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Controlling the real-time dynamics of a spin coupled to the helical edge states
of the Kane-Mele model
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The time-dependent state of a classical spin locally exchange coupled to an edge site of a Kane-Mele model in
the topologically nontrivial phase is studied numerically by solving the full set of coupled microscopic equations
of motion for the spin and the electron system. Dynamics in the long-time limit is accessible thanks to dissipative
boundary conditions, applied to all but the zigzag edge of interest. We study means to control the state of the
spin via transport of a spin-polarization cloud through the helical edge states. The cloud is formed at a distant
edge site using a local magnetic field to inject an electron spin density and released by suddenly switching off
the injection field. This basic process, consisting of spin injection, propagation of the spin-polarization cloud,
and scattering of the cloud from the classical spin, can be used to steer the spin state in a controlled way. We find
that the effect of a single basic process can be reverted to a high degree with a subsequent process. Furthermore,
we show that by concatenating several basic injection-propagation-scattering processes, the spin state can be
switched completely and that a full reversal can be achieved.
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I. INTRODUCTION

Topological quantum matter [1–6] has proven to be a fas-
cinating concept not only because of its mathematical beauty,
but also because it paves the way for novel applications.
In particular, as a consequence of the bulk-boundary corre-
spondence, quantum matter in a topologically nontrivial state
is characterized by the existence of topologically protected
states, which are localized at the boundaries of a sample.
These edge states are accessible by local or surface-sensitive
experimental probes and feature unique physical properties.
Their robustness against certain perturbations is highly attrac-
tive for the development of devices with new functionalities.

Symmetries are essential for the classification of topolog-
ical quantum matter [4–6]. Accordingly, the topological edge
modes are distinguished by their protection against local and
symmetry-preserving perturbations. This robustness property
has been exploited for various suggested applications.

A prime example is quantum computation [7,8], employ-
ing, e.g., fractional quantum Hall states [9] or Majorana zero
modes [10], where topological protection and corresponding
robustness is a decisive issue. In the field of spintronics [11],
examples are given by one-dimensional spin transport in
inverted-gap semiconductor-based devices [12], or by spin-
dependent reflection with control of the spin rotation in
trilayer junctions consisting of quantum-spin Hall (QSH) and
metallic materials [13]. The QSH effect can be utilized to
create nearly fully spin-polarized charge currents, controlled
via magnetic defects [14], and all-electrical routes have been
suggested to manipulate the spin of a magnetic adatom at the
edge of a QSH insulator [15,16].

Our present study addresses the helical edge states of a
time-reversal (TR) symmetric two-dimensional topological

insulator and concentrates on the Kane-Mele (KM) model
as a prototype [17,18]. Topologically nontrivial properties of
the KM model originate from its TR symmetric spin-orbit
coupling term. In particular, this induces the QSH effect.
The model has originally been proposed for graphene [17]
but turned out to be more relevant for quantum-well sys-
tems [19,20]. It can also be understood to describe a class
of graphenelike two-dimensional monolayer honeycomb ma-
terials that feature significant spin-orbit interaction, such as
silicene and related systems [21,22]. It has recently been
shown that an interacting KM model emerges as an effective
low-energy theory in stacked 1T-TaSe2 bilayers [23]. Quite
generally, the KM model represents a paradigmatic model for
two-dimensional class-AII topological insulators with phases
characterized by a Z2 index and protected by time-reversal
symmetry (TRS).

It is quite natural to probe TRS protected topological
states of Z2 insulators by means of TRS breaking local
perturbations [24]. This idea has been pursued in various
studies of TR symmetric topological systems, such as Bi2Te3,
Bi2Se3, Sb2Te3, by doping with magnetic transition-metal
atoms [25,26] or by depositing magnetic adatoms at the sur-
face [27,28]. Locally breaking TRS may lead to rather exotic
phenomena such as an image magnetic monopole [29].

Especially interesting is the interaction between two mag-
netic adatoms that is mediated by the helical edge states. In
the limit of a weak exchange coupling J between adatoms
and substrate, standard concepts of RKKY theory [30] can
be adapted to tight-binding or continuum models for helical
QSH boundary states. In the vicinity of a classical magnetic
impurity, the local (spin) density of states is suppressed at low
energies [31]. The Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction between two impurities becomes ferromagnetic
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for a chemical potential such that the Fermi wavelength is
much larger than the impurity-impurity distance. In general
the coupling is noncollinear and in plane with a power-law
spatial decay [32]. There is an additional [33] Bloembergen-
Rowland–type [34] bulk contribution decaying exponentially
with distance. A weakly broken TRS gaps out the Dirac
cone and induces a strongly anisotropic RKKY coupling with
Dzyaloshinskii-Moriya and with both in-plane and out-of-
plane Ising terms decaying exponentially with the distance
between the impurities for a chemical potential within the
gap [35]. Effects of strong electron interaction and the Do-
niach competition of indirect exchange with Kondo screening
in a helical Luttinger liquids limit the applicability of RKKY
theory [36].

The real-time dynamics of magnetic impurities at surfaces
of topological insulators has been studied to a lesser ex-
tent. Recent studies have employed time-dependent density-
functional theory [37] and, for periodically driven impurities,
Floquet theory [38]. The effects of a single TRS breaking
magnetic impurity on the transport properties of a KM zigzag
ribbon mediated by the helical edge states have been studied
within scattering theory [39]. The long-time dynamics of a
single classical spin exchange coupled to the edge of a Su-
Schrieffer-Heeger model has been investigated recently [40].
Apart from the latter, the full microscopic real-time dynamics
beyond the linear-response approach [41–43] has not yet been
addressed so far.

In this work we numerically study the real-time dynamics
of a classical “read-out” spin that is exchange coupled to the
local spin of the electron system at a site of a zigzag edge of
the KM model on a honeycomb lattice. The dynamical state of
the read-out spin is affected by another impurity at a distant
site on the same edge, which is used to inject a local spin
excitation. The transport of the injected spin density through
the helical edge state and its impact on the classical spin is
microscopically traced as function of time. Note that local
breaking of TRS due to the read-out impurity spin enables
backscattering [44,45] of the transported spin density and thus
allows driving of the read-out spin dynamics. Our goal is to
fully control the state of the classical spin by local excitations
of the system over long distances making use of the topo-
logical protection of the edge state. We demonstrate that this
can be achieved with a predefined precision by iterating the
spin-injection and transport process.

