a3

j | j, B〉 that
verifies (Hinter-Kerr,ψ |ψ〉)A = ∑

j b3
j | j, A〉 = 0 when |ψ〉B = 0

(meaning bj = 0 ∀ j), and same for A ↔ B. This nonlinearity
is thus chiral symmetric. As additional examples, we give be-
low a list of nonlinear terms with general exponents α or β and
classify them according to the chirality condition. It should be
noted that this list stays valid if one does the exchange A ↔ B

everywhere.

Hψ |ψ〉 aα
j | j, A〉 bα

j | j, A〉 aα
j+1bβ

j | j, A〉 bα
j−1bβ

j+1 | j, A〉
Chiral No Yes Yes Yes

Importantly, when Hψ is chiral symmetric, an initial lin-
ear edge state |ψs=0〉 living on a given sublattice can evolve
through (6) as a stationary solution |ψs>0〉 that remains on the
same sublattice. Indeed, if |ψs〉 is a solution of (6) satisfying
|ψ0〉 = 0 and |ψs〉B = 0, ∀s, then by writing (6) by blocks
while assuming Es = 0, one obtains(

HAA
eff,s HAB

eff,s
HBA

eff,s HBB
eff,s

)(|∂sψs〉A
0

)
= 0, (8)

|ψ〉 =
(|ψA〉

0

)
. (9)

Differentiating the condition (7) along the variable |ψ〉A
yields HAA

eff,s = 0, so (8) reduces to

HBA
eff,s |∂sψs〉A = 0. (10)

In order to know whether HBA
eff,s has localised zero modes

for each s, we use the theory of topological indices. For that
purpose, we define the following operators in the spirit of
super-symmetric approaches [34–36]

H ′
eff,s =

(
0 HBA

eff,s

HBA †
eff,s 0

)
, C =

(
1A 0
0 −1B

)
, (11)

C =
(
1A 0
0 −1B

)
, H =

(
0 HBA

HBA† 0

)
, (12)

so that {H ′
eff,s,C} = 0, implying that H ′

eff,s is a chiral Hermitian
operator associated to HBA

eff,s. Next, we introduce the operator
P = tanh(H ′

eff,s/ε) whose eigenstates are those of H ′
eff,s, but

whose spectrum tanh(E/ε) flattens the bulk bands of H ′
eff,s and

separates them from the zero-energy edge states as the param-
eter ε → 0. In practice, we want ε to be smaller than the bulk
gap of H ′

eff,s but larger than the energy of the edge states, which
is never rigorously zero in finite systems. Introducing then the
step function θ j ( j′), which is 1 for j′ � j and 0 otherwise, we
can finally define from H ′

eff,s the following topological order
parameter

I( j) = 1
2 Tr(C[θ̂ j, P]P), (13)

where θ̂ j is the diagonal operator associated to θ j . Behind its
abstract definition, this local quantity is very useful. It can be
shown to be a constant integer (related to the winding number
in the periodic case [37]) in regions where H ′

eff,s has no zero
modes and can only change when crossing regions with zeros
modes of HBA

eff,s or HBA, †
eff,s . In particular, there is a correspon-

dence connecting the index variation 
I = I( j2) − I( j1) to
the number of zero modes of HBA

eff,s localized in the interval

j1 � j � j2 minus those of HBA, †
eff,s [7,38]. In particular, when


I > 0, this correspondence implies that HBA
eff,s has at least


I zero modes localized between j2 and j1.
If we take j1 = 0, we can prove that I( j1) = 0 as θ̂ j=0 =

1. Moreover, as long as the edge state do not invade the whole
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FIG. 2. Numerical resolution of (10) for the left edge modes of the model (14). We work with 100 pairs of sites and t1 = 0.6 t2 = 1
everywhere. For the nonlinear couplings, we take (left) t ′

1 = 1 t ′
2 = 0, (center) t ′

1 = 1 t ′
2 = 1, and (right) t ′

1 = 0 t ′
2 = 1. We draw (up) the

amplitude of ψs on the A sites (center) the zero-energy state of HAB
eff,s (down) the topological order parameter I (x) where we took ε = 1

100 .

bulk, we have that Heff,s ≈ Heff,0 far from the edges. So if we
take j2 far enough from the edges, then I( j2) is just the index
one would obtain in the bulk of the linearized model at small
amplitude. Thus, if we denote I this topological number, we
see that HBA

eff,s is constrained to have at least I zero modes
localized on the left part of the chain. If |ψs〉 is a nonlinear
edge mode, it thus implies that we have at least I possible
choices for |∂sψs〉 which are localized and verify (10).