The studied setup is partially motivated by the further
progress of experimental techniques, e.g., in detecting states
of magnetic adatoms [46] and measuring indirect magnetic
(RKKY) interactions on a nanoscale [47]. Scanning-tunneling
microscopy with two or several tips [48–51], with a separation
down to the nanometers, ideally with magnetic tips and spin
resolution, would be perfectly suited to initiate, probe, and
control spin-momentum-locked transport. Our study aims at
an improved understanding of manipulation of local magnetic
states through topological surface states in the time domain.
As time-dependent STM techniques [52,53] address the μs
rather than the ps time regime, however, we focus on the
initial- and final-state spin configurations.

A numerically exact solution of the coupled set of equa-
tions of motion for the classical read-out spin and for the
dynamics of the entire electronic system can only be achieved

for a lattice of finite size. Here, we demonstrate that a ribbon-
shaped geometry with only four unit cells in the direction
perpendicular to the zigzag edge and with about 100 sites
along the zigzag edge is fully sufficient to achieve propagation
times of the order of 103 inverse nearest-neighbor hoppings
(and more) and thus allows for a complete monitoring of the
injection-transport-driving process. This, however, requires
special boundary conditions [54] for the armchair edges and
for the opposite zigzag edge. Namely, the boundaries must
fully absorb the residual propagating excitations to avoid re-
flections. As has been shown recently for a spin coupled to a
one-dimensional topological chain [40], this can be achieved
with properly modified Lindblad-type edge potentials. This
scheme is adapted here and applied to the considered ribbon
geometry. It allows us to easily achieve the required propa-
gation times without any unwanted interference effects and
without any modification of the physical real-time dynamics
in the core of the system.

The rest of the paper is organized as follows: Sections II
and III introduce the model and our approach to compute
time-dependent observables. In Sec. IV we specify the ge-
ometry in detail and discuss a static spin injection and the
subsequent propagation of the spin-polarization cloud. Scat-
tering of the polarization cloud and its impact on the read-out
spin are addressed in Secs. V and VI. A basic process that
consists of a dynamic spin injection and subsequent pumping
of the read-out spin can be reverted or iterated, as described
in Sec. VII. Section VIII summarizes our findings and gives a
brief outlook.

II. KANE-MELE s-d MODEL

Using standard notations, the Hamiltonian of the Kane-
Mele model [17,18] is given by

HKM = thop

∑
〈i, j〉,α

c†
iαc jα + itso

∑
〈〈i, j〉〉,α,β

νi jc
†
iασ

(z)
αβ c jβ

+ V
∑
i,α

εic
†
iαciα . (1)

Here, i and j label the sites of a honeycomb lattice, α, β =↑
,↓ is the spin projection, 〈·, ·〉 and 〈〈·, ·〉〉 indicate sum-
mation over nearest or next-nearest neighbors, respectively,
and σ (z) is the z Pauli matrix. The spin-diagonal nearest-
neighbor hopping amplitude thop ≡ 1 sets the energy unit
and with h̄ ≡ 1 also the time unit. The anisotropic spin-
orbit coupling (SOC), responsible for the helicity of the
topological boundary states, is modeled as a spin-dependent
next-nearest-neighbor hopping with a sign factor νi j = ±1,
which is positive (negative) for anticlockwise (clockwise)
hopping j → i within a hexagon of the lattice. The strength
of the SOC is controlled by the amplitude itso which is purely
imaginary (tso > 0). In combination with the sign factor this
ensures Hermiticity of the SOC term. Finally, V > 0 is the
strength of a sublattice-parity-breaking ionic potential, which
includes a sign εi = +1 (−1) if site i belongs to sublattice
A (B). The V term is used to tune the ground state of the
system between topologically distinct phases. For given tso,
we choose

V = 3
√

3tso ± 0.5� (2)
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to produce a band structure with a desired (small) bulk band
gap � > 0. For positive (negative) sign this yields the topo-
logically trivial (nontrivial) phase. This choice of V has the
convenient feature that the bulk gap is the same in both phases.

Each term of the KM model is invariant under TR, i.e., its
Hamiltonian commutes with the antiunitary TR operator � =
e−iπSyK where Sy is the y component of the total spin and K
is the complex conjugation with respect to the spinful orbital
basis, such that �c(†)

iα � = i
∑

β σ
(y)
αβ c(†)

iβ . In the single-electron
subspace, � squares to −1. This entails Kramers degeneracy
of the single-particle eigenstates of HKM.

The two topologically distinct bulk phases of the KM
model are distinguished by a topological Z2 invariant ν, with
ν = 0 and 1 referring to the topologically trivial and nontrivial
phases, respectively. It can be defined as [17,18]

(−1)ν =
∏

i∈�

√
det ω(
i )

Pf ω(
i )
(3)

in terms of the set of TR symmetric invariant momenta � and
the 2 × 2 TRS “scattering” matrix [55]

ωrs(
i ) = 〈ur (
i )|�|us(
i )〉 , (4)

where the indices r, s = 1, 2 label the two Bloch states
|u1(k)〉, |u2(k)〉 of the occupied Kramers pair. The bulk-
boundary correspondence of the KM model is expressed as
ν = NK mod 2, where NK is the number of Kramers boundary
pairs, i.e., the number is even (odd) in the topologically trivial
(nontrivial) phase. The topological edge states of the model
are helical, meaning that the two spin species are interlocked
with opposite momenta and hence opposite propagation di-
rections. Note that helical edge states are “immune” to
TRS-preserving perturbations but scatter from TRS-breaking
perturbations [44,45].

We consider the KM model in a nanoribbon geometry with
topological zigzag edges (see Sec. IV below). At a site R of
a zigzag edge, a classical (“read-out”) spin SR of fixed length
is exchange coupled to the local spin sR = 1

2

∑
αβ c†

RασαβcRβ

of the electron system. Here, σ is the vector of Pauli matrices.
This perturbation, JSRsR, locally breaks TRS opposed to, e.g.,
a Kondo coupling to a quantum spin 1

2 . The classical spin is
a proper way to describe a “magnetic” adatom with a well-
formed spin moment that is stable on a timescale exceeding
all other relevant timescales of the system.

The classical spin SR is susceptible to a spin-density excita-
tion propagating along the edge through gapless helical edge
states, the presence of which is enforced in case of a topo-
logically nontrivial phase of the bulk electron system. Local
breaking of TRS allows the spin excitation to scatter from the
impurity spin and thereby to exchange a spin torque that drives
the dynamics of SR. Due to the topological protection and due
to the helicity of the edge states the electron-spin density is
transported robustly and unidirectionally.

Locally initializing a spin excitation in the electron system
that is confined to the zigzag edge likewise requires another
TRS breaking local perturbation. This could be achieved by
means of a second magnetic adatom with a spin moment
that is externally driven, e.g., by means of a spin-polarized
STM tip. For simplicity, we will here model the spin-injection
process by a local magnetic field BI which couples to the local

electron spin at a site I and which is suddenly switched on and
off to induce real-time dynamics.

The Hamiltonian of the total system, consisting of the
Kane-Mele electron model and the two local perturbations,
the exchange-coupled read-out spin SR at edge site R and the
local magnetic field BI at edge site I , then reads as

H = HKM + JSRsR − BIsI. (5)

J is the strength of the local exchange interaction. H repre-
sents a two-impurity s-d–type model [56,57] with a possibly
nontrivial bulk topological ground state.

III. REAL-TIME DYNAMICS

Our ambition is to fully determine the microscopic real-
time dynamics of the system, Eq. (5). To this end we introduce
the one-particle reduced density matrix ρ with elements
ρiα, jβ = 〈(t )|c†

jβciα|(t ))〉, where |(t )〉 is the N-particle
quantum state of the electron system at time t which implies
trρ = N . We consider a half-filled system, where N = L is
given by the number of lattice sites L. For the quantum-
classical hybrid system [58,59], there is a closed system of
equations of motion [60], consisting of a Landau-Lifschitz–
type equation

dSR

dt
= J 〈sR〉 × SR, (6)

with 〈sR〉 = 1
2

∑
αβ ρRα,Rβσβα for the read-out spin and a von

Neumann–type equation

i
dρ

dt
= [T eff , ρ] (7)

for the density matrix. Here, T eff is the effective hopping
matrix with elements given by

Teff,iα,jβ = Tiα, jβ + δiRδ jRJ 1
2σαβSR − δiIδ jI

1
2σαβBI , (8)

and T is the bare hopping matrix of the unperturbed Kane-
Mele model (1):

Tiα, jβ = thopδ〈i, j〉δαβ + itsoδ〈〈i, j〉〉νi jσ
(z)
αβ + V εiδi jδαβ . (9)

Using standard methods for systems of ordinary differential
equations, this can be solved conveniently for finite systems
with up to L ≈ 103 sites [60,61].

Initiating the real-time dynamics by a local time-dependent
perturbation causes excitations propagating as a wave packet,
predominantly along the edge. The propagation speed is
roughly given by the Fermi velocity vF = dεσ (k = kF)/dk of
the two edge states, where εF = 0 is the Fermi energy. Fig-
ure 1 gives an example. It displays the bulk band structure of
the unperturbed model (1), projected onto a zigzag edge. Pa-
rameters (see caption) are chosen such that the topologically
nontrivial phase is realized. We can read off vF ≈ ±0.285
in good agreement with vF ≈ ±0.286 as obtained from an
analytical expression given in Ref. [62].

Addressing the full microscopic real-time dynamics re-
quires a system of finite (but large) size. In case of open
boundary conditions, an initially excited wave packet prop-
agating along the edge with velocity ±vF at a distance d from
one of the corners will be reflected after a time trefl. ≈ d/|vF|,
back propagate, and finally lead to interferences at the position
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FIG. 1. Band structure of the Kane-Mele model (1) projected
onto a zigzag edge. Gray area: projected bulk bands as obtained from
a calculation for a ribbon geometry with 20 unit cells in the normal
direction. Red (green) line: dispersions ε↑(k) [ε↓(k)] of the two
helical edge states outside the bulk continuum (edge states localized
at the opposite edge are not displayed). thop = 1 sets the energy scale.
Calculation for tso = 0.05, band gap � = 0.3, and V as obtained
from Eq. (2) for the negative sign.

of the impurity spin. Such unwanted finite-size effects can
be suppressed almost completely with the help of absorbing
boundary conditions that have been introduced and tested in
Ref. [54]. This allows us to study real-time dynamics on long
timescales even for moderate system sizes (see Sec. VII).
Following Ref. [54] we therefore replace Eq. (7) by

dρ(t )

dt
= −i[T eff (t ), ρ(t )] − {γ, ρ(t ) − ρ(0)}, (10)

where {·, ·} denotes the anticommutator. This equation con-
tains an additional boundary term involving a diagonal and
non-negative matrix γ with elements

γiα, jβ = δi jδαβγiα. (11)

γiα is nonzero for sites i in a thin “Lindblad shell” at the sys-
tem boundaries, except, of course, for the “physical” zigzag
edge of interest. In our case (see Fig. 2), the sites of the
Lindblad shell are those of the three (“unphysical”) edges of
the ribbon coupling to the Lindblad bath shown in red color.

In fact, Eq. (11) is derived by starting from the general
Lindblad equation [63,64] but allowing only sites in the
Lindblad shell close to the boundaries to couple to the en-
vironment. In a next step the Lindblad theory is specialized
to a system of noninteracting electrons. This results in an
equation of motion involving the one-particle reduced density
matrix only, rather than the many-body statistical operator.
Finally, and most importantly, an additional term ∝ρ(0) is
incorporated which is missing in standard Lindblad-based
computations and which is necessary to avoid artificial ex-
citations initially generated due to the coupling to the bath.
With a standard Lindblad bath extended by this extra term,
reflections of physical excitations from the boundaries as well
as initial-state artifacts can be suppressed very efficiently.
This has been demonstrated recently [40,54] to work well
for one-dimensional tight-binding systems with classical-spin

FIG. 2. Sketch of the Kane-Mele model in a ribbon geometry.
Green (blue) dots: sites of sublattice A (B). Red dots: edge sites with
coupling to a Lindblad bath (thick dashed red lines). Yellow (orange)
symbol � (⊗): out-of-plane magnetic field BI in positive (negative)
z direction coupled (dotted black line) to an “injection site” I . Here,
I is chosen as the central site of the “physical” zigzag edge (without
Lindblad boundary). A finite BI = +|BI|ez (BI = −|BI|ez) induces
a finite spin-up (spin-down) z-polarized spin density. In the spin-up
case, the excitation propagates to the left (yellow line with arrow at
the bottom), once the injection field is switched off. Vice versa, a
spin-down polarized density propagates to the right (orange line).

impurities. The approach describes time evolution respecting
total-probability conservation. Energy and angular momen-
tum (spin), on the other hand, are only conserved locally but
dissipated at the boundaries.