We now apply our nonlinear chiral theory to a
concrete model that we solve numerically. As mentioned
above, intersites Kerr nonlinearities Hinter-Kerr,1 |ψ〉 =
t ′
1

∑
j b3

j | j, A〉 + a3
j | j, B〉 are chiral symmetric. For

the same reason, the nonlinearities Hinter-Kerr,2 |ψ〉 =
t ′
2

∑
j b3

j | j + 1, A〉 + a3
j | j − 1, B〉 are also chiral. However,

Hinter-Kerr,1 reinforces the intracell coupling | j, A〉 〈 j, B| while
Hinter-Kerr,2 reinforces the intercell coupling | j + 1, A〉 〈 j, B|.
Those nonlinearities appear, for example, in photonic [39]
and electrical systems [25] and even in phononic devices
under some approximations [18]. We thus consider a finite
SSH chain with such chiral nonlinearities{

i∂t a j = (t1 + t ′
1|b j |2)b j + (t2 + t ′

2|b j−1|2)b j−1

i∂t b j = (t1 + t ′
1|a j |2)a j + (t2 + t ′

2|a j+1|2)a j+1.
(14)

At small amplitude, the linearization of (14) yields the usual
SSH model, and we find I( j) = 1 for |t1| < |t2| and j far
from the edges. Thus, we predict the existence of a family
of chiral nonlinear edge modes |ψs〉 localized on the left A
sites of the lattice (a similar argument would also predicts
the existence of nonlinear edge modes localized on the right
B sites). This is confirmed by our numerical integration of
(10) for the model (14) with various choices of parameters
(t1, t2, t ′

1, t ′
2) (the first row of Fig. 2). Interestingly, depending

on the competition between intercell and intracell nonlinear
couplings, we find very different behaviors: When |t ′

1| > |t ′
2|,

the amplitude of the edge mode saturates, and the mode be-
comes a domain wall which invades progressively the bulk.

Such a phenomenon was noticed in simulations [18] and
an experimental setup [40], both in mechanical lattices. We
unveil here the key hidden role of the generalized chiral sym-
metry to achieve such a nonlinear topological mode. However,
this is not the only possible behavior constrained by chiral
symmetry. Indeed, when |t ′

1| < |t ′
2|, we find in contrast that

the edge mode remains localized at the boundary, with an
increasing amplitude concentrated almost on a single site. For
the critical value |t ′

1| = |t ′
2|, the edge mode invades the bulk as

in the first case, but with a shape that never saturates. Note that
these different behaviors as s varies can in principle be probed
experimentally by forcing or pumping the system. The origin
of these different scenarios can be understood by recalling that
the nonlinear modes |ψs〉 are obtained by adding iteratively
the zero modes |∂sψs〉 of Heff,s = dHBA

ψs
whose locations are

themselves accounted by the variation of I (x) (Fig. 2). Since
dHBA

ψ reads

〈 j, B| dHBA
ψ |δψ〉A = t1,effδa j + t2,effδa j+1 (15)

with t1,eff = t1 + 3t ′
1|a j |2 and t2,eff = t2 + 3t ′

2|a j+1|2, then,
when the a j’s are small enough, |t1,eff| < |t2,eff| so that dHBA

ψ is
in the topological phase with I( j) = 1 in the bulk. But when
increasing the amplitude of the a j’s, one may switch to the
trivial phase I( j) = 0 where |t1,eff| > |t2,eff|. If one assumes
for simplification that |a j | ∼ |a j+1| ∼ a, it is clear that the
system remains topological even in the high-amplitude regime
provided that |t ′

1| < |t ′
2|. In contrast, if |t ′

1| > |t ′
2|, the system

undergoes a transition toward a trivial regime where |t1,eff| >

|t2,eff|. Lastly, when |t ′
1| = |t ′

2|, one gets |t1,eff| ∼ |t2,eff| at high
amplitude, leading to a gapless system with 0 < I( j) < 1.