Here, we adapt the method to a two-dimensional nanorib-
bon geometry to construct absorbing boundaries on the zigzag
edge opposite to the edge of interest as well as on the armchair
boundaries. For the geometrical setup and the propagation
timescales discussed in the sections below, it has turned out
that a uniform shell of unit thickness and a spin-independent
γ matrix is fully sufficient. This means that only a single
scalar parameter γ must be fixed. This parameter controls
the rate of dissipation at the absorbing boundaries and is set
γ = 0.2 throughout this study, following Refs. [40,54]. By
comparing, for sufficiently short timescales, with the open-
boundary dynamics [Eq. (7)], we have carefully checked that
the presence of absorbing Lindblad sites with γ = 0.2 does
not affect the physical dynamics in the core region of interest,
i.e., on the zigzag edge to which the impurity terms in Eq. (5)
are coupled.

IV. RIBBON GEOMETRY, SPIN INJECTION,
AND PROPAGATION

We consider the Kane-Mele model in a ribbon geometry as
shown in Fig. 2. The numerical effort for computing the full
real-time dynamics of the electronic system asymptotically
scales as L2 for a large total number of lattice sites L. Com-
putations for systems with L ≈ 500 are convenient. For the
calculations we choose a ribbon geometry with L = 572 sites.
The short side of the ribbon along the armchair (y) direction
extends over four unit cells consisting of two sites each, while
along the x direction the ribbon extends over 71.5 unit cells,
as displayed in Fig. 2.
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In the figure, the lower zigzag edge is the physical edge.
Sites at the remaining three edges are coupled to the Lindblad
bath, as discussed in Sec. III above and as shown in red color.
Considering local time-dependent perturbations at the phys-
ical edge, this setup almost perfectly simulates the real-time
dynamics of a half-infinite sample. Note that the helical edge
states are exponentially localized on the zigzag edge. We have
checked that with four unit cells in the y direction, the overlap
of edge states with edge states on the opposite zigzag edge,
which are perturbed by the Lindblad boundary condition, is
in fact negligible. Furthermore, on the physical edge, the edge
states are predominantly localized on the A-sublattice sites,
such that it is advantageous to couple the two B-sublattice
edge sites to the Lindblad bath. This motivates the choice of an
extra half unit cell in the x direction. At the other edges both,
B- and A-sublattice sites are coupled to the Lindblad bath.

Evidently, a larger system generally comes with reduced
finite-size artifacts. We have verified that the results for the
real-time dynamics presented in the following are robust
against both shape-preserving and shape-altering rescaling of
the geometry, mainly by comparing with results obtained for
smaller L.

We start the discussion of the results with a static spin
injection process. To this end, we consider the Kane-Mele
ribbon with an additional local magnetic field BI pointing out
of plane, i.e., in the +z (or −z) direction [see yellow (orange)
� (⊗) symbols in Fig. 2], and coupling locally to an “injection
site” I of the physical zigzag edge. We first choose I as the
central site on this edge.

The pure Kane-Mele nanoribbon without the injection
field, Eq. (1), is time-reversal symmetric. Without the SOC
term, the Hamiltonian is additionally invariant under global
SU(2) rotations generated by the total electron spin. The SOC
introduces an anisotropy and reduces this symmetry to a U(1)
rotational symmetry of the Kane-Mele Hamiltonian around
the z axis. The ground state, however, is an unpolarized Fermi
sea of the form |g.s.〉 = ∏

k�kF
c†

k↑c†
k↓|vac〉 since the total-

spin z component is conserved. Thus, the ground state is a
nondegenerate SU(2)-symmetric spin singlet. Any additional
local magnetic field BI reduces the SU(2) symmetry of the
ground state to a U(1) symmetry, but the ground-state energy
is independent of the direction of the field. Contrary, the U(1)
symmetry of the Hamiltonian is broken by any field with a
nonzero z component. Here, we choose BI = ±BIez. In this
case, we have a U(1) spin-rotation invariance around the z
axis for both the Hamiltonian and its ground state. A field in
the z direction induces a spin-up (spin-down) polarization of
the local magnetic moments in the vicinity of site I , which
we expect to show unidirectional (spin-momentum-locked)
propagation.

Calculations are performed for thop = 1, tso = 0.05, � =
0.3, and with V fixed by Eq. (2) for the topologically non-
trivial case, as in Fig. 1. The field strength is set to BI = 1 and
the Lindblad parameter to γ = 0.2. The resulting ground-state
local moment at site I amounts to 〈sz

I (t = 0)〉 ≈ 0.33 < 0.5,
i.e., the local moment is not fully polarized. Figure 3, for
time t = 0, shows the entire ground-state polarization cloud
induced by BI = +BIez (see upper half, purple data). Data for
BI = −BIez (shown in the lower half) differ by the sign of
〈sz

i (t = 0)〉 only.

FIG. 3. Snapshots of the spatial distribution of spin polarization
〈sz

i (t )〉 at selected instants of time (colors). At t = 0 the spin-
injection field BI at the central site I = 36 of the zigzag edge
(A-sublattice edge sites are enumerated from i = 1 to 71) has sud-
denly been been switched off and the excitation is released. Upper
part with 〈sz

i (t )〉 > 0: spin-up injection. Lower part with 〈sz
i (t )〉 < 0:

spin-down injection. The time unit is set by the inverse hopping
parameter t−1

hop = 1 (h̄ ≡ 1). Further parameters: tso = 0.05, � = 0.3
(as in Fig. 1), V as obtained from Eq. (2) with negative sign, initial
field strength BI = 1, Lindblad parameter γ = 0.2.

To release the spin excitation, we suddenly switch off the
field at time t = 0, i.e., BI = 0 for t > 0. Right after the
injection, at t = 0, the polarization cloud is spread over about
5 sites in both cases. In the course of time, it continuously
broadens and spreads over about 10 sites at t = 100 inverse
hoppings after the injection. The results for spin-up and -down
injection are completely identical apart from the important
fact that the spin-up excitation mainly propagates to the left,
while the spin-down excitations move to the right along the
zigzag chain. This is exactly the effect of spin-momentum
locking in the topologically nontrivial state. We also note that
at early times (of the order of about 10 inverse hoppings)
the total weight of the cloud is approximately halved. This is
attributed to the fact that about a half of the injected spin den-
sity is carried by bulk states and thus immediately transported
away from the edge and dissipated into the bulk.

This interpretation is corroborated by a calculation for a
different strength of the ionic potential, where in Eq. (2) the
positive sign is used, i.e., V = 3

√
3tso + 0.5�. This yields the

same size of the bulk gap � but the topologically trivial state.
Figure 4 displays the according results. In this case one finds
a much less developed polarization cloud with about a factor
of 2 smaller local moment | 〈sz

I (t )〉 | = 0.16 right after the
injection. The propagation of both a spin-up and a spin-down
excitation is completely identical. The polarization cloud at
the edge sites does not propagate significantly along the edge
but essentially ceases to exist after about 10 inverse hoppings.
In fact, almost the whole weight is immediately dissipated into
the bulk of the system.

The data for the topologically nontrivial state in Fig. 3
also prove that after the early dissipation of the spin-density
portion carried by bulk states, the total weight of the cloud
almost stays at a constant value. This is as expected since after
the early stage almost the whole weight of the, say, spin-up
excitation is carried by the respective helical edge state only.
Furthermore, the speed of the spin-up wave packet moving
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FIG. 4. The same as Fig. 3 but for the topologically trivial case
with V = 3

√
3tso + 0.5� [see Eq. (2)].

to the left amounts to v ≈ 0.29 sites per inverse hopping, as
can be read off from the peak maxima. This almost perfectly
matches with the Fermi velocity vF ≈ 0.285 of the edge state
(see discussion of Fig. 1). Interestingly, there is a low-weight
peak visible for t = 20 around site i = 43 in the spin-up case
(upper part of the figure) found to the right of the injection
site I = 36 and moving further to the right (see t = 40). This
is due to the locally broken TRS which thus undermines spin-
momentum locking to some extent.

V. SPIN INJECTION AND PROPAGATION IN THE
PRESENCE OF THE READ-OUT SPIN

In the next step, the discussion of spin injection and prop-
agation is extended to the full setup sketched in Fig. 5. In
addition to the local injection field, a classical read-out spin
SR with SR ≡ |SR| = 1

2 is exchange coupled antiferromagnet-
ically at the central site R of the physical zigzag edge. We
choose a generic coupling strength J = 2 such that J|SR| = 1.
The injection field is placed at a site I halfway between R and
one of the corners.

FIG. 5. The same as Fig. 2 but with an additional classical “read-
out spin” SR (black arrow), antiferromagnetically exchange coupled
(wavy black line) to the local spin of the electron system at site R
of the “physical” zigzag edge. R is chosen to be the central site of
the edge. The injection field BI couples to the edge site I halfway
between R and one of the corners. In case of BI = +BIez, the induced
spin-up polarized density propagates to the left (yellow line) and
scatters from SR, if I is located to the right of R. Vice versa for a
spin-down polarized density: scattering if I is located to the left of R.

FIG. 6. The same as Fig. 3 but for a spin-down injection at site
I = 18 left to the additional classical read-out spin at site R = 36
coupled antiferromagnetically with J = 2. Initially, at time t = 0, the
electron system is in its ground state for fixed BI = −BIez and SR =
SRex . For t > 0, the injection field is swichted off, BI = 0. Other
parameters: see Fig. 3.

We again consider a static spin injection and fix the injec-
tion field aligned to the z axis, BI = ±BIez. Furthermore, the
initial direction of the classical spin is assumed to be in plane,
say, SR = SRex. The motivation of this choice is to maximize
the torque exerted on the read-out spin by the propagating spin
excitation that is released when switching off BI.

First, we concentrate on the initial state of the electron
system, which is taken to be the ground-state Fermi sea for
fixed BI and SR. Such an initial state is “stressed,” i.e., it
differs from the total system ground state that also minimizes
the total energy with respect to the direction of SR. The total
system ground state would be realized if both SR and BI

were lying in the x-y-plane enclosing a possibly interimpu-
rity distance-dependent azimuthal angle �φ(R). Following
Ref. [32] the angle is given by �φ(R) = π − α(R), where
α(R) = 2RεF/vF with the interimpurity distance R, the Fermi
energy εF, and the Fermi velocity vF. Note that in our case
�φ(R) is finite since εF = 0 should be obtained for L → ∞
only.

Here, with the injection field aligned to the z direction, a
total system excited state is prepared at t = 0. Hence, switch-
ing off the injection field for t > 0 to release the polarization
cloud in the vicinity of site I leads to a propagation of the spin
density (as in Fig. 3), but additionally we expect an immediate
dynamics of the read-out spin as well.

Let us first concentrate on the dynamics of the injected
spin-polarization cloud as shown in Fig. 6. Initially, at time
t = 0, the polarization cloud, although formed at site I = 18
left to the read-out spin, is almost indistinguishable from
the cloud initially formed at I = 36 for the spin-down injec-
tion shown in Fig. 3, i.e., finite-size effects are negligible.
For t > 0 the spin density predominantly propagates to the
right reflecting again spin-momentum locking. This is worth
mentioning, as the presence of the read-out spin implies a
broken TRS of the electronic Hamiltonian. However, one still
expects [44] helical transport to prevail as TRS is broken only
locally. Also for t = 20 and 40 the polarization cloud does
not show a sizable perturbation caused by the read-out spin at
site R = 36. The snapshot for t = 60, on the other hand, does
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FIG. 7. The path traced out by the tip of the classical read-out
spin on its Bloch sphere during various processes A–D, all started
with a static spin injection, switching off the injection field BI at
t = 0 and propagating the system’s state up to t = 150. The read-out
spin SR is located at the center R = 36 of edge. In all cases, it points
in the +x direction initially (black dot). A: spin-down injection at
site I = 18 left to R (“proper process”). B: spin-down injection at site
I = 54 right to R (“improper process”). C and D: spin-up injection at
I = 18 (improper) and I = 54 (proper), respectively. Parameters as
in Fig. 6. Colors serve to guide the eye. The four arrows indicate the
direction of the respective processes.

show a strongly deformed cloud. Due to the locally broken
TRS, the spin excitation strongly scatters from the read-out
spin and is seen to back propagate to the left for t = 80
and 100, predominantly as a spin-up excitation. A portion of
clearly lower weight is transmitted through the classical-spin
impurity and continues as a spin-down excitation to the right.

In the vicinity of the read-out spin, the polarization cloud
does not change much for t � 80 (compare orange and red
data points close to R = 36). This hints to a finite z component
of the read-out spin, which has trapped part of the polarization
cloud close to site R and whose dynamics has almost come
to an end for t = 100. The finite z component of SR must
result from the torque exerted on SR by the polarization cloud
during the scattering event. It must further compensate the
countertorque exerted by the read-out spin on the polarization
cloud.

VI. IMPACT ON THE READ-OUT SPIN

This interpretation is in fact corroborated by looking at the
dynamics of the classical spin. Figure 7 displays the trajectory
of the classical read-out spin on the classical “Bloch” sphere,
starting from the point SR = SR(1, 0, 0) at t = 0. The initial
state of the electron system and of the injection field is pre-
pared as above, namely, a static spin injection with a finite
BI = ±BIez and a ground-state Fermi sea.