As the amplitude aj actually depends on the position, the
system must be though as being divided into two regions
separated by some threshold position js: The region j > js
where |t1,eff| < |t2,eff| corresponding to the topological phase
I ( j) = 1), and the region j < js where |t1,eff| > |t2,eff| cor-
responding to the trivial one, I ( j) = 0). At the edge of the
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FIG. 3. Evolution of the deviation ‖ |ψ (t )〉 − |ψs〉 ‖ between the stationary edge states shown in Fig. 2 and an initially perturbed one by a
random vector of norm 10−3.

topological phase, I ( j) must interpolate between 0 and 1, im-
plying therefore the existence of a zero mode of dHBA

ψ nearby.
As long as |t ′

1| < |t ′
2|, a transition toward the trivial region

cannot occur, and so the zero-energy mode remains localized
near the edge. In contrast, if |t ′

1| > |t ′
2|, the effective boundary

js shifts when increasing the amplitude and dissociates from
the physical boundary of the chain. Since |∂sψs〉 is localized
around js, it shifts toward the bulk while keeping its shape.
As a result, |ψs〉 saturates and invades the bulk. The same
reasoning applies when |t ′

1| = |t ′
2|, except that js becomes

an interface between a topological and a gapless phase. As
a result, |∂sψs〉 decreases slowly far away from js into the
gapless region, leading to a profile of |ψs〉 which is neither
flat (|t ′

1| > |t ′
2|) nor exponential (|t ′

1| < |t ′
2|).

Now that we have established the stationary properties of
these topological edge modes, we can look for their nonlin-
ear stability against random perturbations as we did in the
nonchiral example. Our results are displayed in Fig. 3. While
the energy Es remains at zero due to the chiral symmetry,
we observe that the topological mode is unstable in the case
where |t ′

1| > |t ′
2| about when the plateau of the domain wall is

forming, that is from s ≈ 3–4. In the two other cases, however,
we find a relative stability of the edge modes with a deviation
that remains relatively small (of order ≈10−2) even at large
time t � 1.

To sum up, we have investigated the fate of topological
edge states in 1D nonlinear lattices and showed that those
eventually disappear at sufficiently large amplitude, unless
the nonlinearities satisfy a generalized chiral symmetry. In
that case, a local topological index correctly accounts for
the existence and the spatial extension of the nonlinear edge
modes, whose actual profile depends on the interplay between
the nonlinearities and the underlying topology of the family
of linearized Hamiltonians. Our theoretical approach lies on
the general hypotheses (i), (ii), and (iii) and then the chiral
condition (7) under which the systems (6) and (10) can always
be constructed. Therefore, we expect the stationary behav-
iors we describe to not qualitatively change as long as those
general hypothesis are verified, for instance, if one considers
nonlinearities in other nonlinear powers than three. On the
other side, it is possible that the stability properties of edge
modes are more model dependant. An extension of our ap-
proach to higher dimension, possibly with other symmetries,

is a promising perspective in the search of exotic nonlinear
topological states.

APPENDIX: NUMERICAL COMPUTATIONS

In this paper, we shown that if we have an edge solution
of i∂t |ψ〉 = Hψ |ψ〉 then we can find other edge solutions by
solving the following system of differential equation:

(dHψ − Es) |∂sψs〉 = (∂sEs) |ψs〉 . (A1)

The most common way to numerically solve this kind of
differential system is by using an iterative method like the
Runge-Kutta one. The only problem that we have to deal
in order to apply these methods is to give a valid solution
(|δψ〉 , δE ) for each s of following linear systems:

(dHψ − Es) |δψ〉 = (δE ) |ψs〉 . (A2)

The vector space of solution of this system can in general
be determined by numerical algorithm (the simple one being
Gaussian elimination). Once this vector space is determined,
we then have to choose one solution in it. This choice is, in
general, arbitrary and one can use different method to do it. In
general, it is often better to choose solutions for (|∂sus〉 , ∂sEs)
which are close of each other for close s as we observe that the
Runge-Kutta method is more stable and fast in these cases.

For our numerical simulation, we use the following proce-
dure. First, for s = 0, we choose one of the two solutions of
the system where |δu〉 is of norm 1 and real. Then iteratively,
for the system at time s + δs, we pick the solution which is of
norm 1 and is the closest to the one we choose at time s.

We control the error made by the numerical procedure by
measuring the quantity ||Es |ψs〉 − Hψs |ψs〉 || (which should
be zero if the procedure is exact). This quantity can be made
arbitrarily small at the cost of time of computation. In our
example, we are able to obtain ||Es |ψs〉 − Hψs |ψs〉 || < 10−11

and thus the edge mode created are exact up to a negligible
error.

In the chiral case where we do not solve (A1) but the
system below, the procedures are almost the same. The only
difference is that our variables are only the components of
|δψ〉A and not (|δψ〉 , δE ):

HBA
eff,s |∂sψs〉A = 0. (A3)
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