We first discuss a spin-down injection (BI = −BIez) for
two different cases: For the “proper process” A, the injection
site I is located to the left of the site R, to which the spin cou-
pled (see Fig. 5), so that the right-moving polarization cloud

eventually hits the spin, while for the “improper process” B, I
is located right of R.

However, even in case B, there is a nontrivial real-time
dynamics after switching off BI for t > 0. There are two
reasons for this. First, the electron ground state is stressed
for the chosen directions of BI and SR(t = 0). Namely, the
local spins of two neighboring edge sites enclose an angle that,
depending on the distance between I and R, weakly deviates
from the angle in the electronic ground state at BI = 0. This
implies a spin relaxation in the electron system, which starts
immediately and leads to a finite torque on SR. However, the
result is actually small. As can be seen in Fig. 7 for case
B, the spin moves a few degrees on the Bloch sphere and
mainly within the x-y plane only, until, at t ≈ 50, its dynamics
changes qualitatively, and a finite out-of-plane (z) component
builds up. Also in this second stage of the dynamics, the spin
does not move far. After 150 inverse hoppings, the spin is still
located close to its starting point, and there is no significant
further dynamics detectable for longer propagation times. The
cause for this second stage of the dynamics is different from
the first, as this results from scattering of the low-weight
portion of the polarization cloud that has started from I and
moved towards R (while the overwhelming part of the cloud
moves away from R, consistent with spin-momentum lock-
ing). This scattering event only sets in after the necessary time
required to propagate from I to R, here after t ≈ 50 inverse
hoppings. Its effect is weak as the weight of the excitation is
small.

In case A, the proper process, on the other hand, the second
stage of the dynamics must be much more effective since
now it is almost the full weight of the polarization cloud that
propagates towards site R and, again in a time window around
t ≈ 50, scatters from the spin. In fact, as can be seen in Fig. 7,
the trajectory of the spin for case A is almost identical to that
for case B at early times, where the dynamics is dominated
by stress relaxation in the electron system. In the second stage
at later times, where the spin experiences the torque of the
scattering polarization cloud, is makes substantial progress
on the Bloch sphere and develops a sizable z component
SR,z = SR sin ϑ with ϑ ≈ −0.36π/2.

Cases C and D, obtained by starting with a spin-up injec-
tion, are perfectly symmetric to A and B (see Fig. 7). Here, for
BI = BIez but for unchanged initial direction of SR, the initial
electron ground state is stressed with opposite helicity. This
results in a sign change of the torque on SR. Similarly, for the
proper process D, the sign of the torque is opposite to that of
case A, as now it is a spin-up cloud that scatters from the spin.

VII. DYNAMIC SPIN INJECTION AND
ITERATING THE PROCESS

As the spin dynamics comes to a halt once the polarization
cloud has passed by and the spin torque has diminished, the
system is, at least locally at the edge, in a state close to its
ground state, and thus one may start over with a second pro-
cess thereafter. Some obvious questions arise in this context:
Can we undo the rotation of the read-out spin by a subsequent
second process? Can we achieve a “complete” switching pro-
cess SR → −SR by iterating the process considered so far?
Can we undo the whole iterated process?
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FIG. 8. Real-time evolution of the z component 〈sz
i (t )〉 of the

local magnetic spin moment at site I = 18 of the physical zigzag
edge during a spin-down injection process steered by an injection
field BI in the −z direction and applied for tinj = 50 inverse hoppings.
Parameters for the topologically nontrivial case as in Fig. 6.

We start the discussion with a single additional “basic
injection-pump” (BIP) process. This BIP process requires (i)
a spin injection, which, however, must be treated fully dynam-
ically, and (ii) the dynamical pump of the read-out spin.

At, say, time t = 0, the dynamic spin injection starts from
an arbitrary electronic state and an arbitrary state (direction)
of the read-out spin SR. One may assume that initially the state
of the electron system is the ground state (for a given SR), but
after the first or after several BIP processes, the system may
not have fully relaxed to its ground state before the next BIP
process starts. At t = 0, the spin-injection field BI = ±BIez is
switched on. The spin-injection process lasts up to a specified
time t = tinj, when the injection field is switched off.

The magnitude of the final polarization decisively depends
on the injection time tinj. This is demonstrated with Fig. 8 for
a spin-down injection (BI = −BIez). In this example, the dy-
namical spin injection starts from the electron ground state in
the presence of the classical spin pointing in the +x direction
(see the setup shown in Fig. 5 with I = 18 and R = 36). It
shows the temporal evolution of the local magnetic spin mo-
ment 〈sz

i (t )〉 at the injection site i = I . The results are basically
independent of the choice of I , provided that the distance to
the corners and to R is large enough. A few sites have proven
to be sufficient. We find that the formation of the local spin
moment at I (and of the entire polarization cloud) is very fast:
After a few inverse hoppings, a considerable magnetic mo-
ment at site I has formed, pointing in the field direction, with
a magnitude that is already close to the final saturation value.
The field strength (BI = 1) is not sufficient to fully polarize
the moment at I , i.e., | 〈sz

i (t )〉 | < 0.5. However, for the given
strength of the field, we choose the end of the injection step
such that saturation is (almost) reached. For BI = 1 this is the
case for t = tinj = 50, where we get 〈sz

i (tpump)〉 ≈ −0.33. We
will stick to this injection time in the following.

The second part of the BIP process starts at t = tinj

by switching off the injection field, thus releasing the ac-
cumulated polarization cloud. If the location of site I is
properly chosen, the cloud propagates towards and scatters
from the read-out spin, thereby pumping the spin direction.
The backscattered and also the transmitted part of the cloud
are eventually dissipated into the Lindblad bath at the corners

FIG. 9. Process cycle on the left: path traced out by the tip of the
classical read-out impurity spin during two concatenated processes
A and B. A (green): identical with D in Fig. 7, static spin-down
injection, switching off the injection field at t = 0, propagation of
the system’s state up to tpump = 150, proper process with I = 54 and
R = 36. B: consists of B1 and B2, proper BIP process with I = 16
and R = 36. B1 (red): dynamic spin-up injection, tinj = 50, starting
from the final state of process A. B2 (blue): release of the injected
spin-up density, propagation, scattering at SR, tpump = 150. Black
dot: initial read-out spin position SR(t = 0) = SR(1, 0, 0). Process
cycle on the right: the same but starting, for better visibility, from
SR = SR(1, 1, 0)/

√
2 at t = 0 (see gray dot) and with A replaced by

A′ consisting a dynamic injection A′
1 and, as before, of a pump part

A′
2. B′

1 and B′
2: the same as B1 and B2 but starting from the final state

of process A′.

of the edge and partially to the bulk (and then to the Lindblad
bath at other edges) simulating total-energy-conserving dissi-
pation in a macroscopically large sample. Finally, the pump
part can be terminated at t = tinj + tpump, when there is no
longer a significant spin dynamics, and another BIP process
may follow. A pumping time of tpump = 150 is found to be
sufficient (see the discussion in Secs. V and VI). Generally, a
sensible estimate for the minimal tpump is given by the distance
between sites I and R divided by the Fermi velocity vF of the
helical edge states.

The concatenated process on the left of Fig. 9 demonstrates
that a spin-up BIP process (B), to a large extent, can in fact
undo a preceding spin-down process (A). The whole process
A + B starts at time t = 0 (see black dot) from a ground
state in the presence of a local spin-down injection field, i.e.,
we consider a static spin injection. Switching off the field,
the system evolves and the read-out spin moves towards the
south pole of the Bloch sphere (green line); this is the same
as process A shown in Fig. 7. Thereafter, the system is in a
state where there is essentially no more dynamics of SR and
where locally, in the vicinity of sites I and R and the edge sites
in-between, the electron system has relaxed to a state that is
“close” to the ground state, as can be monitored by tracing the
temporal evolution of the local spin moments 〈si(t )〉 at all sites
in the nanoribbon. After tpump = 150, there are still outgoing
wave packets visible that continue to be absorbed, however,
by the dissipative boundary conditions.
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The spin-up BIP (process B on the left) starts from this
state with a dynamical spin-up injection (first part B1, red
line), which lasts for 50 inverse hoppings but does not affect
the orientation of the spin very much, and is completed with
the second part B2 (blue line), which lasts for another 150
inverse hoppings. During B2, after a short time of further
downward deflection, the scattering of the polarization cloud
efficiently drives the spin back towards the north pole of the
Bloch sphere. However, it does not quite get to the original
position SR = SR(1, 0, 0) at the equator but stays a little below
and has drifted somewhat to the east.

There are two reasons for this “imperfection”: First, pro-
cesses A and B are not constructed completely inverse to
each other since in A we have employed the “static” injection
step. We have therefore repeated the cycle (see concatenated
process on the right of Fig. 9) by replacing A with a spin-
down BIP process A′, which, as described above, consists
of a dynamic injection A′

1 and a pump part A′
2 and initially

starts from the ground state of the electron system for a given
spin orientation of SR in the x-y plane. In addition, we choose
a state rotated around ez by π/4 with SR = SR(1, 1, 0)/

√
2

as a starting point (see gray dot in Fig. 9 on the right) just
to separate in the plot the process from process A (left) on
the sphere. A′ is concatenated with the inverse one, i.e., with
the spin-up BIP process B′ = B′

1 + B′
2. The duration of the

subprocesses of A′ and of B′ are chosen identical (50 and
150 inverse hoppings each). As can be seen in Fig. 9 (right),
the deviation from the starting point, which remains after
completion of A′ + B′, is smaller as compared to the cycle
A+B on the left.

Opposed to thermodynamic processes that are steered in
the state space of equilibrium or, at zero temperature, of
ground states, the processes considered here involve nonequi-
librium states. However, if one would ideally extend the
second (pump) part of the BIP process until the electron
system is fully relaxed to its ground state, at least locally in
a sufficiently extended spatial region around I and R, the end
state of process A would be equivalent to the start state of
A, and one could perfectly undo A with B. The mentioned
equivalence is just a rotation. If it was fully relaxed, the end
state of A (of SR and of the electron system as well) would
merely be the start state of A, but rotated around an axis e and
by some angle ϕ, where the unit vector e is perpendicular to
the plane spanned by the center inside the Bloch sphere and
the start and end state on the sphere. Note that the electronic
ground state |SR〉 for given orientation of SR and the ground
state |S′

R〉 of the model for a different orientation S′
R have the

same energy and that |S′
R〉 = U (e, ϕ)|SR〉 with the according

unitary rotation operator U (e, ϕ). This is due to the fact that
(as discussed in Sec. IV) the ground state of the pure Kane-
Mele model (without coupling to SR) is an SU(2)-invariant
singlet, despite the SOC anisotropy. We conclude that incom-
plete relaxation is exactly the second reason for the imperfect
reversibility.

Of course, this imperfection could be controlled by simply
extending the pump part of the BIP processes. This, how-
ever, becomes irrelevant for the question whether a complete
switching process SR = +SRez → −SRez and, vice versa, a
complete reversal SR = −SRez → +SRez can be achieved by
iterating several BIP processes. There is one small complica-

FIG. 10. Trajectory of the read-out spin in a process consisting
of six spin-down followed by seven spin-up BIP processes starting
from a state (open black dot) close to the north pole, η = 0.05
[see Eq. (12)]. Filled black dot: position SR(1, 0, 0) marking the
longitude of the initial spin orientation. Red lines: spin injection (50
inverse hoppings). Green lines: proper spin-down pump (150 inverse
hoppings). Blue lines: proper spin-up pump (150 inverse hoppings).
Parameters as in Figs. 3 and 6.

tion to overcome. Namely, a state SR = ±SRez, together with
the corresponding electronic ground state is nonresponsive
to a spin-up or spin-down polarized wave packet passing by
since the torque on the read-out spin, JSR × 〈sR〉, vanishes in
this case. We therefore start from an initial state with SR close
to the north pole of the Bloch sphere but slightly tilted towards
the x direction:

SR(t = 0) = SR

⎛
⎝

√
1 − (1 − η)2

0
1 − η

⎞
⎠ . (12)

The parameter η controls the deviation of the z component
from its maximal value in the initial state.

Figure 10 displays the path of the classical read-out spin
on the Bloch sphere in an attempted full switching process.
This process consists of six spin-down BIP processes, during
which the z component of SR is indeed found to decrease
step by step in a controlled way. After the last spin-down BIP
process, we have Sz

R < −SR(1 − η), i.e., the spin has passed
beyond the southern latitude that corresponds to the starting
point on according the northern latitude, i.e., the parameter η

also serves to define a termination criterion for the switching
process. This is necessary because adding further spin-down
BIP processes would bring the spin less and less efficiently
closer to the south pole. Figure 10 demonstrates that within
a 5% tolarance (η = 0.05), a full switching process is in fact
possible with 6 BIP processes, where each BIP process con-
sists of 50 inverse hoppings of spin injection and 150 inverse
hoppings of free time evolution, scattering and pumping the
read-out spin.

When using the same tolerance level, about the same
number of BIP processes (in this case seven) are needed to
subsequently reverse the switching and to bring the spin back
close to the north pole of the Bloch sphere again. It goes

035406-9



ROBIN QUADE AND MICHAEL POTTHOFF PHYSICAL REVIEW B 105, 035406 (2022)

FIG. 11. Temporal evolution of SR,z corresponding to Fig. 10
with tolerance level η = 0.05 (see red data points). Labels 1, 2, and 4
indicate start, reversal, and termination of the switching cycle. Hor-
izontal red lines: threshold levels ±SR(1 − η). Blue data points and
lines: same starting point (1) but now η = 0.001 defines reversal and
termination of the process (see labels 3 and 5). Vertical lines separate
the different BIP processes, each lasting 200 inverse hoppings.

without saying that we need spin-up rather than spin-down
BIP processes in this case. The near-to complete switching
(green) and reversal (blue) are shown in Fig. 10.

Figure 11 shows the time evolution of the z component of
SR in detail (see red data). Note that each BIP process lasts for
50 + 150 = 200 inverse hoppings as indicated by the vertical
lines. A comparison with a process for a different, stricter
tolerance level is instructive: With η = 0.001 (see blue data in
the figure), but using the same starting point, the first part of
the switching process is trivially the same as before, but then it
takes more effort to drive the spin towards the south pole and
to reach the threshold set by η. After reversal of the switching
process, it also takes more effort, i.e., more BIP processes,
to finally reach the north pole with the stricter tolerance level
again. In total, 8 spin-down and 13 spin-up BIP processes are
needed for a complete switching cycle.

VIII. CONCLUSIONS

The state of a magnetic adatom with a well-formed and
stable spin moment which is exchange coupled to the surface
of a TR symmetric topological insulator can be controlled to
a large extent by making use of the helical character of the
topologically protected edge modes. We have set up a simple
model of a classical spin coupled to the zigzag edge of a
Kane-Mele nanoribbon and studied various control protocols
in detail. The technical key ingredient for the numerical study
is the dissipative Lindblad boundary conditions imposed on
all but the physically relevant edge of the ribbon. This has
allowed us to study the coupled microscopic real-time dynam-
ics of the spin and the electron system up to timescales of
thousands of inverse hoppings without disturbing effects due
to interference with propagating wave packets reflected from
the boundaries of the system.

In this study we have considered a spin-switching mecha-
nism built from several basic injection-pump (BIP) processes,
each consisting of a dynamic spin injection at a distant injec-
tion site I of the edge and a subsequent pump part driving the

read-out spin at site R. The main idea is to exploit the topo-
logical properties of the system at all stages of the process:

(i) A local spin-up or -down excitation at I aligned to the
z direction will selectively induce a spin-polarized excitation
carried by the edge states. Their presence and their helical
character is ensured by the fundamental bulk-boundary cor-
respondence. A local magnetic field, used here to describe
the dynamical spin injection, also couples to bulk states. The
bulk-state-supported part of the polarization cloud, however,
does no longer play a role since it is quickly dissipated into
the bulk of the lattice. A sizable edge-state-supported spin-
polarization cloud remains. We found that this can be built up
quickly. After a femtosecond timescale of 50 (or more) inverse
hoppings, one finds saturation of the total spin density injected
locally. One can thus profit from a reproducible preparation
step.

(ii) Switching off the coupling to the injection field releases
the spin excitation, which subsequently propagates along the
edge and is unidirectional thanks to the helicity of the edge
states. Its group velocity is given by the Fermi velocity of the
according edge state. During the propagation the cloud broad-
ens but does not lose weight so that the injected spin density,
apart from the dissipated bulk contribution, entirely interacts
with the read-out spin. As a consequence of the topological
protection of the edge modes, this feature is also robust against
various possible TR symmetric local perturbations that could
be present in a real sample. Mesoscopic distances between
sites I and R might therefore be conceivable.

(iii) The classical spin at R, on the other hand, does break
TRS locally, and hence the polarization cloud must scatter
and, again due to the topological principle of spin-momentum
locking, back propagate with essentially opposite spin polar-
ization, i.e., the read-out spin must exert a spin torque on the
approaching polarization cloud. Vice versa, the spin is driven
to the ±z direction due to the countertorque of the cloud
exerted on the spin. We found that a single BIP process can
change the z component of the spin to some degree, depending
on its initial position. If this pump part of the BIP process
is sufficiently long, the process is revertible and one may
return to the initial spin state using exactly the same spin
injection but with opposite spin direction. Here, we found 150
inverse hoppings to be more or less sufficient to reach a fully
relaxed final state that is necessary for reversibility. Again, we
conclude that a timescale of femtoseconds to picoseconds (or
longer) is relevant for this part of the process.

(iv) Importantly, one may concatenate various BIP pro-
cesses. As we have demonstrated, a full switching of the spin
direction between the north and the south poles can be realized
within, in principle, arbitrarily strict tolerances. Five to ten ba-
sic processes prove sufficient for a reasonably complete spin
switching. Furthermore, reversing the polarization of the spin
in the injection part of the BIP processes, the spin switching
can be inverted as well. Assuming a nearest-neighbor hopping
scale in the range of a hundred meV, a single full-switching (or
back-switching) process would take place in the picosecond
regime. However, this must be seen as a lower limit. Since the
system approaches a fully relaxed state after each individual
BIP process, the next injection step does not have to follow
immediately but can be delayed. This also means that, in prin-
ciple, the intermediate relaxed states of the switching process
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can be controlled experimentally by techniques that do not al-
low for a time resolution on the picosecond or subpicosecond
timescale.

It goes without saying that this study has a strong model
character. When addressing real Z2 topological materials,
there are a couple of issues to be considered in addition,
such as the effects of a realistic multiband electronic struc-
ture or electron-correlation effects. Another highly important
question is, for example, to which extent the conclusions re-
main valid for time-reversal symmetric, Kondo-type magnetic
impurities, which can be modeled, e.g., by quantum rather
than classical spins (see, e.g., corresponding recent studies
of ground-state properties [65,66]). This question poses a
formidable correlation problem to be treated in the nonequi-
librium regime and in the long-time limit. Furthermore, it
would be interesting to study the effects of imperfections
regarding the structure of the material at its surface or the
precise location and type of coupling of the magnetic im-

purities, even though the physics is expected to be largely
protected by the nontrivial topology of the states involved.
For a realistic description of materials, one would also have
to address the effects of magnetic anisotropies, such as the
single-ion anisotropy or the Dzyaloshinskii-Moriya interac-
tion. We expect that those have a considerable impact on
the timescales, and further studies in this direction are well
conceivable with the present computational techniques.
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